欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      水稻持綠基因的分子克隆及其功能分析的研究

      時(shí)間:2019-05-14 20:11:14下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《水稻持綠基因的分子克隆及其功能分析的研究》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《水稻持綠基因的分子克隆及其功能分析的研究》。

      第一篇:水稻持綠基因的分子克隆及其功能分析的研究

      水稻持綠基因的分子克隆及其功能分析的研究

      Molecular cloning and function analysis of the stay greengene in rice 前言

      水稻持綠色突變體(stay green rice,sgr),由新疆農(nóng)業(yè)科學(xué)院梁乃亭等人通過(guò)對(duì)日本水稻“花之舞”品種的干種子經(jīng)過(guò)γ射線處理后,在M2代群體中選育出的,主要表現(xiàn)為在自然衰老和暗誘導(dǎo)衰老過(guò)程中能夠保持很高的葉綠素含量,葉片保持可見(jiàn)的綠色。

      對(duì)持綠基因進(jìn)行定位并克隆,此后可將該基因?qū)胧卟恕煵?、花草、?shù)木等植物,培育永綠色蔬菜、觀賞性花草樹(shù)木新品種。

      但要與綠色超級(jí)稻的概念相區(qū)別。綠色超級(jí)稻:由中國(guó)科學(xué)院院士、華中農(nóng)業(yè)大學(xué)生命科學(xué)技術(shù)學(xué)院院長(zhǎng)張啟發(fā)教授提出的水稻新概念,即水稻基本不打農(nóng)藥、少施化肥、節(jié)水抗旱的水稻。

      持綠突變體的類型:功能型突變體(A型:衰老開(kāi)始較晚,以正常速率結(jié)束;B型:衰老開(kāi)始正常但結(jié)束相對(duì)緩慢);非功能型突變體(C型:由于霜凍或干旱,持綠最終導(dǎo)致葉片死亡。D型:由于對(duì)葉綠素降解機(jī)制不起作用,葉綠素可以無(wú)限期的存在,衰老過(guò)程與野生型相同;E型:保持很高的葉綠素含量,光合作用不增加。)水稻持綠基因的分子克隆 2.1 分離持綠色突變體

      圖1籽粒灌漿期后 圖2 黑暗條件下

      持綠色表現(xiàn)型在F1群體中不表達(dá),在回交F2群體中野生型與持綠型出現(xiàn)3:1的分離比,表明持綠色突變是由單個(gè)隱性核基因控制。

      突變體凈光合速率(Pn)相對(duì)于野生型沒(méi)有明顯的提高,光化學(xué)效率(Fv/Fm)沒(méi)有明顯的改變。

      SGR突變阻礙了葉綠素降解,使葉片呈現(xiàn)出持綠色表型,但在植物衰老過(guò)程中不能維持其光合效率。因此它屬于非功能C型突變體。

      2.2 克隆持綠基因

      在1880株F2突變?nèi)后w中通過(guò)圖位克隆和DNA序列分析(STS)精確定位,突變基因是位于水稻第九個(gè)基因的長(zhǎng)臂上,是一個(gè)單核苷酸突變(A251突變?yōu)镚251)(如下圖)。

      2.3 SGR過(guò)表達(dá)載體轉(zhuǎn)基因植株

      為了研究SGR轉(zhuǎn)錄是怎樣影響葉片衰老,利用花椰菜花葉病毒35S為啟動(dòng)子把SGR轉(zhuǎn)入到野生型水稻中,形成兩個(gè)獨(dú)立的轉(zhuǎn)基因家系。

      整個(gè)轉(zhuǎn)基因體系的建立步驟大致可以歸納為:目的載體的構(gòu)建---載體的農(nóng)桿菌轉(zhuǎn)化---農(nóng)桿菌與植株共培養(yǎng)---轉(zhuǎn)化植株的篩選---轉(zhuǎn)化植株的鑒定。

      GUS基因(又稱報(bào)告基因)的組織化學(xué)法檢測(cè)即具有Gus活性的部位或位點(diǎn)呈現(xiàn)藍(lán)色,且在一定程度下根據(jù)染色深淺可反映出Gus活性。SGR的過(guò)表達(dá)可以通過(guò)此法看出表達(dá)情況。(篩選重組子)如下左圖

