高一數(shù)學(xué)教學(xué)計劃1
一、指導(dǎo)思想
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)。
二、學(xué)情分析及學(xué)生情況分析
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新高考我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。
三、具體措施
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項突破難點、所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。、
(3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
(6)注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
高一數(shù)學(xué)教學(xué)計劃2
一、教學(xué)分析
1、分析教材
本章教材整體主要分成三大部分:
(1)、圓的標(biāo)準(zhǔn)方程與一般方程;
(2)、直線與圓、圓與圓的位置關(guān)系;
(3)、空間直角坐標(biāo)系以及空間兩點間的距離公式。
圓的方程是在前一章直線方程基礎(chǔ)上引入的新的曲線方程,更進(jìn)一步要求“數(shù)與形”結(jié)合。所以學(xué)習(xí)有關(guān)圓的方程時,仍仍然沿用直線方程中使用的坐標(biāo)法,繼續(xù)運用坐標(biāo)法研究直線與圓、圓與圓的位置關(guān)系等幾何問題。此外還要學(xué)習(xí)空間直角坐標(biāo)系的有關(guān)知識,以便為今后用坐標(biāo)法研究空間幾何對象奠定基礎(chǔ)。這些知識是進(jìn)一步學(xué)習(xí)圓錐曲線方程、導(dǎo)數(shù)和積分的基礎(chǔ)。
2、分析學(xué)生
高中一年級的學(xué)生還沒有建立起比較好的數(shù)形結(jié)合的思想,前面學(xué)習(xí)過直線知識,只是使學(xué)生有了用坐標(biāo)法研究問題的基本思路,通過圓的概念的引入及其現(xiàn)實生活中圓的例子,啟發(fā)學(xué)生學(xué)習(xí)的興趣及研究問題的方法,培養(yǎng)學(xué)生分析探索問題的能力,熟練的掌握解決解析幾何問題的方法-坐標(biāo)法,滲透數(shù)形結(jié)合的思想研究問題時抓住問題的本質(zhì),研究細(xì)致思考,規(guī)范得出解答,體現(xiàn)運動變化,對立統(tǒng)一的思想
3、教學(xué)重點與難點
重點:圓的標(biāo)準(zhǔn)方程與一般方程;利用直線與圓的方程判斷直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系的基本認(rèn)識。
難點:直線與圓的方程的應(yīng)用;會求解簡單的直線與圓的相關(guān)曲線的方程;建立空間直角坐標(biāo)系。
二、教學(xué)目標(biāo)
1、掌握圓的定義和圓標(biāo)準(zhǔn)方程、一般方程的概念;能根據(jù)圓的方程求圓心和半徑,初步掌握求圓的方程的方法。
2、掌握直線與圓的位置關(guān)系的判定。
3、在進(jìn)一步培養(yǎng)學(xué)生類比、數(shù)形結(jié)合、分類討論和化歸的數(shù)學(xué)思想方法的過程中,提高學(xué)生學(xué)習(xí)能力。
4、培養(yǎng)學(xué)生科學(xué)探索精神、審美觀和理論聯(lián)系實際思想。
三、教學(xué)策略
1、教學(xué)模式
本節(jié)內(nèi)容是運用“問題解決”課堂教學(xué)模式的一次嘗試,采用探究、討論的
教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,掌握數(shù)學(xué)基本知識和基本能力,培養(yǎng)積極探索和團結(jié)協(xié)作的科學(xué)精神。
2、教學(xué)方法與手段--充分利用信息技術(shù),合理整合課程資源
采用探究、討論的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲采用多媒體技術(shù),目的在于充分利用其優(yōu)良的傳播功能,大容量信息的呈現(xiàn)和生動形象的演示(尤其是動畫效果)對提高學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維、加深概念理解有積極作用。制作中,采用交互技術(shù),使課件的機動性得到加強。
四、對內(nèi)容安排的說明
本章分三部分:圓的標(biāo)準(zhǔn)方程與一般方程;直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系。
1、建立圓的方程是本節(jié)的主要內(nèi)容之一。根據(jù)圓的幾何特征(主要是動點與定點間距離恒定)建立適當(dāng)?shù)淖鴺?biāo)系,再根據(jù)曲線上的點所滿足的幾何條件,求出點的坐標(biāo)所滿足的曲線方程。
通過研究方程來研究曲線的性質(zhì)是解析幾何的另一個主要內(nèi)容,這就是解析幾何通過代數(shù)方法研究幾何圖形的特點,也就是坐標(biāo)法。始終強調(diào)曲線方程與曲線圖像之間的一一對應(yīng)。這一思想應(yīng)該貫穿于整個圓的教學(xué)。
2.通過方程,研究直線與圓、圓與圓的位置關(guān)系是本章的主要內(nèi)容之一。判斷直線與圓、圓與圓的位置關(guān)系可以從兩個方面著手:
(1)。兩條曲線有無公共點,等價于由它們方程聯(lián)立的方程組有無實數(shù)解。方程組有幾組實數(shù)解,這兩條曲線就有幾個公共點;方程組沒有實數(shù)解,這兩條曲線就沒有公共點。
(2)。運用平面幾何知識,把直線與圓、圓與圓位置關(guān)系的結(jié)論轉(zhuǎn)化為相應(yīng)的代數(shù)結(jié)論。
3、坐標(biāo)法是研究幾何問題的重要方法,在教學(xué)過程中,應(yīng)該始終貫穿坐標(biāo)法這一重要思想,不怕重復(fù);通過坐標(biāo)系,把點和坐標(biāo)、曲線和方程聯(lián)系起來,實現(xiàn)形和數(shù)的統(tǒng)一。
用坐標(biāo)法解決幾何問題時,先用坐標(biāo)和方程表示相應(yīng)的幾何對象,然后對坐標(biāo)和方程進(jìn)行代數(shù)討論;最后再把代數(shù)運算結(jié)果翻譯成相應(yīng)的幾何結(jié)論。這就是用坐標(biāo)法解決平面幾何問題的“三步曲”:
第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中涉及的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:把代數(shù)運算結(jié)果翻譯成幾何結(jié)論。
五、教學(xué)評價
㈠過程性評價
1、教學(xué)過程中,教師的講解和學(xué)生的練習(xí)緊扣教學(xué)目標(biāo),內(nèi)容深淺要分層次,設(shè)計的問題要照顧好、中、差。
2、對于方程的推導(dǎo)運用的方法,學(xué)生理解起來難度較大,主要采用讓學(xué)生理解的基礎(chǔ)上進(jìn)行檢測反饋
㈡終結(jié)性評價
1、課程內(nèi)容全部結(jié)束后,讓學(xué)生分組交流、討論后,選代表談收獲、體會和感想。
2、留課后作業(yè)(扣教學(xué)目標(biāo)、分類型、分層次,落實學(xué)生為主體),讓學(xué)生認(rèn)真理解和鞏固,了解圓的標(biāo)準(zhǔn)方程和一般方程,以及直線與圓位置關(guān)系,做完課后習(xí)題,做好作業(yè)。
高一數(shù)學(xué)教學(xué)計劃3
一.指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開,《新課程標(biāo)準(zhǔn)》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機的使用等。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。
(3) 根據(jù)數(shù)學(xué)的學(xué)科特點,加強學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。
(4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實基礎(chǔ),加強綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二.學(xué)情分析:
我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面: 1、進(jìn)一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、
廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等.客觀上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。
2、被動學(xué)習(xí).許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法.而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、對自己學(xué)習(xí)數(shù)學(xué)的好差(或成敗)不了解,更不會去進(jìn)行反思總結(jié),甚至根本不關(guān)心自己的成敗。
4、不能計劃學(xué)習(xí)行動,不會安排學(xué)習(xí)生活,更不能調(diào)節(jié)控制學(xué)習(xí)行為,不能隨時監(jiān)控每一步驟,對學(xué)習(xí)結(jié)果不會正確地自我評價。
5、不重視基礎(chǔ).一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。 此外,還有許多學(xué)生數(shù)學(xué)學(xué)習(xí)興趣不濃厚,不具備應(yīng)用數(shù)學(xué)的意識和能力,對數(shù)學(xué)思想方法重視不夠或掌握情況不好,缺乏將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,缺乏準(zhǔn)確運用數(shù)學(xué)語言來分析問題和表達(dá)思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴(yán)重制約著學(xué)生數(shù)學(xué)成績的提高
三、教學(xué)目標(biāo)與要求
必修1,主要涉及兩章內(nèi)容:
第一章:集合
通過本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時的簡潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會用集合語言表示數(shù)學(xué)對象,為以后的學(xué)習(xí)奠定基礎(chǔ)。
1.了解集合的含義,體會元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;
2.理解集合間的包含與相等關(guān)系,能識別給定集合的子集,了解全集與空集的含義;
3.理解補集的含義,會求在給定集合中某個集合的補集;
4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;
6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識的過程中,培養(yǎng)學(xué)生的思維能力。
第二章:函數(shù)的概念與基本初等函數(shù)Ⅰ
教學(xué)本章時應(yīng)立足于現(xiàn)實生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學(xué)活動—意義建構(gòu)—數(shù)學(xué)理論—數(shù)學(xué)應(yīng)用—回顧反思”的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過實驗、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問題。通過本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學(xué)會用函數(shù)的思想、變化的觀點分析和解決問題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;
第三章:函數(shù)的應(yīng)用
函數(shù)的應(yīng)用是學(xué)習(xí)函數(shù)的一個重要方面,學(xué)生學(xué)習(xí)函數(shù)的應(yīng)用,目的就
是利用已有的函數(shù)知識分析問題和解決問題.通過函數(shù)的應(yīng)用,對完善函數(shù)思想,激發(fā)學(xué)生應(yīng)用數(shù)學(xué)的意識,培養(yǎng)分析問題、解決問題的能力,增強進(jìn)行實踐的能力等,都有很大的幫助。
1.了解函數(shù)與方程之間的關(guān)系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;
2.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。
必修4:主要涉及三章內(nèi)容:
第一章:三角函數(shù)
通過本章學(xué)習(xí),有助于學(xué)生認(rèn)識三角函數(shù)與實際生活的緊密聯(lián)系,以及三角函數(shù)在解決實際問題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價值,學(xué)會用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問題,發(fā)展數(shù)學(xué)應(yīng)用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章:平面向量
在本章中讓學(xué)生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數(shù)學(xué)和物理中的一些問題,發(fā)展運算能力和解決實際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運算;
3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運算;
4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關(guān)角度和垂直的問題。
第三章:三角恒等變換
通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦
高一數(shù)學(xué)教學(xué)計劃4
一、學(xué)生狀況分析
學(xué)生整體水平一般,成績以中等為主,中上不多,后進(jìn)生也有一些。幾個班中,從上課一周來看,學(xué)生的學(xué)習(xí)進(jìn)取性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識不太牢固,上課效率不是很高。
二、教材分析
使用北師大版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)》,教材在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可理解性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修2有四章(空間幾何體;點線平面間的位置關(guān)系;直線與方程;圓與方程)。
三、教學(xué)任務(wù)
本期授課資料為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。
四、教學(xué)質(zhì)量目標(biāo)
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。
2、提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本本事。
3、提高學(xué)生提出、分析和解決問題(包括簡單的實際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨立獲取數(shù)學(xué)知識的本事。
