倍數(shù)和因數(shù)教學反思
倍數(shù)和因數(shù)教學反思1
體會:
一、動手實踐、合作交流是學生有效學習的重要方式
《數(shù)學課程標準》指出:有效的數(shù)學學習活動,不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流,是學生學習數(shù)學的重要方式。
本片斷一開始,以“用12個同樣大小的正方形,擺成一個長方形”為例,讓學生動手操作、合作交流,怎樣擺,有哪些不同的擺法?這里牛老師充分挖掘了教材,根據(jù)教材中的3種長方形的擺法,教師預想到學生可能出現(xiàn)的6種操作方法,事先用課件預設好。同時,教師在學生小組交流、操作后,又請各小組代表到黑板上演示自己的一種擺法,得到大家的認可后,再用課件逐一呈現(xiàn)。這樣的安排,首先體現(xiàn)了以學生為本,用學生已有的經(jīng)驗和動手操作,很好的調動了學生學習的積極性和主動性,同時知識的得到是從實際問題的解決,抽象為具體討論的數(shù)學問題。其次,這樣的安排體現(xiàn)了兩方面好處:一方面讓學生樂于接受,是學生在展示自己的想法,老師僅僅是組織者,另一方面培養(yǎng)了學生善于觀察和傾聽他人的想法的良好學習態(tài)度。這里的設計,有效的解決了知識的傳授與理解。
二、能挖掘教材,精心設計練習,達到有效的訓練
本片斷的兩個練習。第一個練習是“請你做裁判”。這一組的3題突出了說倍數(shù)和因數(shù)時,強調誰是誰的因數(shù),誰是誰的倍數(shù),同時也讓學生理解了兩個數(shù)的倍數(shù)和因數(shù)的關系。第二個練習是“請你說一說”。教師選擇了2,3,5,6,9,20這6個數(shù),讓學生選擇性的分析以上信息,運用所學知識說說哪兩個數(shù)存在倍數(shù)和因數(shù)的關系。這樣的設計,培養(yǎng)了學生觀察、分析問題、口頭表達的能力,也進一步鞏固了倍數(shù)和因數(shù)的概念理解,接著教師又增加了“1”,讓學生再次用“1”與其它數(shù)比較,小組交流發(fā)現(xiàn)1與其它自然數(shù)的關系,學生很快總結出1是其它自然數(shù)的因數(shù),其它自然數(shù)是1的倍數(shù)。這樣的練習形式,很好的解決了本節(jié)課對于因數(shù)和倍數(shù)的概念理解,同時,形式上也較多的鼓勵學生參與學習、發(fā)表自己的見解、小組交流等,充分調動學生、相信學生、培養(yǎng)學生的學習能力,我覺得處理的較好。
反思:
一、教師的語言準確性和科學性
這里需要說明一點,四年級國標版教材的倍數(shù)和因數(shù),和蘇教版五年級第十冊教學的約數(shù)和倍數(shù)單元內容相近,這里的概念也是建立在數(shù)的整除的基礎上,不同的是國標版第八冊教材是用乘法的方式引入新知的學習。
牛琴老師在教學練習二時,有一個學生說出3是2的倍數(shù),2是3的因數(shù),該同學剛說完,就有很多同學指出這種說法的錯誤,老師追問錯誤原因,有一個學生說因為3除以2不能整除,教師也及時給出結論:因為3除以2不能除盡。這個結論顯然不準確,或者說犯了科學性的錯誤,3除以2能除盡,但是3除以2得不到整數(shù)的商,所以3不可能被2整除,在這樣的前提下,3不是2的倍數(shù),2也不是3的因數(shù)。我覺得教師如果不自己下結論,而是讓學生結合這一問題展開討論、交流、對比,可能會使課堂增添一個意外的驚喜。
二、練習的設計與挖掘
1、練習一第3題:54是9的倍數(shù)。在學生判斷后,能否再展開拓展,54還是哪些數(shù)的倍數(shù),鼓勵學生發(fā)現(xiàn)54與其它自然數(shù)的倍數(shù)關系,也為后面教學找一個數(shù)的所有因數(shù)做鋪墊。
2、練習二中,老師選擇了6個數(shù)字讓學生選擇其中的兩個數(shù)判斷倍數(shù)和因數(shù)關系,從實際情況看完成的較好,不過是否顯多了,能否去調2個,這樣課的結構會不會更緊密,課堂效果會更好呢?
當然,我們的研究正如我們學校出版的教學片斷的書序中所說:燃一根火柴,會閃亮一點,倘若用一根火柴點燃一堆篝火,定會帶來無限的精彩。希望我們的研究能給兄弟學校一定的思索,同時也希望兄弟學校能反饋給我們寶貴的建議,讓我們在課程改革中,更加堅定,更加執(zhí)著。
倍數(shù)和因數(shù)教學反思2
教學中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎上認識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學時做了一些改動,讓學生用12個小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學生的算是就不局限于乘法,有一部分學生寫了除法算式。這樣學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因為現(xiàn)在也有很多學生學習奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動的接受。如讓學生思考:你覺得3和12、4和12之間有什么關系呢?(對乘除法學生有著相當豐富的經(jīng)驗,因此不少學生能說出倍數(shù)關系,可能說得不很到位,但那是學生自己的東西)。當學生認識了倍數(shù)之后,我進行了設問:12是3的倍數(shù),那反過來3和12是什么關系呢?盡管學生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學生體會到12是3的倍數(shù),反過來3就是12的因數(shù),接下來4和12的關系,學生都爭者要回答。
如何做到既不重復又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里可以充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下五分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這不比老師給予的有效得多。
倍數(shù)和因數(shù)教學反思3
反思教學效果總結了的原因有以下幾點:
(一)素數(shù)和合數(shù)的判斷不熟練。一些數(shù)如:49、51、91這些數(shù)看上去是素數(shù),但其實是合數(shù)。這些數(shù)經(jīng)常被學生誤認為是素數(shù)而導致錯誤,原因是這些學生就簡單的看看,而不愿意用2、3、5等素數(shù)去嘗試,努力尋找是不是有第3個因數(shù)存在。
(二)意思相同,但語句表述不同時,有的學生就不能正確理解。如:在上面的數(shù)只有兩個因數(shù)的數(shù)有哪些?其實這道題目就是問在上面的數(shù)中素數(shù)有哪些。
(三)有的學生缺少分析理解,研究和判斷的能力,判斷和選擇題的錯誤比較多。例如:1的倍數(shù)肯定是奇數(shù)。如果一個學生先找到1的倍數(shù),然后根據(jù)數(shù)的特點作出正確的判斷。但有的學生看到1是個奇數(shù),然后就簡單地做出它的倍數(shù)也是奇數(shù)想法。例如:一個數(shù)的倍數(shù)一定比它的因數(shù)大。如果學生找一個數(shù),看看它的最小倍數(shù)是哪個?找找它的最大因數(shù)是哪個?這樣不難找到正確的答案。但是有的倍數(shù)簡單地被題目的意思誤導,加上平時的練習中還有倍數(shù)一般都是大的,因數(shù)一般都是小的概念,學生容易誤判。
