欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      線線平行垂直,線面平行垂直,面面平行垂直判定與性質(zhì)[五篇模版]

      時(shí)間:2019-05-12 17:22:23下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《線線平行垂直,線面平行垂直,面面平行垂直判定與性質(zhì)》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《線線平行垂直,線面平行垂直,面面平行垂直判定與性質(zhì)》。

      第一篇:線線平行垂直,線面平行垂直,面面平行垂直判定與性質(zhì)

      1.線線平行

      判定:a用向量,方向向量平行b一條直線平行于另一個(gè)平面,則它平行于它所在平面與那個(gè)平面的交線。C若一平面與兩平行平面相交,則兩交線平行。D同時(shí)與一平面垂直的兩直線平行。E同時(shí)平行于一條直線的兩直線平行。

      性質(zhì):貌似沒啥性質(zhì),一般是證明線面關(guān)系的時(shí)候先證明線線關(guān)系。

      2.線線垂直

      判定:a向量,方向向量垂直b直線垂直于平面,則直線與平面中的任意直線都垂直c第一條直線與第二條直線平行,第一條垂直于第三條,則第二條也垂直于第三條d把兩直線放在一個(gè)平面中,利用平面幾何各種判定方法,如等腰三角形的底和高等。E(重點(diǎn))三垂線定理:平面內(nèi)的一條直線,如果和過平面的一條斜線在平面內(nèi)的射影垂直,那么它就和這條斜線垂直。三垂線逆定理:在平面內(nèi)的一條直線,如果和過平面的一條斜線垂直,那么它也垂直于斜線在平面內(nèi)的射影。(這個(gè)比較重要,記不住的話找一下例題,多看看圖就好了)性質(zhì):貌似也沒什么性質(zhì),一般也是要證明線面關(guān)系的時(shí)候用到它。注意:第一條直線垂直于第二條直線,第一條直線垂直于第三條直線,則第二條直線與第三條直線可垂直可平行也可普通相交。

      3,線面平行

      判定:a面外一條線與面內(nèi)一條線平行。(常用)b空間向量法,證明線一平行向量與面內(nèi)一向量(x1x2-y1y2=0)(常用)c面外一直線上不同兩點(diǎn)到面的距離相等d證明線面無交點(diǎn)(定義)e反證法(線與面相交,再推翻)

      性質(zhì):平面外一條直線與此平面平行,則過這條直線的任意平面與此平面的交線與該直線平行。

      4.線面垂直

      判定:a一條線和平面內(nèi)兩條相交直線都垂直,那么這條直線和這個(gè)平面垂直b兩個(gè)平面垂直,其中一個(gè)平面內(nèi)的直線垂直兩平面的交線,那么這條直線和這個(gè)平面垂直c直線的方向向量與平面的法向量平行

      性質(zhì):如果兩條直線同時(shí)垂直一個(gè)平面,那么這兩條直線平行。

      5.面面平行

      判定a一個(gè)平面內(nèi)的兩條相交直線分別與另一個(gè)平面平行,則這兩個(gè)平面平行。(常用)b如果兩平面同時(shí)垂直于一條直線,則兩平面平行(大題一般不用)

      性質(zhì):a兩個(gè)平面平行,在一個(gè)平面內(nèi)的任意一條直線平行于另外一個(gè)平面b兩個(gè)平面平行,和一個(gè)平面垂直的直線必垂直于另外一個(gè)平面c兩個(gè)平行平面,分別和第三個(gè)平面相交,交線平行d平行平面所截的線段對應(yīng)成比例(這個(gè)是推論,不好描述,書上或練習(xí)冊上應(yīng)該有類似的題)