4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進(jìn)目標(biāo)達(dá)成的重點工作
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要資料,堅持“抓兩頭、帶中間、整體推進(jìn)”,使每個學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。
教學(xué)方法及推進(jìn)措施
六、相關(guān)措施:
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項突破難點。所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點資料,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。
(3)培養(yǎng)學(xué)生解答考題的本事,經(jīng)過例題,從形式和資料兩方應(yīng)對所學(xué)知識進(jìn)行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。
(4)讓學(xué)生經(jīng)過單元考試,檢測自我的實際應(yīng)用本事,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
(6)重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。
(7)重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學(xué)生,增強學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
(8)合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
(9)加強培養(yǎng)學(xué)生的邏輯思維本事和解決實際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
(10)抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。
(11)自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動理解知識轉(zhuǎn)化主動學(xué)習(xí)知識。
七、教學(xué)進(jìn)度安排:
(略)
高一數(shù)學(xué)教學(xué)計劃5
新學(xué)期已開始,為使新學(xué)期的工作有條不紊的進(jìn)行,使教學(xué)工作更加科學(xué)合理,使學(xué)生對知識的接收更加得心應(yīng)手,特訂新學(xué)期個人教學(xué)計劃如下
一,指導(dǎo)思想
加強現(xiàn)代教育理論的學(xué)習(xí),提高自身的素質(zhì),轉(zhuǎn)變教育觀念,以教育科研為先導(dǎo),以培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力為重點,深化課堂教學(xué)改革,大力推進(jìn)素質(zhì)教育。
二,教材分析
本冊教材具有以下幾個明顯的特點:
1。為學(xué)生的數(shù)學(xué)學(xué)習(xí)構(gòu)筑起點
教科書提供了大量數(shù)學(xué)活動的線索,作為所有學(xué)生從事數(shù)學(xué)學(xué)習(xí)的出發(fā)點。目的是使學(xué)生能夠在所提供的學(xué)習(xí)情景中,通過探索與交流等活動,獲得必要的發(fā)展。
2,向?qū)W生提供現(xiàn)實,有趣,富有挑戰(zhàn)性的學(xué)習(xí)素材
教科書從學(xué)生實際出發(fā),用他們熟悉或感興趣的問題情景引入學(xué)習(xí)主題,并提供了眾多有趣而富有數(shù)學(xué)含義的問題,以展開數(shù)學(xué)探究。
3,為學(xué)生提供探索,交流的時間與空間
教科書依據(jù)學(xué)生已有的知識背景和活動經(jīng)驗,提供了大量的操作,思考與交流的機會,幫助學(xué)生通過思考與交流,梳理所學(xué)的知識,建立符合個體認(rèn)知特點的知識結(jié)構(gòu)。
4,展現(xiàn)數(shù)學(xué)知識的形成與應(yīng)用過程
教科書采用“問題情境—建立模型—解釋,應(yīng)用與拓展”的模式展開,有利于學(xué)生更好地理解數(shù)學(xué),應(yīng)用數(shù)學(xué),增強學(xué)好數(shù)學(xué)的信心。
5,滿足不同學(xué)生的發(fā)展需求
教科書中“讀一讀”給學(xué)生以更多了解數(shù)學(xué),研究數(shù)學(xué)的機會。教科書中的習(xí)題分為兩類:一類面向全體學(xué)生;另一類面向有更多數(shù)學(xué)需求的學(xué)生。
三,教材的重點和難點
本冊教材從內(nèi)容上看,教學(xué)重點是三角形和四邊形的性質(zhì)定理
和判定定理的應(yīng)用以及一元二次方程的應(yīng)用。教學(xué)難點是對反
比例函數(shù)的理解及應(yīng)用;用試驗或模擬試驗的方法估計一些復(fù)
雜的隨機時間發(fā)生的概率。
四,教學(xué)措施:
1,根據(jù)學(xué)生實際,創(chuàng)造性地使用教材,積極開發(fā)和利用各種教學(xué)資源,為學(xué)生提供豐富多彩的學(xué)習(xí)素材。
2,加強直觀教學(xué),充分利用教具,學(xué)具等多媒體教學(xué),以豐富學(xué)生感知認(rèn)識對象的途徑,促使他們更加樂意接近數(shù)學(xué),更好地理解數(shù)學(xué)。
3,關(guān)注學(xué)生的個體差異,有效的實施有差異的教學(xué),使每個學(xué)生都能得到充分的發(fā)展。
4,加強學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),主要培養(yǎng)學(xué)生的書寫,認(rèn)真分析問題的習(xí)慣。同時注意學(xué)習(xí)態(tài)度的培養(yǎng)。
五,時間安排
4月1日——4月20日一元二次方程
5月16日——5月31日反比例函數(shù)
6月1日——6月10日頻率與概率
6月11日——7月11日復(fù)習(xí)考試
>高中數(shù)學(xué)教學(xué)計劃10
本學(xué)期我擔(dān)任高一(5)、(16)班的數(shù)學(xué)教學(xué)工作,本學(xué)期的教學(xué)工作計劃如下。
一、指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機的使用等。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。
(3)根據(jù)數(shù)學(xué)的學(xué)科特點,加強學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。
(4)使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實基礎(chǔ),加強綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二、學(xué)情分析及相關(guān)措施:
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項突破難點。所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。。
(3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
(6)注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
高一數(shù)學(xué)教學(xué)計劃6
一 指導(dǎo)思想
為了使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下:
1.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
2.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力
3.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
4.提高學(xué)習(xí)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
二 學(xué)情分析
1. 基本情況:班共人,男生人,女生人;本班相對而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約 人,后進(jìn)生約人。
2.我所執(zhí)教的215班均屬普高班,學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學(xué)時只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實一個知識點,掌握一個知識點。
三 教材分析
我們采用的教材是人教版必修教材,本冊教材共分兩章:第四章《三角函數(shù)》和第五章《平面向量》。三角函數(shù)的主要內(nèi)容有:任意角的三角函數(shù)概念、弧度制、同角三角函數(shù)間的關(guān)系、誘導(dǎo)公式、兩角和與差的三角函數(shù)、二倍角的三角函數(shù)以及三角函數(shù)的圖象和性質(zhì)、已知三角函數(shù)值求角等。難點是弧度制的概念、綜合運用本章公式進(jìn)行簡單三角函數(shù)式的化簡及恒等式的證明周期函數(shù)的概念,函數(shù)y=Asin(x+)的圖象與正弦曲線的關(guān)系。平面向量主要內(nèi)容是向量及其運算和解斜三角形,向量的幾何表示和坐標(biāo)表示、向量的線性運算,平面向量的數(shù)量積,平面兩點間的距離公式,線段的定比分點和中點坐標(biāo)公式,平移公式,解斜三角形是本章的重點,而向量運算法則的理解和運用,已知兩邊和其中一邊的對角解斜三角形等是本章的難點。
四 教法分析
在教學(xué)過程中盡量做到以下幾個方面:
1. 選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個究竟的沖動,以達(dá)到培養(yǎng)其興趣的目的。
2. 通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進(jìn)學(xué)生的學(xué)習(xí)方式。
3. 在教學(xué)中強調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
五 教學(xué)及輔導(dǎo)措施
1. 激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2. 注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3. 加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4. 抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5. 自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6. 重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
六 優(yōu)、差生名單及輔導(dǎo)措施
1. 對于優(yōu)生:學(xué)生自愿成立興趣小組,興趣小組可以在老師的指導(dǎo)下由學(xué)生自己不定期的開展活動,圍繞數(shù)學(xué)競賽拓展他們的知識面,加深對所學(xué)知識的理解和應(yīng)用,在原有基礎(chǔ)上,穩(wěn)定班級在數(shù)學(xué)學(xué)習(xí)鐘的尖子學(xué)生,進(jìn)一步培養(yǎng)他們自主學(xué)習(xí)的意識。
2. 對于待發(fā)展生:對于成績較差的學(xué)生,針對他們的基礎(chǔ)差異和個性差異,耐心細(xì)致的進(jìn)行個別輔導(dǎo),有問題隨時解決,并多予以鼓勵。在作業(yè)中體現(xiàn)分層。盡量做到因材施教。
七 教學(xué)進(jìn)度安排
周 次
| 課時
| 內(nèi) 容
| 重 點、難 點
|
第1周
| 5
| 任意角和弧度制(2)
任意角的三角函數(shù)(3)
| 了解任意角的概念和弧度制,能進(jìn)行弧度與角度的互化。任意角三角函數(shù)的定義。
|
第2周
| 5
| 同角三角函數(shù)的基本關(guān)系式(3)
三角函數(shù)的誘導(dǎo)公式(2)
| 誘導(dǎo)公式的探究。運用誘導(dǎo)公式。
|
第3周
| 5
| 兩角和與差的正弦、余弦、正切 (5)
| 兩角和與差的公式及其應(yīng)用與求值、化簡
|
第4周
| 5
| 二倍角的正弦、余弦、正切 (3)
正、余弦函數(shù)的圖象(2)
| 三角函數(shù)的倍角公式、和差化積公式
正、余弦函數(shù)圖象的畫法
|
第5周
| 5
| 三角函數(shù)圖象與性質(zhì)(4)
| 三角函數(shù)的圖象及其性質(zhì)。函數(shù)思想。
|
第6周
| 5
| 函數(shù)y=sin(+)的圖象(2)、三角函數(shù)模型的簡單應(yīng)用(2)
| 用參數(shù)思想討論圖象的變換過程。用三角模型解決一些具有周期變化規(guī)律的實際問題。難點:實際問題抽象為三角函數(shù)模型
|
第7周
| 5
| 正切函數(shù)的圖象和性質(zhì)(3)
已知三角函數(shù)值求角(2)
| 正切函數(shù)的圖象和性質(zhì)
反三角函數(shù)的表示
|
第8周
| 5
| 三角函數(shù)單元復(fù)習(xí)
| 知識點的復(fù)習(xí)+練習(xí)卷
|
第9周
| 5
| 平面向量的實際背景及基本概念(2)、平面向量的線性運算(2)
| 向量的概念。相等向量的概念。向量的幾何表示。向量加、減法的運算及幾何意義。向量數(shù)乘運算及幾何意義。
|
第10周
| 5
| 平面向量的基本定理及坐標(biāo)表示(2)
平面向量的數(shù)量積(2)
| 平面向量基本定理。會用平面向量數(shù)量積的表示向量的模與夾角。
|
第11周
| 5
| 平面向量的應(yīng)用舉例(2)
| 用向量方法解決實際問題的方法。向量方法解決幾何問題的三步曲。
|
第12周
| 5
| 向量平移、正弦定理、余弦定理
| 向量平移的公式
|
第13周
| 5
| 簡單的三角恒等變換(3)
第三章小結(jié)(1)
| 以11個公式為依據(jù),推導(dǎo)和差化積、積化和差等公式,會進(jìn)行三角變換。
|
第14周
| 5
| 期末復(fù)習(xí)
|
|
第15周
| 5
| 期末復(fù)習(xí)
| 分章歸納復(fù)習(xí)+3套模擬測試
|
高一數(shù)學(xué)教學(xué)計劃7
教材教法分析
本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課.該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化.教材通過一個實際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識的探究過程中.同時,通過對《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點間的距離》和選修2-1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用.由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系.
學(xué)情分析
一方面學(xué)生通過對空間幾何體:柱、錐、臺、球的學(xué)習(xí),處理了空間中點、線、面的關(guān)系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力.另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認(rèn)識,因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想.這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ).