教學中,我和學生有時太滿足于平時練習的結果,而缺少讓學生進行數(shù)學思考和表達能力的過程訓練??磥碓谝院蟮慕虒W中,我要繼續(xù)改變教學觀念,要高度尊重學生,依靠學生,把以往教學中主要依靠教師轉變?yōu)橐揽繉W生。
建議
1、在新知教學中,注重引導學生進行探究。在本單元中找一個數(shù)的倍數(shù)和因數(shù),都有比較好的方法。如何通過學生的探究找到方法,成了教學的亮點。如“找36的因數(shù)” ,找一個數(shù)的因數(shù)是本課的難點。應該說,找出36的幾個因數(shù)并不難,難就難在找出36的所有因數(shù)。教學中,建議教師不要把方法簡單地告訴學生,而是讓學生獨立去探究,獨立寫出36的所有因數(shù),在學生反饋的基礎上教師再引導學生對有序和無序作比較,學生才能在比較、交流中感悟有序思考的必要性和科學性。交流的過程正是學生相互補充、相互接納的過程,是對學習內容進行深加工和重組知識的過程,是學生的認知不斷走向深入,思維水平不斷提升的過程。這是新知探究階段的思維交流。既是不斷深化理解因數(shù)與倍數(shù)知識的過程,又是培養(yǎng)學生良好思維品質的過程。給學生獨立思考的空間,提出了各自的解法或見解,是思維獨創(chuàng)性的培養(yǎng);引導學生一對一對有序的找,或從1開始,用除法一個個去試,是思維條理性的培養(yǎng);既有遷移于擺方塊的形象思維,又有直接運用除法算式的抽象思維,或乘除法口訣的綜合運用等,在感受解法多樣性中,培養(yǎng)了學生思維的靈活性。
2、寓教于樂,游戲中進行相應的鞏固練習。本節(jié)課是一節(jié)概念課,內容比較枯燥,課本上的練習形式也比較單一,所以在認識倍數(shù)和因數(shù)后,應安排有趣味的游戲,比如數(shù)字轉盤游戲,讓學生看轉盤說指針停止時,內圈的數(shù)與外圈的數(shù)的關系,進一步認識倍數(shù)和因數(shù),又能從中發(fā)現(xiàn)倍數(shù)和因數(shù)的相互依存的關系。在學會找倍數(shù)和因數(shù)之后也可設計游戲,如:“猜猜一位老師的電話號碼”,在一個八位數(shù)的號碼中已知其中四位,根據(jù)有關倍因數(shù)關系的問題請學生找出未知的四位號碼,以提高學生學習的積極性,稍有難度的練習給學有余力的學生一個證明自己能力的機會,讓學生在數(shù)學活動中體驗到數(shù)學學習的趣味性和挑戰(zhàn)性,學生運用所學知識解決問題,體會到了學習新知識后的成就感。
3、教師要注重評價的導向作用,讓學生在評價中成長。在第一課時學生交流12的因數(shù)時,教師展示了三位同學的作業(yè):第一種是無序的,第二種是從小到大有序的,第三種是一對一對有序的。接著老師讓第一種方法的學生說說自己的想法,并讓其他同學評論,此時大多數(shù)學生的評價都認為不好,找得缺漏、無序,這時其實作為老師是否可以問問這種答案“有沒有值得肯定的地方?”,畢竟找到的這些答案都是正確地,然后再去尋找更好的方法。如果老師能經(jīng)常注意這樣引導評價,學生自然而然地意識到要先看別人的優(yōu)點,再看別人的缺點,也給了剛才那位學生一個心理上的安慰,使他能更積極地投入到學習當中去。
倍數(shù)和因數(shù)教學反思4
新教材在引入倍數(shù)和因數(shù)概念時與以往的老教材有所不同,比如在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎,引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學化定義,降低學生的認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質上仍是以整除為基礎。我在教學中充分體現(xiàn)以學生為主體,為學生的探究發(fā)現(xiàn)提供足夠的時空和適當?shù)闹笇?,同時,也為提高課堂教學的有效性,我從以下三個方面談一點教學體會。
一、設疑遷移,點燃學習的火花
良好的開頭是成功的一半。我采用“拼拼擺擺”作為談話進入正題,不僅可以調動學生的學習興趣,一一對應、相互依存。對感知倍數(shù)和因數(shù)進行有效的滲透和拓展。
教學找一個數(shù)的倍數(shù)時,我依據(jù)學情,設計讓學生獨立探究尋找3的倍數(shù)。我設計了嘗試練——引出沖突——討論探究這么一個學習環(huán)節(jié)。學生帶著“又對又好”的要求開始自主練習,學生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。在學生充分討論的基礎上,我組織學生圍繞“好”展開評價,有的學生認為:從小到大依次寫,因為有序,所以覺得好;有的學生認為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個倍數(shù)是多少,學生發(fā)現(xiàn)3的倍數(shù)寫不完時都面面相覷,左顧右盼。學生通過討論,認為用省略號表示比較恰當。用語文中的一個標點符號解決了數(shù)學問題,自己發(fā)現(xiàn)問題自己解決,學生從中體驗到解決問題的愉快感和掌握新知的成就感。
二、操作實踐,舉例內化,認識倍數(shù)和因數(shù)
我創(chuàng)設有效的數(shù)學學習情境,數(shù)形結合,變抽象為直觀。首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助多媒體出示乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作,直觀感知,讓學生自主體驗數(shù)與形的結合,進而形成因數(shù)與倍數(shù)的意義.使學生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,充分學習、利用、挖掘教材,用學生已有的數(shù)學知識引出了新知識,減緩難度,效果較好。
三、注重細節(jié),注重學生的習慣培養(yǎng)
學生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學生怎樣按一定順序找全因數(shù)這也正是本課教學的難點。所以在學生交流匯報時,我結合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。
這樣的板書幫助學生有序的思考,形成明晰的解題思路的作用是毋庸質疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學生么隨著流程的進行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細節(jié)的教學,既避免了教師羅嗦的講解,又有效突破了教學難點,我相信像這樣潤物無聲的細節(jié),無論于學生、于課堂都是有利無弊的
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學生完全被動地接受。教學之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我在總結倍數(shù)的特征,這一環(huán)節(jié)里縮短出示時間,直接以3個小問題出示,,實際效果我認為是比較理想的。課上還應該及時運用多媒體將學生找的因數(shù)呈現(xiàn)出來,引導學生歸納總結自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。應該及時跟上個性化的語言評價,激活學生的情感,將學生的思維不斷活躍起來。
