第一篇:浙工大 嵌入式實驗報告
金艷霞
通信2班
201203110210
實驗五 Linux交叉編譯平臺
一、實驗?zāi)康?/p>
1.掌握一些基本的linux讀寫操作 2.利用vcc編譯c程序
3.通過nfs掛載到實驗箱中,利用交叉編譯執(zhí)行文件
二.實驗設(shè)備
1.Arm9試驗箱 2.Pc機
3.Linux系統(tǒng)服務(wù)器
三.實驗過程及實驗結(jié)果 1.連接電腦箱
2.設(shè)置交叉編譯環(huán)境 啟動putty.exe 登陸192.168.1.116
3.添加軟件包至實驗?zāi)夸洠?① [shiyan@localhost ~]$ cd /home/shiyan ② [shiyan@localhost ~]$ tar –zxvf arm-linux-gcc-3.4.4-glib-2.3.5-static.tar.gz tar-zxvf arm-linux-gcc-3.4.4-glib-2.3.5-static.tar.gz ③ [shiyan@localhost201203110210] $export PATH=$PATH:/home/shiyan/201203110210/opt/crosstool/arm-linux/gcc-3.4.4-glib-2.3.5/arm-linux/bin ④ [shiyan@localhost 201203110210]$ set OSTYPE=linux-gnu PATH=/usr/lib/qt-3.3/bin:/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/home/shiyan/bin:/home/shiyan/opt/crosstool/arm-linux/gcc-3.4.4-glibc-2.3.5/arm-linux/bin:/home/shiyan/opt/crosstool/arm-linux/gcc-3.4.4-glibc-2.3.5/arm-linux/bin:/home/shiyan/opt/crosstool/arm-linux/gcc-3.4.4-glibc-2.3.5/arm-linux/bin 可以看出路徑已添加 ⑤ [shiyan@localhost 201203110210]$ arm-linux-g再按tab arm-linux-g++
arm-linux-gcc
arm-linux-gcc-3.4.4 arm-linux-gccbug
arm-linux-gcov ⑥ [shiyan@localhost 201203110210]$ arm-linux-gcc arm-linux-gcc: no input files 此時出錯,無此文件 3.測試程序 ① 創(chuàng)建hello.c [shiyan@localhost ~]$ vi hello.c #include
:wq ② 查看是否生成文件
[shiyan@matrix 201203110210]$ ls arm-linux-gcc-3.4.4-glib-2.3.5-static.tar.gz hello.c 已經(jīng)生成 ③ 打開hello.c [shiyan@localhost ~]$./hello.c-bash:/hello cannot execute binary file 表示無法在服務(wù)器上執(zhí)行 ④ 交叉編譯hello.c [shiyan@localhost ~]$ arm-linux-gcc-o hello hello.c ⑤ 將文件拷貝到nfs下
[shiyan@localhost ~]$ cp hello /home/shiyan/nfs ⑥ 掛載服務(wù)器到板子上
/ $ mount –tnfs-o nolock 192.168.1.116:/home/shiyan/nfs/mnt/nfs / $cdmnt/nfs ⑦ 打開hello文件 / $./hello
結(jié)果輸出: Jin 123
四.實驗總結(jié)
上述實驗可以得出,交叉編譯的二進制可以在板子上運行,卻不能在服務(wù)器上運行,很好的認清了交叉編譯的意義和功能。
實驗六Armboot下載運行及tcp實驗
一.實驗?zāi)康?/p>
1.掌握armboot的編譯 2.掌握tftp工具的使用 3.掌握armboot下載運行
4.掌握windows的 tcp客戶端的建立及通信過程 5.掌握tcp的基本原理
二.實驗設(shè)備
1.Arm9試驗箱 2.Pc機
3.Linux系統(tǒng)服務(wù)器
三.實驗過程及實驗結(jié)果 1)Armboot
① 編譯armboot-1.1.0 cd /home/shiyan/arm-linux-2.6/armboot-1.1.0 [shiyan@matrix armboot-1.1.0]$ make
② 產(chǎn)生的armboot.bin拷貝到tftp的目錄服務(wù)下
[shiyan@matrixarmboot-1.1.0]$ cparmboot.bin /home/shiyan/arm-linux-2.6/armboot-1.1.0/tftpboot/armboot ③ 打開arm9開發(fā)板,在五秒內(nèi)按ESC,檢查網(wǎng)絡(luò)環(huán)境
CPE>printenv bootdelay=3 baudrate=38400 ethaddr=00:40:25:00:00:01 netmask=255.255.255.0 sererip=192.168.1.65 ipaddr=192.168.1.111 serverip=192.168.1.30
Environment size: 139/131068 bytes ④ 將armboot的網(wǎng)絡(luò)環(huán)境改為tftp服務(wù)的網(wǎng)絡(luò)地址
setenv serverip 192.168.1.220 CPE>saveenv Un-Protected 1 sectors Erasing sector 6...ok.0x800e0000
o Flash...done.Protected 1 sectors