教學(xué)目標(biāo)
1.知識與技能
①通過具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性
②了解空間直角坐標(biāo)系,掌握空間點的坐標(biāo)的確定方法和過程
③感受類比思想在探究新知識過程中的作用
2.過程與方法
①結(jié)合具體問題引入,誘導(dǎo)學(xué)生探究
②類比學(xué)習(xí),循序漸進(jìn)
3.情感態(tài)度與價值觀
通過用類比的數(shù)學(xué)思想方法探究新知識,使學(xué)生感受新舊知識的聯(lián)系和研究事物從低維到高維的一般方法.通過實際問題的引入和解決,讓學(xué)生體會數(shù)學(xué)的實踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間.
教學(xué)重點
本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點確立為空間直角坐標(biāo)系的理解.
教學(xué)難點
通過建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點的坐標(biāo)。
先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會用坐標(biāo)刻畫平面內(nèi)任意點的位置的方法,進(jìn)而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出第三根軸的建立,進(jìn)而感受逐步發(fā)展得到空間直角坐標(biāo)系的建立,再逐步掌握利用坐標(biāo)表示空間任意點的位置.總得來說,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論.
高一數(shù)學(xué)教學(xué)計劃8
一、基本情況
高一計算機1323班共有學(xué)生55人,其中男生42人,女生13人。高一新生剛進(jìn)入高中,學(xué)習(xí)環(huán)境新,好奇心強.但是普遍學(xué)習(xí)習(xí)慣不好,數(shù)學(xué)基礎(chǔ)較差,學(xué)習(xí)興趣不濃.所以工作的重心在于提高學(xué)生對數(shù)學(xué)科的興趣,以及在補足初中知識漏洞的前提下,進(jìn)一步的夯實學(xué)生基礎(chǔ).
二、指導(dǎo)思想
全面提高學(xué)生的科學(xué)文化素養(yǎng),圍著課堂教學(xué)這個中心,更新教育觀念,進(jìn)一步提高教學(xué)水平,培養(yǎng)學(xué)生分析問題解決問題的能力,同時扎扎實實抓好基礎(chǔ)知識,注意學(xué)生習(xí)慣的培養(yǎng),為三年后高考打下堅實的基礎(chǔ)。
三、工作任務(wù)和措施
任務(wù):基礎(chǔ)模塊第一章至第四章
第一章集合(9月份
第二章不等式(10月份
第三章函數(shù)(11月份
第四章指數(shù)函數(shù)與對數(shù)函數(shù)(12月份-1月份
措施:
1.夯實三基
知識、技能和能力三者關(guān)系是互相依存、互相促進(jìn)的整體,能力是在知識的教學(xué)和技能的培訓(xùn)中形成的,通過數(shù)學(xué)思想的形成和數(shù)學(xué)方法的掌握,能力才得到培養(yǎng)和發(fā)展,同時,能力的提高又會對知識的理解和掌握起促進(jìn)作用。因此,在教學(xué)中應(yīng)注意:
A.教學(xué)面向全體學(xué)生。
B.重視概念的歸納、規(guī)律的總結(jié)、技能的訓(xùn)練。
C.重視知識的產(chǎn)生、發(fā)展過程。
D.加強知識過關(guān)檢測,做好查漏補缺工作。
2.優(yōu)化課堂教學(xué)結(jié)構(gòu)
A.精心設(shè)計課堂教學(xué):
B.課堂練習(xí)典型化;
C.教學(xué)語言精練化
D.板書規(guī)范化。
3.加強學(xué)習(xí)方法指導(dǎo):
A.指導(dǎo)學(xué)生看書,培養(yǎng)學(xué)生主動學(xué)習(xí)的習(xí)慣。
B.指導(dǎo)學(xué)生整理知識,總結(jié)解題規(guī)律,歸納典型例題解法及一題多解與多題一解。
4.加強學(xué)風(fēng)建設(shè)與學(xué)習(xí)習(xí)慣的培養(yǎng)。
適當(dāng)安排作業(yè),認(rèn)真檢查督促,加強優(yōu)生和后進(jìn)生的輔導(dǎo),對學(xué)生的作業(yè)盡量做到面批。
四、各章節(jié)授課具體時間安排:
(基礎(chǔ)模塊第一章集合(約12課時
(1理解集合、元素及其關(guān)系,掌握集合的表示法。
(2掌握集合之間的關(guān)系(子集、真子集、相等。
(3理解集合的運算(交、并、補。
(4了解充要條件。
(基礎(chǔ)模塊第二章不等式(約12課時
(1理解不等式的基本性質(zhì)。
(2掌握區(qū)間的概念。高一上數(shù)學(xué)教學(xué)計劃高一上數(shù)學(xué)教學(xué)計劃。
(3掌握一元二次不等式的解法。
基礎(chǔ)模塊)第三章函數(shù)(約20課時
(1理解函數(shù)的概念和函數(shù)的三種表示法。
(2理解函數(shù)的單調(diào)性與奇偶性。
(3能運用函數(shù)的知識解決有關(guān)實際問題。
(基礎(chǔ)模塊第四章指數(shù)函數(shù)與對數(shù)函數(shù)(約20課時
(1理解有理指數(shù)冪,掌握實數(shù)指數(shù)冪及其運算法則,掌握利用計算器進(jìn)行冪的計算方法。
(2了解冪函數(shù)的概念及其簡單性質(zhì)。
(3理解指數(shù)函數(shù)的概念、圖像及性質(zhì)。
(4理解對數(shù)的概念(含常用對數(shù)、自然對數(shù)及積、商、冪的對數(shù),掌握利用計算器求對數(shù)值的方法。
(5理解對數(shù)函數(shù)的概念、圖像及性質(zhì)。
(6能運用指數(shù)函數(shù)與對數(shù)函數(shù)的知識解決有關(guān)實際問題。
高一數(shù)學(xué)教學(xué)計劃9
一、學(xué)情分析
這節(jié)課是在學(xué)生已經(jīng)學(xué)過的二維的平面直角坐標(biāo)系的基礎(chǔ)上的推廣,是以后學(xué)習(xí)空間向量等內(nèi)容的基礎(chǔ)。
二、教學(xué)目標(biāo)
1. 讓學(xué)生經(jīng)歷用類比的數(shù)學(xué)思想方法探索空間直角坐標(biāo)系的建立方法,進(jìn)一步體會數(shù)學(xué)概念、方法產(chǎn)生和發(fā)展的過程,學(xué)會科學(xué)的思維方法。
2. 理解空間直角坐標(biāo)系與點的坐標(biāo)的意義,掌握由空間直角坐標(biāo)系內(nèi)的點確定其坐標(biāo)或由坐標(biāo)確定其在空間直角坐標(biāo)系內(nèi)的點,認(rèn)識空間直角坐標(biāo)系中的點與坐標(biāo)的關(guān)系。
3. 進(jìn)一步培養(yǎng)學(xué)生的空間想象能力與確定性思維能力。
三、教學(xué)重點:在空間直角坐標(biāo)系中點的坐標(biāo)的確定。
四、教學(xué)難點:通過建立空間直角坐標(biāo)系利用點的坐標(biāo)來確定點在空間內(nèi)的位置
五、教學(xué)過程
(一)、問題情景
1. 確定一個點在一條直線上的位置的方法。
2. 確定一個點在一個平面內(nèi)的位置的方法。
3. 如何確定一個點在三維空間內(nèi)的位置?
例:如圖,在房間(立體空間)內(nèi)如何確定一個同學(xué)的頭所在位置?
在學(xué)生思考討論的基礎(chǔ)上,教師明確:確定點在直線上,通過數(shù)軸需要一個數(shù);確定點在平面內(nèi),通過平面直角坐標(biāo)系需要兩個數(shù)。那么,要確定點在空間內(nèi),應(yīng)該需要幾個數(shù)呢?通過類比聯(lián)想,容易知道需要三個數(shù)。要確定同學(xué)的頭的位置,知道同學(xué)的頭到地面的距離、到相鄰的兩個墻面的距離即可。
(此時學(xué)生只是意識到需要三個數(shù),還不能從坐標(biāo)的角度去思考,因此,教師在這兒要重點引導(dǎo))
教師明晰:在地面上建立直角坐標(biāo)系xOy,則地面上任一點的位置只須利用x,y就可確定。為了確定不在地面內(nèi)的電燈的位置,須要用第三個數(shù)表示物體離地面的高度,即需第三個坐標(biāo)z.因此,只要知道電燈到地面的距離、到相鄰的兩個墻面的距離即可。例如,若這個電燈在平面xOy上的射影的兩個坐標(biāo)分別為4和5,到地面的距離為3,則可以用有序數(shù)組(4,5,3)確定這個電燈的位置(如圖26-3)。
這樣,仿照初中平面直角坐標(biāo)系,就建立了空間直角坐標(biāo)系O-xyz,從而確定了空間點的位置。
(二)、建立模型
1. 在前面研究的基礎(chǔ)上,先由學(xué)生對空間直角坐標(biāo)系予以抽象概括,然后由教師給出準(zhǔn)確的定義。
從空間某一個定點O引三條互相垂直且有相同單位長度的數(shù)軸,這樣就建立了空間直角坐標(biāo)系O-xyz,點O叫作坐標(biāo)原點,x軸、y軸、z軸叫作坐標(biāo)軸,這三條坐標(biāo)軸中每兩條確定一個坐標(biāo)平面,分別稱為xOy平面,yOz平面,zOx平面。
教師進(jìn)一步明確:
(1)在空間直角坐標(biāo)系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個坐標(biāo)系為右手坐標(biāo)系,課本中建立的坐標(biāo)系都是右手坐標(biāo)系。
(2)將空間直角坐標(biāo)系O-xyz畫在紙上時,x軸與y軸、x軸與z軸成135,而y軸垂直于z軸,y軸和z軸的單位長度相等,但x軸上的單位長度等于y軸和z軸上的單位長度的 ,這樣,三條軸上的單位長度直觀上大致相等。
2. 空間直角坐標(biāo)系O-xyz中點的坐標(biāo)。
思考:在空間直角坐標(biāo)系中,空間任意一點A與有序數(shù)組(x,y,z)有什么樣的對應(yīng)關(guān)系?
在學(xué)生充分討論思考之后,教師明確:
(1)過點A作三個平面分別垂直于x軸,y軸,z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,這樣,對空間任意點A,就定義了一個有序數(shù)組(x,y,z)。
(2)反之,對任意一個有序數(shù)組(x,y,z),按照剛才作圖的相反順序,在坐標(biāo)軸上分別作出點P,Q,R,使它們在x軸、y軸、z軸上的坐標(biāo)分別是x,y,z,再分別過這些點作垂直于各自所在的坐標(biāo)軸的平面,這三個平面的交點就是所求的點A.
這樣,在空間直角坐標(biāo)系中,空間任意一點A與有序數(shù)組(x,y,z)之間就建立了一種一一對應(yīng)關(guān)系:A (x,y,z)。
教師進(jìn)一步指出:空間直角坐標(biāo)系O-xyz中任意點A的坐標(biāo)的概念
對于空間任意點A,作點A在三條坐標(biāo)軸上的射影,即經(jīng)過點A作三個平面分別垂直于x軸、y軸和z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應(yīng)數(shù)軸上的坐標(biāo)依次為x,y,z,我們把有序數(shù)組(x,y,z)叫作點A的坐標(biāo),記為A(x,y,z)。
(三)、例 題 與 練習(xí)
1. 課本135頁例1.