倍數(shù)和因數(shù)教學反思5
一、教材與知識點的對比與區(qū)別。
1、對比新版教材知識設置與傳統(tǒng)教材的區(qū)別。有關數(shù)論的這部分知識是傳統(tǒng)教學內容但教材在傳承以往優(yōu)秀做法的同時也進行了較大幅度的改動。無論是從宏觀方面——內容的劃分還是從微觀方面——具體內容的設計上都獨具匠心?!耙驍?shù)與倍數(shù)”的認識與原教材有以下兩方面的區(qū)別1新課標教材不再提“整除”的概念也不再是從除法算式的觀察中引入本單元的學習而是反其道而行之通過乘法算式來導入新知。2“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在教師必須要認真研讀教材深入了解編者意圖才能夠正確、靈活駕馭教材。因此我通過學習教參了解到以下信息學生的原有知識基礎是在已經(jīng)能夠區(qū)分整除與余數(shù)除法對整除的含義有比較清楚的認識不出現(xiàn)整除的定義并不會對學生理解其他概念產(chǎn)生任何影響。因此本教材中刪去了“整除”的數(shù)學化定義。
2、相似概念的對比。1彼“因數(shù)”非此“因數(shù)”。在同一個乘法算式中兩者都是指乘號兩邊的整數(shù)但前者是相對于“積”而言的與“乘數(shù)”同義可以是小數(shù)。而后者是相對于“倍數(shù)”而言的與以前所說的“約數(shù)”同義說“X是X的因數(shù)”時兩者都只能是整數(shù)。2“倍數(shù)”與“倍”的區(qū)別?!氨丁钡母拍畋取氨稊?shù)”要廣。我們可以說“1.5是0.3的5倍”但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時運用的方法與“求一個數(shù)的幾倍是多少”是相同的只是這里的“幾倍”都是指整數(shù)倍。
二、教法的運用實踐
1、“因數(shù)與倍數(shù)”概念的數(shù)的應用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍因此對于學生和第一接觸的印象是沒有什么可以探究和探索的要求而且給學生一個直觀的感受?!耙驍?shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內與小數(shù)無關與分數(shù)無關與負數(shù)無關雖沒學但有小部分學生了解。同時強調——非0——因為0乘任何數(shù)得00除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學當中規(guī)定性的概念用直接講述法讓學生清晰明確。因此用直接導入法先復習自然數(shù)的概念再寫出乘法算式3×4=12說明在這個算式中3和4是12的因數(shù)12是3和4的倍數(shù)。
2、在進行延續(xù)性教學中可以讓學生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù)在板書要講究一個格式與對稱性這樣在對學生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1最大因數(shù)是其本身。
【篇三:因數(shù)和倍數(shù)2教學反思】
因數(shù)和倍數(shù)是五年級下冊第二單元的教學內容,由于知識較為抽象,學生不易理解,因此我在教學時做到了以下幾點:
(1)密切聯(lián)系生活中的數(shù)學,幫助學生理解概念間的關系。
今天在教學前,我讓學生學說話,就是培養(yǎng)學生對語言的概括能力和對事物間關系的理解能力。于是我利用課前談話讓學生在找找生活中的相互依存關系,課中遷移到數(shù)學中的倍數(shù)和因數(shù),這樣設計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,又幫助學生理解了倍數(shù)因數(shù)之間的相互依存關系,從而使學生更深一步的認識倍數(shù)與因數(shù)的關系,
(2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關系,列出乘法算式,初步感知倍數(shù)關系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學習如何找一個數(shù)的倍數(shù)奠定了良好的基礎。這樣不僅溝通了乘法和除法的關系,也讓學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
(3)根據(jù)學生的實際情況,教學找一個數(shù)的因數(shù)的方法,雖然學生不能有序地找出來,但是基本能全部找到,再此基礎上讓體會有序找一個數(shù)因數(shù)的辦法學生容易接受,這樣的設計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
(4)設計有趣游戲活動,擴大學生思維的空間,培養(yǎng)學生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學生思考問題的空間很大,培養(yǎng)了學生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學生判斷自己的學號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),如果學生的學號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學生都站起來。出示地卡片應該是幾,找的朋友應該是倍數(shù)還是因數(shù)?學生面對問題積極思考,享受了數(shù)學思維的快樂。
倍數(shù)和因數(shù)教學反思6
開學后上第一節(jié)課年級組教研課,挺有壓力的。畢竟放了這么久的假,感覺有點不習慣,好象字都寫不穩(wěn)一樣。還好,上完課后感覺還可以。
因數(shù)和倍數(shù)是一堂概念課。老教材是先建立整除的概念,在整除的基礎上教學因數(shù)與倍數(shù)的,而新教材沒有提到整除。教學前,我是先讓學生進行了預習,開課伊始,就揭示課題,讓學生談自己對因數(shù)與倍數(shù)的理解。學生結合一個乘法算“3×4=12”入手,介紹因數(shù)與倍數(shù)概念,這樣有助于更好理解,也能節(jié)約很多時間。學生的學習興趣被激發(fā)了、思維被調動起來了,主動參與到了知識的學習中去了。
能不重復、不遺漏找出一個數(shù)的因數(shù)是本課的難點,絕大部分學生都能仿照找12的因數(shù)去找,孩子都能一對一對的找,可遺漏的多,在這里我強調按順序找,也就是從“1”開始,依次找,這樣效果很好。
為了得出因數(shù)的特點,我出了“24的因數(shù),36的因數(shù),18的因數(shù)”,并認真觀察這些因數(shù)看有什么發(fā)現(xiàn),由于時間不夠,我只要求孩子從因數(shù)的個數(shù),最小,最大的因數(shù)考慮,沒有對質數(shù),合數(shù),公因數(shù)進行滲透。找一個數(shù)的倍數(shù)因為方法比較易于掌握,沒有過多的練習,二是激發(fā)他們想象一個數(shù)的倍數(shù)有什么特點。