      6.面面垂直

      判定:一個(gè)面如果過另外一個(gè)面的垂線,那么這兩個(gè)面相互垂直

      性質(zhì):a如果兩個(gè)平面垂直,那么在一個(gè)平面內(nèi)垂直于它們交線的直線垂直于另一個(gè)平面。b如果兩個(gè)平面垂直,那么經(jīng)過第一個(gè)平面內(nèi)的一點(diǎn)垂直于第二個(gè)平面的直線在第一個(gè)平面內(nèi)。C如果兩個(gè)相交平面都垂直于第三個(gè)平面,那么它們的交線垂直于第三個(gè)平面。D三個(gè)兩兩垂直的平面的交線兩兩垂直。

      第二篇:線面 線線面面平行垂直方法總結(jié)

      所有權(quán)歸張志濤所有

      線線平行

      1.如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線就和交線平行。(一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行.)

      2.如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行。3.【定義】同一平面內(nèi),兩直線無公共點(diǎn),稱兩直線平行

      3.【公理】平行于同一直線的兩條直線互相平行.(空間平行線傳遞性)4.【定理】同位角相等,或內(nèi)錯(cuò)角相等,或同旁內(nèi)角互補(bǔ),兩直線平行.5.平行線分線段成比例定理的逆定理

      線面平行

      1.面外一條線與面內(nèi)一條線平行,或兩面有交線強(qiáng)調(diào)面外與面內(nèi)(如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。)

      2.面外一直線上不同兩點(diǎn)到面的距離相等,強(qiáng)調(diào)面外

      3.如果連條直線同時(shí)垂直于一個(gè)平面,那么這兩條直線平行 4.證明線面無交點(diǎn)

      5.反證法(線與面相交,再推翻)

      6.空間向量法,證明線一平行向量與面內(nèi)一向量(x1x2-y1y2=0)7.【定義】直線與平面無公共點(diǎn),稱直線與平面平行

      8.X7【定理】如果兩個(gè)平面平行,那么其中一平面內(nèi)的任一直線平行于另一平面.面面平行

      1.如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。

      2.若兩個(gè)平面所夾的平行線段相等,則這兩個(gè)平面平行.3.【定理】一個(gè)平面內(nèi)的兩條相交直線分別平行于另一個(gè)平面內(nèi)的兩條相交直線,則這兩個(gè)平面平行.4.【定義】兩平面無公共點(diǎn),稱兩平面平行.5.【公理】平行于同一平面的兩個(gè)平面互相平行.(空間平行面?zhèn)鬟f性)

      6.【定理】一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行.線線垂直

      1如果一條直線垂直于一個(gè)平面,則這個(gè)平面上的任意一條直線都與這條直線垂直。2.三垂線定理:如果平面內(nèi)的一條直線垂直于平面的血現(xiàn)在平面內(nèi)的射影,則這

      所有權(quán)歸張志濤所有

      條直線垂直于斜線。

      線面垂直

      1.如果一條直線和一個(gè)平面內(nèi)的兩條相交直線垂直,那么這條直線垂直于這個(gè)平面。

      2.如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于它們交線的直線垂直于另一個(gè)平面。

      面面垂直

      1.如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。

      2.【性質(zhì)】X2逆定理、X4、X6及垂直關(guān)系性質(zhì)

      主要性質(zhì)

      1.X1【定理】空間中如果兩個(gè)角的兩邊分別對應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ).(等角定理)

      1.X2【定理】三條平行線截兩條直線,所得對應(yīng)線段成比例.(平行線分線段成比例定理)

      直線在平面內(nèi)判定方法

      1.【定義】直線與平面有無數(shù)個(gè)公共點(diǎn),稱直線在平面內(nèi).2.【公理】如果一條直線上兩點(diǎn)在一平面內(nèi),那么這條直線在此平面內(nèi).3.【公理】任意兩點(diǎn)確定一條直線,不共線的三點(diǎn)確定一個(gè)平面;兩相交直線、兩平行直線確定一平面.4.【性質(zhì)】X3及垂直關(guān)系性質(zhì)