注意:在分析中緊扣坐標(biāo)定義,強調(diào)三個步驟,第一步從原點出發(fā)沿x軸正方向移動5個單位,第二步沿與y軸平行的方向向右移動4個單位,第三步沿與z軸平行的方向向上移動6個單位(如圖26-5)。
2. 課本135頁例2
探究: (1)在空間直角坐標(biāo)系中,坐標(biāo)平面xOy,xOz,yOz上點的坐標(biāo)有什么特點?
(2)在空間直角坐標(biāo)系中,x軸、y軸、z軸上點的坐標(biāo)有什么特點?
解:(1)xOy平面、xOz平面、yOz平面內(nèi)的點的坐標(biāo)分別形如(x,y,0),(x,0,z),(0,y,z)。
(2)x軸、y軸、z軸上點的坐標(biāo)分別形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知長方體ABCD-ABCD的邊長AB=12,AD=8,AA=5,以這個長方體的頂點A為坐標(biāo)原點,射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個長方體各個頂點的坐標(biāo)。
注意:此題可以由學(xué)生口答,教師點評。
解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。
討論:若以C點為原點,以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角坐標(biāo)系,那么各頂點的坐標(biāo)又是怎樣的呢?
得出結(jié)論:建立不同的坐標(biāo)系,所得的同一點的坐標(biāo)也不同。
[練習(xí)]
1. 在空間直角坐標(biāo)系中,畫出下列各點:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。
2. 已知:長方體ABCD-ABCD的邊長AB=12,AD=8,AA=7,以這個長方體的頂點B為坐標(biāo)原點,射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角坐標(biāo)系,求這個長方體各個頂點的坐標(biāo)。
3. 寫出坐標(biāo)平面yOz上yOz平分線上的點的坐標(biāo)滿足的條件。
(四)、拓展延伸
分別寫出點(1,1,1)關(guān)于各坐標(biāo)軸和各個坐標(biāo)平面對稱的點的坐標(biāo)。
六、評價設(shè)計
1、練習(xí): 課本P136. 1、2、3
2、課堂作業(yè): 課本P138. 1、2
高一數(shù)學(xué)教學(xué)計劃10
一、基本情況分析:
1、學(xué)生情況分析:4個重點班的學(xué)生,基礎(chǔ)比較好,學(xué)習(xí)積極性高。普通班學(xué)生在基礎(chǔ)、學(xué)習(xí)習(xí)慣、學(xué)習(xí)自覺性等方面都有一定差距,因此在教學(xué)中需時時提醒學(xué)生,培養(yǎng)其自覺性。學(xué)生存在的最大問題是計算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點在于強化基礎(chǔ)知識,培養(yǎng)學(xué)生的計算能力,提高思維能力,爭取每堂課教學(xué)一個知識點,掌握一個知識點。
2、教材分析:本學(xué)期時間短,教學(xué)任務(wù)是必修4第二章,必修5,必修2涉及平面向量,解三角形,數(shù)列,空間幾何體,點,線面的位置關(guān)系,直線與方程,圓與方程。
二、教學(xué)內(nèi)容:
本學(xué)期的數(shù)學(xué)教學(xué)內(nèi)容是高一數(shù)學(xué)下冊,包括第四章《三角函數(shù)》和第五章《平面向量》。按照數(shù)學(xué)教學(xué)大綱的要求,第四章教學(xué)需要36個課時(不包含考試與測驗的時間);第五章的教學(xué)需要22個課時,共計需要58個課時。本學(xué)期有兩次月考和五一長假,實際授課時間為18周,按每周6課時計算,數(shù)學(xué)課時達(dá)到110課時左右,時間相當(dāng)充足。這為我們數(shù)學(xué)組全面貫徹“低切入、慢節(jié)奏”的教學(xué)方針提供了保障,也是我們提高學(xué)生數(shù)學(xué)水平的又一次極好的機會。
三、本學(xué)期教學(xué)目標(biāo)
在基礎(chǔ)知識方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其內(nèi)容反映出來的數(shù)學(xué)思想和方法。在基本技能方面能按照一定的程序與步驟進(jìn)行運算、處理數(shù)據(jù)、能使用計數(shù)器及簡單的推理、畫圖。
能運用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,形成良好的思維品質(zhì);會根據(jù)法則、公式正確的進(jìn)行運算、處理數(shù)據(jù),并能根據(jù)問題的情景設(shè)計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問題,并進(jìn)行交流,形成數(shù)學(xué)的意思;從而通過獨立思考,會從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題,進(jìn)行探索和研究。
培養(yǎng)學(xué)生,學(xué)習(xí)數(shù)學(xué)的興趣、信心和毅力及實事求是的科學(xué)態(tài)度,勇于探索創(chuàng)新的精神,及欣賞數(shù)學(xué)的美學(xué)價值,并懂的數(shù)學(xué)來源于實踐又反作用于實踐的觀點;數(shù)學(xué)中普遍存在的對立統(tǒng)一、運動變化、相互聯(lián)系、相互轉(zhuǎn)化等觀點。
四、教學(xué)計劃:
本學(xué)期的期中考試(預(yù)計在4月14號至4月17號進(jìn)行)涵蓋的內(nèi)容為第四章的前9節(jié),由于課時量充足,第10節(jié)“正切函數(shù)的圖像和性質(zhì)”以及第11節(jié)“已知三角函數(shù)值求角”將在上半學(xué)期講授,這樣下半個學(xué)期的教學(xué)任務(wù)為30個課時。
我們備課組經(jīng)過認(rèn)真的思索、充分的討論,將期中考試前的教學(xué)進(jìn)度安排如下:
(一單元)任意角的三角函數(shù)
§4.1角的概念的推廣3課時
§4.2弧度制3課時
§4.3任意角的三角函數(shù)3~4課時
§4.4同角三角函數(shù)的基本關(guān)系4課時
§4.5正弦、余弦的誘導(dǎo)公式4課時
復(fù)習(xí)課(習(xí)題課)4課時
單元測試及講評2課時
(二單元)兩角和與差的三角函數(shù)
§4.6兩角和與差的正弦、余弦、正切7課時
習(xí)題課3課時
§4.7兩倍角的正弦、余弦、正切4課時
習(xí)題課2課時
單元測試及講評2課時
(三單元)三角函數(shù)的圖象及性質(zhì)
§4.8正弦、余弦函數(shù)的圖象和性質(zhì)5課時
習(xí)題課2課時
§4.9函數(shù)的圖象4課時總計授課53課時,余下課時可安排期中復(fù)習(xí)。
期中考試后的授課計劃:
§4.10正切函數(shù)的圖象和性質(zhì)3課時
§4.11已知三角函數(shù)值求角4課時
習(xí)題課2課時
第四章復(fù)習(xí)4課時
第五章
(一單元)向量及其運算
§5.1向量1課時
§5.2向量的加減法2課時
§5.3實數(shù)與向量的積3課時
§5.4平面向量的.坐標(biāo)計算3課時
§5.5線段的定比分點2課時
§5.6平面向量的數(shù)量積及運算律3課時
§5.7平面向量數(shù)量積的坐標(biāo)表示2課時
§5.8平移2課時
習(xí)題課3課時
單元測試與講評(隨堂)2課時
§5.9正弦、余弦定理5課時
§5.10解斜三角形應(yīng)用舉例2課時
實習(xí)與研究性課題4課時
習(xí)題課3課時
單元測試與講評2課時
總結(jié):以上就是本學(xué)期的數(shù)學(xué)教學(xué)計劃,希望能對你有所幫助,如有不足之處,請批評指正!
高一數(shù)學(xué)教學(xué)計劃11
指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機的使用等。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。
(3)根據(jù)數(shù)學(xué)的學(xué)科特點,加強學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。
(4)使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實基礎(chǔ),加強綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
學(xué)情分析及相關(guān)措施:
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。
具體措施如下:
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項突破難點.所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。
(3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
(6)注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
教學(xué)進(jìn)度安排:
周 次
時
內(nèi) 容
重 點、難 點
第1周
9.2~9.6
集合的含義與表示、
集合間的基本關(guān)系、
會求兩個簡單集合的并集與交集;會求給定子集的補集;
難點:理解概念
第2周
9.7~9.13
集合的基本運算
函數(shù)的概念、
函數(shù)的表示法
能使用Venn圖表達(dá)集合的關(guān)系及運算,會求一些簡單函數(shù)的定義域和值域;能簡單應(yīng)用
第3周
9.14~9.20
單調(diào)性與最值、
奇偶性、實習(xí)、小結(jié)
學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì),理解函數(shù)單調(diào)性、最大(小)值及幾何意義
第4周
9.21~9.27
指數(shù)與指數(shù)冪的運算、
指數(shù)函數(shù)及其性質(zhì)
掌握冪的運算;探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點。難點:理解概念
第5周
9.28~10.4
(9月月考國慶放假)
第6周
10.5~10.11
對數(shù)與對數(shù)運算、
對數(shù)函數(shù)及其性質(zhì)
理解對數(shù)的概念及其運算性質(zhì),知道用換底公式;探索并了解對數(shù)函數(shù)單調(diào)性與特殊點;知道指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)
第7周
10.12~10.18
冪函數(shù)
從五個具體的冪函數(shù)(y=x,y=x2, y=x3, y=x-1, y=x1/2)圖象中認(rèn)識冪函數(shù)的一些性質(zhì)
第8周
10.19~10.25
方程的根與函數(shù)零點,
二分法求方程近似解,
能夠借助計算器用二分法求相應(yīng)方程的近似解;
第9周
10.26~11.1
幾類不同增長的模型、函數(shù)模型應(yīng)用舉例
對比指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義
第10周
11.2~11.8
期中復(fù)習(xí)及考試
分章歸納復(fù)習(xí)+1套模擬測試
第11周
11.9~11.15
任意角和弧度制
任意角的三角函數(shù)
了解任意角的概念和弧度制,能進(jìn)行弧度和度的互化;借助單位圓理解任意角三角函數(shù)的定義
第12周
11.16~11.22
三角函數(shù)的誘導(dǎo)公式
三角函數(shù)的圖像和性質(zhì)
借助三角函數(shù)線推導(dǎo)出誘導(dǎo)公式,能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函數(shù)的周期性
第13周
11.23~11.29
函數(shù)y=Asin(wx+q)的圖像
借助圖像理解正弦函數(shù)余弦函數(shù)正切函數(shù)的性質(zhì),借助計算機畫出圖像觀察A w q對函數(shù)圖像變化的影響
第14周
11.30~12.6
三角函數(shù)模型的簡單應(yīng)用 單元考試
會用三角函數(shù)解決一些簡單實際問題,體會三角函數(shù)是描述周期變化的重要函數(shù)模型
第15周
12.7~12.13
平面向量的實際背景及基本概念,平面向量的線性運算
掌握向量加、減法的運算,理解其幾何意義掌握數(shù)乘運算及兩個向量共線的含義了解平面向量的基本定理掌握正交分解及坐標(biāo)表示、會用坐標(biāo)表示平面向量的加減及數(shù)乘運算
第16周
12.14~12.20
平面向量的基本定理及坐標(biāo)表示,平面向量的數(shù)量積,
理解用坐標(biāo)表示的平面向量共線的條件,理解平面向量數(shù)量積德含義及其物理意義,體會平面向量數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面,向量數(shù)量積的運算、求夾角、及垂直關(guān)系
第17周
12.21~12.27
平面向量應(yīng)用舉例,
小結(jié)