針對這節(jié)課,課后老師們就這堂課認真評析,真誠的說出自己的觀點,特別就知識的生長點、教學的重難點展開了討論,特別是找一個數(shù)的因數(shù),應注重方法的指導。由此,我們數(shù)學課堂教學應注意一下幾點:知識的滲透點、練習發(fā)展點、層次切入點、設計巧妙點、教法多樣點、語言動聽點、管理到位點、應變靈活點。
這幾點既是目標也是方向,相信我們在新的一學期,團結協(xié)作,勤奮務實,努力朝著目標前進。
倍數(shù)和因數(shù)教學反思7
不知不覺,我們又進行了第二單元的學習。第二單元的內容是《因數(shù)與倍數(shù)》,這部分內容與老教材相比變化很大,我覺得第二、四單元是本冊教材中變化最大的單元,要引起足夠的重視。
1、以往認識因數(shù)和倍數(shù)是借助于整除現(xiàn)象,“X能被X整除,或X能整除X”,所以X是X的.因數(shù),X是X的倍數(shù)?,F(xiàn)在的教材完全不同了,2X3=6,所以2和3是6的因數(shù),6是2和3的倍數(shù),借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。
2、以往數(shù)學教材中,概念教學的量很大。數(shù)的整除,因數(shù)(老教材稱為約數(shù)),倍數(shù),2、5、3的倍數(shù)的特征(老教材稱為能被2、5、3整除的數(shù)的特征),質數(shù),倒數(shù),分解質因數(shù),最大公因數(shù)(以往的教材中稱為最大公約數(shù)),最小公倍數(shù)等內容共同編排在后面,合為一個單元。而現(xiàn)在新教材本單元只安排了因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質數(shù)合數(shù)。其它內容安排在了第四單元《分數(shù)的意義和性質》,借助約分引出公約數(shù)、公倍數(shù)的學習,改變了概念多而集中,抽象程度過高的現(xiàn)象。
3、以往求最大公約數(shù),最小公倍數(shù)時,采用的方法是唯一的、固定的,也就是有短除法分解質因數(shù),而新教材中鼓勵方法多樣化,不把它作為正式的內容教學,而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學生的思維差異。
可見,編者為體現(xiàn)新課標精神對本部分內容作了精心的調整,煞費苦心,可是學完了本單元的第一部分和第二部分內容,我對本單元的學習內容有了小小的疑問。這一單元內容分為因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質數(shù)和合數(shù),我覺得第一部分內容和第三部分內容的關系很大,連續(xù)性強。知道了什么是因數(shù)和倍數(shù),也會找一個數(shù)的因數(shù)和倍數(shù)了,那么就應該從找因數(shù)和個數(shù)問題上學習質數(shù)和合數(shù)。教材對質數(shù)和合數(shù)的學習內容設計較好,開門見山讓學生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個數(shù)有什么規(guī)律,再引出質數(shù)和合數(shù)的學習??蔀槭裁丛谥虚g突然加上了2、5、3的倍數(shù)的特征?這樣感覺前后內容失去了聯(lián)系,不夠自然流暢。所以我覺得可以把二三部分內容作為適當?shù)恼{整,即因數(shù)和倍數(shù),質數(shù)和合數(shù),2、5、3的倍數(shù)的特征會比較好一些。
倍數(shù)和因數(shù)教學反思8
1倍數(shù)和因數(shù)這一內容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎上認識因數(shù)倍數(shù)。而這里的處理的方法有所不同,在這之前學生還沒有學習小數(shù)乘除法,只接觸過整數(shù)乘除法,因此教材通過用12個小正方形拼長方形并寫乘法算式來引入因數(shù)和倍數(shù)。
2要求學生用乘法算式表示自己的長方形的不同擺法,幫助學生建立起乘法意義的表象,為后面利用乘法找因數(shù)和倍數(shù)埋下伏筆。
3重視說的訓練,要求具體明確?!罢l是誰的倍數(shù),誰是誰的因數(shù)”當學生說到12*1=12時,感到有些拗口,教師即時鼓勵,體現(xiàn)了數(shù)學的人文精神和不放過任何細節(jié)的作風。
4如何做到既不重復又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里可以充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下五分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這不老師給予有有效得多。
5練習形式活潑多樣,即顛覆傳統(tǒng)又扎實訓練。
倍數(shù)和因數(shù)教學反思9
教學目標:
1、使學生結合具體情境初步理解倍數(shù)和因數(shù)的含義,初步理解倍數(shù)和因數(shù)相互依存的關系。
2、使學生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內某個數(shù)的所有倍數(shù),找出100以內某個數(shù)的所有因數(shù)。
3、使學生在認識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中進一步感受數(shù)學知識的內在聯(lián)系,提高數(shù)學思考的水平。
教學重點:
理解因數(shù)和倍數(shù)的含義。
教學難點:
探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。
教學過程:
一、認識倍數(shù)和因數(shù)
1、操作活動。
(1)小黑板出示要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法表示出來。
(2)整理:全班交流,分別板書4×3=1212×1=126×2=12
3、學習“倍數(shù)”和“因數(shù)”的概念
(1)談話:剛才同學們通過不同的擺法擺出了不同的長方形,而且還寫出了3個不同的乘法算式,今天,我們就一起來研究乘法算式中,數(shù)與數(shù)之間的關系。(出示:倍數(shù)和因數(shù))
(2)根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?
板書:12是4的倍數(shù),12是3的倍數(shù)
4是12的因數(shù),3是12的因數(shù)
(3)根據(jù)6×2=12,你能說出哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)嗎?根據(jù)12×1=12呢?
(4)練一練:從3×6=1836÷4=9中任選一題說一說。
為什么4和9是36的因數(shù)?
4、小結:根據(jù)乘法或除法算式我們可以確定誰是誰的因數(shù),誰是誰的倍數(shù)。為了方便,在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。
二、探索找一個數(shù)的倍數(shù)的方法
1、談話:在剛才的談話中,我們知道了12是3的倍數(shù),18也是3的倍數(shù)
提問:3的倍數(shù)只有這兩個嗎?