      5.X3【定理】過平面內(nèi)一點(diǎn)的直線平行于此平面的一條平行線,則此直線在這個(gè)平面內(nèi).直線在平面外判定方法

      1.【定理】平面外一直線與平面內(nèi)一直線平行,則該直線與此平面平行.2.【性質(zhì)】X5、X7及垂直關(guān)系性質(zhì)

      主要性質(zhì)

      3.X4【定理】一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行.4.X5【定理】平面外的兩條平行直線中的一條平行于這個(gè)平面,則另一條也平行于這個(gè)平面.所有權(quán)歸張志濤所有

      【性質(zhì)】

      1.【性質(zhì)】X8逆定理、X9及垂直關(guān)系性質(zhì)

      2.X8【定理】夾在兩個(gè)平行平面間的平行線段相等.3.X9【結(jié)論】經(jīng)過平面外一點(diǎn)有且只有一個(gè)平面與已知平面平行.(存在性與唯一性)

      第三篇:線線、線面平行垂直的證明

      空間線面、面面平行垂直的證明

      12.在正方體ABCD-A1B1C1D1中,E、F分別為AB、BC的中點(diǎn),(Ⅰ)求證:EF//面A1C1B。(Ⅱ)B1D⊥面A1C1B。

      D'

      3.如圖,在正方形ABCD?A'B'C'D',A'(1)求證:A'B//平面ACD';

      (2)求證:平面ACD'?平面DD'B。

      A

      4.如圖,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中點(diǎn),求證:(1)FD∥平面ABC;(2)AF⊥平面EDB.C'

      C

      B

      5.如圖,在正方體ABCD?A1B1C1D1中,O是AC和BD的交點(diǎn).求證:(Ⅰ)OC1∥平面AB1D1;(Ⅱ)平面ACC1?平面AB1D1.

      DA

      C1

      C

      (5題圖)

      6.如圖,長方體ABCD?A1B1C1D1中,AB?AD?1,AA1?2,點(diǎn)P為

      DD1的中點(diǎn)。

      (1)求三棱錐D?PAC的體積;(2)求證:直線BD1∥平面PAC;(3)求證:直線PB1?平面PAC.C1

      D1

      B1

      A1

      P

      DC

      B

      A

      7.如圖,在四棱錐P?ABCD,底面ABCD是正方形,側(cè)棱

      PD?底面ABCD,PD?DC,E是PC的中點(diǎn),作EF?PB于點(diǎn)F。

      (1)證明:PA//平面EDB;(2)證明:DE?BC

      (3)證明:PB?平面EFD。

      8.ABCD?A1B1C1D1是長方體,底面ABCD是邊長為1的正方形,側(cè)棱

      A

      AA1?2,E是側(cè)棱BB1的中點(diǎn).(Ⅰ)求證:AE?平面A1D1E;

      (Ⅱ)求三棱錐A?C1D1E的體積.

      第四篇:線線垂直、線面垂直、面面垂直的判定與性質(zhì)

      清新縣濱江中學(xué)2012屆高三文科數(shù)學(xué)第一輪復(fù)習(xí)資料2011-12-

      31空間中的垂直關(guān)系

      1.判斷線線垂直的方法:所成的角是,兩直線垂直;

      垂直于平行線中的一條,必垂直于另一條。

      三垂線定理:在平面內(nèi)的一條直線,如果它和這個(gè)平面的,那么它也和這條斜線垂直。三垂線定理的逆定理:在平面內(nèi)的一條直線,如果和這個(gè)平面的一條斜線垂直,那麼它也和這條斜線的射影垂直

      PO??,O????推理模式: PA???A??a?AO。

      a??,a?AP??