⑤ 將armboot.bin文件通過tftp傳輸?shù)絻?nèi)存0x2000000H中
CPE>tftp 0x2000000 armboot.bin ARP broadcast 1 ARP broadcast 2
⑥ 運行
go 0x2000000
⑦ 檢查網(wǎng)絡(luò)環(huán)境
CPE> printenv bootdelay=3 baudrate=38400 ethaddr=00:40:25:00:00:01 netmask=255.255.255.0 sererip=192.168.1.65 ipaddr=192.168.1.111 serverip=192.168.1.220
通過serverip的改變可看出armboot下載的正確性。
實驗七 Mount掛載實驗
一.實驗?zāi)康?1.掌握一些基本的linux讀寫操作(touch指令)2.掌握Usb掛載方法 3.掌握配置nfs的方法
二.實驗設(shè)備
1.2.3.4.Arm9試驗箱 Pc機
Linux系統(tǒng)服務(wù)器 U盤
三.實驗過程及實驗結(jié)果 A.文件夾掛載 1.服務(wù)器
[shiyan@matrix ~]$/etc/rc.d/init.d/nfs start 2.板子掛載
/ $ ifconfig eth0 192.168.1.98 / $ mount-t nfs-o nolock 192.168.1.220:/home/shiyan/nfs/mnt/nfs /$ df Filesystem
1k-blocks
Used Available Use% Mounted on /dev/mtdblock1
1024
544
480 53% /mnt/mtd 192.168.1.220:/home/shiyan/nfs 515455456 59590720 429681056 12% /mnt/nfs B.Usb 掛載
① 將u盤插入arm9開發(fā)板,并啟動 ② 查看盤符信息
/ $ fdisk-l
③ 創(chuàng)建一個/mnt/usb文件夾
/ $ mkdir /mnt/usb ④ 把sda1盤符mount到/mnt/usb文件上
/ $ mount /dev/sda1 /mnt/usb/ / $ cd /mnt/usb /mnt/usb $ ls
⑤ 創(chuàng)建文件,并輸入字符串
/mnt/usb $ vi jin.txt
hello!
⑥ 解掛載
/mnt/usb $ unmount /mnt/usb/ /bin/sh: unmount: not found ⑦ 將u盤拔出,插入電腦,觀察該文件
結(jié)果正確
實驗八RTC時鐘驅(qū)動實驗
一.實驗?zāi)康?/p>
1.了解RTC工作原理 2.掌握RTC時鐘驅(qū)動編程
二.實驗內(nèi)容
1.編寫RTC驅(qū)動程序
2.通過insmod加載驅(qū)動程序 3.編寫代碼修改RTC內(nèi)部時間
三.實驗設(shè)備
1.PC機
2.Arm9實驗箱客戶端 3.Linux操作系統(tǒng)服務(wù)端
四.實驗過程及結(jié)果
1.實驗代碼
#include
“0.01” /* Register map */ /* rtc section */ // control and status registers #define REG_CS1 0x00
#define TEST1
(1<<7)
// 0-normal mode, must be set to logic 0 during normal operations;1-EXT_CLK test mode #define STOP
(1<<5)
// 0-RTC source clock runs;1-the RTC clock is stopped(CLKOUT at 32.768KHz is still available)#define TESTC
(1<<3)
// 0-power-on reset(POR)override facility is disable;set to logic 0 for normal operation;1-POR override may be enable #define REG_CS2 0x01 #define TI_TP
(1<<4)
// 0-int is active when TF is active(subject to the status of TIE)#define AF
(1<<3)#define TF
(1<<2)#define AIE
(1<<1)#define TIE
(1<<0)
// Time and date registers #define REG_SC 0x02
// vl_seconds(0-59)#define REG_MN 0x03
// minutes(0-59)#define REG_HR 0x04
// hours(0-23)#define REG_DT 0x05
// days(1-31)#define REG_DW 0x06
// weekdays(0-6)#define REG_MO 0x07
// century_months(1-12)#define REG_YR 0x08
// years(0-99)
// Alarm registers #define REG_MA 0x09
// minute_alarm #define AE_M
(1<<7)#define REG_HA 0x0a
// hour_alarm #define AE_H
(1<<7)#define REG_DA 0x0b
// day_alarm #define AE_D
(1<<7)#define REG_WA 0x0c
// weekday_alarm #define AE_W
(1<<7)// CLKOUT control register #define REG_CC 0x0d #define FE
(1<<7)// Timer registers #define REG_TC 0x0e
// timer_control #define TE
(1<<7)#define REG_TMR 0x0f
