第一篇:納米陶瓷論文
納米陶瓷概論
說到陶瓷,在許多人的印象中,是一種堅硬易碎的物體,缺乏韌性,缺乏塑性。它是一個多少帶有模糊概念的術語。許多陶瓷學家把陶瓷看成是用無機非金屬化合物粉體,經(jīng)高溫燒結而成,以多晶聚集體為主的固態(tài)物。這一定義雖同時指出了材料的制備特征和結構特征,但卻把玻璃、搪瓷、金屬陶瓷等摒除在外。所以,在許多場合,陶瓷(ceramic)泛指一切經(jīng)高溫處理而獲得的無機非金屬材料。
1、陶瓷的發(fā)展歷史
陶瓷是人類最早利用自然界提供的原料制造而成的材料。舊石器時代,人們就發(fā)現(xiàn)經(jīng)火煅燒過的粘土,其硬度和強度都大大提高,而且不再被水瓦解。于是,就有了利用粘土的可塑性,將其加工成所需的形狀,然后用火燒制成的陶器。隨著金屬冶煉術的發(fā)展,人類掌握了通過鼓風機提高燃燒溫度的技術,并且發(fā)現(xiàn),有一些經(jīng)高溫燒制的陶器,由于局部熔化變得更加致密堅硬,完全改變了陶器多孔,透水的缺點。經(jīng)過長期的摸索和經(jīng)驗積累,以粘土,石英,長石等礦物原料配制而成的瓷器出現(xiàn)了。
從陶器發(fā)展到瓷器,是陶瓷發(fā)展過程中的一次重大飛躍。這種傳統(tǒng)的瓷器,從結構上來看,是由玻璃相結合在一起的、由許多微小的晶粒構成的物體。
隨著科學技術的高速發(fā)展,人們迫切需要大量強度很高,絕緣性能良好的陶瓷材料。此時,人們發(fā)現(xiàn),盡管陶瓷中的玻璃相使陶瓷變得堅硬、致密,然而它卻妨礙了陶瓷強度的提高。同時,玻璃相也是陶瓷絕緣性能,特別是高頻絕緣性能不好的根源。于是,玻璃相含量比傳統(tǒng)陶瓷低的一些強度高,性能好的材料不斷涌現(xiàn)?,F(xiàn)在,許多科學與技術方面使用的高性能陶瓷(High performance Ceramics)都是幾乎不含有玻璃相的結晶態(tài)陶瓷。為了有別于傳統(tǒng)陶瓷,稱之為先進陶瓷(Advanced Ceramics)或高技術陶瓷(High Tech Ceramics);有時也稱為精細陶瓷(Fine Ceramics)或工程陶瓷(Engineering Ceramics)。
從傳統(tǒng)陶瓷到先進陶瓷,是陶瓷發(fā)展過程中的第二次重大飛躍。兩者的區(qū)別
在于,在原材料、制備工藝、顯微結構等方面存在相當?shù)牟顒e或側重。傳統(tǒng)陶瓷多數(shù)采用天然礦物原料,或經(jīng)過處理的天然原料;而先進陶瓷則多數(shù)采用合成的化學原料,有時甚至是經(jīng)特殊工藝合成的化學原料。傳統(tǒng)陶瓷的制備工藝比較穩(wěn)定,其側重點在效率,質(zhì)量控制等方面,對材料顯微結構的要求并不十分嚴格;而先進陶瓷則必須在粉體的制備,成型燒結方面采取許多特殊的措施,并控制材料顯微結構。
近年來,先進陶瓷在材料和制備技術方面的研究都取得了很大的進展,特別是把陶瓷的制備、組成、結構和性能聯(lián)系起來進行。綜合研究的結果使陶瓷學家認識到,陶瓷的顯微結構有著舉足輕重的作用。即使化學組成完全相同,采用不同的制備工藝技術,有時甚至只有很微小的差別便可能導致顯微結構發(fā)生很明顯的變化,材料的性能常常相差非常大。相當長一段時期中,人們主要依靠顯微技術,借助于金相學發(fā)展起來的研究方法,在微米量級(10-6m)的線度上,對陶瓷的晶粒,晶界等顯微結構進行研究,發(fā)現(xiàn),晶界以及與晶界有聯(lián)系的在不同層次上的缺陷,如氣孔,裂紋,位錯等對陶瓷力學性質(zhì)和電學性質(zhì)影響非常大。目前,絕大部分先進陶瓷的晶粒大小約為1~10μm,如果晶粒的線度能夠降到0·01~0·1μm(10~100 nm),這時,晶粒中將有10%~30%左右的原子處在晶粒的表面,即晶界上。此時,晶粒和晶界的區(qū)別,晶粒內(nèi)原子排列嚴格有序的結晶狀態(tài)和晶界區(qū)域原子排列無序的非晶狀態(tài)之間的差別都變得模糊了。這就已經(jīng)不是傳統(tǒng)意義上的陶瓷了,而是一種嶄新的陶瓷,我們稱它為納米陶瓷(Nanoscopic Ceramics)。從先進陶瓷發(fā)展到納米陶瓷是陶瓷發(fā)展過程中的第三次飛躍。納米陶瓷將給人們提供更新更好的材料。
2、納米陶瓷
2.1、納米陶瓷
在原有工作的基礎上,人們認識到,材料的性能和它的晶粒尺寸關系極為密切,諸如強度、蠕變、硬度、電學性能、光學性能等,無一不與晶粒尺寸成一定的指數(shù)關系。以正方形的晶粒密堆積計算,當晶界相的厚度約為晶粒長度的45%時,兩者的體積相當,晶界相的厚度是有限度的,一般為數(shù)個納米,這意味著晶粒尺寸減小時,晶界相的相對體積增加,晶界相占整個體積的比例增大,晶界相的作用對整個性能的影響更為顯著。由于界面原子排列的無序狀態(tài),界面原子鍵合的不飽和
性都將引起材料物理性能上的變更,故當晶粒尺寸小到一定程度時,某些性能將會發(fā)生突變。如:由于晶粒尺寸的減小將使材料的力學性能有數(shù)量級的提高,同時,由于晶界數(shù)量的大大增加,使可能分布于晶界處的第二相物質(zhì)的數(shù)量減小,晶界變薄使晶界物質(zhì)對材料性能的負影響減少到最低程度;晶粒的細化使材料不易造成穿晶斷裂,有利于提高材料的斷裂韌性;并且將有助于晶粒間的滑移,使材料具有塑性行為。因此,諸如高硬度、高強度和陶瓷超塑性的材料不斷出現(xiàn),若這些新型的陶瓷材料具有納米級水平顯微結構,即晶粒尺寸,晶界寬度,第二相分布,氣孔尺寸,缺陷尺寸等都限于100 nm量級,則為納米陶瓷。
納米陶瓷是80年代中期發(fā)展起來的先進材料。由于它是界于宏觀物質(zhì)和微觀原子、分子的中間研究領域,它的出現(xiàn)開拓了人們認識物質(zhì)世界的新層次,對材料的工藝,制備科學,以至整個材料科學帶來了新的研究內(nèi)涵。雖然,電子顯微鏡,包括掃描電子顯微鏡和透射電子顯微鏡以及高分辨電鏡和分析電鏡等現(xiàn)代表征技術的發(fā)展,使人們能進入到納米量級(10-9m)線度上來研究納米陶瓷中晶界的化學組分及顯微結構,但由納米材料所引起的諸如超微粉體學,燒結動力學,各種摻入純物質(zhì)的納米陶瓷的顯微結構以及由此引起的物理性能的變化,都是當今研究陶瓷的熱門話題,還有待于人們進一步的研究。2.2、納米粉末的制備:
要制成納米陶瓷,主要包括兩大步驟:一是制取納米陶瓷粉,二是致密化成塊狀納米材料。納米粉的制備技術有氣相合成和凝聚相合成兩大類,再加上一些其它方法。
2.2.1、氣相合成:在惰性氣氛中,蒸發(fā)的單體凝結成原子團。一般是先建立單體群,靠與冷惰性氣體原子碰撞來冷卻單體,靠單體累加或原子團間的碰撞使原子團生長。這種合成法對制備納米陶瓷粉有下列優(yōu)點:a)增強了低溫下的可燒結性,這主要是由于高的驅(qū)動力和短的擴散距
離所致。b)有相對高的純凈性和高的表面及晶粒邊界純度。c)這類方法相對來說較為簡單,易于達到高速率生產(chǎn)。
爐源法:它是用以建立單體的最簡單技術,原料在坩堝中經(jīng)加熱直接蒸發(fā)生氣態(tài),以產(chǎn)生懸浮微粒或煙霧狀原子團。越接近源,小原子團的尺寸越均勻;遠離源,原子團變大,其粒徑分布變寬。離開蒸發(fā)源到一定距離時,原子團達到極限粒徑該
特征距離值取決于惰性氣體的壓強和源的蒸發(fā)速率。原子團極限粒徑將隨蒸發(fā)速率的加大和惰性氣體原子量的增大而增加。原子團的平均粒徑可由改變蒸發(fā)速率以及蒸發(fā)室內(nèi)的惰性氣體的壓強來控制,粒徑可小至3~4nm。粒徑分布顯示對數(shù)正態(tài)分布,這種分布表明團—團聚結的特征。在惰性氣體中,加一種強制對流的氣流,可降低原子團粒徑的平均值,其粒徑分布寬度亦趨窄。對高蒸氣壓的樣品,可用升華代替蒸發(fā)。例如MgO,在200Pa的He壓中,加熱到接近于1600℃(MgO的熔點為2850℃)。經(jīng)升華后,發(fā)現(xiàn)是缺氧的,但可將它暴露在引入真空室的氧氣氛下,而最終使其轉(zhuǎn)化成符合化學計量比的MgO。
爐源法可制備氧化物陶瓷粉。如要制備TiO2,可在He中蒸發(fā)金屬Ti來獲得,先制取松散的納米金屬粉,然后由引入到小室的氧氣進行氧化,典型的氧壓為2kPa。實驗證明,惰性氣體氣壓的控制不僅影響顆粒大小,有時也影響形成材料的物相。
用加熱生成單體,技術簡單,但其局限性也很明顯,故只有少數(shù)幾種陶瓷材料如TiO2、CaF2等用該方法來制備納米粉。
濺射源法:DC和RF磁控濺射已成為薄膜生長的標準方法,事實上它可適用于金屬、合金、半導體和陶瓷的沉積,理所當然的也可用于納米陶瓷的制備。濺射源法的標準操作壓是10-2-10-1Pa,比爐源法所需的壓力范圍低幾個數(shù)量級。除了其應用性廣泛外,濺射源法比大多數(shù)熱蒸發(fā)技術,尚有其它的優(yōu)點:a)靠等離子電流工作,濺射條件是穩(wěn)定的,并易于控制。
b)與熱蒸發(fā)法相比,濺射反應室壁的熱負荷要小得多。這樣就降低了室壁中的微粒排放,而使由微粒造成的雜質(zhì)結合的減少。商用磁控濺射裝置可用來制備7~50nm直徑的納米陶瓷分子團,已用磁控濺射研究了TiO2、ZrO2等陶瓷納米晶的生成。
熱等離子體合成法:把反應劑注入高溫等離子體,伴隨著熱反應氣體的快速淬火,在足夠低的溫度下納米粒子被合成,通過快速冷卻導致一個或更多個可沉淀樣品的成核。熱等離子體合成法對產(chǎn)生納米粒子是一個有效的方法,原因有以下幾點:a)熱等離子體反應器中的溫度常高,有利于注入反應劑的完全溶解和快速反應。這樣在反應劑和最終產(chǎn)品的選擇上,允許明顯的化學可變性。b)熱等離子體的高能量密度使得能在相對緊縮的反應器中,獲得高額的產(chǎn)量。c)等離子體合成過程
中可達高淬火速率,生產(chǎn)納米粒子就能獲得高過飽和度,還有可能合成感興趣的亞穩(wěn)相。從上述幾點考慮,熱等離子體合成是制取高溫納米陶瓷最有希望的途徑,例如碳化物、氮化物、硼化物等用該方法生產(chǎn)就較為容易。與其它高溫合成法比較,其缺點是等離子體反應器更多的受加工條件中冷邊界層和不均勻性的影響,對提高產(chǎn)品質(zhì)量不利;以及由于高溫淬冷的不均勻性,導致粒子成核速率和粒徑分布相對來說變化較大。為了改進這些不足,提出一種等離子體膨脹過程??客ㄟ^陶瓷襯砌的噴咀,等離子體進行亞聲速膨脹,使不均勻的影響降到最小,膨脹提供了一種可控的等離子氣體動力淬冷的方法。噴咀膨脹的構想對粒子成核和生長有利,且保持了等離子體加工過程的可量測性。與靠附加冷稀釋氣體進行淬冷的方法相比,膨脹過程對淬冷條件的控制有明顯的優(yōu)勢。