你還能再寫出幾個3的倍數(shù)?
你是怎樣想的?
你能按照從小到大的順序有條理地說出3的倍數(shù)嗎?
你能把3的倍數(shù)全都說完嗎?
可以怎樣表示?
2、議一議:你有沒有發(fā)現(xiàn)找3的倍數(shù)的小竅門?(在找3的倍數(shù)時,可以按從小到大的順序,依次用1、2、3……與3相乘,每次乘得的積都是3的倍數(shù))
3、試一試:
(1)2的倍數(shù)有
(2)5的倍數(shù)有
4、想一想:觀察上面幾個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?
5、練一練:想想做做2
三、探索求一個數(shù)的因數(shù)的方法
1、提出問題:你能找出36的所有因數(shù)嗎?
2、四人小組合作完成
3、交流整理找一個數(shù)的因數(shù)的方法。
4、試一試(既要一組一組地找,又要按次序排列)
15的因數(shù)
16的因數(shù)
5、比一比:根據(jù)上面幾個例子,你發(fā)現(xiàn)一個數(shù)的因數(shù)有什么特點?和同桌說一說
6、練一練:想想做做
四、課堂總結。
1、這節(jié)課,你有什么收獲?
五、鞏固提高
1、判斷
(1)12是倍數(shù),3是因數(shù)
(2)6既是2的倍數(shù),又是3的倍數(shù)。
(3)25以內4的倍數(shù)有:4,8,12,16,20,24……
(4)6的最小倍數(shù)是12,12的最小因數(shù)是6。
2、看誰反應快
游戲準備:學生按學號編成連續(xù)的自然數(shù)。(課前)
游戲規(guī)則:凡是學號符合以下要求的,請站起來,看誰反應快?
(1)誰的學號是5的倍數(shù)
(2)誰的學號是24的因數(shù)
(3)誰的學號是30的因數(shù)
(4)誰的學號是1的倍數(shù)
反思:
在教學過程中出現(xiàn)了一個問題:是在提問:“根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?”時,發(fā)現(xiàn)學生根本不能回答,本來以為學生在三年級的時候應該對這部分的內容有所了解,能順利回答,但是在課后與三年級的教師交流后發(fā)現(xiàn)沒有這方面的內容安排。由此,我想:新課程實施了五年,我其實還是門外漢,還不能很好地適應新課程的要求,新課程的教材編排具有連續(xù)性,而老版本經(jīng)常是一個知識點安排在一起,注重深度??磥斫處煵还庖P心自己年級的教材內容,還得知道整個教材編排體系,知道各個年級知識點之間的聯(lián)系。這樣才能更好地完成教學任務,使學生得到應有的發(fā)展而不是降低要求的發(fā)展或者是被強行提高要求的發(fā)展。
倍數(shù)和因數(shù)教學反思10
這是一節(jié)概念課,關于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學意義,只是借助乘法算式來認識倍數(shù)和因數(shù),從而體會倍數(shù)和因數(shù)的意義,進而讓學生探究尋找一個數(shù)的倍數(shù)和因數(shù)以及倍數(shù)和因數(shù)的特征。
這部分知識對于四年級學生而言,沒有什么生活經(jīng)驗,也談不上有什么新興趣,是一節(jié)數(shù)學味很濃的概念課,因此為了讓乏味變成有味,在課開始之前,跟同學們講了韓信點兵的故事,從一個同余問題的解決讓學生產(chǎn)生興趣,并告知學生所用知識與本節(jié)課所學知識有很大關聯(lián),引導學生認真學好本節(jié)課的知識。
在教授倍數(shù)和因數(shù)時,我讓學生自己動手操作,感受不同形狀下所得到的不同乘法算式,通過這些乘法算式認識倍數(shù)和因數(shù),并且讓學生自己想一道乘法算式,讓同桌用倍數(shù)和因數(shù)說一說,從學生的自身素材去理解概念,使學生對新知識印象更深刻,從而使學生進一步理解和掌握倍數(shù)和因數(shù)。但是,在這一環(huán)節(jié)中,由于緊張,忘記讓學生從“能不能直接說3是因數(shù),12是倍數(shù)”這一反例中體會倍數(shù)和因數(shù)是一種相互依存的關系,以致到后面做判斷時出現(xiàn)很多同學認為“6是因數(shù),24是倍數(shù)”這種說法是正確的。
本節(jié)課的難點是找一個數(shù)的因數(shù),因此,我將教材中先教找一個數(shù)的倍數(shù)改成先教找一個數(shù)的因數(shù),也正因為找一個數(shù)的因數(shù)比較有難度,所以,我先讓學生根據(jù)之前例題中的三個乘法算式來說一說12的因數(shù),從而讓學生感受到找一個數(shù)的因數(shù)可以利用乘法算式來找,并且初步讓學生感受有序的思想,給學生一個方法的認知。為了讓學生得到反思,在找的過程中,請學生互評,在交流中產(chǎn)生思維的碰撞;請學生自己糾正,在錯誤中產(chǎn)生反思意識,從而能夠提升學生自主解決問題的能力。
可是,作為一名新教師,對于課堂中的生成,沒有足夠的經(jīng)驗和課堂機智將其很好的轉化成學生所需達到的目標,以致跟預設的效果不一致,學生沒有很充分地得到反思。并且對于課堂中的一些細節(jié)問題,處理得還不夠到位。本節(jié)課的教學對于我來說是一個機會,也是一個契機,今后,我會不斷完善教學,總結經(jīng)驗教訓,在各個方面嚴格要求自己,爭取在今后的工作中做的更好!