// timer #define RTC_SECTION_LEN
/* i2c configuration */ #define I2C_ADDR
0xa2 ///////////////////////////////////////////////////////////// #define DEFAULT_I2C_CLOCKDIV
180//for APB 108MHz staticunsignedlong rtc_status;staticvolatileunsignedlong rtc_irq_data;staticunsignedlong rtc_freq = 1;/*FTRTC010 supports only 1Hz clock*/ staticstruct fasync_struct *rtc_async_queue;static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);extern spinlock_t rtc_lock;MODULE_AUTHOR(“GM Corp.”);MODULE_LICENSE(“GM License”);externint GM_i2c_xfer(struct i2c_msg *msgs, int num, int clockdiv);/* block read */ staticint i2c_read_regs(u8 reg, u8 buf[], unsigned len){ struct i2c_msg msgs[1];//////////////
buf[0] = reg;
msgs[0].addr = I2C_ADDR>>1;
msgs[0].flags = 0;
msgs[0].len = 1;
msgs[0].buf = buf;
if(GM_i2c_xfer(msgs, 1, DEFAULT_I2C_CLOCKDIV)!= 1)return-1;//////////////
msgs[0].addr = I2C_ADDR>>1;
msgs[0].flags = 1;
msgs[0].len = len+1;
msgs[0].buf = buf;
if(GM_i2c_xfer(msgs, 1, DEFAULT_I2C_CLOCKDIV)!= 1)return-1;return 0;} /* block write */ staticint i2c_set_regs(u8 reg, u8 const buf[], unsigned len){
u8 i2c_buf[10];struct i2c_msg msgs[1];
i2c_buf[0] = reg;
memcpy(&i2c_buf[1], &buf[0], len);
msgs[0].addr = I2C_ADDR>>1;
msgs[0].flags = 0;
msgs[0].len = len+1;
msgs[0].buf = i2c_buf;
if(GM_i2c_xfer(msgs, 1, DEFAULT_I2C_CLOCKDIV)!= 1)return-1;return 0;} staticint set_time(struct rtc_time const *tm){ int sr;
u8 regs[RTC_SECTION_LEN] = { 0, };
printk(“stop RTCn”);
regs[0] = STOP;
regs[1] = 0x00;
// disable interrupt and clear all flags
sr = i2c_set_regs(REG_CS1, regs, 2);if(sr < 0){
// write control and status registers
printk(“%s: stop RTC failedn”, __func__);return sr;
}
printk(“set_time Date(y/m/d):%d/%d/%d Time(h/m/s):%d/%d/%dn”,tm->tm_year,tm->tm_mon,tm->tm_mday,tm->tm_hour,tm->tm_min,tm->tm_sec);
regs[REG_SC-REG_SC] = BIN2BCD(tm->tm_sec);
regs[REG_MN-REG_SC] = BIN2BCD(tm->tm_min);
regs[REG_HR-REG_SC] = BIN2BCD(tm->tm_hour);
regs[REG_DT-REG_SC] = BIN2BCD(tm->tm_mday);
regs[REG_MO-REG_SC] = BIN2BCD(tm->tm_mon);
regs[REG_YR-REG_SC] = BIN2BCD(tm->tm_year-100);
regs[REG_DW-REG_SC] = BIN2BCD(tm->tm_wday & 7);/* write RTC registers */
sr = i2c_set_regs(REG_SC, regs, RTC_SECTION_LEN);if(sr < 0){
printk(“%s: writing RTC section failedn”, __func__);return sr;
}
printk(“start RTCn”);
regs[0] = 0x00;
sr = i2c_set_regs(REG_CS1, regs, 1);if(sr < 0){
// write control and status registers
printk(“%s: start RTC failedn”, __func__);return sr;
}
return 0;
} staticvoid read_time(struct rtc_time *tm){ int sr;
u8 regs[RTC_SECTION_LEN] = { 0, };
sr = i2c_read_regs(REG_SC, regs, RTC_SECTION_LEN);if(sr < 0){
printk(“%s: reading RTC section failedn”, __func__);return;
}