熱解法:是指采用高溫先使反應劑氣體的氣相分解,再產(chǎn)生所要組分原子的飽和蒸氣。熱解主要有兩種:激光熱解和火焰熱解。
激光熱解是將一種用惰性氣體為載體的流動的反應劑氣體用激光快速加熱,實現(xiàn)快速的,反應劑氣體的氣相分解。當分解物被載流氣體的原子(分子)碰撞而達到淬冷后,原子團進行成核和生長。這種技術被廣泛用于合成Si3N4、SiC、Al2O3等納米陶瓷粉。對制取非金屬化合物,靠將乙烯加入氣體混合物以產(chǎn)生碳化物;靠將NH3加入以產(chǎn)生氮化物。激光熱解優(yōu)點是可連續(xù)加工,可用激光功率和反應劑流率來控制產(chǎn)率。
另一種是火焰熱解,這是一種揮發(fā)性化合物如TiCl4或SiCl4在氫—氧焰中的反應,它導致生成彌散度較高的氧化物團,用于制取Al2O3、SiO2、Bi2O3、ZrO2和TiO2等。這種技術的主要優(yōu)點是高純、具有化學可變性,以及有合成混合氧化物的可能。
2.2.2 凝聚相合成:主要有下列三種方法。
離子性材料中的分解和沉淀反應:已被用于產(chǎn)生納米團,例如Mg(OH)2和MgCO3的分解產(chǎn)生具有大約2nm直徑的MgO分子團。
Sol-gel法(溶膠—凝膠法):被用在各類系統(tǒng)中產(chǎn)生小于10nm的SiO2、Al2O3和TiO2納米團。要獲得納米結構,可引入具有最終平衡相結晶陶瓷的先驅(qū)物作為籽晶,進行催化成核,在基體中引入晶核的目的是為了降低形成所需相的成核能。要制備包含一個或多個高蒸氣壓組分的化學計量比化合物,遇到一定的困難。如
要制備(BaPb)TiO3,嚴重的問題就是由于高蒸氣壓組分鉛的損失,而該困難可由sol-gel法避免,與其它高溫方法比,該方法是在低溫下進行的。
水熱反應:即水在高于沸點時的反應,已被用來合成納米團。至今所用的兩種反應是水熱沉淀和氧化,兩種反應可產(chǎn)生水中的結晶狀金屬氧化物的懸浮物。已制成了簡單氧化物(ZrO2,Al2O3、TiO2,MgO)以及混合氧化物(ZrO2-Y2O3,ZrO2-MgO、ZrO2-Al2O3、BaTiO3)等的10nm~100nm的納米團。
其它方法主要有沉積方法,如CVD(化學氣相沉積)法,Ti和Si的氮化物和碳化物納米團均可由此法生成。低溫球磨即在液氮中的高能球磨。舉例就Al基質(zhì)而言,可形成含有彌散的粒徑小于50nm的AlN納米團。
塊狀納米陶瓷材料的獲得:從納米粉制成塊狀納米陶瓷材料,就是通過某種工藝過程,除去孔隙,以形成致密的塊材,而在致密化的過程中,又保持了納米晶的特性。
4、結束語
納米陶瓷作為一種新型高性能陶瓷,是近年發(fā)展起來的一門全新的科學技術,它將成為新世紀最重要的高新技術,將越來越受到世界各國科學家的關注。納米陶瓷的研究與發(fā)展必將引起陶瓷工業(yè)的發(fā)展與變革,以及引起陶瓷學理論上的發(fā)展乃至建立新理論體系,以適應納米尺度的研究需要,使納米陶瓷材料具有更佳的性能以致使新的性能、功能的出現(xiàn)成為可能。我們期待著納米陶瓷在工程領域乃至日常生活中得到更廣泛的應用。
參 考 文 獻 李泉等·化學通報,1995 2 杜偉壇,杜海清·無機化學學報,1996 3 Huang IR, Ling B, Jiang DL, TAN SH, ibid:569 4 張志琨等,科學通報,1996 5 隋同波,王廷籍·硅酸鹽學報,1993 6 雅菁,徐明霞等·材料研究學報,1996 7 鄭秀華等.納米粉燒結特性及性能的影響.材料研究學報,1996 戴金輝,葛兆明編.無機非金屬材料概論,哈爾濱:工業(yè)大學出版社, 1999 9 Tian Jie-Mo.J Am Ceram Soc, 1999 10 林宗壽主編.無機非金屬材料工學.武漢:工業(yè)大學出版社,1999 11 國家自然科學基金委員會.無機非金屬材料科學.北京:科學出版社, 1997 12 施錦行.中南工業(yè)大學應用物理與熱能工程系.1997
第二篇:課程論文 納米陶瓷
課程論文
學生姓名:
王園園
學號:20130540
學院:材料科學與工程學院
專業(yè)年級:材料化學2013級
題目:納米陶瓷的研究現(xiàn)狀及發(fā)展趨勢
指導教師:李萬千老師
評閱教師:
2015年5月
目錄
摘要....................................................................................................3 Abstract.............................................................錯誤!未定義書簽。1.前言.............................................................錯誤!未定義書簽。2.納米陶瓷的概念及其發(fā)展..........................................................5 3.納米陶瓷的制備..........................................................................7 3.1納米陶瓷粉體的物理法制備.............................................7 3.2納米陶瓷粉體的化學法制備.............................................8 4.納米陶瓷粉體的表征................................................................10 4.1化學成分表征...................................................................10 4.2晶態(tài)表征...........................................................................11 4.3顆粒度表征.......................................................................11 4.4團聚體表征.......................................................................12 5.納米陶瓷的性能........................................................................12
5.1納米陶瓷的致密化...........................................................12 5.2納米陶瓷的力學性能.......................................................13 6.納米陶瓷的應用及其展望........................................................13 7.參考文獻……………………………………………………… 12 摘要
20世紀80年代中期發(fā)展起來的納米陶瓷,對陶瓷材料的性能產(chǎn)生了重要的影響,為陶瓷材料的利用開拓了一個新的領域,已成為材料科學研究的熱點之一。綜述了納米陶瓷材料近年來的發(fā)展與應用,重點論述了納米陶瓷的制備、性能及應用現(xiàn)狀,并對納米陶瓷的未來發(fā)展進行了展望。
Abstract Nanometer ceramics which are developed in the mid-eighties of the twentieth century have an important affect on the properties of ceramic materials.They have formed promising fields for the utilization of materials which has been one of the most popular fields of material research.The preparation and characterization of nanometer ceramic powders and the properties and application of nanometer ceramics are summarized.The future developments of nanometer ceramics were discussed.4 1.前言
納米陶瓷是一類顆粒直徑界于1到100nm之間的多晶體燒結體。每個單晶顆粒的直徑非常小,例如,當單晶顆粒直徑為5nm時,材料中的界面的體積約為總體積的50%,特就是說,組成材料的原子有一半左右分布在界面上,這樣就減少了材料內(nèi)部晶體和晶界的性質(zhì)差異,使得納米陶瓷具有許多特殊的性質(zhì)[1]。納米功能陶瓷是指通過有效的分散復合而使異質(zhì)相納米顆粒均勻彌散地保留于陶瓷基質(zhì)結構中而得到的復合材料,當其具有某種特殊功能時便稱之為納米功能陶瓷。納米功能陶瓷的性能是和其特殊的微觀結構相對應的,它的性能不僅取決于納米材料本身的特性,還取決于納米材料的物質(zhì)結構和顯微結構[2]。
納米陶瓷是納米科學技術的重要分支,是納米材料科學的一個重要領域。納米陶瓷的研究是當前陶瓷材料發(fā)展的重大課題之一。陶瓷是一種多晶體材料,是由晶粒和晶界所組成的燒結體,由于工藝上的原因,很難避免材料中存在氣孔和微小裂紋。決定陶瓷材料性能的主要因素有:組成和顯微結構,即晶粒、晶界、氣孔或裂紋的組合性狀,其中最主要的是晶粒尺寸問題,晶粒尺寸的減小將對陶瓷材料的力學性能產(chǎn)生重大影響。圖1是陶瓷晶粒尺寸強度的關系圖。