      由半定量RT-PCR(逆轉(zhuǎn)錄酶PCR)分析可測(cè)定葉片中目的基因SGR的表達(dá)量增加或減少。(表達(dá)的量)如上右圖

      水稻持綠基因功能分析 3.1 SGR的表達(dá)和調(diào)控

      通過(guò)Rt-PCR表達(dá)結(jié)果分析表明:SGR不僅可以在葉子中存在,也存在于萌發(fā)的種子和根中。如下圖

      在營(yíng)養(yǎng)液中分別培養(yǎng)離體葉片,結(jié)果如圖所示,野生型水稻中,ABA加速了葉綠體分解,促進(jìn)葉片黃化;而6-BA抑制葉綠體分解,延緩葉片黃化。而在突變體中ABA、6-BA影響不是很明顯。如下圖

      由下圖可以看出:在野生型和突變體暗誘導(dǎo)衰老過(guò)程中SGR和PaO都處于上調(diào)狀態(tài)。在ABA的作用下,增加了它們的上調(diào)程度,而6-BA減少了上調(diào)的程度。

      通過(guò)Western Blot(蛋白質(zhì)印跡)分析表明:水稻葉片中SGR蛋白水平隨著SGR表達(dá)的增加而增加。經(jīng)ABA處理后SGR蛋白表現(xiàn)出明顯的增加,而6-BA處理后SGR蛋白比正常生長(zhǎng)葉片中SGR蛋白更少。

      3.2 葉綠體色素的變化

      在正常的光照下水稻野生型和突變體的Chl,Carotenoids,Chla/b沒(méi)有明顯不同而SGR過(guò)表達(dá)載體轉(zhuǎn)基因植株的葉片Chl相對(duì)于野生型低30%,而Chla/b高10%;

      在黑暗條件下,野生型和突變體的葉綠素總含量分別下降了80%、90%,Chl a/ b也明顯下降,而突變體保留了75%的Chl,Chl a/b也增加了。

      3.3 蛋白質(zhì)的變化

      在黑暗條件下,野生型和突變體中可溶性蛋白(主要為Rubisco)和膜蛋白(主要為捕光蛋白)都在下降,但突變體較野生型更穩(wěn)定。

      但在突變體中可溶性蛋白明顯下降也解釋了突變體在衰老過(guò)程中不能保持光合作用的原因。

      結(jié)論

      4.1 SGR突變?cè)谧匀凰ダ虾桶嫡T導(dǎo)衰老過(guò)程中能夠保持很高的葉綠素含量,葉片保持可見(jiàn)的綠色。但突變體凈光合作用速率(Pn)、光化學(xué)效率(Fv/Fm)相對(duì)于野生型沒(méi)有明顯的提高。因此,水稻持綠色突變體屬于非功能C型永綠色突變體。

      4.2 SGR的表達(dá)受脫落酸(ABA)促進(jìn),但被6-BA(一種細(xì)胞分裂素)抑制。

      4.3 SGR突變能夠在葉片衰老過(guò)程中阻滯葉綠體內(nèi)類囊體解體、葉綠素降解和部分蛋白質(zhì)的降解。隨著sgr轉(zhuǎn)錄的增加也提高了水稻葉綠體的破壞。4.4 在水稻中葉綠素降解需要一系列葉綠素降解酶的作用。在葉片衰老過(guò)程中,突變體具有較高的Chla/Chlb值,SGR可能參與PaO活性的調(diào)控。

      第二篇:水稻抗病相關(guān)基因的分離克隆和功能鑒定

      附件2

      論文中英文摘要

      作者姓名:丁新華

      論文題目:水稻抗病相關(guān)基因的分離克隆和功能鑒定

      作者簡(jiǎn)介:丁新華,男,1980年06月出生,2002年09月師從于華中農(nóng)業(yè)大學(xué)王石平教授,于2008年06月獲博士學(xué)位。

      摘要

      水稻白葉枯病和稻瘟病分別是由白葉枯病菌(Xanthomonas oryzae pv.oryzae, Xoo)和稻瘟病菌(Magnaporthe grisea)引起,是世界水稻生產(chǎn)中的兩大重要病害,造成巨大的損失。通過(guò)改良水稻自身防御體系來(lái)有效的控制病害,是一種即經(jīng)濟(jì)又“綠色”的方法。鑒定水稻抗病相關(guān)基因,研究水稻抗病機(jī)理對(duì)改良水稻有著重要的科學(xué)意義和應(yīng)用前景。