倍數(shù)和因數(shù)教學反思11
《公倍數(shù)和公因數(shù)》在新教材中改動很大,新教材將數(shù)的整除中有關分解質因數(shù)、互質數(shù)、用短除法求幾個數(shù)的最大公因數(shù)和最小公倍數(shù)的教學內容精簡掉了,新教材突出了讓學生在現(xiàn)實情境中探究認識公倍數(shù)和最小公倍數(shù),公因數(shù)和最大公因數(shù),突出了運用數(shù)學概念,讓學生探索找兩個數(shù)的最小公倍數(shù)、最大公因數(shù)的方法,注重讓學生在解決問題的過程中,主動探索簡潔的方法,進行有條理的思考,加強了數(shù)學與現(xiàn)實生活的聯(lián)系。教學以后與以前的教材相比,主要的體會有以下幾點。
一是在現(xiàn)實的情境中教學概念,讓學生通過操作領會公倍數(shù)、公因數(shù)的含義。例1教學公倍數(shù)和最小公倍數(shù),例3教學公因數(shù)和最大公因數(shù),都是形成新的數(shù)學概念,都讓學生在操作活動中領會概念的含義。學生通過操作活動,感受公倍數(shù)和公因數(shù)的實際背景,縮短了抽象概念與學生已有知識經(jīng)驗之間的距離,有利于學生運用公倍數(shù)、最小公倍數(shù)、公因數(shù)和最大公因數(shù)的知識解決實際問題。
二是有利于改善學習方式,便于學生通過操作和交流經(jīng)歷學習過程。在教學中,讓學生按要求自主操作,發(fā)現(xiàn)用怎樣的長方形可以正好鋪滿一個正方形;用邊長幾厘米的正方形可以正好鋪滿一個長方形。在對所發(fā)現(xiàn)的不同的結果的過程中,引導學生聯(lián)系除法算式進行思考,對直觀操作活動進行初步的抽象。再把初步發(fā)現(xiàn)的結論進行類推,在此基礎上,引導學生思考正方形的邊長與長方形的長和寬有什么關系,再揭示公倍數(shù)和公因數(shù),最小公倍數(shù)與最大公因數(shù)的概念,突出概念的內涵是“既是……又是……”即“公有”。并在此基礎上,借助直觀的集合等圖式,顯示公倍數(shù)與公因數(shù)的意義。讓學生經(jīng)歷了概念的形成過程。
三是刪掉了一些與學生實際聯(lián)系不夠緊密、對后繼學習沒有影響的內容后,確實減輕了學生的負擔,但是找兩個數(shù)的最小公倍數(shù)和最大公因數(shù)時由于采用了列舉法,學生得花較多的時間去找,當碰到的兩個數(shù)都比較大時,不僅花時多,而且還容易出現(xiàn)遺漏或算錯的情況。相比之下,用短除法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)就不會出現(xiàn)這方面的問題,所以我在實際教學中,先根據(jù)概念采用一一列舉的方法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù),待學生熟悉之后就教學生運用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù),這樣的安排效果不錯,學生也沒感到增加了負擔。
倍數(shù)和因數(shù)教學反思12
教學目標:
1、使學生結合整數(shù)乘、除法運算初步認識倍數(shù)和因數(shù)的含義,探索求一個數(shù)的倍數(shù)和因數(shù)的方法,能在1~100的自然數(shù)中找出10以內某個數(shù)的所有倍數(shù),能找出100以內某個數(shù)的所有因數(shù)。
2、使學生在認識倍數(shù)和因數(shù)以及探索一個數(shù)的倍數(shù)或因數(shù)的過程中,進一步體會數(shù)學知識之間的內在聯(lián)系,提高數(shù)學思考的水平。
教學過程:
一、談話導入。
智力題:有三個人,他們中有2個爸爸,2個兒子,這是怎么回事?
教師說明:人和人之間是有聯(lián)系的,數(shù)和數(shù)之間也是有聯(lián)系的。(板書:數(shù)和數(shù))
二、初步認識倍數(shù)和因數(shù)。
1、創(chuàng)設情境。
用12個同樣大的正方形拼成一個長方形,可以怎么拼?請同學們先想象一下,然后說出你的擺法,并用乘法算式表示出來。
學生匯報拼法,教師依次展示長方形的拼圖,并板書:
43=12 62=12 121=12
教師根據(jù)43=12 揭示:43=12 12是4的倍數(shù),12也是3的倍數(shù),4和3都是12的因數(shù)。
揭示課題:倍 因
提出要求:你能用倍數(shù)和因數(shù)說一說 62=12 121=12嗎?
指名學生回答,其他學生補充。
2、深化感知。
(1) 完成想想做做第1題。同桌互說以后再指名學生敘說。
(2) 你能舉出一些算式,說說誰是誰的倍數(shù),誰是誰的因數(shù)嗎?
教師說明:為了方便,我們在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。
三、探求一個數(shù)的倍數(shù)。
1、設疑。
在剛才的學習中,我們知道了3的倍數(shù)有12,3的倍數(shù)除了12還有別的嗎?請在紙上寫出3的倍數(shù)。你能完成得又對又好嗎?。學生在書寫過程中引發(fā)沖突:為什么停下來不寫了?有什么困難嗎?引導學生討論后達成共識:加省略號表示寫不完。
2、交流。
投影展示學生作業(yè)。
討論對不對?。
討論好不好?。
揭示有序,為什么要有序地寫倍數(shù)呢?
全班討論:你是怎么寫3的倍數(shù)的?。
31 32 33
3 3+3 6+3
一三得三 二三得六 三三得九
引導學生討論得出:用依次1、2、3寫出3的倍數(shù)。
3、深化。
請寫出2的倍數(shù),5的倍數(shù)。
學生練習后組織評講。
4、引導觀察,發(fā)現(xiàn)規(guī)律。
小組討論:觀察這三道例子,你有什么發(fā)現(xiàn)?
全班交流,概括規(guī)律,
5、小結:發(fā)現(xiàn)這些規(guī)律可以更好地幫助我們尋找一個數(shù)的倍數(shù)。
四、探求一個數(shù)的因數(shù)。
1、設疑。
剛剛我們學會了找一個數(shù)的倍數(shù),接下來我們來找一個數(shù)的因數(shù)。
請寫出36的因數(shù),你可以獨立思考,可以和同桌討論,看誰寫得又對又多。
學生試寫36的因數(shù)。
2、組織討論。
你是怎么找36的因數(shù)的?
( )( )=36 從一道乘法算式中可以找到2個36的因數(shù),66=36呢?
36( )=( ) 從一道除法算式中也可以找到2個36的因數(shù)。
討論多。
問:寫得完嗎?你可以按照什么順序寫?
師板書36的因數(shù)(從兩端往中間寫),同時指出 :當兩個因數(shù)越來越接近時,
也就快要寫完了。最后寫上句號。
3、鞏固深化。
請寫出15的因數(shù),16的因數(shù)。
學生練習后組織評講。
4、引導觀察,發(fā)現(xiàn)規(guī)律。
問:通過觀察這三道例子,你能發(fā)現(xiàn)什么規(guī)律?