圖1中的實線部分是現(xiàn)在已經(jīng)達到的,而延伸的虛線部分是希望達到的。從圖1中可見,晶粒尺寸的減小將使材料的力學性能有數(shù)量級的提高,同時由于晶界數(shù)量的大大增加,使可能分布于晶界處的第二相物質(zhì)的數(shù)量減小,晶界變薄使晶界物質(zhì)對材料性能的負影響減少到最低程度;其次晶粒的細化使材料不易造成穿晶斷裂,有利于提高材料的斷裂韌性;再次,晶粒的細化將有助于晶粒間的滑移,使材料具有塑性行為。納米材料的問世將使材料的強度、韌性和超塑性大大提高。納米陶瓷由于是介于宏觀和微觀原子、分子的中間研究領域,它的出現(xiàn)開拓了人們認識物質(zhì)世界的新層次,將給傳統(tǒng)陶瓷工藝、性能及陶瓷學的研究帶來更多更新的科學內(nèi)涵。
2.納米陶瓷的概念及其發(fā)展
所謂納米陶瓷,是指顯微結構中的物相具有納米級尺度的陶瓷材
料,也就是說晶粒尺寸、晶界寬度、第二相分布、缺陷尺寸等都是在納米量級的水平上。陶瓷材料的脆性大、不耐熱沖擊、不均勻、強度差、可靠性低、加工困難等缺點大大地限制了陶瓷的應用。隨著納米技術的廣泛應用,希望以納米技術來克服陶瓷材料的這些缺點,如降低陶瓷材料的脆性,使陶瓷具有像金屬一樣的柔韌性和可加工性。因此納米陶瓷被認為是解決陶瓷脆性的戰(zhàn)略途徑[3]。同時,納米陶瓷也為改善陶瓷材料的燒結性和可加工性提供了一條嶄新的途徑。
正是由于納米科學和陶瓷工藝學的發(fā)展與完善,使納米陶瓷概念的提出有了理論基礎。再加之研究手段和設備的進步,比如電子顯微鏡,透射電子顯微鏡以及高分辨電鏡和分析電鏡等現(xiàn)代表征技術的發(fā)展,使納米陶瓷的研究、分析成為可能。另外由于納米材料的特殊性能,其與陶瓷材料結合不僅可以提高陶瓷本身一些重要的性能,而且也克服了陶瓷的缺點——脆性、熱沖低等,使納米陶瓷有了發(fā)展的空間與必要。在這種情況下,科研工作者在20世紀80年代中期開始了納米陶瓷的研究,并且逐步取得了一些重要得成果。1987年,德國的Karch等首次報道了所研制得納米陶瓷具有高韌性與低溫超塑性行為。目前,各國都相繼加大了對納米陶瓷研究的力度,以便能使傳統(tǒng)的性能優(yōu)良的陶瓷材料與新興的納米科技結合,從而產(chǎn)生“1+1>2”的效果,使納米陶瓷具有更高的特殊的使用性能,將其應用到工業(yè)生產(chǎn)、國防保護等領域必然會取得巨大的經(jīng)濟效益。雖然納米陶瓷的研究時間還不長,許多理論尚未清楚,但經(jīng)過各國工作者的辛勤努力,在納米陶瓷研究方面還有許多成果,無論是對納米陶瓷的制備工藝還是性能都有
很大的提高。例如,美國的“Morton International's Advanced Materials Group”公司開發(fā)了一條生產(chǎn)SiC陶瓷的革命性工藝——CVD原位一步合成納米陶瓷工藝。我國的科研工作者對該工藝進行了研究,也取得了一些成果[4]。
3.納米陶瓷的制備
3.1納米陶瓷粉體的物理法制備
目前物理方法制備清潔界面的納米粉體及固體的主要方法之一是惰性氣體冷凝法[5]。制備過程為:在真空蒸發(fā)室內(nèi)充入低壓惰性氣體,加熱金屬或化合物蒸發(fā)源,由此產(chǎn)生的原子霧與惰性氣體原子碰撞而失去能量,凝聚而成納米尺寸的團簇并,在液氮冷卻棒上聚集起來,最后得到納米粉體。其優(yōu)點是可在體系中加置原位壓實裝置,即可直接得到納米陶瓷材料。1987年美國Argonne實驗室的Siegles采用此方法成功地制備了TiO2納米陶瓷粉體,粉體粒徑為5~20nm。此方法的缺點是裝備巨大,設備投資昂貴不,能制備高熔點的氮化物和碳化物粉體,所得粉體粒徑分布范圍寬[5,6]。
還有一種方法叫高能機械球磨法,就是通過無外部熱能供給,干的高球磨過程制備納米粉體。它除了可用來制備單質(zhì)金屬納米粉體外,還可通過顆粒間的固相反應直接合成化合物粉體,如金屬碳化物、氟化物、氮化物、金屬-氧化物復合粉體等。近年來通過對高能機械球磨過程中的氣氛控制和外部磁場的引入,使得這一技術有了進一步發(fā)
展。該方法操作簡單、成本低。中科院上海硅酸鹽研究所的姜繼森等報導了在高性能球磨的作用下,通過α-Fe2O3和ZnO及NiO粉體之間的機械化學反應合成Ni-Zn鐵氧體納米晶的結果[7]。此外還有機械粉碎、火花爆炸等其它物理制備方法。
3.2納米陶瓷粉體的化學法制備
濕化學法制備工藝主要適用于納米氧化物粉體,它主要通過液相來合成粉體。這種方法具有苛刻的物理條件、易中試放大、產(chǎn)物組分含量可精確控制,可實現(xiàn)分子/原子尺度水平上的混合等特點,可制得粒度分布窄、形貌規(guī)整的粉體。但采用液相法合成的粉體可能形成嚴重的團聚,直接從液相合成的粉體的化學組成和相組成往往不同于設計要求,因此需要采取一定形式的后處理。
它包括沉淀法。該法是在金屬鹽溶液中加入適當?shù)某恋韯﹣淼玫教沾汕膀?qū)體沉淀物,再將此沉淀物煅燒成納米陶瓷粉體。根據(jù)沉淀的方式可分為直接沉淀法、共沉淀法和均勻沉淀法。為了避免沉淀法制備粉體過程中形成嚴重的硬團聚,往往在其過程中引入冷凍干燥、超臨界干燥、共沸蒸餾等技術手段,取得了較好的效果。沉淀法操作簡單,成本低,但易引進雜質(zhì),難以制得粒徑小的納米粉體。上海硅酸鹽研究所以共沉淀-共沸蒸餾法制得了納米氧化鋯粉體,試驗中的共沸蒸餾技術有效地防止了硬團聚的形成,制得的氧化鋯粉體具有很高的燒結活性[8]。
溶膠-凝膠法。該法是指在水溶液中加入有機配體與金屬離子形
成配合物,通過控制pH值、反應溫度等條件讓其水解、聚合,歷經(jīng)溶膠-凝膠途徑而形成一種空間骨架結構,經(jīng)過脫水焙燒得到目的產(chǎn)物的一種方法。溶膠-凝膠工藝被廣泛應用于制備均勻高活性超細粉體,起始材料通常都是金屬醇鹽。圖2為溶膠-凝膠法的制備流程圖。
圖2 溶膠-凝膠法制備流程
圖2中用金屬醇鹽溶膠-凝膠制備PZT系列超微粉[9]。也有不用醇鹽的,哈爾濱工業(yè)大學以硝酸氧鋯代替鋯的醇鹽用溶膠-凝膠法同樣合成了PZT納米粉[10]。另外,以廉價的無機鹽為原料,采用溶膠-凝膠法結合超臨界流體干燥制備了納米級的TiO2[11]。
噴霧熱解法。該法是將金屬鹽溶液以霧狀噴入高溫氣氛中,此時立即引起溶劑的蒸發(fā)和金屬鹽的熱分解,隨后因過飽和而析出固相,從而直接得到氧化物納米陶瓷粉體,或者是將溶液噴入高溫氣氛中干燥,然后再進行熱處理形成粉體。形成的顆粒大小與噴霧工況參數(shù)有很大的關系。采用此方法制得的顆粒,通常情況下是空心的。通過仔
細選擇前驅(qū)物種類、溶液的濃度及加熱速度,也可制得實心顆粒。水熱法。該法是指在密閉的壓力窗口容器中,以水為溶劑制備材料的一種方法。近十幾年來在陶瓷粉體制備方面取得了相當好的成果[12]。同時,水熱法陶瓷粉體制備技術也有了新的改進和發(fā)展。如將微波技術引入水熱制備系統(tǒng)的微波水熱法。反應電極埋弧也是水熱法制備納米陶瓷粉體的新技術,這種方法是將兩塊金屬電極浸入到能與金屬反應的電解質(zhì)流體中,電解質(zhì)一般采用去離子水,借助低電壓、大電流在電極間產(chǎn)生電火花提供局部區(qū)域內(nèi)短暫的、極高的溫度和壓力,導致電級和周圍電解質(zhì)流體的蒸發(fā),并沉淀在周圍的電解質(zhì)溶液中。此外,用有機溶劑代替水作為反應介質(zhì)的溶劑熱反應,在陶瓷粉體制備中也表現(xiàn)出良好的前景。
此外,還有化學氣相法,它又包括化學氣相沉積法(CVD),激光誘導氣相沉積法(LICVD),等離子體氣相合成法(PCVD法)等方法,在此不一一介紹。
4.納米陶瓷粉體的表征
4.1化學成分表征
化學組成是決定粉體及其制品性質(zhì)的最基本因素,除了主要成分外,次要成分、添加劑、雜質(zhì)等對其燒結及制品性能往往也有很大關系,因而對粉體化學組成的種類、含量,特別是微量添加劑、雜質(zhì)的含量級別及分布進行檢測,是十分重要和必要的?;瘜W組成的表征方
法有許多種,主要可分為化學反應分析法和儀器分析法。化學分析法具有足夠的準確性和可靠性。對于化學穩(wěn)定性好的粉體材料來說,經(jīng)典化學分析方法則受到限制。相比之下,儀器分析則顯示出獨特的優(yōu)越性。如采用X射線熒光(XPFS)和電子探針微區(qū)分析法(EPMA),可對粉體的整體及微區(qū)的化學成分進行測試,而且還可與掃描電子光譜(AES)、原子發(fā)射光譜(AAS)結合對粉體的化學成分進行定性及定量分析;采用X光電子能譜法(XPS)分析粉體的化學組成并分析結構、原子價態(tài)等與化學鍵有關的性質(zhì)[13]。
4.2晶態(tài)表征
X射線衍射(XRD)仍是目前應用最廣、最為成熟的一種粉體晶態(tài)的測試方法。此外,電子衍射(ED)法還可用于粉體物相、粉體中個別顆粒直至顆粒中某一區(qū)域的結構分析;用高分辨率電子顯微分析(HREM)、掃描隧道顯微鏡(STM)分析粉體的空間結構和表面微觀結構。
4.3顆粒度表征
在納米陶瓷粉體顆粒度測試中,透射電子顯微鏡是最常用、最直觀的手段。但是,如粉體顆粒不規(guī)則或選區(qū)受到局限等,均會給測量造成較大的誤差。常見的粉體顆粒測試手段還有X射線離心沉降法(測量范圍為0.01~5μm)、氣體吸附法(測量范圍0.01~10μm)、X射線小角度散射法(測量范圍為0.001~0.2μm)、激光光散射法(測量范圍0.002~2μm)等[14]。
4.4團聚體表征
團聚體的性質(zhì)可分為團聚體的尺寸、形狀、分布、含量,氣孔率、氣孔尺寸及分布,密度,內(nèi)部顯微結構,強度,團聚體內(nèi)一次顆粒之間的鍵和性質(zhì)等。目前常用的團聚體表征方法主要有顯微結構觀察法、素坯密度-壓力法以及壓汞法等。
5.納米陶瓷的性能
5.1納米陶瓷的致密化
超細粉末的應用引起了燒結過程中的新問題,納米粉末的巨大表面積,使得材料的燒結驅(qū)動力亦隨之劇增,擴散速率的增加以及擴散路徑的縮短,大大加速了整個燒結過程,使得燒結溫度大幅度降低。例如:1nm的納米顆粒與1μm的微米級顆粒相比,其致密化速率將提高108。目前,上海硅酸鹽研究所通過對含Y2O3(3mol%)ZrO2納米粉末的致密化和晶粒生長這兩個高溫動力學過程的研究發(fā)現(xiàn):對顆粒大小為10~15nm的細粉末,其燒結溫度僅需1200~1250℃,密度達理論密度的98.5%,比傳統(tǒng)的燒結溫度降低近400℃。進一步的研究表明:由于晶粒尺寸小,分布窄,晶界與氣孔的分離區(qū)減小以及燒結溫度的降低使得燒結過程中不易出現(xiàn)晶粒的異常生長。控制燒結的條件,已能獲得晶粒分布均勻,大小為120nm的Y-TZP陶瓷體。