      2.線面垂直

      定義:如果一條直線l和一個(gè)平面α相交,并且和平面α內(nèi)的任意一條直線都,我們就說直線l和平面αl叫做平面的垂線,平面α叫做直線l的垂面,直線與平面的交點(diǎn)叫做垂足。直線l與平面α垂直記作:。

      直線與平面垂直的判定定理:如果,那么這條直線垂直于這個(gè)平面。

      推理模式:

      直線和平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線。

      3.面面垂直

      兩個(gè)平面垂直的定義:相交成的兩個(gè)平面叫做互相垂直的平面。兩平面垂直的判定定理:(線面垂直?面面垂直)

      如果,那么這兩個(gè)平面互相垂直。

      推理模式:

      兩平面垂直的性質(zhì)定理:(面面垂直?線面垂直)

      若兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于它們的的直線垂直于另一個(gè)平面。

      課后練習(xí)

      1、(2008上海,13)給定空間中的直線l及平面?,條件“直線l與平面?內(nèi)無數(shù)條直線都垂直”是“直線l與平面?垂直”的()條件

      A.充要B.充分非必要C.必要非充分D.既非充分又非必要

      2、已知正方體ABCD-A1B1C1D1中,直線l是異面直線AB1 和A1D的公垂線,則直線l與直線BD1的關(guān)系為()

      A.l⊥BD1B.l∥BD1C.l與BD1 相交D.不確定

      1、如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn)

      (1)求證:CD⊥AE;

      (2)求證:PD⊥面ABE.2、如圖,棱柱ABC?A1B1C1BCC1B1的側(cè)面是菱形,B1C?A1B

      證明:平面AB1C?平面A1BC13、如圖,四棱錐P?ABCD中,底面ABCD為平行四邊形。?DAB?60,AB?2AD,PD?? 底面ABCD,證

      明:PA?BD4、如圖所示,在長方體ABCD?A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中點(diǎn)

      (Ⅰ)求異面直線A1M和C1D1所成的角的正切值;

      (Ⅱ)證明:平面ABM⊥平面A1B1M

      面面垂直的性質(zhì)

      1、S是△ABC所在平面外一點(diǎn),SA⊥平面ABC,平面SAB⊥平面SBC,求證AB⊥BC.S

      A C2、在四棱錐中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD 證明:AB⊥平面VAD

      V D

      C B3、如圖,平行四邊形ABCD中,?DAB?60?,AB?2,AD?4將

      沿BD折起到?EBD的位置,使平面EDB?平面ABD 求證:AB?DE4、如圖,在四棱錐P?ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點(diǎn) 求證:(1)直線EF‖平面PCD;

      (2)平面BEF⊥平面PAD

      (第4題

      圖)

      ?CBD

      5.如圖,直三棱柱ABC—A1B1C1 中,AC =BC =1,∠ACB =90°,AA1 =2,D 是A1B1 中點(diǎn).(1)求證C1D ⊥平面A1B ;(2)當(dāng)點(diǎn)F 在BB1 上什么位置時(shí),會使得AB1 ⊥平面C1DF ?并證明你的結(jié)論

      第五篇:立體幾何中線面平行垂直性質(zhì)判定2012

      2012考前集訓(xùn)高頻考點(diǎn)立體幾何考綱解讀

      必須掌握空間中線面平行、垂直的有關(guān)性質(zhì)與判定定理

      判定定理

      1.如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,則這條直線與這個(gè)平面平行.即若a??,b??,a//b,則a//?.2.如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行,即若a,b??,a?b?p,a//?,b//?,則?//?.3.如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么該直線與此平面垂直.即若m??,n??,m?n?B,l?m,l?n,則l??.4.如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直,即若l??,l??,則???.性質(zhì)定理

      1.如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行,即若a//?,a??,????b,則a//b.2.兩平行平面與同一個(gè)平面相交,那么兩條交線平行,即若α∥β,α∩γ=a,β∩γ=b,則a//b

      3.垂直于同一平面的兩直線平行,即若a??,b??,則a//b

      4.如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于它們交線的直線垂直于另一個(gè)平面,即若???,????a,l??,l?a,則l??.必須掌握常見幾何體的表面積及體積公式:

      V柱體?Sh(S為底面積,h為柱體高)