      植物激素生長(zhǎng)素誘導(dǎo)的信號(hào)通常被認(rèn)為調(diào)節(jié)植物的生長(zhǎng)和發(fā)育。本研究報(bào)道的水稻基因GH3-8是一個(gè)生長(zhǎng)素反應(yīng)基因,在依賴于生長(zhǎng)素的發(fā)育中發(fā)揮功能,同時(shí)也調(diào)節(jié)不依賴于水楊酸和茉莉酸的信號(hào)路徑的抗病反應(yīng)。白葉枯病病菌誘導(dǎo)水稻至少在被侵染部位合成生長(zhǎng)素,而生長(zhǎng)素繼而誘導(dǎo)水稻大量合成松弛細(xì)胞壁的蛋白質(zhì)-伸展蛋白(α-和β-expansins),破壞細(xì)胞壁對(duì)病原菌的先天屏障作用,以利病原菌在水稻中生長(zhǎng)繁殖。在攜帶有抗病基因Xa21或Xa26抗病水稻品種中,病原菌引起的水稻感染部位生長(zhǎng)素的合成可誘導(dǎo)水稻快速合成IAA酰胺合成酶GH3-8。GH3-8通過(guò)催化IAA-氨基酸的合成抑制生長(zhǎng)素的作用,從而阻止細(xì)胞壁的松弛,增強(qiáng)植物對(duì)病原菌的自身免疫功能。超量表達(dá)GH3-8基因增強(qiáng)水稻對(duì)白葉枯菌的抗性,同時(shí)也延緩了植株的生長(zhǎng)和發(fā)育,至少部分因?yàn)橐种屏松L(zhǎng)素信號(hào)從而抑制了α-和β-expansins。本研究結(jié)果揭示了病原菌利用生長(zhǎng)素作為毒性因子侵染水稻的機(jī)理、以及水稻應(yīng)對(duì)這一毒性因子的調(diào)控途徑,同時(shí)也從一個(gè)方面解釋了植物在抗病反應(yīng)中通常要付出生長(zhǎng)被抑制的代價(jià)的原因。

      超量表達(dá)GH3-8導(dǎo)致植株不育。通過(guò)正反交試驗(yàn)顯示GH3-8超量表達(dá)植株是雄性和雌性都不育。通過(guò)形態(tài)學(xué)觀察發(fā)現(xiàn)GH3-8超量表達(dá)植株的雌蕊柱頭發(fā)育不正常;通過(guò)激光共聚焦顯微鏡對(duì)雌蕊胚囊觀察發(fā)現(xiàn),GH3-8超量表達(dá)植株的成熟胚囊發(fā)育不正常,這可能是GH3-8超量表達(dá)植株雌性不育的原因。通過(guò)形態(tài)學(xué)觀察發(fā)現(xiàn)GH3-8超量表達(dá)植株的雄蕊和野生型無(wú)異,但花粉碘染顯示GH3-8超量表達(dá)植株大部分花粉都敗育,這可能是GH3-8超量表達(dá)植株雄性不育的原因。通過(guò)分析GH3-8基因表達(dá)模式顯示GH3-8基因特異在雄蕊高表達(dá),并隨著花的發(fā)育表達(dá)強(qiáng)弱也不斷變化,而在雌蕊基本檢測(cè)不到表達(dá)。組織和時(shí)間的特異表達(dá)也印證了GH3-8在調(diào)控花的發(fā)育中作用。利用酵母單雜交技術(shù),篩選得到和GH3-8基因啟動(dòng)子互作的幾個(gè)生長(zhǎng)素反應(yīng)因子。其中OsARF8超量表達(dá)激活GH3-8基因的表達(dá),證明OsARF8是調(diào)控GH3-8基因表達(dá)的轉(zhuǎn)錄因子。通過(guò)分析OsARF8基因表達(dá)模式顯示OsARF8基因特異在雌蕊高表達(dá),而在雄蕊表達(dá)很低。OsARF8基因超量表達(dá)植株和野生型植株相比育性下降?;ǚ鄣馊撅@示OsARF8基因超量表達(dá)植株大部分花粉敗育;檢測(cè)雌蕊沒(méi)有發(fā)現(xiàn)和野生型有顯著