用激光法所制的15~25nm Si3N4粉末比一般陶瓷燒結溫度降低了200~300℃,所得晶粒大小為150nm Si3N4陶瓷,其彎曲變形為微
米級陶瓷的2倍[15]。
5.2納米陶瓷的力學性能
大量研究表明,納米陶瓷材料具有超塑性性能,所謂超塑性是指材料在一定的應變速率下產(chǎn)生較大的拉伸應變。納米TiO2陶瓷在室溫下就能發(fā)生塑性形變,在180℃下塑性變形可達100%。若試樣中存在微裂紋,在180℃下進行彎曲時,也不會發(fā)生裂紋擴展[16]。對晶粒尺寸為350nm的3Y-TZD陶瓷進行循環(huán)拉伸試驗發(fā)現(xiàn),在室溫下就已出現(xiàn)形變現(xiàn)象。納米Si3N4陶瓷在1300℃下即可產(chǎn)生200%以上的形變。關于納米陶瓷生產(chǎn)超塑性的原因,一般認為是擴散蠕變引起晶界滑移所致。擴散蠕變速率與擴散系數(shù)成正比,與晶粒尺寸的三次方成反比,當納米粒子尺寸減小時,擴散系數(shù)非常高,從而造成擴散蠕變異常。因此在較低溫度下,因材料具有很高的擴散蠕變速率,當受到外力后能迅速作出反應,造成晶界方向的平移,從而表現(xiàn)出超塑性,塑性的提高也使其韌性大為提高。納米陶瓷的硬度和強度也明顯高于普通材料。在陶瓷基體中引入納米分散相進行復合,對材料的斷裂強度、斷裂韌性會有大幅度的提高,還能提高材料的硬度、彈性模量、抗熱震性以及耐高溫性能。
6.納米陶瓷的應用及其展望
納米陶瓷在力學、化學、光吸收、磁性、燒結等方面具有很多優(yōu)異的性能,因此,在今后的新材料與新技術方面將會起到重要的作用。
隨著納米陶瓷制備技術的提高和精密技術對粉體微細化的要求,納米陶瓷將在許多領域得到應用(如納米陶瓷在結構陶瓷、功能陶瓷、電子陶瓷、生物陶瓷等領域)。不過從目前的研究來看,納米陶瓷獲得應用的性能有以下幾個方面: 1)室溫超塑性是納米陶瓷最具應用前景的性能之一。納米陶瓷克服了普通陶瓷的脆性,使陶瓷的鍛造、積壓、拉拔等加工工藝成為可能,從而能夠制得各種特殊的部件,應用到精密設備中去。
2)高韌性是納米陶瓷另一個具有很高應用的性能。陶瓷韌性的提高使得陶瓷的應用領域極度的擴大,因為今后納米陶瓷就可以像鋼鐵、塑料等主流材料一樣的應用,而不是人們心目中的“易碎品”。
3)納米陶瓷的應用還可以節(jié)約能源、減少環(huán)境污染(傳統(tǒng)的陶瓷工業(yè)能耗高、污染重)。納米陶瓷的燒結溫度比普通陶瓷的低幾百度,而且還可能繼續(xù)下降,這樣不僅可節(jié)省大量能源,還有利于環(huán)境的凈化。
7.參考文獻
[1] 謝少艾,陳虹錦,舒謀海編著.元素化學簡明教程.上海交通大學出版社.2006年,(11.5.3)納米陶瓷
[2]林志偉.功能陶瓷材料研究進展綜述.廣東科技,2010,7(241):36 [3] Cahn R W.Nanomaterials coming of age.Nature,1988,332(60~61):112~115 [4] 楊修春,丁子上.原位一步合成納米陶瓷新工藝.材料 導報,1995(3):48~49 [5] 嚴東生.納米材料的合成與制備.無機材料學報,1995,10(1):1
[6] Yoshimura.Rapid rate sintering of nano-grained ZrO2-based composites using pulse electric current sintering method.J Mater Sci Lett,1998,19:1389 [7] 姜繼森,高濂,郭景坤.Ni-Zn鐵氧體納米晶的機械化學合成.無機材料學報,1998,13(3):415 [8] 仇海波,等.納米氧化鋯粉體的共沸蒸餾法制備及研究.無機化學學報,1994,9(3):365 [9] 王秉濟,馬桂英.溶膠-凝膠法合成PLZT微細粉末.硅酸鹽學報,1994,22(1):57 [10]劉大格,蔡偉,等.以硝酸氧鋯為鋯源溶膠-凝膠合成PZT納米晶的研究.硅酸鹽學
報,1998,26(3):313 [11] 張敬暢,等.超臨界流體干燥法制備納米級TiO2的研究.無機材料學報,1999,14(1):29 [12] 施爾畏,夏長泰,王步國,等.水熱法的應用與進展.無機材料學報,1996,11(2):193 [13] 施劍林.低比表面積高燒結活性氧化鋯粉體的制作方法.科技開發(fā)動態(tài),2005,4:41 [14] 戴春雷,楊金龍.凝膠注模成型延遲固化研究.無機材料學報,2005,20(1):83 [15] 劉永勝,等.CVI制備C/Si3N4復合材料及其表征.無機材料學報,2005,20(5):1208 [16] 梁忠友.納米材料性能及應用展望.陶瓷研究,1999,14(1):13
第三篇:納米論文
聚合物基-納米二氧化硅復合材料的應用研究進展
班級12材料2班學號1232230042姓名王曉婷
摘要本文介紹了近年來國內(nèi)外納米SiO2聚合物復合材料的制備方法,討論了制備方法的特點,闡述了聚合物納米SiO2復合材料的研究進展, 并展望了聚合物納米SiO2 的應用前景。
關鍵詞納米SiO2復合材料;聚合物;制備;應用 前言
納米SiO2是目前應用最廣泛的納米材料之一,它特有的表面效應、量子尺寸效應和體積效應等,使其與有機聚合物復合而成的納米二氧化硅復合材料, 既能發(fā)揮納米SiO2自身的小尺寸效應、表面效應以及粒子的協(xié)同效應, 又兼有有機材料本身的優(yōu)點, 使復合材料具有良好的機械、光、電和磁等功能特性, 引起了國內(nèi)外研究者的廣泛關注[
1,2]
。本文就納米Si02一聚合物復合材料的制備方法、制備方法的特點和應用進行一次全面的綜述。
2聚合物/ 納米Si O2 復合材料的制備
2.1 共混法
共混法是制備聚合物/無機納米復合材料最直接的方法,適用于各種形態(tài)的納米粒子,但是由于納米粒子存在很大的界面自由能,粒子極易自發(fā)團聚。要將無機納米粒子直接分散于有機基質(zhì)中制備聚合物納米復合材料,必須通過化學預分散和物理機械分散打開納米粒子團聚體,消除界面能差,才能實現(xiàn)均勻分散并與基體保持良好的親和性。具體途徑如下。
2.1.1 高分子溶液(或乳液)共混
首先將聚合物基體溶解于適當?shù)娜軇┲兄瞥扇芤?或乳液),然后加入無機納米粒子,利用超聲波分散或其他方法將納米粒子均勻分散在溶液(或乳液)中。
姜云鵬等利用PVA與納米Si02表面的羥基形成的氫鍵實現(xiàn)了納米si02對PVA的改性;張志華等用溶膠一凝膠反應制備納米Si02顆粒,然后通過超聲分散機將顆粒分散到聚氨酯樹脂中制備出了聚氨酯/Si02納米復合材料;以上各種方法都使不同材料的各方面性能得到了改善。
2.1.2熔融共混
將納米無機粒子與聚合物基體在密煉機、雙螺桿等混煉機上熔融共混。
郭衛(wèi)紅等[5]在密煉機上將PMMA和納米Si02粒子熔融共混后,用雙螺桿造粒制得納米復[4][3]合材料。石璞[6]通過熔融共混法將納米si02粒子均勻地分散于PP基體中制得復合材料,由于復合偶聯(lián)劑的一端易與離子表面上大量的羥基發(fā)生化學反應形成穩(wěn)定的氫鍵,另一端與聚丙烯相容性較好,使納米粒子基本沒有團聚,實現(xiàn)了增強、增韌的目的。張彥奇等[7]將納米Si02經(jīng)超聲分散并經(jīng)偶聯(lián)劑處理后與LLDPE等組分預混、擠出、造粒,制備了線性低密度聚乙烯(LU)PE)/納米Si02復合材料,所得薄膜霧度顯著提高。
2.2在位分散聚合法
首先采用超聲波分散、機械共混等方法在單體溶液中分散納米粒子,或采用偶聯(lián)劑對納米粒子表面進行處理,然后單體在納米粒子表面進行聚合,形成納米粒子良好分散的納米復合材料(in situ polymerization)。通過這種方法,無機粒子能夠比較均一地分散于聚合物基體中。
歐玉春等[8]利用帶有羥基的丙烯酸酯表面處理劑對Si02進行表面處理,應用本體法聚合制備si02/PMMA納米復合材料,結果顯示納米Si02的加入可以提高聚甲基丙烯酸甲酯材料的機械性能、玻璃化溫度及材料的耐水性。Jose-Luiz Luna—Xavier等[9]采用原位聚合法以陽離子偶氮化合物AIBA為引發(fā)劑,液相納米Si02為核,聚甲基丙烯酸甲酯為殼合成了納米Si02一聚甲基丙烯酸甲酯乳液聚合物。由于陽離子偶氮化合物AIBA為引發(fā)劑的使用增強了與納米si02的相互作用,使效率大大提高。
2.3溶膠-凝膠法
溶膠一凝膠法(Sol-gel)是制備聚合物/無機納米復合材料的一種重要方法。通過烷氧基金屬有機化合物的水解、縮合,將細微的金屬氧化物顆粒復合到有機聚合物中并得到良好分散,從而在溫和條件下制備出具有特殊性能的聚合物/無機納米復合材料。
2.4硅酸鈉溶膠一凝膠法
溶膠一凝膠法在制備聚合物/納米si02復合材料時顯示出很多優(yōu)勢。但是,所用的無機組分的前驅(qū)物正硅酸烷基酯價格昂貴、有毒,因此為了降低制備成本,改善生產(chǎn)條件和減少環(huán)境污染,張啟衛(wèi)等[10]用硅酸鈉為無機si02組分的前驅(qū)物,與PVAC或PMMA的THF溶膠混合,經(jīng)溶膠一凝膠過程制備出聚合物/Si02雜化材料。結果表明,si02含量在一定范圍時,由于發(fā)生了納米級微區(qū)效應,有機一無機兩相間相容性好,不產(chǎn)生相分離,材料透光率提高,熱穩(wěn)定性增強。
3聚合物/ 納米Si O2 復合材料的研究進展
3.1 納米SiO2/環(huán)氧樹脂復合材料
Mascia等通過紅外光譜和定性黏度分析得知,納米SiO2 和環(huán)氧樹脂隨著環(huán)氧樹脂的分子量增加、加入偶聯(lián)劑、增加溶劑的極性以及提高反應溫度都會使二者的相容性提高[11]。寧榮昌等用分散混合法研究了納米SiO2有無表面處理及其含量對復合材料性能的影響, 采用透射電鏡和正電子湮沒技術(PALS)對納米SiO2 的分布和自由體積的尺寸及濃度進行了表征[12]。結果表明, SiO2表面處理后, 復合材料性能得到提高, 使環(huán)氧樹脂增強和增韌;且納米SiO2含量為3 % 時,自由體積濃度最小, 納米復合材料的性能最佳。劉競超等通過原位分散聚合法制得了納米SiO2/環(huán)氧樹脂復合材料[13]。結果表明, 對復合材料力學性能的影響較大的是偶聯(lián)劑, 在最優(yōu)工藝條件下制得的復合材料沖擊強度、拉伸強度比基體分別提高了124% 和30%;復合材料的Tg和耐熱性也有所提高。