      V錐體?V臺體

      V球體1Sh(S為底面積,h為柱體高)31?(S'?S'S?S)h(S',S分別為上,下底面積,h為臺體高)34??R3(R為球體半徑)

      31.在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ ACB=90?,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.若M是線段AD的中點(diǎn),求證:GM∥平面ABFE;

      【解析】連結(jié)AF,因?yàn)镋F∥AB,FG∥BC,EF∩FG=F,所以平面EFG∥平面ABCD,又易證

      ?EFG∽?ABC, 所以

      FGEF111??,即FG?BC,即FG?AD,又M為

      AD BCAB222-1-的中點(diǎn),所以AM?1AD,又因?yàn)椋疲恰危拢谩危罝,所以FG∥AM,所以四邊形AMGF是平行四邊形,故

      2GM∥FA,又因?yàn)椋牵?平面ABFE,FA?平面ABFE,所以GM∥平面ABFE.2.如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長A1C1至點(diǎn)P,使C1P=A1C1,連接AP交棱CC1于D.求證:PB1∥平面BDA1;

      本小題主要考查直三棱柱的性質(zhì)、線面關(guān)系、二面角等基本知識,并考查空間想象能力和邏輯推理能力,考查應(yīng)用向量知識解決問題的能力.

      解:連結(jié)AB1與BA1交于點(diǎn)O,連結(jié)OD,∵C1D∥平面AA1,A1C1∥AP,∴AD=PD,又AO=B1O,∴OD∥PB1,又OD?面BDA1,PB1?面BDA1,∴PB1∥平面BDA1.

      3.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,CE∥AB。

      (Ⅰ)求證:CE⊥平面PAD;

      (Ⅱ)若PA=AB=1,AD=3,CD2,∠CDA=45°,求四棱錐P-ABCD的體積

      D

      C

      分析:本小題主要考查直線與直線、直線與平面的位置關(guān)系,幾何體的體積等基礎(chǔ)知識;考查空間想象能

      力,推理論證能力,運(yùn)算求解能力;考查數(shù)形結(jié)合思想,化歸與轉(zhuǎn)化思想,滿分12分

      (I)證明:因?yàn)镻A?平面ABCD,CE?平面ABCD,所以PA?CE.,因?yàn)锳B?AD,CE//AB,所以CE?AD.又PA?AD?A,所以CE?平面PAD。

      (II)由(I)可知CE?AD,在Rt?ECD中,DE=CD?cos45??1,CE?CD?sin45??1,又因?yàn)锳B?CE?1,AB//CE,所以四邊形ABCE為矩形,所以S四邊形ABCD?S矩形ADCE?S?ECD?AB?AE?

      又PA?平面ABCD,PA=1,所以V四邊形P?ABCD?P115CE?DE?1?2??1?1?.2221155S四邊形ABCD?PA???1?.3326

      4.如圖,在四棱錐P?ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點(diǎn)

      求證:(1)直線EF//平面PCD;

      (2)平面BEF⊥平面

      PAD.-2-

      (第16題圖)

      答案:(1)因?yàn)镋、F分別是AP、AD的中點(diǎn),?EF?PD,又?PD?面PCD,EF?面PCD

      ?直線EF//平面PCD

      (2)連接BD?AB=AD,?BAD=60?,?ABD為正三角形

      F是AD的中點(diǎn),?BF?AD,又平面PAD⊥平面ABCD,面PAD?面ABCD=AD,?BF?面PAD,BF?面BEF

      所以,平面BEF⊥平面PAD.5.如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=1PD. 2

      (I)證明:PQ⊥平面DCQ;

      (II)求棱錐Q—ABCD的的體積與棱錐P—DCQ的體積的比值.

      解:(I)由條件知PDAQ為直角梯形

      因?yàn)镼A⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交線為AD.又四邊形ABCD為正方形,DC⊥AD,所以DC⊥平面PDAQ,可得PQ

      ⊥DC.在直角梯形PDAQ中可得,則PQ⊥QD 所以PQ⊥平面DCQ.………………6分

      (II)設(shè)AB=a.由題設(shè)知AQ為棱錐Q—ABCD的高,所以棱錐Q—ABCD的體積V1?