      差異?;ǚ鄣挠韵陆悼赡苁荗sARF8超量表達(dá)植株育性下降的原因。生長(zhǎng)素信號(hào)路徑中的基因(OsARF8和GH3-8)的不正常表達(dá)影響了水稻育性,說(shuō)明生長(zhǎng)素信號(hào)可能在調(diào)控水稻育性中有重要作用。檢測(cè)水稻穗發(fā)育中生長(zhǎng)素分布也顯示生長(zhǎng)素和穗的發(fā)育密切相關(guān)。

      在水稻品種明恢63中抑制一個(gè)維生素B1合成基因OsDR8的表達(dá),顯著提高了轉(zhuǎn)基因植株對(duì)白葉枯病和稻瘟病的敏感。外源應(yīng)用維生素B1可以互補(bǔ)抑制OsDR8基因?qū)λ局仓昕共〉挠绊?。幾個(gè)防御反應(yīng)基因包括防御信號(hào)路徑的早期功能基因OsPOX和OsPAL基因以及路徑下游基因OsPR1a、OsPR1b、OsPR4、OsPR5 和OsPR10的表達(dá)在OsDR8抑制表達(dá)的植株中下降。這些結(jié)果說(shuō)明OsDR8影響植株的抗性可能是通過(guò)影響防御反應(yīng)基因的表達(dá),OsDR8的功能在信號(hào)路徑的上游。另外,維生素B1的積累可能是水稻植株對(duì)白葉枯病和稻瘟病的抗性所必須的。

      通過(guò)篩選水稻T-DNA插入突變體庫(kù),發(fā)現(xiàn)一個(gè)類病斑突變體。側(cè)翼序列分析顯示T-DNA插在一個(gè)基因(命名為OsDR9)的開(kāi)放讀碼框。預(yù)測(cè)的OsDR9基因編碼由180個(gè)氨基酸組成的功能未知蛋白。OsDR9基因在莖和幼穗中表達(dá)很低,而在幼苗、劍葉、葉鞘和愈傷表達(dá)較高,在根中沒(méi)有檢測(cè)到表達(dá)。另外OsDR9基因在老葉中比新葉表達(dá)更高。突變體對(duì)稻瘟病和胡麻葉斑病表現(xiàn)高抗。對(duì)有類病斑的葉片進(jìn)行組織化學(xué)檢測(cè)和DNA斷裂分析顯示細(xì)胞死亡具有凋亡特征。病程相關(guān)蛋白PR4和PR8以及稻瘟病相關(guān)基因AOS2在突變體中上升表達(dá)。突變體植株也積累了自發(fā)熒光物質(zhì)、SA、JA和植保素(momilactone A 和 sakuranetin)。突變體提高了超氧化物和H2O2的水平。將一個(gè)來(lái)源于水稻品種日本晴的包含有OsDR9基因的10.5kb片段轉(zhuǎn)入突變體02Z15AM37,轉(zhuǎn)基因植株類病斑表型消失,說(shuō)明由于T-DNA插入導(dǎo)致的OsDR9突變是是引起類病斑表型的原因。這些結(jié)果說(shuō)明OsDR9是水稻抗病和細(xì)胞凋亡的一個(gè)負(fù)調(diào)節(jié)子。

      關(guān)鍵詞:

      水稻;白葉枯??;稻瘟病;抗病相關(guān)基因;生長(zhǎng)素;水楊酸;茉莉酸;基礎(chǔ)抗性;發(fā)育;伸展蛋白;GH3;維生素B1;類病斑突變體;凋亡;植保素;活性氧物質(zhì)

      Isolation and Functional Characterization of Pathogen-induced Defense-responsive Genes of Rice