3.2 納米SiO2/丙烯酸酯類復合材料
歐玉春等用原位聚合方法制備了分散相粒徑介于130 nm 左右的PMMA/SiO2(聚甲基丙烯酸甲酯/二氧化硅)復合材料[14]。結果表明, 經(jīng)表面處理的SiO2在復合材料基體中分散均勻, 界面粘結好;SiO2粒子的填充使基體的Tg和損耗峰上升, 隨著SiO2含量的增加, 對應試樣的Tg和損耗峰值增大;隨著SiO2含量的增加, 基體的拉伸強度、彈性模量表現(xiàn)為先下降后升高, 而基體的斷裂伸長率表現(xiàn)為先升高后下降。武利民等通過原位聚合、高速剪切法分散共混和球磨法分散共混等3 種方法制備丙烯酸酯/納米SiO2復合乳液, 以相同的方法制備丙烯酸酯/微米SiO2復合乳液[15]。結果表明, 共混法制得的納米復合物的拉伸強度、斷裂伸長率和玻璃化轉(zhuǎn)變溫度隨納米SiO2含量的增加先上升然后逐漸下降。涂層對紫外光的吸收和透過隨納米SiO2 含量的增加分別呈上升和下降趨勢, 而微米SiO2復合丙烯酸酯乳液, 其涂層對紫外光的吸收和透過基本不受微米SiO2 的影響。
3.3 納米SiO2/硅橡膠復合材料
王世敏等對納米SiO2/二甲基硅氧烷復合材料的光學、力學性能進行了研究[16]。結果表明, 復合材料對波長λ>390 nm 的可見光基本能透過, 透過率達80%, 硬度隨納米SiO2的增加呈上升趨勢。Mackenzie 等制備的納米SiO2/硅氧烷復合材料在非氧化氣氛中加熱到1 000 ℃以上, 分子發(fā)生重排, 形成塊狀微孔體;繼續(xù)加熱到1 400 ℃時,有機碳仍不分解, 且熱膨脹系數(shù)很小[17]。由于聚硅氧烷的高柔順性, 在溶膠-凝膠過程中不會因干燥而破裂, 該材料可以作為涂層改善基體(如聚合物、金屬)表面的物理化學性質(zhì)。潘偉等研究SiO2納米粉對硅橡膠復合材料的導電機理、壓阻及阻溫效應的影響[18]。結果表明,隨著SiO2納米粉的增加, 壓阻效應越來越顯著,在一定壓力范圍內(nèi), 材料電阻隨壓力呈線性增加;同時, SiO2納米粉的加入使復合材料的電阻隨溫度增加而增加。
3.4 納米SiO2/聚碳酸酯材料
聚碳酸酯具有較好的透明性, 較高的硬度, 以及較強的蠕變性。為了進一步提高其應用價值, 王金平等以聚碳酸酯為基體, 采用溶膠-凝膠法技術在聚碳酸酯表面覆蓋一層納米SiO2無機涂層, 涂層與聚碳酸酯較好的結合, 使材料的耐磨性得到明顯提高[19]。
3.5 納米SiO2/聚酰亞胺復合材料 聚酰亞胺(PI)是一種廣泛應用于航空、航天及微電子領域的功能材料, 它的優(yōu)點是介電性良好,力學性能優(yōu)良, 但其吸水性強和熱膨脹性高的缺點限制了他的應用。而采用納米SiO2改性后的PI 在這方面得到了很大改善。楊勇等的研究表明, 采用納米SiO2改性后的PI 其熱穩(wěn)定性得到加強, 熱膨脹系數(shù)得到降低[20]。曹峰等研究PI/SiO2復合材料的力學性能時發(fā)現(xiàn), 隨著SiO2含量的增加, 其楊氏模量、拉伸強度、斷裂強度增加, 加入適量的插層劑, 有利于增加有機分子與無機物分子之間的相容性, 從而可制備強度和韌性更加優(yōu)異的復合材料[21]。
3.6 納米SiO2/聚烯烴類復合材料
張彥奇等采用熔融共混法制備了線性低密度聚乙烯(LLDPE)/納米SiO2復合材料[22]。結果表明, 納米SiO2使LLDPE 的拉伸彈性模量、沖擊強度、拉伸強度提高, 且均在納米SiO2用量為3 份左右時達到最大值;加入少量的納米SiO2后, LLDPE 薄膜對長波紅外線(7~11 μm)的吸收能力較純LLDPE 膜有顯著提高, 透光率略有下降, 但霧度提高。曲寧等利用納米SiO2、馬來酸酐接枝PE(PE-g-MAH)和PP 通過熔融共混制備了PP/納米SiO2復合材料[23]。結果表明, 經(jīng)表面處理、用量為4 %的納米SiO2 與4 % 的PE-g-MAH 發(fā)生協(xié)同作用, 可以使PP/納米SiO2復合材料的沖擊強度提高40 %,拉伸強度提高10%, 耐熱溫度提高22℃。
3.7 納米SiO2/尼龍復合材料
E.Reynaud 等研究了不同粒徑和含量的納米SiO2 與尼龍6 通過原位聚合得到的納米復合材料的特性[24]。形貌分析出粒子的存在不影響復合材料的結晶相;粒子的加入明顯增強了基體的彈性模量,且復合材料的性能受粒子尺寸和分散狀況的影響。
3.8 納米SiO2/聚醚酮類樹脂復合材料
邵鑫等研究了納米SiO2對聚醚砜酮(PPESUK)復合材料摩擦學性能的影響[25]。結果表明, 納米SiO2不但可以提高PPESUK 的耐磨性, 而且還有較好的減摩作用, 其最佳用量為25%。靳奇峰等采用懸浮液共混法制備了納米SiO2填充新型雜萘聯(lián)苯聚醚酮(PPEK)復合材料[26]。當納米SiO2用量為1 % 時, 復合材料的綜合力學性能最佳。納米SiO2的加入使得復合材料的摩擦性能比純PPEK 有了明顯提高, 當納米SiO2用量為7 % 時,材料的摩擦磨損性能最好, 并且在大載荷下納米SiO2 更能有效改善復合材料的摩擦磨損性能。
3.9納米SiO2/聚苯硫醚(PPS)復合材料
張文栓等首先將納米SiO2粒子與硅烷偶聯(lián)劑KH-550 的乙醇溶液混合, 在40 ℃以下用超聲波振蕩60 min 后脫去溶劑, 烘干后與PPS 在高速攪拌機中混合均勻, 然后用雙螺桿擠出機造粒制得PPS/納米SiO2復合材料[27]。納米SiO2粒子呈顆粒狀均勻分布在PPS 基體中, 尺寸在10~40 nm 范圍內(nèi)。當納米SiO2用量為3 % 時, PPS/納米SiO2 復合材料的力學性能最佳, 拉伸強度、彎曲彈性模量和缺口沖擊強度分別提高13.4%、7.4% 和27.3%。張而耕等用轉(zhuǎn)化劑、分散劑和穩(wěn)定劑制備了PPS/納米SiO2水基涂料[28]。PPS/納米SiO2復合涂層的耐沖蝕磨損性比普通涂層提高了約50 倍, 能夠用于零部件的防沖蝕磨損。
3.10納米SiO2/PMMA 復合材料
張啟衛(wèi)等利用溶膠-凝膠法制備了PMMA/納米SiO2復合材料[29]。發(fā)現(xiàn)PMMA 與納米SiO2兩相間的相容性好, 材料透光率可達80 %, 并且熱穩(wěn)定性和Tg都比純PMMA 有較大的提高。郭衛(wèi)紅等將經(jīng)過表面處理的納米SiO2分散于PMMA 單體中形成膠體, 原位聚合制備了PMMA/納米SiO2復合材料[30]。結果表明, 復合材料的耐紫外線輻射能力提高1 倍以上, 沖擊強度提高80 %。同時由于納米粒子尺寸小于可見光波長, 復合材料具有高的光澤度和良好的透明度。
4總結與展望
聚合物/納米SiO2復合材料具有優(yōu)良的綜合性能, 展現(xiàn)出誘人的應用前景。盡管近年來對其研究較多, 并取得了較大進展, 但是對它的研究還不夠深入, 還有許多問題亟待研究和解決, 如納米SiO2在聚合物基體中的均勻分散問題, 納米復合材料的相界面結構, 納米SiO2 對聚合物性能影響的機理等。相信隨著制備技術的進一步完善及對材料的結構與性能關系的進一步了解, 人們將能按照需要來設計和生產(chǎn)高性能和多功能的聚合物/納米SiO2復合材料。納米Si02可以改性多種高分子材料,通常對聚合物的機械性能如拉伸強度、彈性模量、斷裂伸長率,以及熱穩(wěn)定性、動態(tài)力學行為、光學行為等都有較大影響。因此人們都在力求解決很多問題,諸如納米Si02在聚合物基體中的均勻分散;納米Si02復合材料中有機相和無機相的相界面結構;Si02粒徑大小、幾何形狀等形態(tài)參數(shù)及添加量對復合材料性能的影響;納米Si02對聚合物基體材料性能影響的機理等。隨著研究的不斷深入,納米Si02一聚合物體系將在越來越多的領域發(fā)揮出它的重要作用。
參考文獻
[1]Gabrielson L, Edirisinghe M J.On the dispersion offine ceramic powders in polymers.Journal of MaterialsScience Letters, 1996, 15(13): 1 105~1 107 [2]徐國財, 張立德.納米復合材料.北京: 化學工業(yè)出版社, 2002.32~43
[3]姜云鵬,SiO2 改性聚苯硫醚力學性能的研究.高分子材料科學與工程,2002,18(5):177 [4]張志華,吳廣明,等.材料科學與工程學報,2003,21(4):498
[5]郭衛(wèi)紅,李盾,等.納米SiO2 增強增韌聚氯乙烯復合材料的研究.塑料工業(yè),1998,26(5):10 [6]石璞,晉剛,聚甲基丙烯酸甲酯/二氧化硅雜化材料制備與性能.國塑料,2002,16(1):3 [7]張彥奇,華幼卿.納米SiO2 填充雜萘聯(lián)苯聚醚酮復合材料的性能研究.應用化學,2003,20(2):638 [8] 歐玉春,楊鋒,聚甲基丙烯酸甲酯/二氧化硅雜化材料制備與性能.分子學報,1997,2:199 [9]Jose-Luiz L X,Alain G,Elodie B L J Colloid and InterfacaSci,2002,250(1):82 [10] 張啟衛(wèi),章永化,聚甲基丙烯酸甲酯/二氧化硅雜化材料制備與性能.料科學與工程,2002,20(3):381 [11]Mascia Leno, Tang Tao.Curing and morphology ofepoxy resin-silica hybrids.Journal of MaterialsChemistry, 1998, 8(11): 2 417~2 421 [12]鄭亞萍, 寧榮昌.納米SiO2 環(huán)氧樹脂復合材料性能研究.玻璃鋼/復合材料, 2001(2): 34~36