用向量方法解決莫些簡單的平面幾何問題、力學(xué)問題與其他一些實際問題的過程,體會向量是一種幾何問題,物理問題的工具,發(fā)展運算能力和解決實際問題的能力
第18周
12.28~1.3
兩角和與差點正弦、余弦和正切公式
能以兩角差點余弦公式導(dǎo)出兩角和與差點正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它們的內(nèi)在聯(lián)系
第19周
1.4~1.10
簡單的三角恒等變換
期末復(fù)習(xí)
高一數(shù)學(xué)教學(xué)計劃12
一、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點)
必修5第一章:解三角形;重點是正弦定理與余弦定理;難點是正弦定理與余弦定理的應(yīng)用;第二章:數(shù)列;重點是等差數(shù)列與等比數(shù)列的前n項的和;難點是等差數(shù)列與等比數(shù)列前n項的和與應(yīng)用;第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式;難點是二元一次不等式(組)與簡單的線性規(guī)劃問題及應(yīng)用;
必修2第一章:空間幾何體;重點是空間幾何體的三視圖和直觀圖及表面積與體積;難點是空間幾何體的三視圖;第二章:點、直線、平面之間的位置關(guān)系;重點與難點都是直線與平面平行及垂直的判定及其性質(zhì);第三章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當(dāng)?shù)闹本€方程求解題目;第四章:圓與方程;重點是圓的方程及直線與圓的位置關(guān)系;難點是直線與圓的位置關(guān)系;
二、學(xué)生分析(雙基智能水平、學(xué)習(xí)態(tài)度、方法、紀(jì)律)
較去年而言,今年的學(xué)生的素質(zhì)有了比較大的提高,學(xué)生的基礎(chǔ)知識水平與基本學(xué)習(xí)方法比較扎實,大部分的學(xué)生對學(xué)習(xí)都有很大的興趣,學(xué)習(xí)紀(jì)律比較自覺。
三、教學(xué)目的要求
1.通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關(guān)的實際問題。
2.通過日常生活中的實例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項公式與前n項和的公式,能用有關(guān)的知識解決相應(yīng)的問題。
3.理解不等式(組)對于刻畫不等關(guān)系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。
4.幾何學(xué)研究現(xiàn)實世界中物體的形狀、大小與位置的學(xué)科。直觀感知、操作確認(rèn)、思辨論證、度量計算是認(rèn)識和探索幾何圖形及其性質(zhì)的方法。先從對空間幾何體的整體觀察入手,認(rèn)識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認(rèn)識和理解空間中點、直線、平面之間的位置關(guān)系,并利用數(shù)學(xué)語言表述有關(guān)平行、垂直的性質(zhì)與判定,對某些結(jié)論進(jìn)行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標(biāo)系中建立直線和圓的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質(zhì)及其相互關(guān)系,了解空間直角坐標(biāo)系。體會數(shù)形結(jié)合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學(xué)任務(wù)和提高教學(xué)質(zhì)量的具體措施
積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例題統(tǒng)一、習(xí)題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時對學(xué)生的思想進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。
五、教學(xué)進(jìn)度
周次 | 課、章、節(jié) | 教 學(xué) 內(nèi) 容 | 備 注 |
1 | 1.1,1.2 | 解三角形 | |
2 | 1.2 | 解三角形 | |
3 | 2.1,2.2 | 數(shù)列的概念與簡單表示法,等差數(shù)列 | |
4 | 2.3 | 等差數(shù)列的前n項和 | |
5 | 2.4,2.5 | 等比數(shù)列及前n項和 | |
6 | 2.5 | 考試 | |
7 | 3.1,3.2 | 不等關(guān)系與不等式,一元二次不等式及其解法 | |
8 | 3.3,3.4 | 二元一次不等式(組)與簡單線性規(guī)劃問題,基本不等式 | |
9 | 考試,復(fù)習(xí) | ||
10 | 期中考試 | ||
11 | 1.1,1.2 | 空間幾何體的結(jié)構(gòu),三視圖,直觀圖 | |
12 | 1.3 | 空間幾何體的表面積與體積 | |
13 | 2.1,2.2 | 空間點、直線、平面的位置關(guān)系,直線、平面平行的判定及其性質(zhì) | |
14 | 2.3 | 直線、平面的判定及其性質(zhì) | |
15 | 3.1,3.2 | 直線的傾斜角與斜率,直線方程 | |
16 | 3.3 | 直線的交點坐標(biāo)與距離公式 | |
17 | 4.1,4.2 | 圓的方程,直線、圓的位置關(guān)系 | |
18 | 4.3 | 空間直角坐標(biāo)系 | |
19 | 復(fù)習(xí) | ||
20 | 考試 |
高一數(shù)學(xué)教學(xué)計劃13
一、基本情況分析
任教153班與154班兩個班,其中153班是文化班有男生51人,女生22人;154班是美術(shù)班有男生23人,女生21人,并且有音樂生8人。兩個班基礎(chǔ)差,學(xué)習(xí)數(shù)學(xué)的興趣都不高。
二、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。
三、教學(xué)建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練把握知識的邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材對教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響。
2、準(zhǔn)確把握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,準(zhǔn)確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數(shù)學(xué)應(yīng)用;重視數(shù)學(xué)思想方法的滲透。如增加閱讀材料(開闊學(xué)生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實施的出發(fā)點和歸宿,教師必須面向全體學(xué)生因材施教,以學(xué)生為主體,構(gòu)建新的認(rèn)識體系,營造有利于學(xué)生學(xué)習(xí)的氛圍。
4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生的學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識;組織好研究性課題的教學(xué),讓學(xué)生感受社會生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。
5、加強課堂教學(xué)研究,科學(xué)設(shè)計教學(xué)方法。根據(jù)教材的內(nèi)容和特征,實行啟發(fā)式和討論式教學(xué)。發(fā)揚教學(xué)民主,師生雙方密切合作,交流互動,讓學(xué)生感受、理解知識的產(chǎn)生和發(fā)展的過程。教研組要根據(jù)教材各章節(jié)的重難點制定教學(xué)專題,每人每學(xué)期指定一個專題,安排一至二次教研課。年級備課組每周舉行一至二次教研活動,積累教學(xué)經(jīng)驗。
6、落實課外活動的內(nèi)容。組織和加強數(shù)學(xué)興趣小組的活動內(nèi)容,加強對高層次學(xué)生的競賽輔導(dǎo),培養(yǎng)拔尖人才。
四、教研課題
高中數(shù)學(xué)新課程新教法
五。教學(xué)進(jìn)度
第一周 集 合
第二周 函數(shù)及其表示
第三周 函數(shù)的基本性質(zhì)
第四周 指數(shù)函數(shù)
第五周 對數(shù)函數(shù)
第六周 冪函數(shù)
第七周 函數(shù)與方程
第八周 函數(shù)的應(yīng)用
第九周 期中考試
第十十一周 空間幾何體
第十二周 點,直線,面之間的位置關(guān)系
第十三十四周 直線與平面平行與垂直的判定與性質(zhì)
第十五十六周 直線與方程
第十八十九周 圓與方程
第二十周 期末考試
高一數(shù)學(xué)教學(xué)計劃14
一、具體目標(biāo):
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)
二、本學(xué)期要達(dá)到的教學(xué)目標(biāo)
1.雙基要求:
在基礎(chǔ)知識方面讓學(xué)生掌握高一有關(guān)的概念、性質(zhì)、法則、公式、定理以及由其內(nèi)容反映出來的數(shù)學(xué)思想和方法。在基本技能方面能按照一定的程序與步驟進(jìn)行運算、處理數(shù)據(jù)、能使用計數(shù)器及簡單的推理、畫圖。
2.能力培養(yǎng):
能運用數(shù)學(xué)概念、思想方法,辨明數(shù)學(xué)關(guān)系,形成良好的思維品質(zhì);會根據(jù)法則、公式正確的進(jìn)行運算、處理數(shù)據(jù),并能根據(jù)問題的情景設(shè)計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關(guān)學(xué)科、生產(chǎn)和生活的數(shù)學(xué)問題,并進(jìn)行交流,形成數(shù)學(xué)的意思;從而通過獨立思考,會從數(shù)學(xué)的角度發(fā)現(xiàn)和提出問題,進(jìn)行探索和研究。
3. 思想教育:
三、進(jìn)度授課計劃及進(jìn)度表(略)
高中是人生中的關(guān)鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中一年級上學(xué)期數(shù)學(xué)教學(xué)計劃,希望大家喜歡。
高一數(shù)學(xué)教學(xué)計劃15
一、學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在的主要問題
我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面:
1、進(jìn)一步學(xué)習(xí)條件不具備。高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等??陀^上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。
2、被動學(xué)習(xí)。許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán)。表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、對自己學(xué)習(xí)數(shù)學(xué)的好差(或成敗)不了解,更不會去進(jìn)行反思總結(jié),甚至根本不關(guān)心自己的成敗。
4、不能計劃學(xué)習(xí)行動,不會安排學(xué)習(xí)生活,更不能調(diào)節(jié)控制學(xué)習(xí)行為,不能隨時監(jiān)控每一步驟,對學(xué)習(xí)結(jié)果不會正確地自我評價。
5、不重視基礎(chǔ)。一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
此外,還有許多學(xué)生數(shù)學(xué)學(xué)習(xí)興趣不濃厚,不具備應(yīng)用數(shù)學(xué)的意識和能力,對數(shù)學(xué)思想方法重視不夠或掌握情況不好,缺乏將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,缺乏準(zhǔn)確運用數(shù)學(xué)語言來分析問題和表達(dá)思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴(yán)重制約著學(xué)生數(shù)學(xué)成績的提高。
二、教學(xué)策略思考與實踐
針對我校高一學(xué)生的具體情況,我在高一數(shù)學(xué)新教材教學(xué)實踐與探究中,貫徹“因人施教,因材施教”原則。以學(xué)法指導(dǎo)為突破口;著重在“讀、講、練、輔、作業(yè)”等方面下功夫,取得一定效果。
加強學(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣。良好的學(xué)習(xí)習(xí)慣包括制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。