tm->tm_sec = BCD2BIN(regs[REG_SC-REG_SC]&0x7f);
tm->tm_min = BCD2BIN(regs[REG_MN-REG_SC]&0x7f);
tm->tm_hour = BCD2BIN(regs[REG_HR-REG_SC]&0x3f);
tm->tm_mday = BCD2BIN(regs[REG_DT-REG_SC]&0x3f);
tm->tm_wday = BCD2BIN(regs[REG_DW-REG_SC]&0x07);
tm->tm_mon = BCD2BIN(regs[REG_MO-REG_SC]&0x1f);/* rtc starts at 1 */
tm->tm_year = BCD2BIN(regs[REG_YR-REG_SC])+100;
printk(“read_time Date(YY/MM/DD):%d/%d/%d Time(hh/mm/ss):%d/%d/%dn”,tm->tm_year,tm->tm_mon,tm->tm_mday,tm->tm_hour,tm->tm_min,tm->tm_sec);} staticunsigned AIE_stat=0;/*ijsung: arch-indep function*/ staticint rtc_open(struct inode *inode, struct file *file){ if(test_and_set_bit(1, &rtc_status))return-EBUSY;
rtc_irq_data = 0;return 0;} staticint rtc_release(struct inode *inode, struct file *file){ unsignedchar buf[7];
rtc_status = 0;return 0;} staticint rtc_fasync(int fd, struct file *filp, int on){ return fasync_helper(fd, filp, on, &rtc_async_queue);} staticunsignedint rtc_poll(struct file *file, poll_table *wait){
poll_wait(file, &rtc_wait, wait);return(rtc_irq_data)? 0 : POLLIN | POLLRDNORM;} static loff_t rtc_llseek(struct file *file, loff_t offset, int origin){ return-ESPIPE;} ssize_t rtc_read(struct file *file, char *buf, size_t count, loff_t *ppos){
DECLARE_WAITQUEUE(wait, current);unsignedlong data;
ssize_t retval;if(count add_wait_queue(&rtc_wait, &wait); set_current_state(TASK_INTERRUPTIBLE);for(;;){ spin_lock_irq(&rtc_lock); data = rtc_irq_data;if(data!= 0){ rtc_irq_data = 0;break; } spin_unlock_irq(&rtc_lock);if(file->f_flags & O_NONBLOCK){ retval =-EAGAIN;goto out; } if(signal_pending(current)){ retval =-ERESTARTSYS;goto out; } schedule(); } spin_unlock_irq(&rtc_lock); data-= 0x100;/* the first IRQ wasn't actually missed */ retval = put_user(data,(unsignedlong *)buf);if(!retval) retval = sizeof(unsignedlong);out: set_current_state(TASK_RUNNING); remove_wait_queue(&rtc_wait, &wait);return retval;} staticint rtc_ioctl(struct inode *inode, struct file *file, unsignedint cmd, unsignedlong arg){ struct rtc_time tm, tm2;unsignedchar buf[7];switch(cmd){ case RTC_AIE_OFF: printk(“Not Supportn”);return 0;case RTC_AIE_ON: printk(“Not Supportn”);return 0;case RTC_ALM_READ: printk(“Not Supportn”);return 0;case RTC_ALM_SET: printk(“Not Supportn”);return 0;case RTC_RD_TIME: read_time(&tm);break; case RTC_SET_TIME: { unsigned usertime;unsignedchar buf[7];if(!capable(CAP_SYS_TIME))return-EACCES;if(copy_from_user(&tm,(struct rtc_time*)arg, sizeof(tm)))return-EFAULT; set_time(&tm); } return 0;case RTC_IRQP_READ: return put_user(rtc_freq,(unsignedlong *)arg);case RTC_IRQP_SET: if(arg!= 1)return-EINVAL;return 0;case RTC_EPOCH_READ: return put_user(1970,(unsignedlong *)arg);default: return-EINVAL; } return copy_to_user((void *)arg, &tm, sizeof(tm))?