[13]鄭亞萍, 寧榮昌.納米SiO2/環(huán)氧樹脂復合材料性能研究.高分子材料科學與工程, 2002, 18(5): 148~154 [14]歐玉春, 楊鋒, 莊嚴, 等.原位分散聚合聚甲基丙烯酸甲酯/二氧化硅納米復合材料研究.高分子學報, 1997(2): 199~205 [15]熊明娜, 武利民, 周樹學, 等.丙烯酸酯/納米SiO2 復合乳液的制備和表征.涂料工業(yè), 2002(11): 1~3 [16]王世敏, 吳崇浩, 趙雷, 等.聚二甲基硅氧烷/SiO2雜化材料的制備與性能的研究.材料科學與工程學報,2003, 21(2): 205~207 [17]Mackenzie John D, Chung Y J, Hu Y.RubberyOrmosils and their Applications.Journal ofNon-Crystalline Solids, 1992, 147-148: 271~278 [18]潘偉, 翟普, 劉立志.SiO2 納米粉對炭黑/硅橡膠復合材料的壓阻、阻溫特性的影響.材料研究學報,1997, 11(4): 397~401 [19]王金平, 俞志欣, 何捷, 等.用sol-gel 法在pc 上制備有機-無機復合耐磨涂層.功能材料, 1999, 30(3): 323~325 [20]楊勇, 朱子康, 漆宗能.溶膠-凝膠法制備可溶性聚酰亞胺/二氧化硅納米復合材料的研究.功能材料,1999, 30(1): 78~81 [21]曹峰, 朱子康, 印杰, 等.新型光敏PI/SiO2 雜化材料的制備與性能研究.功能高分子學報, 2000, 13(3): 25~29 [22]張彥奇, 華幼卿.LLDPE/納米SiO2 復合材料的力學性能和光學性能研究.高分子學報, 2003(5): 683~84 [23]Reynaud E, Jouen T, Gauthier C, et al.Nanofillersin polymeric matrix: a study on silica reinforcedPA6.Polymer, 2001, 42(21): 8 759~8 768 [24]邵鑫, 田軍, 劉維民, 等.納米SiO2 對聚醚砜酮復合材料摩擦學性能的影響.材料工程, 2002(2):38~39 [25]靳奇峰, 廖功雄, 蹇錫高, 等.納米SiO2 填充雜萘聯(lián)苯聚醚酮復合材料的性能研究.宇航材料工藝, 2005(2): 18~19 [26]張而耕, 王志文.PPS/SiO2 納米復合涂層的制備和性能測試.機械工程材料, 2003, 27(5): 36~37 [27]張啟衛(wèi), 章永化, 陳守明, 等.聚甲基丙烯酸甲酯/二氧化硅雜化材料制備與性能.應用化學, 2002, 19(9): 874~875 [28]郭衛(wèi)紅, 唐頌超, 周達飛, 等.納米SiO2 在MMA 單體中在原位分散聚合的研究.材料導報, 2000(10):71~72 [29]張毅, 馬秀清, 李永超, 等.納米SiO2 增強增韌不飽和聚酯樹脂的研究.中國塑料, 2004, 18(2): 35~36 [30]周文英, 李海東, 牛國良, 等.納米SiO2 改性不飽和聚酯樹脂.纖維復合材料, 2003(14): 14~15
第四篇:納米論文
納米技術在醫(yī)學上的應用
[摘要]納米醫(yī)學是納米技術與醫(yī)藥技術結合的產(chǎn)物,納米醫(yī)學研究在疾病診斷和治療方面顯示出了巨大的應用潛力。近幾年,納米技術突飛猛進,作為納米技術的重要領域的納米生物工程也取得了輝煌的成就。本文從納米醫(yī)學、納米生物技術和納米生物材料三個方面,講述了納米生物工程的重大進展。本文就納米診斷技術、組織修復和再生醫(yī)學中的納米材料、納米藥物載體、納米藥物等方面的研究現(xiàn)狀與進展進行綜述,并探討納米醫(yī)學的發(fā)展前景。
[引言] 納米技術的基本概念是用單個原子、分子制造和操作物質(zhì)的技術,是現(xiàn)代高科技前沿技術.納米技術應用前景廣闊,幾乎涉及現(xiàn)有科學技術的所有領域,世界各國都把納米技術列為重點發(fā)展項目,投入巨資搶占納米技術戰(zhàn)略高地.[關鍵詞]納米醫(yī)學;納米生物材料;診斷;治療
1、跨世紀的新學科——納米科技
所謂/納米科技,就是在0.1~100納米的尺度上,研究和利用原子和分子的結構、特征及相互作用的高新科學技術,它是現(xiàn)代科學和先進工程技術結合的產(chǎn)物。1990年7月,第一屆國際納米科技會議的召開,標志著納米科技的正式誕生。時至今日,納米科技涉及到幾乎現(xiàn)有的所有科學技術領域。它的誕生,使人類改造自然的能力直接延伸到分子和原子。它的最終目標,是人類按照自己的意志操縱單個原子,在納米尺度上制造具有特定功能的產(chǎn)品,實現(xiàn)生產(chǎn)方式的飛 躍。目前,納米科技已經(jīng)取得一系列成果,正處于重大突破的前夜。研究者認為,這一興起于本世紀90年代的納米科技,必將雄踞于21世紀,對人類社會產(chǎn)生重大而深遠的影響。
2、納米醫(yī)學的提出
納米醫(yī)學的形成除了納米技術之外,其醫(yī)學本身也應具有可應用納米技術的客觀基礎和必要條件??陀^基礎是指,像其他物質(zhì)一樣,醫(yī)學研究的主體———人體本身是由分子和原子構成的。實現(xiàn)納米醫(yī)學的必要條件是,要在分子水平上對人體有更為全面而詳盡的了解。隨著現(xiàn)代生物學和現(xiàn)代醫(yī)學的不斷發(fā)展,人類在生物學和醫(yī)學等領域的研究內(nèi)容已開始從細胞、染色體等微米尺度的結構深入到更小的層次,進入到單個分子甚至分子內(nèi)部的結構。這些極其微細的分子結構的特征:尺度空間在0.1-100 nm,屬于納米技術的尺度范圍。研究這些納米尺度的分子結構和生命現(xiàn)象的學科,就是納米生物學和納米醫(yī)學。納米醫(yī)學是一門涉及物理學、化學、量子學、材料學、電子學、計算機學、生物學以及醫(yī)學等眾多領域的綜合 性交叉學科。Freitas曾給納米醫(yī)學下過一個較詳細的定義:他認為,納米醫(yī)學是利用人體分子工具和分子知識,預防、診斷、治療疾病和創(chuàng)傷,劫除疼痛,保護和改善人體健康的科學和技術。目前的納米醫(yī)學研究水平還處于初級階段,當然,由于各國科學工者的不懈努力,納米醫(yī)學研究領域已初露曙光,有部分研究成果已開始接近臨床應用。
從定義來看,納米醫(yī)學可以分為兩大類,一是在分子水平上的醫(yī)學研究,基因藥物和基因療法等就是典型體現(xiàn);二是把其他領域的納米研究成果引入醫(yī)學領域,如某種納米裝置在醫(yī)療和診斷上的應用。納米醫(yī)學的奧秘在于,可以從納米量級的尺度來進行原來不可能達到的醫(yī)療操作和疾病防治。當生命物質(zhì)的結構單元小到納米量級的時候,其性質(zhì)會有意想不到的變化。這種變化既包括物質(zhì)的原有性能變得更好,還可能有我們所意想不到的性能和效益,從而用來治病防病。
3、納米技術的醫(yī)學應用 3.1 診斷疾病
在診斷方面,將應用納米醫(yī)學技術手段,在診室內(nèi)進行全面的基因檢查和特殊細菌涂層標記物的實時全身掃描;檢測腫瘤細胞抗原、礦質(zhì)沉積物、可疑的毒素、源于遺傳或生活方式的激素失衡,以及其它以亞毫米空間分辨率制成所定目標三維圖譜的特定分子。在納米醫(yī)學時代,這些強有力的手段將使醫(yī)務人員能夠檢查患者的任何部位,且可詳盡到分子水平,并能以合理的費用,在數(shù)分鐘或數(shù)秒鐘內(nèi)獲得所需的結果。許多以往診斷比較困難或無法診斷的疾病,隨著納米技術的介入,將很容易被確診。為判斷胎兒是否具有遺傳缺陷,以往常采用價格昂貴并對人體有損害的羊水診斷技術。如今應用納米技術,可簡便安全地達到目的。孕8周左右血液中開始出現(xiàn)非常少量的胎兒細胞,用納米粒很容易將這些胎兒細胞分離出來進行診斷。目前美國已將此項技術應用于臨床診斷。肝癌患者由于早期沒有明顯癥狀,一旦發(fā)現(xiàn)常已到晚期,難以治愈,因而早期診斷極為重要。中國醫(yī)科大學第二臨床學院把納米粒應用于醫(yī)學研究,經(jīng)過4年的努力,完成了超順磁性氧化鐵超微顆粒脂質(zhì)體的研究。動物實驗證明,運用這項研究成果,可以發(fā)現(xiàn)直徑3mm以下的肝腫瘤。這對肝癌的早期診斷、早期治療有著十分重要的意義。3.2 納米藥物和納米藥物載體
這是納米醫(yī)學中的一個非常活躍的領域,適時準確地釋放藥物是它的基本功能之一??茖W家正在為糖尿病人研制超小型的,模仿健康人體內(nèi)的葡萄糖檢測系統(tǒng)。它能夠被植入皮下,監(jiān)測血糖水平,在必要的時候釋放出胰島素,使病人體內(nèi)的血糖和胰島素含量總是處于正常狀態(tài)。美國密西根大學的博士正在設計一種納米/智能炸彈,它可以識別出癌細胞的化學特征。這種智能炸彈很小,僅有20nm左右,能夠進入并摧毀單個的癌細胞。
德國醫(yī)生嘗試借助磁性納米微粒治療癌癥,并在動物實驗中取得了較好療效。將一些極其細小的氧化鐵納米微粒注入患者的腫瘤里,然后將患者置于可變的磁場中,氧化鐵納米微粒升溫到45~ 47度,這一溫度可慢慢熱死癌細胞。由于腫瘤附近的機體組織中不存在磁性微粒,因此這些健康組織的溫度不會升高,也不會受到傷害??茖W家指出,將磁性納米顆粒與藥物結合,注入到人體內(nèi),在外磁場作用下,藥物向病變部位集中,從而達到定向治療的目的,將大大提高腫瘤的藥物治療效果。
納米藥物與傳統(tǒng)的分子藥物的根本區(qū)別在于它是顆粒藥物。廣義的納米藥物可分為兩類:一類是納米藥物載體,即指溶解或分散有分子藥物的各種納米顆粒,如納米球、納米囊、納米脂質(zhì)體等。二是納米藥物,即指直接將原料藥物加工成的納米顆粒,或利用嶄新的納米結構或納米特性,發(fā)現(xiàn)基于新型納米顆粒的高效低毒的治療或診斷藥物。前者是對傳統(tǒng)藥物的改良,而后者強調(diào)的是把納米材料本身作為藥物。
3.2.1 納米藥物
直接以納米顆粒作為藥物的應用之一是抗菌藥物。納米抗菌藥物具有廣譜、親水、環(huán)保、遇水后殺菌力更強、不會誘導細菌耐藥性等多種性能。以這種抗菌顆粒為原料,成功地開發(fā)出了創(chuàng)傷貼、潰瘍貼等納米醫(yī)藥類產(chǎn)品。例如,納米二氧化鈦樹脂基托材料具有一定的抗變形鏈球菌和抗白色念珠菌的效果,當樹脂基托中抗菌劑的濃度達到3%時,即可達到滿意的抗菌效果。