制定計劃使學(xué)習(xí)目的明確,時間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動學(xué)生主動學(xué)習(xí)和克服困難的內(nèi)在動力。但計劃一定要切實可行,既有長遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。
課前自學(xué)是學(xué)生上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ)。課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動權(quán)。自學(xué)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。“學(xué)然后知不足”,課前自學(xué)過的同學(xué)上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細(xì)刻,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。
及時復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán),通過反復(fù)閱讀教材,多方查閱有關(guān)資料,強化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進(jìn)行分析比較,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記上,使對所學(xué)的新知識由“懂”到“會”。
獨立作業(yè)是學(xué)生通過自己的獨立思考,靈活地分析問題、解決問題,進(jìn)一步加深對所學(xué)新知識的理解和對新技能的掌握過程。這一過程是對學(xué)生意志毅力的考驗,通過運用使學(xué)生對所學(xué)知識由“會”到“熟”。
解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復(fù)思考,實在解決不了的要請教老師和同學(xué),并要經(jīng)常把易錯的地方拿出來復(fù)習(xí)強化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識,長期堅持使對所學(xué)知識由“熟”到“活”。
系統(tǒng)小結(jié)是學(xué)生通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識和發(fā)展認(rèn)識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與有關(guān)資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系。以達(dá)到對所學(xué)知識融會貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對所學(xué)知識由“活”到“悟”。
課外學(xué)習(xí)包括閱讀課外書籍與報刊,參加學(xué)科競賽與講座,走訪高年級同學(xué)或老師交流學(xué)習(xí)心得等。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補充和繼續(xù),它不僅能豐富學(xué)生的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能滿足和發(fā)展他們的興趣愛好,培養(yǎng)獨立學(xué)習(xí)和工作能力,激發(fā)求知欲與學(xué)習(xí)熱情。
1、讀。俗話說“不讀不憤,不憤不悱”。首先要讀好概念。讀概念要“咬文嚼字”,掌握概念內(nèi)涵和外延及辨析概念。例如,集合是數(shù)學(xué)中的一個原始概念,是不加定義的。它從常見的“我校高一年級學(xué)生”、“我家的家用電器”、“太平洋、大西洋、印度洋、北冰洋”及“自然數(shù)”等事物中抽象出來,但集合的概念又不同于特殊具體的實物集合,集合的確定及性質(zhì)特征是由一組公理來界定的。“確定性、無序性、互異性”常常是“集合”的代名詞。
再如象限角的概念,要向?qū)W生解釋清楚,角的始邊與x軸的非負(fù)半軸重合和與x軸的正半軸重合的細(xì)微差別;根據(jù)定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導(dǎo)學(xué)生從多層次,多角度去認(rèn)識和掌握數(shù)學(xué)概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結(jié)論。如高一新教材(上)等比數(shù)列的前n項和Sn。有q≠1和q=1兩種情形;對數(shù)計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規(guī)范。如在解對數(shù)函數(shù)題時,要注意“真數(shù)大于0”的隱含條件;解有關(guān)二次函數(shù)題時要注意二次項系數(shù)不為零的隱含條件等。讀書要鼓勵學(xué)生相互議論。俗語說“議一議知是非,爭一爭明道理”。例如,讓學(xué)生議論數(shù)列與數(shù)集的聯(lián)系與區(qū)別。數(shù)列與數(shù)的集合都是具有某種共同屬性的全體。數(shù)列中的數(shù)是有順序的,而數(shù)集中的元素是沒有順序的;同一個數(shù)可以在數(shù)列中重復(fù)出現(xiàn),而數(shù)集中的元素是沒有重復(fù)的(相同的數(shù)在數(shù)集中算作同一個元素)。在引導(dǎo)學(xué)生閱讀時,教師要經(jīng)常幫助學(xué)生歸類、總結(jié),盡可能把相關(guān)知識表格化。如一元二次不等式的解情況列表,三角函數(shù)的圖象與性質(zhì)列表等,便于學(xué)生記憶掌握。
2、講。外國有一位教育家曾經(jīng)說過:教師的作用在于將“冰冷”的知識加溫后傳授給學(xué)生。講是實踐這種傳授的最直接和最有效的教學(xué)手段。首先講要注意循序漸進(jìn)的原則。循序漸進(jìn),防止急躁。由于學(xué)生年齡較小,閱歷有限,為數(shù)不少的高中學(xué)生容易急躁,有的同學(xué)貪多求快,囫圇吞棗,有的同學(xué)想靠幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學(xué)生懂得學(xué)習(xí)是一個長期的鞏固舊知識、發(fā)現(xiàn)新知識的積累過程,決非一朝一夕可以完成,為什么高中要上三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達(dá)到了自動化或半自動化的熟練程度。
每堂新授課中,在復(fù)習(xí)必要知識和展示教學(xué)目標(biāo)的基礎(chǔ)上,老師著重揭示知識的產(chǎn)生、形成、發(fā)展過程,解決學(xué)生疑惑。比如在學(xué)習(xí)兩角和差公式之前,學(xué)生已經(jīng)掌握五套誘導(dǎo)公式,可以將求任意角三角函數(shù)值問題轉(zhuǎn)化為求某一個銳角三角函數(shù)值的問題。此時教師應(yīng)進(jìn)一步引導(dǎo)學(xué)生:對于一些半特殊的教(750度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函數(shù)就呼之欲出了,極大激發(fā)了學(xué)生的學(xué)習(xí)興趣。講課要注意從簡單到復(fù)雜的過程,要讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。鼓勵學(xué)生應(yīng)積極、主動參與課堂活動的全過程,教、學(xué)同步。讓學(xué)生自己真正做學(xué)習(xí)的主人。
例如,講解函數(shù)的圖象應(yīng)從振幅、周期、相位依次各自進(jìn)行變化,然后再綜合,并盡可能利用多媒體輔助教學(xué),使學(xué)生容易接受。其次講要注重突出數(shù)學(xué)思想方法的教學(xué),注重學(xué)生數(shù)學(xué)能力的培養(yǎng)。例如講到等比數(shù)列的概念、通項公式、等比中項、等比數(shù)列的性質(zhì)、等比數(shù)列的前n項和??梢砸龑?dǎo)學(xué)生對照等差數(shù)列的相應(yīng)的內(nèi)容,比較聯(lián)系。讓學(xué)生更清楚等差數(shù)列和等比數(shù)列是兩個對偶概念。
3、練。數(shù)學(xué)是以問題為中心。學(xué)生怎么應(yīng)用所學(xué)知識和方法去分析問題和解決問題,必須進(jìn)行練習(xí)。首先練習(xí)要重視基礎(chǔ)知識和基本技能,切忌過早地進(jìn)行“高、深、難”練習(xí)。鑒于目前我校高一的生源現(xiàn)狀,基礎(chǔ)訓(xùn)練是很有必要的。課本的例題、練習(xí)題和習(xí)題要求學(xué)生要題題過關(guān);補充的練習(xí),應(yīng)先是課本中練習(xí)及習(xí)題的簡單改造題,這有利于學(xué)生鞏固基礎(chǔ)知識和基本技能。讓學(xué)生通過認(rèn)真思考可以完成。即讓學(xué)生“跳一跳可以摸得著”。一定要讓學(xué)生在練習(xí)中強化知識、應(yīng)用方法,在練習(xí)中分步達(dá)到教學(xué)目標(biāo)要求并獲得再練習(xí)的興趣和信心。例如根據(jù)數(shù)列前幾項求通項公式練習(xí),在新教材高一(上)P111例題2上簡單地做一些改造,便可以變化出各種求解通項公式方法的題目;再如數(shù)列復(fù)習(xí)參考題第12題;就是一個改造性很強的數(shù)學(xué)題,教師可以在上面做很多文章。其次要講練結(jié)合。學(xué)生要練習(xí),老師要評講。多講解題思路和解題方法,其中包括成功的與錯誤的。特別是注意要充分暴露錯誤的思維發(fā)生過程,在課堂造就民主氣氛,充分傾聽學(xué)生意見,哪怕走點“彎路”,吃點“苦頭”;另一方面,則引導(dǎo)學(xué)生各抒己見,評判各方面之優(yōu)劣,最后選出大家公認(rèn)的最佳方法。還可適當(dāng)讓學(xué)生涉及一些一題多解的題目,拓展思維空間,培養(yǎng)學(xué)生思維的多面性和深刻性。
例如,高一(下)P26例5求證??梢詮囊贿呑C到另一邊,也可以作差、作商比較,還可以用分析法來證明;再如解不等式。常用的解法是將無理不等式化為有理不等式求解。但還可以利用換元法,將無理不等式化為關(guān)于t的一元二次不等式求解。除此之外,亦可利用圖象法求解。在同一直角坐標(biāo)系中作出它們的圖像。求兩圖在x軸上方的交點的橫坐標(biāo)為2,最終得解。要求學(xué)生掌握通解通法同時,也要講究特殊解法。最后練習(xí)要增強應(yīng)用性。例如用函數(shù)、不等式、數(shù)列、三角、向量等相關(guān)知識解實際應(yīng)用題。引導(dǎo)學(xué)生學(xué)會建立數(shù)學(xué)模型,并應(yīng)用所學(xué)知識,研究此數(shù)學(xué)模型。
4、作業(yè)。鑒于學(xué)生現(xiàn)有的知識、能力水平差異較大,為了使每一位學(xué)生都能在自己的“最近發(fā)展區(qū)”更好地學(xué)習(xí)數(shù)學(xué),得到最好的發(fā)展,制定“分層次作業(yè)”。即將作業(yè)難度和作業(yè)量由易到難分成A、B、C三檔,由學(xué)生根據(jù)自身學(xué)習(xí)情況自主選擇,然后在充分尊重學(xué)生意見的基礎(chǔ)上再進(jìn)行協(xié)調(diào)。以后的時間里,根據(jù)學(xué)生實際學(xué)習(xí)情況,隨時進(jìn)行調(diào)整。
5、輔導(dǎo)。輔導(dǎo)指兩方面,培優(yōu)和補差。對于數(shù)學(xué)尖子生,主要培養(yǎng)其自學(xué)能力、獨立鉆研精神和集體協(xié)作能力。具體做法:成立由三至六名學(xué)生組成的討論組,教師負(fù)責(zé)為他們介紹高考、競賽參考書,并定期提供學(xué)習(xí)資料和咨詢、指導(dǎo)。下面著重談?wù)勓a差工作。輔導(dǎo)要鼓勵學(xué)生多提出問題,對于不能提高的同學(xué)要從平時作業(yè)及練習(xí)考試中發(fā)現(xiàn)問題,跟蹤到人,跟蹤到具體知識。要有計劃,有針對性和目的性地輔導(dǎo),切忌冷飯重抄和無目標(biāo)性。要及時檢查輔導(dǎo)效果,做到學(xué)生人人知道自己存在問題(越具體越好),老師對輔導(dǎo)學(xué)生情況要了如指掌。對學(xué)有困難的同學(xué),要耐心細(xì)致輔導(dǎo),還要注意鼓勵學(xué)生戰(zhàn)勝自己,提高自已的分析和解決問題的能力。
高一數(shù)學(xué)教學(xué)計劃
高一數(shù)學(xué)教學(xué)計劃1
進(jìn)一步深化教育教學(xué)改革,樹立全新的語文教育觀,構(gòu)建全新而科學(xué)的教學(xué)目標(biāo)體系、數(shù)學(xué)網(wǎng)特制定高一上學(xué)期數(shù)學(xué)函數(shù)的基本性質(zhì)教學(xué)計劃模板。
教材分析
函數(shù)性質(zhì)是函數(shù)的固有屬性,是認(rèn)識函數(shù)的重要手段,而函數(shù)性質(zhì)可以由函數(shù)圖象直觀的反應(yīng)出來,因此,函數(shù)各個性質(zhì)的學(xué)習(xí)要從特殊的、已知的圖象入手,抽象出此類函數(shù)的共同特征,并用數(shù)學(xué)語言來定義敘述?;诖耍竟?jié)的概念課教學(xué)要注重引導(dǎo),注重知識的形成過程,習(xí)題課教學(xué)以具體技巧、方法作為輔助練習(xí)。