-EFAULT : 0;} staticstruct file_operations rtc_fops = { owner: THIS_MODULE,llseek: rtc_llseek,read: rtc_read,poll: rtc_poll,ioctl: rtc_ioctl,open: rtc_open,release: rtc_release,fasync: rtc_fasync, };staticstruct miscdevice ftrtc010rtc_miscdev = { RTC_MINOR,“rtc”, &rtc_fops };staticint rtc_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data){ // unsigned alarm_time;unsignedchar buf[7]; char *p = page;int len;struct rtc_time tm; read_time(&tm);//printk(“RTC...%dn”,xtime.tv_sec); p += sprintf(p, “rtc_timet: %02d:%02d:%02dn” “rtc_datet: %04d-%02d-%02dn” “rtc_epocht: %04dn”,tm.tm_hour + 1, tm.tm_min, tm.tm_sec,tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, 2000);// read_alarm(&tm);// p += sprintf(p, “alrm_timet: %2dth day of week dayn” // “alrm_datet: N/A for Platformn”, // tm.tm_wday); p += sprintf(p, “alrm_timet: Not Supportn” “alrm_datet: Not Supportn”); p += sprintf(p, “alarm_IRQt: %sn”, AIE_stat ? “yes” : “no”); len =(poff;if(len < 0) len = 0; *eof =(len <= count)? 1 : 0; *start = page + off;return len;} staticint __init rtc_init(void){ misc_register(&ftrtc010rtc_miscdev); create_proc_read_entry(“driver/rtc”, 0, 0, rtc_read_proc, NULL); printk(“PCF8563 Real Time Clock drivern”);return 0;} staticvoid __exit rtc_exit(void){ remove_proc_entry(“driver/rtc”, NULL); misc_deregister(&ftrtc010rtc_miscdev);} module_init(rtc_init);module_exit(rtc_exit); 2.掛載usb / $ ifconfig eth0 192.168.1.99 / $ mount-t nfs-o nolock 192.168.1.220:/home/shiyan/nfs /mnt/nfs / $ fdisk –l / $ mkdir /mnt/usb / $ mount /dev/sda1 /mnt/usb/ / $ cd /mnt/usb 3.找到u盤中的pcf8563.ko /mnt/usb $ ls 4.加載pcf8563.ko /mnt/usb $ insmod pcf8563.ko 5.更改日期并寫入 6.重啟檢驗日期 與當前時間相符 實驗九視頻采集RTP發(fā)送及遠程視頻監(jiān)控實驗 一.實驗?zāi)康?1.理解視頻傳輸原理 2.掌握在IP網(wǎng)絡(luò)中實現(xiàn)視頻傳輸?shù)姆椒?3.理解遠程控制原理 4.掌握在windows下TCP客戶端建立及通信過程 二.實驗內(nèi)容 1.搭建點對點視頻傳輸模式 2.開啟視頻采集 3.開啟Windows下tcp客戶端,完成控制命令 三.實驗設(shè)備 1.硬件:基于雙核處理器架構(gòu)的網(wǎng)絡(luò)音視頻傳輸教學實驗系統(tǒng); 對接線; 串口連接線; 網(wǎng)線; 集線器(HUB),PC機; 2.軟件:H.264流媒體軟件 設(shè)備端視頻采集程序 設(shè)備端視頻傳輸程序 串口操作軟件 四.實驗步驟及結(jié)果 A.視頻采集 1.連接好實驗箱,打開串口通信端,遠程mount到home/nfs文件夾 / $ mount-t nfs-o nolock 192.168.1.116:/home/shiyan/nfs /mnt/nfs 2.掛載服務(wù)器下nfs與板子的/mnt/nfs,進入/mnt/nfs文件夾 / $ cd /mnt/nfs 3.輸入ls命令,目錄下文件 /mnt/nfs $ ls 123321 clientxxww readme tcpserver StartLog0 ffgpio.ko server tcpserver19 a gpio_test serverfxf tcpserver_arm_11 bo hello serverxw tcpserver_hdt client nfs1 tcpclient tcpserver_zn client_arm ok tcpclient19 tcpsever client_arm_17 program_20_1.c tcpclient_29 tw2835_menu client_arm_st20 program_20_2.c tcpclient_arm_11 xianshi client_dalan programyk tcpclient_hdt yk clientxw programyq tcpclient_zn yq 4.