無機納米顆粒作為新型的抗癌藥物為腫瘤治療提供了新的思路。研究人員用Gd@C82(OH)22處理得肝癌的小鼠,在10.7mol/kg的注射劑量下能有效地抑制腫瘤生長,同時對機體不產(chǎn)生任何毒性。其抑瘤效應不是通過納米顆粒對腫瘤的直接殺傷起作用,而是可能通過激活機體免疫來實現(xiàn)對腫瘤的抑制作用。納米羥基磷灰石在體外對惡性腫瘤細胞產(chǎn)生明顯的抑制作用,而對正常細胞作用甚微,可望通過進一步的研究獲得一種區(qū)別于傳統(tǒng)的化療藥物的納米無機抗癌藥物。此外,有的物質(zhì)納米化后出現(xiàn)新的治療作用,如二氧化鈦納米粒子可抑制癌細胞增殖;二氧化鈰納米顆??梢郧宄壑械碾娍剐苑肿硬⒎乐我恍┯捎谝暰W(wǎng)膜老化而帶來的疾病。
3.2.2 納米藥物載體
實現(xiàn)細胞和亞細胞層次上藥物的靶向傳遞和智能控制釋放,是降低藥物毒副作用、提高治療效果的共性問題。納米粒子介導的藥物輸送是納米醫(yī)學領域的一個關鍵技術,在藥物輸送方面具有許多優(yōu)越性。目前,用作藥物載體的材料有金屬納米顆粒、生物降解性高分子納米顆粒及生物活性納米顆粒等。理想的納米藥物載體應具備以下性質(zhì):毒性較低或沒有毒性;具有適宜的制備及提純方法;具有合適的粒徑與形狀;具有較高的載藥量;具有較高的包封率;對藥物具有良好的釋放特性;具有良好的生物相容性,可生物降解或可被機體排出;具有較長的體內(nèi)循環(huán)時間,并能在療效相 關部位持久存。3.3 納米生物技術
納米生物技術是納米技術和生物技術相結合的產(chǎn)物,它即可以用于生物醫(yī)學,也可以服務于其它社會需求。所包含的內(nèi)容非常豐富,并以極快的速度增加和發(fā)展,難以概述。
3.3.1生物芯片技術
生物芯片是在很小幾何尺度的表面積上,裝配一種或集成多種生物活性,僅用微量生理或生物采樣,即可以同時檢測和研究不同的生物細胞、生物分子和DNA的特性,以及它們之間的相互作用,獲得生命微觀活動的規(guī)律。生物芯片可以粗略地分為細胞芯片、蛋白質(zhì)芯片(生物分子芯片)和基因芯片(即DNA芯片)等幾類,都有集成、并行和快速檢測的優(yōu)點,已成為21世紀生物醫(yī)學工程的前沿科技。
近2年,已經(jīng)通過微制作(MEMS)技術,制成了微米量級的機械手,能夠在細胞溶液中捕捉到單個細胞,進行細胞結構、功能和通訊等特性研究。美國哈佛大學的教授領導的研究人員,發(fā)展了微電子工業(yè)普遍使用的光刻技術在生物學領域的應用,并研制出效果更好的軟光刻方法。以此,制出了可以捕捉和固定單個細胞的生物芯片,通過調(diào)節(jié)細胞間距等,研究細胞分泌和胞間通訊。此類細胞芯片還可以作細胞分類和純化等。它的功能原理非常簡單,僅利用芯片表面微單元的幾何尺寸和表面特性,即可達到選擇和固定細胞及細胞面密度控制。
美國圣地亞國家實驗室的發(fā)現(xiàn)實現(xiàn)了納米愛好者的預言。正像所預想的那樣,納米技術可以在血流中進行巡航探測,即時發(fā)現(xiàn)諸如病毒和細菌類型的外來入侵者,并予以殲滅,從而消除傳染性疾病。
研究人員做了一個雛形裝置,發(fā)揮芯片實驗室的功能,它可以沿血流流動并跟蹤像鐮狀細胞血癥和感染了愛滋病的細胞。血液細胞被導入一個發(fā)射激光的腔體表面,從而改變激光的形成。癌細胞會產(chǎn)生一種明亮的閃光;而健康細胞只發(fā)射一種標準波長的光,以此鑒別癌變。3.3.2納米探針
一種探測單個活細胞的納米傳感器,探頭尺寸僅為納米量級,當它插入活細胞時,可探知會導致腫瘤的早期DNA損傷。
3.4組織修復和再生醫(yī)學中的納米材料
將納米技術與組織工程技術相結合,構建具有納米拓撲結構的細胞生長支架正在形成一個嶄新的研究方向。相對于微米尺度,納米尺度的拓撲結構與機體內(nèi)細胞生長的自然環(huán)境更為相似。納米拓撲結構的構建有可能從分子和細胞水平上控制生物材料與細胞間的相互作用,引發(fā)特異性細胞反應,對于組織再生與修復具有潛在的應用前景和重要意義。將納米纖維水凝膠作為神經(jīng)組織的支架,在其中生長的鼠神經(jīng)前體細胞的生長速度明顯快于對照材料。向高分子材料中加入碳納米管可以顯著改善原有聚合物的傳導性、強度、彈性、韌性和耐久性,同時還可以改進基體材料的生物相容性。研究發(fā)現(xiàn),隨著復合物中碳納米管含量的增加,神經(jīng)元細胞和成骨細胞在復合材料上的黏附與生長也越來越活躍,而星形細胞和成纖維細胞的活性則呈現(xiàn)同等程度的下降。研究人員設計的人造紅細胞輸送氧的能力是同等體積天然紅細胞的236倍,可應用于貧血癥的局部治療、人工呼吸、肺功能喪失和體育運動需要的額外耗氧等。研究人員成功合成了模擬骨骼亞結構的納米物質(zhì),該物質(zhì)可取代目前骨科常用的合金材料,其物理特性符合理想的骨骼替代物的模數(shù)匹配,不易骨折,且與正常骨組織連接緊密,顯示出明顯的正畸應用優(yōu)勢。
納米自組裝短肽材料RADA16-I與細胞外基質(zhì)具有很高相似性,RADA16-I納米支架可以作為一種臨時性的細胞培養(yǎng)人工支架,它能很好地支持功能型細胞在受損位置附近生長、遷移和分化,因而有利于細胞抵達傷口縫隙,使組織得以再生。有研究人員利用RADA16-I納米支架修復了倉鼠腦部的急性創(chuàng)傷,并且恢復了倉鼠的視覺功能。RADA16-I形成的水凝膠可用作新型的簡易止血劑,用于多種組織和多種不同類型傷口的止血。
4、我國發(fā)展納米生物學和納米醫(yī)學的現(xiàn)狀和發(fā)展策略
目前,我國在納米生物和醫(yī)學領域內(nèi)的研究基礎還比較薄弱,通過采取各種激勵措施和各種研究計劃的實施,特別是國家自然科學基金委的納米技術重大研究計劃對納米生物和納米醫(yī)學項目的支持,我國在納米生物和納米醫(yī)學方面的研究狀況有了很大的改善,生物、醫(yī)學界的許多院、所相繼建立了有關納米技術的研究室,如中國醫(yī)學科學院基礎醫(yī)學研究所、軍事醫(yī)學科學院毒物藥物研究所和生物物理研究所等都設立了納米研究室,初步形成了一只較強的研究隊伍。近年來,來自化學、物理、信息、藥物、生物和醫(yī)學等領域的科學家通過幾次研討會進一步明確了納米生物和納米醫(yī)學領域的研究方向和內(nèi)容,并建立了較密切的合作。我國在納米生物和納米醫(yī)學的研究領域也涌現(xiàn)了一批極具特色的研究成果,如在生物傳感器、生物芯片、新型藥物載體和靶向藥物、新型納米藥物劑型、新造影劑、重大疾病的機制、納米材料的應用和生物安全性及重大疾病預防和早期診斷與治療技術等方面。但是,這些研究的水準與國際先進水平還有相當?shù)牟罹?離國家、社會的需求也有相當遠的距離。
納米醫(yī)學工程的建立不僅是因為有其迫切的需要,而且也因為有了實現(xiàn)的可能。如今,納米科技在國際上已嶄露頭角,世界各發(fā)達國家紛紛開展納米科技的研究。在我國,科技界對納米科技的重要性有了共識,納米科技研究已取得引人注目的成果。學科發(fā)展和社會需要是推動社會發(fā)展的巨大動力,學科發(fā)展可以創(chuàng)造新的需求,社會需求可以促進學科向深度和廣度發(fā)展。納米生物醫(yī)學工程正在出現(xiàn),我們無力將它阻擋。雖然它的廣泛應用尚有待時日,并潛在危險,但若沒有它,我們現(xiàn)在面臨的許多生物醫(yī)學工程問題就不可能得到滿意的解決。
人類正在被歷史及自身推向一個嶄新的陌生世界,倘若人類能直接利用原子、分子進行生產(chǎn)活動,這將是一個質(zhì)的飛躍,將改變?nèi)祟惖纳a(chǎn)方式,并空前地提高生產(chǎn)能力,有可能從根本上解決人類面臨的諸多困難和危機。我們有必要把納米科技和生物醫(yī)學工程概念進行拓展,把納米科技的理論與方法引入生物醫(yī)學工程的相關研究領域,創(chuàng)立新的邊緣學科——納米生物醫(yī)學工程??梢韵嘈?納米醫(yī)學工程將會成為納米科技的重要分支,并開創(chuàng)生物醫(yī)學工程新紀元。科學家認為,納米科技在生物醫(yī)學方面,甚至有可能超過信息技術和基因工程,成為決勝未來的關鍵性技術。[參 考 文 獻] [1]劉吉平,郝向陽.納米科學與技術[M].北京:科學出版社,2002:2,227-229,234-238,239-242,230-234.[2]李道萍.21世紀嶄新的學科——納米醫(yī)學[J]1世界新醫(yī)學信息文摘,2003,1(3):208-210.[3]李會東.納米技術在生物學與醫(yī)學領域中的應用[J].湘潭師范學院學報(自然科學版),2005,27(2):49-51.[4]皮洪瓊,吳俊,袁直等.注射用生物可降解胰島素納米微球的制備[J]1應用化學,2001,18(5):365-369.[5]常津.阿毒素免疫磁性毫微粒的體內(nèi)磁靶向定位研究[J].中國生物醫(yī)學工程學報,1996,15(4):216-221.[6]張共清,梁屹.納米技術在生物醫(yī)學的應用[J]1中國醫(yī)學科學院學報,2002,24(2):197-201.〔7〕中國社會科學院語言研究所詞典編輯室編.現(xiàn)代漢語詞典.北京:商務印書館2002年版:1711〔8〕奇云.21世紀的納米醫(yī)學.健康報,2001(4):12〔9〕紀小龍.納米醫(yī)學怎樣診治疾病.健康報,2001,7,19[9]奇 云.納米醫(yī)學——21世紀的科技新領域[N].中國醫(yī)藥報,1995年6月8日~1995年7月18日,第1160期-1178期,第7版.[10]奇 云.納米材料——21世紀的新材料[J].科技導報,1992(10):28-31.[11]奇 云.納米電子學研究進展[J].現(xiàn)代物理知識,1994,6(5):24-25.[12]奇 云.納米生物學的誘人前景[N].光明日報,1993年5月7日,第15864號第3版.[13]奇 云.納米化學研究進展[J].自然雜志,1993,16(9、10):2-5.[14]奇 云.納米化學研究進展[J].現(xiàn)代化工,1993,13(8):38-39.[15] 華中一.納米科學與技術[J].科學,2000,52(5):6-10..