學(xué)情分析
學(xué)生對函數(shù)概念重新認(rèn)識之后,可以結(jié)合初中學(xué)過的簡單函數(shù)的圖象對函數(shù)性質(zhì)進(jìn)行抽象定義。另外,為了方便學(xué)生做題及熟悉函數(shù)性質(zhì),還需要補充一些函數(shù)圖象的知識,例如平移、二次函數(shù)圖象、含絕對值函數(shù)的圖象、反比例函數(shù)及其變形的函數(shù)圖象??傊?,本節(jié)課的教學(xué)要從學(xué)生認(rèn)知實際出發(fā),堅持從圖象中來到圖象中去的原則。
教學(xué)建議
以圖象作為切入點進(jìn)行概念課教學(xué),引導(dǎo)學(xué)生對概念的形成有一個清晰的認(rèn)識,尤其是概念中的部分關(guān)鍵詞要做深入講解,用函數(shù)圖象指導(dǎo)學(xué)生做題。
教學(xué)目標(biāo)
知識與技能
(1)能理解函數(shù)單調(diào)性、最值、奇偶性的圖形特征
(2)會用單調(diào)性定義證明具體函數(shù)的單調(diào)性;會求函數(shù)的最值;會用奇偶性定義判斷函數(shù)奇偶性
(3)單調(diào)性與奇偶性的綜合題
(4)培養(yǎng)學(xué)生觀察、歸納、推理的抽象思維能力
過程與方法
(1)從觀察具體函數(shù)的圖像特征入手,結(jié)合相應(yīng)問題引導(dǎo)學(xué)生一步步轉(zhuǎn)化到用數(shù)學(xué)語言形式化的建立相關(guān)概念
(2)滲透數(shù)形結(jié)合的數(shù)學(xué)思想進(jìn)行習(xí)題課教學(xué)
情感、態(tài)度與價值觀
(1)使學(xué)生學(xué)會認(rèn)識事物的一般規(guī)律:從特殊到一般,抽象歸納
(2)培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力,進(jìn)一步規(guī)范學(xué)生用數(shù)學(xué)語言、數(shù)學(xué)符號進(jìn)行表達(dá)
課時安排
(1)概念課:單調(diào)性2課時,最值1課時,奇偶性1課時
(2)習(xí)題課:5課時
高一數(shù)學(xué)教學(xué)計劃2
一 設(shè)計思想:
函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,是銜接初等數(shù)學(xué)與高等數(shù)學(xué)的紐帶,再加上函數(shù)與方程還是中學(xué)數(shù)學(xué)四大數(shù)學(xué)思想之一,是具體事例與抽象思想相結(jié)合的體現(xiàn),在教學(xué)過程中,我采用了自主探究教學(xué)法。通過教學(xué)情境的設(shè)置,讓學(xué)生由特殊到一般,有熟悉到陌生,讓學(xué)生從現(xiàn)象中發(fā)現(xiàn)本質(zhì),以此激發(fā)學(xué)生的成就感,激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情。在現(xiàn)實生活中函數(shù)與方程都有著十分重要的應(yīng)用,因此函數(shù)與方程在整個高中數(shù)學(xué)教學(xué)中占有非常重要的地位。
二 教學(xué)內(nèi)容分析:
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)》的新增內(nèi)容之一,選自《普通高中課程標(biāo)準(zhǔn)實驗教課書數(shù)學(xué)I必修本(A版)》第94—95頁的第三章第一課時3。1。1方程的根與函數(shù)的的零點。
本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后由特殊到一般,將其推廣到一般方程與相應(yīng)的函數(shù)的情形。它既揭示了初中一元二次方程與相應(yīng)的二次函數(shù)的內(nèi)在聯(lián)系,也引出對函數(shù)知識的總結(jié)拓展。之后將函數(shù)零點與方程的根的關(guān)系在利用二分法解方程中(3。1。2)加以應(yīng)用,通過建立函數(shù)模型以及模型的求解(3。2)更全面地體現(xiàn)函數(shù)與方程的關(guān)系,逐步建立起函數(shù)與方程的聯(lián)系。滲透“方程與函數(shù)”思想。
總之,本節(jié)課滲透著重要的數(shù)學(xué)思想“特殊到一般的歸納思想”“方程與函數(shù)”和“數(shù)形結(jié)合”的思想,教好本節(jié)課可以為學(xué)好中學(xué)數(shù)學(xué)打下一個良好基礎(chǔ),因此教好本節(jié)是至關(guān)重要的。
三 教學(xué)目標(biāo)分析:
知識與技能:
1。結(jié)合方程根的幾何意義,理解函數(shù)零點的定義;
2。結(jié)合零點定義的探究,掌握方程的實根與其相應(yīng)函數(shù)零點之間的等價關(guān)系;
3。結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間 的方法
情感、態(tài)度與價值觀:
1。讓學(xué)生體驗化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學(xué)思想在解決數(shù)學(xué)問題時的意義與價值;
2。培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴(yán)密思考的良好學(xué)習(xí)習(xí)慣;
3。使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂趣與成功感
教學(xué)重點:函數(shù)零點與方程根之間的關(guān)系;連續(xù)函數(shù)在某區(qū)間上存在零點的判定方法。
教學(xué)難點:發(fā)現(xiàn)與理解方程的根與函數(shù)零點的關(guān)系;探究發(fā)現(xiàn)函數(shù)存在零點的方法。
四 教學(xué)準(zhǔn)備
導(dǎo)學(xué)案,自主探究,合作學(xué)習(xí),電子交互白板。
五 教學(xué)過程設(shè)計:略
六、探索研究(可根據(jù)時間和學(xué)生對知識的接受程度適當(dāng)調(diào)整)
討論:請大家給方程的一個解的大約范圍,看誰找得范圍更???
[師生互動]
師:把學(xué)生分成小組共同探究,給學(xué)生足夠的自主學(xué)習(xí)時間,讓學(xué)生充分研究,發(fā)揮其主觀能動性。也可以讓各組把這幾個題做為小課題來研究,激發(fā)學(xué)生學(xué)習(xí)潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區(qū)間大小情況。
生:分組討論,各抒己見。在探究學(xué)習(xí)中得到數(shù)學(xué)能力的提高
第五階段設(shè)計意圖:
一是為用二分法求方程的近似解做準(zhǔn)備
二是小組探究合作學(xué)習(xí)培養(yǎng)學(xué)生的創(chuàng)新能力和探究意識,本組探究題目就是為了培養(yǎng)學(xué)生的探究能力,此組題目具有較強的開放性,探究性,基本上可以達(dá)到上述目的。
七、課堂小結(jié):
零點概念
零點存在性的判斷
零點存在性定理的應(yīng)用注意點:零點個數(shù)判斷以及方程根所在區(qū)間
八、鞏固練習(xí)(略)
小編為大家提供的高一上學(xué)期數(shù)學(xué)教學(xué)計劃格式,大家仔細(xì)閱讀了嗎?最后祝同學(xué)們學(xué)習(xí)進(jìn)步。
高一數(shù)學(xué)教學(xué)計劃3
一、教學(xué)分析
1、分析教材
本章教材整體主要分成三大部分:
(1)、圓的標(biāo)準(zhǔn)方程與一般方程;
(2)、直線與圓、圓與圓的位置關(guān)系;
(3)、空間直角坐標(biāo)系以及空間兩點間的距離公式。
圓的方程是在前一章直線方程基礎(chǔ)上引入的新的曲線方程,更進(jìn)一步要求“數(shù)與形”結(jié)合。所以學(xué)習(xí)有關(guān)圓的方程時,仍仍然沿用直線方程中使用的坐標(biāo)法,繼續(xù)運用坐標(biāo)法研究直線與圓、圓與圓的位置關(guān)系等幾何問題。此外還要學(xué)習(xí)空間直角坐標(biāo)系的有關(guān)知識,以便為今后用坐標(biāo)法研究空間幾何對象奠定基礎(chǔ)。這些知識是進(jìn)一步學(xué)習(xí)圓錐曲線方程、導(dǎo)數(shù)和積分的基礎(chǔ)。
2、分析學(xué)生
高中一年級的學(xué)生還沒有建立起比較好的數(shù)形結(jié)合的思想,前面學(xué)習(xí)過直線知識,只是使學(xué)生有了用坐標(biāo)法研究問題的基本思路,通過圓的概念的引入及其現(xiàn)實生活中圓的例子,啟發(fā)學(xué)生學(xué)習(xí)的興趣及研究問題的方法,培養(yǎng)學(xué)生分析探索問題的能力,熟練的掌握解決解析幾何問題的方法-坐標(biāo)法,滲透數(shù)形結(jié)合的思想研究問題時抓住問題的本質(zhì),研究細(xì)致思考,規(guī)范得出解答,體現(xiàn)運動變化,對立統(tǒng)一的思想
3、教學(xué)重點與難點
重點:圓的標(biāo)準(zhǔn)方程與一般方程;利用直線與圓的方程判斷直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系的基本認(rèn)識。
難點:直線與圓的方程的應(yīng)用;會求解簡單的直線與圓的相關(guān)曲線的方程;建立空間直角坐標(biāo)系。
二、教學(xué)目標(biāo)
1、掌握圓的定義和圓標(biāo)準(zhǔn)方程、一般方程的概念;能根據(jù)圓的方程求圓心和半徑,初步掌握求圓的方程的方法。
2、掌握直線與圓的位置關(guān)系的判定。
3、在進(jìn)一步培養(yǎng)學(xué)生類比、數(shù)形結(jié)合、分類討論和化歸的數(shù)學(xué)思想方法的過程中,提高學(xué)生學(xué)習(xí)能力。
4、培養(yǎng)學(xué)生科學(xué)探索精神、審美觀和理論聯(lián)系實際思想。
三、教學(xué)策略
1、教學(xué)模式
本節(jié)內(nèi)容是運用“問題解決”課堂教學(xué)模式的一次嘗試,采用探究、討論的
教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,掌握數(shù)學(xué)基本知識和基本能力,培養(yǎng)積極探索和團結(jié)協(xié)作的科學(xué)精神。
2、教學(xué)方法與手段--充分利用信息技術(shù),合理整合課程資源
采用探究、討論的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲采用多媒體技術(shù),目的在于充分利用其優(yōu)良的傳播功能,大容量信息的呈現(xiàn)和生動形象的演示(尤其是動畫效果)對提高學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維、加深概念理解有積極作用。制作中,采用交互技術(shù),使課件的機動性得到加強。
四、對內(nèi)容安排的說明
本章分三部分:圓的標(biāo)準(zhǔn)方程與一般方程;直線與圓、圓與圓的位置關(guān)系;空間直角坐標(biāo)系。
1、建立圓的方程是本節(jié)的主要內(nèi)容之一。根據(jù)圓的幾何特征(主要是動點與定點間距離恒定)建立適當(dāng)?shù)淖鴺?biāo)系,再根據(jù)曲線上的點所滿足的幾何條件,求出點的坐標(biāo)所滿足的曲線方程。
通過研究方程來研究曲線的性質(zhì)是解析幾何的另一個主要內(nèi)容,這就是解析幾何通過代數(shù)方法研究幾何圖形的特點,也就是坐標(biāo)法。始終強調(diào)曲線方程與曲線圖像之間的一一對應(yīng)。這一思想應(yīng)該貫穿于整個圓的教學(xué)。
2.通過方程,研究直線與圓、圓與圓的位置關(guān)系是本章的主要內(nèi)容之一。判斷直線與圓、圓與圓的位置關(guān)系可以從兩個方面著手:
(1)。兩條曲線有無公共點,等價于由它們方程聯(lián)立的方程組有無實數(shù)解。方程組有幾組實數(shù)解,這兩條曲線就有幾個公共點;方程組沒有實數(shù)解,這兩條曲線就沒有公共點。
(2)。運用平面幾何知識,把直線與圓、圓與圓位置關(guān)系的結(jié)論轉(zhuǎn)化為相應(yīng)的代數(shù)結(jié)論。
3、坐標(biāo)法是研究幾何問題的重要方法,在教學(xué)過程中,應(yīng)該始終貫穿坐標(biāo)法這一重要思想,不怕重復(fù);通過坐標(biāo)系,把點和坐標(biāo)、曲線和方程聯(lián)系起來,實現(xiàn)形和數(shù)的統(tǒng)一。
用坐標(biāo)法解決幾何問題時,先用坐標(biāo)和方程表示相應(yīng)的幾何對象,然后對坐標(biāo)和方程進(jìn)行代數(shù)討論;最后再把代數(shù)運算結(jié)果翻譯成相應(yīng)的幾何結(jié)論。這就是用坐標(biāo)法解決平面幾何問題的“三步曲”:
第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中涉及的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;
第二步:通過代數(shù)運算,解決代數(shù)問題;
第三步:把代數(shù)運算結(jié)果翻譯成幾何結(jié)論。