運行tw2835_menu進行視頻采集 /mnt/nfs $./tw2835_menu& 5.進入掛載目錄并查看文件 /mnt/nfs $ cd nfs1 /mnt/nfs/nfs1 $ ls dev_app.app hello vedio.confTCPS1 dev_app3 ffgpio.ko tw2835_menu dev_app gpio_test tw2835_pic 6.運行dev_app到板子IP192.168.1.9 /mnt/nfs/nfs1 $./dev_app 192.168.1.9 7.開啟H.264流媒體播放器進行視頻接受 a)用解碼器解碼,并允許注冊.bat b)打開H.264流媒體播放器,點擊開啟視頻接收 B.遠程視頻監(jiān)控 1.重復(fù)以上實驗1~4步 2.進入已掛載目錄/mnt/nfs/nfs1,看到多個程序 /mnt/nfs $ cd nfs1 /mnt/nfs/nfs1 $ ls StartLog0 dev_app.app hello vedio.conf TCPS1 dev_app3 image.info www boot.sh ffgpio.ko tw2835_menu 3.運行TCPS1 /mnt/nfs/nfs1 $./ TCPS1 4.程序進入等待狀態(tài),等待TCP連接到來 5.開啟H.264流媒體播放器,點擊“開始視頻接收”,屏幕變黑 6.點擊“控制功能”,輸入設(shè)備端ip地址192.168.1.68,點擊連接 7.設(shè)備端出現(xiàn)下列字樣,表示連接成功 Servergetconnectionfrom192.168.1.68 8.點擊“開啟視頻監(jiān)控”,獲得視頻數(shù)據(jù) 實驗十一Tcp網(wǎng)絡(luò)編程 一、實驗?zāi)康?/p> 1.了解網(wǎng)絡(luò)編程原理 2.了解套接字的使用 二、實驗原理 嵌入式Linux的網(wǎng)絡(luò)通信程序是基于套接字模式的。Socket實際是網(wǎng)絡(luò)傳輸層供給應(yīng)用層的接口。常見的Socket有三種類型。1.流式Sockct 流式套接字提供可靠的,面向連接的通信流,它使用TCP協(xié)議,從而保證了數(shù)據(jù)傳輸?shù)恼_性和順序性。Socket編程采用客戶/服務(wù)器模式。因此編程分為服務(wù)器端和客戶端。服務(wù)器端:首先建立Socket,返回該Socket的描述符;配置Socket的端口和IP地址;建立監(jiān)聽函數(shù),檢測是否有客戶端向服務(wù)器端發(fā)送請求,若有則接收該請求,將其放到接收隊列中;從接收隊列中接收一個請求;并向客戶端發(fā)送確認連接信息。客戶端:建立一個Socket,返回該Socket的描述符,配置Socket端口和IP地址;向服務(wù)器發(fā)送連接請求,并接收服務(wù)器發(fā)回的確認連接信息。雙方通信結(jié)束后,關(guān)閉其Socket。2.數(shù)據(jù)報Socket,數(shù)據(jù)通過相互獨立的報文進行傳輸,數(shù)據(jù)報套接字定義了一種無連接的服務(wù),是無序的,并且不保證是可靠的,無差錯的。它使用數(shù)據(jù)報協(xié)議UDP。3.原始Socket 使用Socket編程時可以開發(fā)客戶機和服務(wù)器端應(yīng)用程序,它們可以在本地網(wǎng)絡(luò)上進行通信,也可以通過Internet在全球范圍內(nèi)進行通信。編寫并運行Socket的客戶端和服務(wù)器端程序,雙方通過套接字建立了服務(wù)連接請求,并且通過一些方法提高Socket的性能。 三、實驗步驟 編寫服務(wù)器端源程序和客戶端源程序 1.代碼: program_20_1.c #include int main(int argc, char *argv[]){ int sockfd,new_fd; struct sockaddr_in server_addr; struct sockaddr_in client_addr; int portnumber; const char hello[]=“Hello and Byen”;// for setsockopt()SO_REUSEADDR, below int yes = 1;int addrlen; if(argc!=2) { fprintf(stderr,“Usage:%s portnumberan”,argv[0]); exit(1); } if((portnumber=atoi(argv[1]))<0) { fprintf(stderr,“Usage:%s portnumberan”,argv[0]); exit(1); } /* 服務(wù)器端開始建立socket描述符 */ if((sockfd=socket(AF_INET,SOCK_STREAM,0))==-1) { fprintf(stderr,“Socket error:%sna”,strerror(errno)); exit(1); } printf(“Server-socket()is OK...n”); // “address already in use” error message if(setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &yes,sizeof(int))==-1) { perror(“Server-setsockopt()error lol!”); exit(1); } printf(“Server-setsockopt()is OK...n”); /* 服務(wù)器端填充 sockaddr結(jié)構(gòu) */ bzero(&server_addr,sizeof(struct sockaddr_in)); server_addr.sin_family=AF_INET; server_addr.sin_addr.s_addr=htonl(INADDR_ANY); server_addr.sin_port=htons(portnumber); memset(&(server_addr.sin_zero), '