第五篇:納米材料論文
納米科技及納米材料
【摘 要】納米技術是當今世界最有前途的決定性技術。納米材料在結構、光電和化學性質(zhì)等方面的誘人特征,引起物理學家、材料學家和化學家的濃厚愛好。80年代初期納米材料這一概念形成以后,世界各國對這種材料給予極大關注。它所具有的獨特的物理和化學特性,使人們意識到它的發(fā)展可能給物理、化學、材料、生物、醫(yī)藥等學科的研究帶來新的機遇。文章簡要地概述了納米技術,納米材料的分類、特性以及納米材料在催化、涂料、醫(yī)藥等領域的應用,并展望了納米材料廣闊的應用前景。
【關鍵詞】納米技術;納米材料;分類;特性;應用;前景
一、納米科技及納米材料的涵義
納米科技是20世紀80年代末誕生并正在崛起的新科技,是一門在0.1~ 100 nm尺度空間內(nèi),研究電子、原子和分子運動規(guī)律和特性的高技術學科。其涵義是人類在納米尺寸(10-9--10-7m)范圍內(nèi)認識和改造自然,最終目標是通過直接操縱和安排原子、分子而創(chuàng)造特定功能的新物質(zhì)。納米科技是現(xiàn)代物理學與先進工程技術相結合的基礎上誕生的,是一門基礎研究與應用研究緊密聯(lián)系的新興科學技術。其中納米材料是納米科技的重要組成部分。
納米(nm)是長度單位,1納米是10-9米(十億分之一米),對宏觀物質(zhì)來說,納米是一個很小的單位,廣義地說,納米材料是指在三維空間中至少有一維處在納米尺度范圍(1-100nm)或由他們作為基本單元構成的材料。一般認為納米材料應該包括兩個基本條件:一是材料的特征尺寸在1-100nm之間,二是材料此時具有區(qū)別常規(guī)尺寸材料的一些特殊物理化學特性。
二、納米材料的分類
按其顆粒組成的尺寸和排列狀態(tài),可分為納米晶體和納米非晶體。前者指所包含的納米微粒為晶體,后者由具有短程序的非晶態(tài)納米微粒組成,如納米非晶態(tài)薄膜.
按其結構來分,納米材料的基本單元可以分為四類:零維的原子團簇和納米微粒;一維調(diào)制的納米單層或多層薄膜;二維調(diào)制的納米纖維結構;三維調(diào)制的納米相材料。
三、納米材料的特性
納米材料的特性既不同于原子,又不同于結晶體,可以說它是一種不同于本體材料的新材料,其物理化學性質(zhì)與本體材料有明顯差異。主要表現(xiàn)在:納米材料性能表現(xiàn)出強烈的尺寸依賴性。當粒子尺寸減小到納米級的某一尺寸時,則材料的物性會發(fā)生突變,與同組分的常規(guī)材料的性能完全不同,且同類材料的不同性能有不同的臨界尺寸,對同一性能,不同材料相應的臨界尺寸也有差異,所以當物質(zhì)的粒子尺寸達到納米數(shù)量級時,將會表現(xiàn)出優(yōu)于同組分的晶態(tài)或非晶態(tài)的性質(zhì)。如熔點下降、強烈的化學活性和催化活性及特殊的光學、電學、磁學和力學及燒結性能。這主要是由納米材料的下列效應引起:小尺寸效應(體積效應);表面與界面效應;量子尺寸效應(久保效應);宏觀量子隧道效應。
1、小尺寸效應指當超微粒的尺寸與光波波長,傳導電子的德布羅意波長及超導態(tài)的相干長度、透射深度等物理特征尺寸相當或更小時,它的周期性邊界被破壞,從而使其聲、光、電、磁,熱力學等性能呈現(xiàn)新的尺寸效應。陶瓷材料在通常情況下呈現(xiàn)脆性,而由納米超微粒制成的納米陶瓷卻具有良好的韌性和延展性。這是由于納米超微粒制成的固體材料具有大的界面,界面原子排列相當混亂,原子在外力變形條件下容易遷移。因此使原先脆性的材料表現(xiàn)出良好的韌性和延展性,使陶瓷材料具有新奇的力學性能。
2、表面與界面效應指納米晶體粒表面原子數(shù)與總原子數(shù)之比隨粒徑變小而急劇增大后所引起的性質(zhì)上的變化。例如粒子直徑為10納米時,微粒包含4000個原子,表面原子占40%;粒子直徑為1納米時,微粒包含有30個原子,表面原子占99%。主要原因就在于直徑減少,表面原子數(shù)量增多,因此納米粉微粒通常具有相當高的表面能。
3、當粒子的尺寸降到一定值時,金屬費米能級附近的電子能級出現(xiàn)由準連續(xù)變?yōu)殡x散的現(xiàn)象。當能級間距大于熱能、磁能、靜電能、靜磁能、光子能或超導態(tài)的凝聚能時,納米微粒會呈現(xiàn)一系列與宏觀物體截然不同的特性,稱之為量子尺寸效應。例如,有種金屬納米粒子吸收光線能力非常強,在1.1365千克水里只要放入千分之一這種粒子,水就會變得完全不透明。納米材料的量子尺寸效應使納米材料具有:高度光學非線性;特異性催化和光催化性;強氧化性與強還原性。用這一特性可制得光催化劑、強氧化劑與強還原劑。可使用于制備無機抗菌材料。
4、微觀粒子具有貫穿勢壘的能力稱為隧道效應。納米粒子的磁化強度等也有隧道效應,它們可以穿過宏觀系統(tǒng)的勢壘而產(chǎn)生變化,這種被稱為納米粒子的宏觀量子隧道效應。
四、納米材料的應用
1、在催化方面的應用
催化劑在許多化學化工領域中起著舉足輕重的作用,它可以控制反應時間、提高反應效率和反應速度。大多數(shù)傳統(tǒng)的催化劑不僅催化效率低,而且其制備是憑經(jīng)驗進行,不僅造成生產(chǎn)原料的巨大浪費,使經(jīng)濟效益難以提高,而且對環(huán)境也造成污染。納米粒子表面活性中心多,為它作催化劑提供了必要條件。納米粒于作催化劑,可大大提高反應效率,控制反應速度,甚至使原來不能進行的反應也能進行。納米微粒作催化劑比一般催化劑的反應速度提高10~15倍。
納米微粒作為催化劑應用較多的是半導體光催化劑,主要是在有機物制備方面。光催化反應涉及到許多反應類型,如醇與烴的氧化,無機離子氧化還原,有機物催化脫氫和加氫、氨基酸合成,固氮反應,水凈化處理,水煤氣變換等,其中有些是多相催化難以實現(xiàn)的。半導體多相光催化劑能有效地降解水中的有機污染物。例如納米TiO2,既有較高的光催化活性,又能耐酸堿,對光穩(wěn)定,無毒,便宜易得,是制備負載型光催化劑的最佳選擇。Ni或Cu一Zn化合物的納米顆粒,對某些有機化合物的氫化反應是極好的催化劑,可代替昂貴的鉑或鈕催化劑。納米鉑或鈕催化劑可使乙烯的氧化反應溫度從600℃降至室溫。用納米微粒作催化劑提高反應效率、優(yōu)化反應路徑、提高反應速度方面的研究,是未來催化科學不可忽視的重要研究課題,很可能給催化在工業(yè)上的應用帶來革命性的變革。
2、在涂料方面的應用
納米材料由于其表面和結構的非凡性,具有一般材料難以獲得的優(yōu)異性能,顯示出強大的生命力。表面涂層技術也是當今世界關注的熱點。納米材料為表面涂層提供了良好的機遇,使得材料的功能化具有極大的可能。借助于傳統(tǒng)的涂層技術,添加納米材料,可獲得納米復合體系涂層,實現(xiàn)功能的飛躍,使得傳統(tǒng)涂層功能改性。在涂料中加入納米材料,可進一步提高其防護能力,實現(xiàn)防紫外線照射、耐大氣侵害和抗降解、變色等,在衛(wèi)生用品上應用可起到殺菌保潔作用。在標牌上使用納米材料涂層,可利用其光學特性,達到儲存太陽能、節(jié)約能源的目的。在建材產(chǎn)品如玻璃、涂料中加入適宜的納米材料,可以達到減少光的透射和熱傳遞效果,產(chǎn)生隔熱、阻燃等效果。日本松下公司已研制出具有良好靜電屏蔽的納米涂料,所應用的納米微粒有氧化鐵、二氧化鈦和氧化鋅等。這些具有半導體特性的納米氧化物粒子,在室溫下具有比常規(guī)的氧化物高的導電特性,因而能起到靜電屏蔽作用,而且氧化物納米微粒的顏色不同,這樣還可以通過復合控制靜電屏蔽涂料的顏色,克服炭黑靜電屏蔽涂料只有單一顏色的單調(diào)性。在涂料中加入納米SiO2,可使涂料的抗老化性能、光潔度及強度成倍地增加。納米涂層具有良好的應用前景,將為涂層技術帶來一場新的技術革命,也將推動復合材料的研究開發(fā)與應用。
3、在醫(yī)藥方面的應用
21世紀控制藥物釋放、減少副作用、提高藥效、發(fā)展藥物定向治療,已提到研究日程上來。納米粒子將使藥物在人體內(nèi)的傳輸更為方便。用數(shù)層納米粒子包裹的智能藥物進入人體,可主動搜索并攻擊癌細胞或修補損傷組織;使用納米技術的新型診斷儀器,只需檢測少量血液就能通過其中的蛋白質(zhì)和DNA診斷出各種疾病,美國麻省理工學院已制備出以納米磁性材料作為藥物載體的靶定向藥物,稱之為“定向?qū)棥薄?/p>
納米生物學用來研究在納米尺度上的生物過程,從而根據(jù)生物學原理發(fā)展分子應用工程。在金屬鐵的超細顆粒表面覆蓋一層厚為5~20nm的聚合物后,可以固定大量蛋白質(zhì)非凡是酶,從而控制生化反應。這在生化技術、酶工程中大有用處。使納米技術和生物學相結合,研究分子生物器件,利用納米傳感器,可以獲取細胞內(nèi)的生物信息,從而了解機體狀態(tài),深化人們對生理及病理的解釋。
五、納米材料的前景
21世紀將是納米技術的時代,納米科學是一門將基礎科學和應用科學集于一體的新興科學,主要包括納米電子學、納米材料學和納米生物學等。納米材料的應用涉及到各個領域,在機械、電子、光學、磁學、化學和生物學領域有著廣泛的應用前景。納米科學技術的誕生,將對人類社會產(chǎn)生深遠的影響,并有可能從根本上解決人類面臨的許多問題,特別是能源、人類健康和環(huán)境保護等重大問題。
21世紀初的主要任務是依據(jù)納米材料各種新穎的物理和化學特性,設計出各種新型的材料和器件。通過納米材料科學技術對傳統(tǒng)產(chǎn)品的改性,增加其高科技含量以及發(fā)展納米結構的新型產(chǎn)品,目前已出現(xiàn)可喜的苗頭,具備了形成21世紀經(jīng)濟新增長點的基礎。納米材料將成為材料科學領域一個大放異彩的明星展現(xiàn)在新材料、能源、信息等各個領域,發(fā)揮舉足輕重的作用。隨著其制備和改性技術的不斷發(fā)展,納米材料在精細化工和醫(yī)藥生產(chǎn)等諸多領域會得到日益廣泛的應用。
參考文獻: [1]殷景華,王雅珍等.功能材料概論.哈爾濱:哈爾濱工業(yè)大學出版社,2004.9 [2]林鴻溢.納米材料與納米技術.材料導報,1993 [3] 劉吉平,郝向東.納米科學與技術[M] .北京:高等教育出版社,2002 [4 張立德,牟季美.納米材料學[M].沈陽:遼寧科學技術出版社,1994