5、小結:寫一個數(shù)的因數(shù)時可以從1和它本身來寫,從小到大依次尋找。
五、鞏固拓展。
1、完成想想做做第2、3題。
學生填表后,組織討論,你是怎么填寫的?指名回答相應的問題。
2、猜數(shù)游戲。
同學們下飛行棋時,擲篩子,在1、2、3、4、5、6中進行猜數(shù)
(1)它是4的倍數(shù)。
(2)它是9的因數(shù),又是3的倍數(shù)。
(3)2和3都是它的倍數(shù)。
(4)它是9的因數(shù),又是3的倍數(shù)。
(5)它是這六個數(shù)的因數(shù)。
(6)它是因數(shù)。
(7)它既是本身的倍數(shù),又是本身的因數(shù)。
教后反思:
這是一節(jié)概念課,關于倍數(shù)和因數(shù)教材中沒有寫出具體的數(shù)學意義,只是借助乘法算式加以說明,進而讓學生探究尋找一個數(shù)的倍數(shù)和因數(shù)。通過備課,我梳理出這樣一個教學脈絡:乘法算式倍數(shù)和因數(shù)乘法算式找一個數(shù)的倍數(shù)和因數(shù)。從教材本身來看,這部分知識對于四年級學生而言,沒有什么生活經(jīng)驗,也談不上有什么新興趣,是一節(jié)數(shù)學味很濃的概念課。如何借助教材這一載體,讓學生在互動、探究中掌握相應的知識,讓乏味變成有味呢?我從以下三個方面談一點教學體會。
一、設疑遷移,點燃學習的火花。
良好的開頭是成功的一半。我采用腦筋急轉彎中的一道題作為談話進入正題,不僅可以調動學生的學習興趣,看似不相關的兩件事例中隱藏著共同點:一一對應、相互依存。對感知倍數(shù)和因數(shù)進行有效的滲透和拓展。
教學找一個數(shù)的倍數(shù)時,我依據(jù)學情,設計讓學生獨立探究尋找3的倍數(shù)。學生發(fā)現(xiàn)3的倍數(shù)寫不完時面面相覷,左顧右盼。學生通過討論,認為用省略號表示比較恰當。用語文中的一個標點符號解決了數(shù)學問題,自己發(fā)現(xiàn)問題自己解決,學生從中體驗到解決問題的愉快感和掌握新知的成就感。教師一聲親切的問候:怎么停下來了呢?、一聲驚訝:哦!寫不完呀?、一句激勵:能想出辦法嗎???此平處煹」さ念A設,是為了學生越位的生成。
二、滲透學法,形成學習的技能。
由于一個數(shù)倍數(shù)的個數(shù)是無限的,那么如何讓學生體會無限、又如何有序寫出來呢?我設計了嘗試練習引出沖突討論探究這么一個學習環(huán)節(jié)。學生帶著又對又好的要求開始自主練習,學生找倍數(shù)的方法有:依次加3、依次乘1、2、3、用乘法口訣等等。在學生充分討論的基礎上,我組織學生圍繞好展開評價,有的學生認為:從小到大依次寫,因為有序,所以覺得好;有的學生認為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個倍數(shù)是多少,因為簡捷正確率高所以覺得好。如此的交流雖然花費了寶貴的學習時間,但是學生從中能體會
您現(xiàn)在正在閱讀的《倍數(shù)和因數(shù)》教學設計及反思文章內容由收集!本站將為您提供更多的精品教學資源!《倍數(shù)和因數(shù)》教學設計及反思到學習的方法,發(fā)展了思維,這才是最寶貴的。正所謂沒有一路上的山花爛漫,哪有山頂上的風光無限。
三、活用教材,拓展學習的深度。
教材中安排36( )=( )這一道除法算式來找一個數(shù)的因數(shù)。我覺得這樣的設計可能會帶來幾點不足,其一:學生感知倍數(shù)和因數(shù)的概念、尋找一個數(shù)的倍數(shù)都是借助乘法算式,同樣,找一個數(shù)的因數(shù)也可以利用乘法,讓所學的知識形成系統(tǒng)豈不更有利于學生進行有效學習嗎?其二:從學情來分析,相對于除法,學生更熟練、更喜歡運用乘法。以學定教,真正做到以人為本。我在教學時引導學生討論得出:借助( )( )=36來尋找一個數(shù)的因數(shù)。
課尾,我設計了一道擲篩子猜數(shù)練習,通過7道題,將整堂課的內容進行整理和概括,對易混淆的概念加以比較,對后續(xù)的學習進行適當?shù)匿亯|。融知識性、趣味性為一體,收到了課雖止意未盡的良好效果。
縱觀整節(jié)課,學生在學習過程中自始至終處于主體地位,嘗試練習、自主探索、解決問題,教師只是加以引導,以合作者的身份參與其中。整節(jié)課似行云流水、波瀾不驚,但我想學生在思維上得到了訓練,探究問題、尋求解決問題策略的能力也會逐步得到提高的。
倍數(shù)和因數(shù)教學反思13
《倍數(shù)和因數(shù)》是四下第九單元的內容。教學時,我首先讓學生動手操作把12個小正方形擺成不同的長方形,再讓學生寫出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。這樣在學生已有的知識基礎上,從動手操作到直觀感知,讓學生自主體驗數(shù)與形的結合,進而形成倍數(shù)與因數(shù)的意義,使學生初步建立了“倍數(shù)與因數(shù)”的概念。根據(jù)算式直接說明誰是誰的倍數(shù),誰是誰的因數(shù),學生很容易接受,再通過學生自己舉例和交流,進一步加深對倍數(shù)和因數(shù)意義的理解。從學生的反應和課堂氣氛來看,教學效果還是不錯的。
能不重復、不遺漏、有序地找出一個數(shù)的倍數(shù)和因數(shù),是本課的教學難點。教學時,我先讓學生自己找3的倍數(shù),匯報交流后通過對比(一種是沒有順序,一種是有序的)得出如何有序地找一個數(shù)的倍數(shù)的方法。對于倍數(shù),學生在以前的學習中已有所接觸,所以學生很容易學,用的時間也比較少。
對于找一個數(shù)的因數(shù),學生最容易犯的錯誤就是漏找,即找不全。所以在學生交流匯報時,我結合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。這樣的板書幫助學生有序的思考,形成明晰的解題思路。學生通過觀察,發(fā)現(xiàn)當找到的兩個自然數(shù)非常接近時,就不需要再找下去了。書寫格式這一細節(jié)的教學,既避免了教師羅嗦的講解,又有效突破了教學難點。
倍數(shù)和因數(shù)教學反思14
本節(jié)課是在學生已經(jīng)學習了一定的整數(shù)知識的基礎上進行教學的。
課堂中,我首先讓學生理解分類標準,明確因數(shù)和倍數(shù)的含義。在例1教學中,首先根據(jù)不同的除法算式讓學生進行分類,同時思考其標準依據(jù)是什么。通過學生的獨立思考和小組交流學生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
其次,厘清概念倍數(shù)和幾倍,注重強調倍數(shù)和因數(shù)的相互依存性。在教學中可以直接告訴學生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內,也可以在小數(shù)范圍內進行研究,它的研究范圍較之倍數(shù)范圍大一些。
本節(jié)課的不足之處:
1.練習設計容量少了一些,導致課堂有剩余時間。
2.對因數(shù)和倍數(shù)的含義還應該進行歸納總結上升到用字母來表示。
倍數(shù)和因數(shù)教學反思15
本單元注意以下幾個方面的教學,可以促進學生鞏固基礎知識,促進學生發(fā)展基本思維能力。
1.加強概念間相互關系的梳理,引導學生從本質上理解概念,避免死記硬背。
本冊新教材采用整數(shù)除法的表示形式教學,便于學生感知因數(shù)和倍數(shù)的本質意義。注意因數(shù)與倍數(shù)的相互依存的關系;質數(shù)、合數(shù)與因數(shù)的關系;偶數(shù)、奇數(shù)與2的倍數(shù)的關系等,形成概念鏈,依靠理解促進記憶!