      Xinhua Ding

      ABSTRACT Rice bacterial blight disease caused by Xanthomonas oryza sative pv.oryza and fungal blast disease caused by Magnaporthe grisea, are two of the most devastating diseases of rice worldwide.These two diseases cause tremendous yield loss each year.Efficient control of disease through improving rice defensive system is economic and green way.Characterizing rice disease resistance related genes and elucidating the mechanism of rice disease have important significance in science and application for improving rice.The signaling induced by the plant growth hormone auxin is generally recognized to regulate plant growth and development.Here we report that rice GH3-8, an auxin-responsive gene functioning in auxin-dependent development, activates disease resistance in a salicylic acid– and jasmonic acid–signaling-independent pathway.Bacteria induce accumulation of indole-3-acetic acid(IAA), the major type of auxin, in rice.IAA induces the expression of α-and β-expansins, the proteins that are known to loose cell wall, the native barrier of biotic intruder, to facilitate the growth of cells.In resistance rice variety carrying Xa21 or Xa26, the infection of bacteria induce rice to synthesize GH3-8 in infection site of rice.GH3-8 encodes an IAA-amino synthetase that prevents free IAA accumulation and looseness of cell wall.Overexpression of GH3-8 results in enhanced disease resistance and retarded growth and development, which is at least partly due to inhibiting the expression of α-and β-expansins via suppressing auxin signaling.Here we show the mechanism of bacteria hijacks auxin as virulence factor to infect rice, and the regulating pathway of rice to the virulence factor;in addition to, explain the cause that plants growth was restrained in disease resistance.Overexpression of GH3-8 results in sterility of plants.Analysis of forward cross and reverse cross showed that GH3-8-overexpressing plants were male sterility and female sterility.We found that the stigmas of GH3-8-overexpressing plants are abnormal by morphological observation.We observed the mature embryo sac of GH3-8-overexpressing plants using laser scanning confocal microscopy.The result showed that the mature embryo sacs of GH3-8-overexpressing plants were abnormal.This may be the reason of female sterility.No obvious difference was observed in stamen between GH3-8-overexpressing plants and wide type in stamen, but the most of pollen of GH3-8-overexpressing plants were sterile.This may be the reason of male sterility.GH3-8 had high expression level in stamen, and the expression of GH3-8 changes as the development of flower.Tissue and time differential expression confirmed the role of GH3-8 in regulating flower development.We gained several auxin responsive factors(ARFs)that interacted with the promoter of GH3-8 by analysis of yeast one hybrid.Overexpression of OsARF8 in Mudanjiang 8 activated the expression of GH3-8.This result suggested that OsARF8 is the transcription factor in regulating the expression of GH3-8.OsARF8 had high expression level in pistil, and very low expression level in stamen.GH3-8-overexpressing plants had lower fertility than wide type.The most of pollen of OsARF8-overexpressing plants were sterile.The overexpression of Auxin signaling genes(OsARF8

      and GH3-8)resulted in decrease of rice fertility.This result suggested that auxin plays a critical role in regulating flower development.The detection of the auxin distribution in panicle development showed that auxin is affinitive relation with panicle development.The transgenic plants with repressed expression of OsDR8 showed reduced resistance or susceptibility to Xanthomonas oryzae pv.oryzae and Magnaporthe grisea causing bacterial blight and blast, respectively.The putative product of OsDR8 was highly homologous to an enzyme involved in the biosynthesis of the thiazole precursor of thiamine.Exogenous application of thiamine could complement the compromised defense of the OsDR8-silenced plants.The expression level of several defense-responsive genes including the earlier functional genes of defense transduction pathway, OsPOX and OsPAL, and the downstream genes of the pathway, OsPR1a, OsPR1b, OsPR4, OsPR5 and OsPR10, was also decreased in the OsDR8-silenced plants.These results suggest that the impact of OsDR8 on disease resistance in rice may be through the regulation of expression of other defense-responsive genes and the site of OsDR8 function is on the upstream of the signal transduction pathway.In addition, the accumulation of thiamine may be essential for bacterial blight resistance and blast resistance.We found a mutant with lesion mimics on the leaves through selecting a T-DNA insertional rice pool.The inserted T-DNA was inserted into the open reading frame(ORF)of a gene named OsDR9.The predicted encoding product of OsDR9 consists of 180 amino acids that is an unknown functional protein.OsDR9 had very low expression level in the stem and young panicle but higher level in seedling, flag leaf, sheath and callus;no OsDR9 expression was detected in the root.In addition, OsDR9 had higher expression level in old leaf than young leaf.The mutant was highly resistance to Magnaporthe grisea causing fungal blast disease and bipolaris oryzae causing Cochliobolus miyabeanus disease in field.Histochemical detection and DNA fragmentation of the leaves developed lesion mimics showed that the cell death had the same features of apoptosis.In addition, the expression of pathogenesis related(PR)proteins genes PR4 and PR8 as well as a blast resistance related gene AOS2 was upregulated in the mutant.The mutant also accumulated autofluorescent materials, salicylic acid and phytoalexins(both momilactone A and sakuranetin).The mutant contained elevated levels of superoxide and H2O2.A 10.5-kb fragment harboring the OsDR9 gene from rice variety Nipponbare was transferred into the mutant.Lesion mimic phenotype was disappeared in the transgenic plants, indicating that knockout of OsDR9 by T-DNA insertion caused the lesion mimic mutant phenotype.These results suggest that OsDR9 is a negative regulator in rice disease resistance and apoptosis.Key words: Oryza sativa;bacterial blight;fungal blast;auxin;salicylic acid(SA);jasmonic acid(JA);basal resistance;development;expansin;GH3;thiamine;lesion mimic mutant(LMM);apoptosis;phytoalexin;reactive oxygen species(ROS)