      由(I)知PQ為棱錐P—DCQ的高,而,△DCQ的面積為

      所以棱錐P—DCQ的體積為V2?13a.32,213a.3

      故棱錐Q—ABCD的體積與棱錐P—DCQ的體積的比值為1.…………12分

      ABCD,底面ABCD是平行四邊形,6.山東文如圖,在四棱臺ABCD?A1B1C1D1中,D1D?平面

      AB=2AD,AD=A1B1,?BAD=60°

      (Ⅰ)證明:AA1?BD;

      (Ⅱ)證明:CC1∥平面A1BD.

      (I)證法一:

      因?yàn)镈1D?平面ABCD,且BD?平面ABCD,所以D1D?BD,又因?yàn)锳B=2AD,?BAD?60?,在?ABD中,由余弦定理得

      BD2?AD2?AB2?2AD?ABcos60??3AD2,所以AD2?BD2?AB2,因此AD?BD,又AD?D1D?D,所以BD?平面ADD1A1?平面ADD1A1,故AA1?BD.1.又AA

      證法二:

      因?yàn)镈1D?平面ABCD,且BD?平面ABCD,所以BD?D1D.,取AB的中點(diǎn)G,連接DG,在?ABD中,由AB=2AD得AG=AD,又?BAD?60?,所以?ADG為等邊三角形。

      因此GD=GB,故?DBG??GDB,又?AGD?60?,所以?GDB=30?,故?ADB=?ADG+?GDB=60?+30?=90?,所以BD?AD.又AD?D1D?D,所以BD?平面ADD1A1,又AA1?平面ADD1A1,故AA1?BD.(II)連接AC,A1C1,設(shè)AC?BD?E,連接EA1

      因?yàn)樗倪呅蜛BCD為平行四邊形,所以EC?1AC.2

      由棱臺定義及AB=2AD=2A1B1知A1C1//EC且A1C1=EC,所以邊四形A1ECC1為平行四邊形,因此CC1//EA1,又因?yàn)镋A1?平面A1BD,CC1?平面A1BD,所以CC1//平面A1BD。

      7.如圖,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90,(1)證明:平面ADB⊥平面BDC;

      (2)設(shè)BD=1,求三棱錐D—ABC的表面積。

      【分析】(1)確定圖形在折起前后的不變性質(zhì),如角的大小不變,線段長度不變,線線關(guān)系不變,再由面面垂直的判定定理進(jìn)行推理證明;(2)充分利用垂直所得的直角三角形,根據(jù)直角三角形的面積公式計(jì)算.

      【解】(1)∵折起前AD是BC邊上的高,∴ 當(dāng)Δ ABD折起后,AD⊥DC,AD⊥DB,又DB?DC=D,∴AD⊥平面BDC,又∵AD

      ∴平面ABD⊥平面BDC.

      (2)由(1)知,DA?DB,DB?DC,DC?DA,?DB=DA=DC=1,平面BDC.?

      111S?DAM?S?

      DBC?S?DCA??1?1?,S?

      ABC?sin60?? 2222

      13S??3?? ∴三棱錐D

      —ABC的表面積是222

      8.在四面體ABCD中,平面ABC?平面ACD,AB?BC,AD?CD,?CAD????。若AD??,AB??BC,求四面體ABCD的體積;