2.注意培養(yǎng)學生的抽象概括與歸納推理能力
關注由從具體到抽象、由特殊到一般的概括、歸納過程,即從個別性知識推出一般性結論。如質數(shù)、合數(shù):寫出1——20各數(shù)的因數(shù)進行歸納推理,熟悉20以內的質數(shù),制作100以內質數(shù)表。
3.教給學生養(yǎng)成“有序學習”的良好學習習慣。
4.加強解決問題的教與學,新教材增加了探索兩數(shù)之和的奇偶性的純數(shù)學問題,可以根據(jù)兩數(shù)之和的奇偶性的規(guī)律推理出兩數(shù)之差、兩數(shù)之積的奇偶性,并滲透解決問題的策略。
5.拓展學生的知識面。如探究既是2的倍數(shù)又是5的倍數(shù)特征;4的倍數(shù)特征;6的倍數(shù)特征等,開拓視野,發(fā)展思維!
因數(shù)和倍數(shù)“教學反思
“倍數(shù)和因數(shù)”是整數(shù)學習中的重要概念。新教材在揭示“倍數(shù)”和“因數(shù)”的概念時,沒有像原來教材那樣,先揭示整除的概念,再利用整除認識因數(shù)和倍數(shù),而是讓學生在現(xiàn)實的情景中通過解決問題列出乘法算式,利用具體的乘法算式用描述性的語言提出倍數(shù)和因數(shù)的概念。
本節(jié)課,教材提供“水果超市”的情景圖,讓學生通過讀圖、收集圖中信息完善對數(shù)的認識,并用描述性的語言梳理、歸納以前學習過的自然數(shù)和整數(shù),培養(yǎng)學生的觀察、收集信息和語言表達能力。在此基礎上,再次結合現(xiàn)實情景,通過解決“買水果”的問題,引出乘法算式,從而揭示倍數(shù)和因數(shù)的概念。
這是本學年第一次數(shù)學課,在預設時,我打算先拋開主題圖,通過設問了解學生四年數(shù)學知識的起點,包括學生的觀察習慣和觀察能力、用數(shù)學語言表達的能力以及傾聽的習慣。課開始,我設計如下問題:我們現(xiàn)在是五年級的學生了,學了幾年的數(shù)學,關于數(shù),你都有那些了解?問題提出了,沒有學生舉手,都望著我。過了好一會,才有個學生說:“我知道1”。因為這個學生的“啟發(fā)”,接著有學生說,我知道2,我知道3.....我說:“大家說得不錯,這些都是我們原來學習的數(shù),他們都是......?”還是沒有學生接我的問題,我說:“剛才同學們說的這些數(shù)都叫什么名字?”學生沉默。我說,這些都是我們以前學習的自然數(shù),也是整數(shù)。“主題圖中還有哪些數(shù)是自然數(shù)呢?還有哪些是整數(shù)呢?還有哪些數(shù)跟這些數(shù)是不同的?你知道他們叫什么名字嗎?花了20分鐘的時間,千呼萬喚才揭示出“自然數(shù)”和“整數(shù)”。
揭示“倍數(shù)”和“因數(shù)”的概念是借助乘法算式來解決,解決“買5千克梨子要花多少錢”的問題,學生基本知道用乘法計算。我說:誰能告訴大家算式“5×4=20”表示什么含義?有個學生還算積極,他說:一個叫做
4、一個叫做
5、一個叫做20,在這個孩子的啟發(fā)下,又有一個孩子說,叫做5乘4等于20,沒有一個人能說出這個算式在這里表示“5個4相加的和”......當初他們是怎么形成“乘法”的概念的呢?學生數(shù)學語言表達的能力讓我很是擔憂。
利用乘法算式,在非0的自然數(shù)范圍內研究倍數(shù)和因數(shù),并能用描述性的語言提出倍數(shù)和因數(shù)的概念,體會倍數(shù)和因數(shù)相互依存的關系是本節(jié)課的教學目標,也是重難點,區(qū)分“因數(shù)和倍數(shù)”中的“因數(shù)”與以前學習的“因數(shù)和積”中的“因數(shù)”也是本節(jié)課的難點。鑒于學生的理解能力和表達能力,為了完成本節(jié)課的教學任務,我只好“講授”了,雖然我非常不情愿。
開始做課堂練習,我在黑板上寫了一個示范的例子,讓學生照著這個格式來模仿,哪知道作業(yè)本收上來一看,有一半的學生不知道怎么抄題,做題時什么時候該換行都不知道。我說,你們以前不在本子上做題?他們說,老師,我們以前不要抄題的,好累的喲!我們只做印好的題的。
原來是這樣。
這就是新學期的第一節(jié)課,教學任務沒完成,教學目標沒達成,我又累又急。
下課了,一個孩子跟我說:夏老師,你講課真有趣!
這也叫有趣?我告訴她,以后會更有趣。