      第三篇:大豆熱激轉(zhuǎn)錄因子基因GmHsfA1的克隆、結(jié)構(gòu)分析及功能鑒定

      大豆熱激轉(zhuǎn)錄因子基因GmHsfA1的克隆、結(jié)構(gòu)分析及功能鑒定

      熱激轉(zhuǎn)錄因子(heat shock transcription factor, HSF)在調(diào)節(jié)植物對(duì)逆境脅迫(特別是熱脅迫)應(yīng)答和相關(guān)基因表達(dá)方面起重要作用。我們采用生物信息學(xué)和比較基因組學(xué)方法結(jié)合RACE(rapid amplification of cDNA ends)技術(shù),從大豆基因組中克隆到一個(gè)熱激轉(zhuǎn)錄因子基因GmHsfA1,其cDNA全長(zhǎng)1781bp,編碼一段由510個(gè)氨基酸組成的多肽(accession number:AY458843)。序列比對(duì)和結(jié)構(gòu)分析顯示,GmHSFA1與番茄熱激轉(zhuǎn)錄因子LpHSFA1之間的同源性最高,二者間的氨基酸序列相似性達(dá)到52.46%。GmHSFA1包含4個(gè)重要功能域,即DNA結(jié)合域DBD(DNA binding domain)、寡聚域OD(oligmerization domain)、核定位信號(hào)NLS(nuclear location signal)和C端激活域CTAD(C-terminal activation domain)。

      通過(guò)定量PCR和RT-PCR分析顯示,GmHsfA1在大豆不同組織和不同發(fā)育時(shí)期都有穩(wěn)定表達(dá)(組成型表達(dá)模式),高溫和高鹽誘導(dǎo)能加強(qiáng)其表達(dá),而NAA、GA和ABA等外源激素處理可降低其表達(dá)。遺傳轉(zhuǎn)化和Northern雜交結(jié)果表明,在常溫(28℃)下,轉(zhuǎn)基因大豆植株中GmHsfA1的表達(dá)量比非轉(zhuǎn)基因?qū)φ罩仓昝黠@增加,而在高溫(45℃)誘導(dǎo)下,含有35S-GmHsfA1的轉(zhuǎn)基因植株的熱激蛋白基因(GmHSP70)表達(dá)量比非轉(zhuǎn)基因植株高出8倍以上。熱誘導(dǎo)實(shí)驗(yàn)表明,轉(zhuǎn)基因植株的耐熱溫度高達(dá)52℃,比非轉(zhuǎn)基因植株(僅耐42℃)提高了10℃。這說(shuō)明GmHSFA1具有激活或上調(diào)GmHSP70基因表達(dá)的功能,其過(guò)量表達(dá)能夠明顯增強(qiáng)轉(zhuǎn)基因大豆的耐熱能力,而且還具有一定的耐旱能力。上述結(jié)果證明GmHSFA1是一個(gè)新的、有功能的大豆熱激轉(zhuǎn)錄因子,對(duì)于研究耐逆相關(guān)基因的調(diào)控機(jī)理和培育耐逆性強(qiáng)的基因工程大豆等作物新品種具有重要意義。

      關(guān)鍵詞: 大豆 熱激轉(zhuǎn)錄因子 基因克隆 遺傳轉(zhuǎn)化 過(guò)量表達(dá) 耐熱性

      下載水稻持綠基因的分子克隆及其功能分析的研究word格式文檔
      下載水稻持綠基因的分子克隆及其功能分析的研究.doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