      解:如答(19)圖1,設(shè)F為AC的中點(diǎn),由于AD=CD,所以

      DF⊥AC.故由平面ABC⊥平面ACD,知DF⊥平面ABC,即DF是四面體ABCD的面ABC上的高,且DF=ADsin30°=1,AF=ADcos30°

      在Rt△ABC中,因

      AC=2AF=

      AB=2BC,由勾股定理易知

      BC?; AB?故四面體ABCD的體積

      1114V??S?ABC?DF???.3325

      9.如圖,在四面體的體積;中,平面平面,,.求四面體

      解法一:如答(20)圖1,過D作DF⊥AC垂足為F,故由平面ABC⊥平面ACD,知DF⊥平面ABC,即DF

      是四面體ABCD的面ABC上的高,設(shè)G為邊CD的中點(diǎn),則由AC=AD,知AG⊥CD,從而

      AG???2A

      C

      B11AG?CD由AC?DF?CD?AG得DF??22AC由

      Rt?ABC中,AB??S?ABC?1AB?BC? 2故四面體ABCD的體積V?

      1?S?ABC?DF?

      38-5-

      下載線線平行垂直,線面平行垂直,面面平行垂直判定與性質(zhì)[五篇模版]word格式文檔
      下載線線平行垂直,線面平行垂直,面面平行垂直判定與性質(zhì)[五篇模版].doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        線線垂直、線面垂直、面面垂直的判定 經(jīng)典試題

        線線垂直、線面垂直、面面垂直的判定1、 如圖,在四棱錐P-ABCD中,2、如圖,棱柱PA⊥底面ABCD,AB⊥AD,AC⊥CD,ABC?A1B1C1的側(cè)面 BCC1B1是菱形,B1C?A1B ∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).證明:平......

        《垂直平行》教案

        《平行與垂直》教案 阿城區(qū)玉泉中心小學(xué):張 芳 教學(xué)目標(biāo): 1、引導(dǎo)學(xué)生通過觀察,了解垂直與平行的特點(diǎn)。 2、幫助學(xué)生初步理解垂直與平行是同一平面內(nèi)兩條直線的兩種位置關(guān)系,初......

        線面平行與垂直的證明題

        勤志數(shù)學(xué)線面平行與垂直的證明1:如圖,在棱長為1的正方體ABCD-A1B1C1D1中. (1)求證:AC⊥平面B1BDD1;(2)求三棱錐B-ACB1體積.2:如圖,ABCD是正方形,O是正方形的中心, PO?底面ABCD,E是PC的中點(diǎn).A......

        垂直與平行教案

        垂直與平行教案[教學(xué)內(nèi)容]人教版《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》四年級上冊64~65頁的內(nèi)容。 [教學(xué)設(shè)想]本課教材是在學(xué)生學(xué)習(xí)了直線及角的認(rèn)識的基礎(chǔ)上教學(xué)的,是認(rèn)識平行四......

        教案垂直與平行

        小學(xué)數(shù)學(xué)【教學(xué)課題】《垂直與平行》【教案背景】《垂直與平行》是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書小學(xué)數(shù)學(xué)四年級上冊第四單元平行四邊形和梯形的第一節(jié)課,教學(xué)內(nèi)容在教材......

        垂直與平行教案范文合集

        垂直與平行 括蒼鎮(zhèn)愛國小學(xué) 林華麗 教學(xué)目標(biāo): 1.通過自學(xué)、討論交流、互動評價(jià)初步認(rèn)識垂線和平行線。 2.在比較、分析、綜合的觀察與思維中滲透分類的思想方法。 3.培養(yǎng)學(xué)生......

        證明平行與垂直

        §9.8 立體幾何中的向量方法Ⅰ——證明平行與垂直(時(shí)間:45分鐘 滿分:100分)一、選擇題(每小題7分,共35分)????????1. 已知空間三點(diǎn)A(0,2,3),B(-2,1,6),C(1,-1,5)若aa分別與AB,AC垂直,則向量a為??A.?1......

        《垂直與平行》教案

        《垂直與平行》教學(xué)設(shè)計(jì) 【教學(xué)內(nèi)容】 義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教版 )小學(xué)數(shù)學(xué)四年級上冊 P64、P65 【教學(xué)目標(biāo)】 知識與技能目標(biāo): 1、學(xué)生結(jié)合生活情境,通過自主探究活動......