五、教學(xué)評價
㈠過程性評價
1、教學(xué)過程中,教師的講解和學(xué)生的練習(xí)緊扣教學(xué)目標(biāo),內(nèi)容深淺要分層次,設(shè)計的問題要照顧好、中、差。
2、對于方程的推導(dǎo)運用的方法,學(xué)生理解起來難度較大,主要采用讓學(xué)生理解的基礎(chǔ)上進(jìn)行檢測反饋
㈡終結(jié)性評價
1、課程內(nèi)容全部結(jié)束后,讓學(xué)生分組交流、討論后,選代表談收獲、體會和感想。
2、留課后作業(yè)(扣教學(xué)目標(biāo)、分類型、分層次,落實學(xué)生為主體),讓學(xué)生認(rèn)真理解和鞏固,了解圓的標(biāo)準(zhǔn)方程和一般方程,以及直線與圓位置關(guān)系,做完課后習(xí)題,做好作業(yè)。
高一數(shù)學(xué)教學(xué)計劃4
1、指點思惟:
(1)跟著本質(zhì)教導(dǎo)的深化睜開,《課程計劃》提出了“教導(dǎo)要面向天下,面向?qū)?,面向古代化”以及“教?dǎo)必需為社會主義古代化建立效勞,必需與消費休息相分離,培育德、智、體等方面片面開展的社會主義奇跡的建立者以及接棒人”的指點思惟以及課程理念以及變革要點。使先生把握處置社會主義古代化建立以及進(jìn)一步進(jìn)修古代化迷信技能所需求的數(shù)學(xué)常識以及根本技藝。其內(nèi)收留包含代數(shù)、多少、三角的根本觀點、紀(jì)律以及它們反應(yīng)進(jìn)去的思惟辦法,幾率、統(tǒng)計的開端常識,較量爭論機的運用等。
(2)培育先生的邏輯思想才能、運算才能、空間設(shè)想才能,和綜合使用無關(guān)數(shù)學(xué)常識剖析成績息爭決成績的才能。使先生逐漸地學(xué)會察看、剖析、綜合、比擬、籠統(tǒng)、歸納綜合、探究以及立異的才能;使用歸結(jié)、歸納以及類比的辦法停止推理,并精確地、有層次地表白推理進(jìn)程的才能。
(3)依據(jù)數(shù)學(xué)的學(xué)科特色,增強進(jìn)修目標(biāo)性的教導(dǎo),進(jìn)步先生進(jìn)修數(shù)學(xué)的盲目心以及興味,培育先生杰出的進(jìn)修習(xí)氣,腳踏實地的迷信立場,固執(zhí)的進(jìn)修毅力以及自力考慮、探究立異的肉體。
(4)使先生具備必定的數(shù)學(xué)視線,逐漸看法數(shù)學(xué)的迷信代價、使用代價以及文明代價,構(gòu)成批駁性的思想習(xí)氣,崇尚數(shù)學(xué)的感性肉體,領(lǐng)會數(shù)學(xué)的美學(xué)意思,了解數(shù)學(xué)中遍及存正在著的活動、變革、互相聯(lián)絡(luò)以及互相轉(zhuǎn)化的景象,從而進(jìn)一步建立辯證唯心主義以及汗青唯心主義天下不雅。
(5)學(xué)會經(jīng)過搜集信息、處置數(shù)據(jù)、制造圖象、剖析緣由、推出論斷來處理實踐成績的思想辦法以及操縱辦法。
(6)本學(xué)期是高一的緊張期間,教員承當(dāng)著兩重義務(wù),既要不時夯實根底,增強綜合才能的培育,又要浸透無關(guān)高考的思惟辦法,為三年的進(jìn)修做好預(yù)備。
2、學(xué)情份析及相干辦法:
高一作為肇端年級,作為從任務(wù)教導(dǎo)階段邁進(jìn)本質(zhì)教導(dǎo)征程的順應(yīng)階段,該有的是一份固執(zhí)。他的非凡性就正在于它的超過性,抱負(fù)的期盼與學(xué)法的漸變,難度的增強與惰性的天生等等沖突抵觸隨同著高一重生的生長,面臨新課本的咱們也是邊探索邊改動,建立新的教授教養(yǎng)理念,并落真實講堂教授教養(yǎng)的各個關(guān)鍵,才干沒有負(fù)眾看。咱們要從先生的看法程度以及實踐才能動身,研討先生的心思特點,做好初三與高一的跟尾任務(wù),協(xié)助先生處理好從初中到高中進(jìn)修辦法的過渡。從高一同就留意培育先生杰出的數(shù)學(xué)思想辦法,杰出的進(jìn)修立場以及進(jìn)修習(xí)氣,以順應(yīng)高中貫通性的進(jìn)修辦法。詳細(xì)辦法以下:
(1)留意研討先生,做好初、高中進(jìn)修辦法的跟尾任務(wù)。
(2)會合精神打好根底,分項打破難點.所列根底常識根據(jù)課程規(guī)范計劃,著眼于根底常識與重點內(nèi)收留,要充沛注重根底常識、根本技藝、根本辦法的教授教養(yǎng),為進(jìn)一步的進(jìn)修打好堅固的根底,切勿忙于過早的拔高,上困難。同時應(yīng)放眼高中教授教養(yǎng)全局,留意高考命題中的常識請求,才能請求及新趨向,如許才干兼顧布置,按部就班,使高一的數(shù)學(xué)教授教養(yǎng)與高中教授教養(yǎng)的全局無機分離。.
(3)培育先生解答考題的才能,經(jīng)過例題,從方式以及內(nèi)收留兩方面臨所學(xué)常識停止才能方面的剖析,領(lǐng)導(dǎo)先生理解數(shù)學(xué)需求哪些才能請求。
(4)讓先生經(jīng)過單位測驗,檢測本人的實踐使用才能,從而實時總結(jié)經(jīng)歷,找出缺乏,做好充沛的預(yù)備
(5)抓好尖子生與落后生的教導(dǎo)任務(wù),提早睜開數(shù)學(xué)奧競提拔以及數(shù)學(xué)根底教導(dǎo)。
(6)留意使用古代化教授教養(yǎng)手腕輔佐數(shù)學(xué)教授教養(yǎng);留意使用投影儀、電腦軟件等古代化教授教養(yǎng)手腕輔佐教授教養(yǎng),進(jìn)步講堂服從,激起先生進(jìn)修興味。
高一數(shù)學(xué)教學(xué)計劃5
一、教學(xué)內(nèi)容
本學(xué)期將完成“《數(shù)學(xué)①》必修”和“《數(shù)學(xué)④》必修” (人民教育出版社教A版)的學(xué)習(xí),教學(xué)輔助材料有《三維設(shè)計》和自愿訂閱學(xué)習(xí)方法報部分單元練習(xí)及學(xué)法指導(dǎo)閱讀材料。二、教學(xué)目標(biāo)與要求
(一)前半期完成《數(shù)學(xué)①》主要涉及三章內(nèi)容:
第一章集合與函數(shù)的概念(約13學(xué)時)
通過本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時的簡潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會用集合語言表示數(shù)學(xué)對象,為以后的學(xué)習(xí)奠定基礎(chǔ)。
1.了解集合的含義,體會元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;
2.理解集合間的包含與相等關(guān)系,能識別給定集合的子集,了解全集與空集的含義;
3.理解補集的含義,會求在給定集合中某個集合的補集;
4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;
6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識的過程中,培養(yǎng)學(xué)生的思維能力。
第二章函數(shù)的概念與基本初等函數(shù)Ⅰ(約14學(xué)時)
教學(xué)本章時應(yīng)立足于現(xiàn)實生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學(xué)活動—意義建構(gòu)—數(shù)學(xué)理論—數(shù)學(xué)應(yīng)用—回顧反思”的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過實驗、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問題。通過本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學(xué)會用函數(shù)的思想、變化的觀點分析和解決問題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;
3.了解函數(shù)與方程之間的關(guān)系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;
4.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。
第三章函數(shù)的應(yīng)用(約9學(xué)時)
結(jié)合實際問題,感受運用函數(shù)概念建立模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的重要性,初步運用函數(shù)思想理解和處理現(xiàn)實生活和社會中的簡單問題。學(xué)生還將學(xué)習(xí)利用函數(shù)的性質(zhì)求方程的近似解,體會函數(shù)與方程的有機聯(lián)系。
1、結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系。
2、根據(jù)具體函數(shù)的圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。
3、利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。
4、收集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實例,了解函數(shù)模型的廣泛應(yīng)用。
(二)后半期完成《數(shù)學(xué)④》主要涉及三章內(nèi)容:
第一章三角函數(shù)(約16學(xué)時)
通過本章學(xué)習(xí),有助于學(xué)生認(rèn)識三角函數(shù)與實際生活的緊密聯(lián)系,以及三角函數(shù)在解決實際問題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價值,學(xué)會用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問題,發(fā)展數(shù)學(xué)應(yīng)用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章平面向量(約12學(xué)時)
在本章中讓學(xué)生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數(shù)學(xué)和物理中的一些問題,發(fā)展運算能力和解決實際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運算;
3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運算;
4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關(guān)角度和垂直的問題。
第三章三角恒等變換(約8學(xué)時)
通過推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學(xué)生在經(jīng)歷和參與數(shù)學(xué)發(fā)現(xiàn)活動的基礎(chǔ)上,體會向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。
1.掌握兩角和與差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式;
3.能正確運用三角公式進(jìn)行簡單的三角函數(shù)式的化簡、求值和恒等式證明。
三、教學(xué)常規(guī)要求及建議(要點)
根據(jù)學(xué)校對教師的常規(guī)要求,結(jié)合本備課組實際,擬提出以下幾點建議,望老師們自覺執(zhí)行,落實教學(xué)各個環(huán)節(jié),不拉同行的后腿,力求各班級之間平均分的差距達(dá)到學(xué)校要求。
1、做好傳、幫、帶工作,達(dá)到學(xué)校教務(wù)處要求。本組新分1青年教師,中二1人、中一教師2人,高級教師4人,在學(xué)校要求參加集體聽課、交流的教研活動之外,組內(nèi)教師之間不定時地聽隨堂課并交流不少于聽課總數(shù)的半。
2、集體參加組內(nèi)專題備課2—3次,每次中心發(fā)言人應(yīng)有發(fā)言材料準(zhǔn)備,其他教師補充發(fā)言記錄。
3、教師每周全收、批學(xué)生作業(yè)次數(shù)不低于上課總節(jié)數(shù)的五分之三(正常上課沒周收改作業(yè)至少3次。
3、每節(jié)課應(yīng)有教學(xué)目標(biāo)、重點,突出解決的問題和方法、過程。
4、做好教學(xué)反思(每周至少有一次)
高一數(shù)學(xué)教學(xué)計劃6
一、指導(dǎo)思想
準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項基本要求,立足于基礎(chǔ)知識和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對學(xué)生實際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會所需要的必備的基礎(chǔ)知識、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運用數(shù)學(xué)的意識和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。
二、教學(xué)建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識的內(nèi)外結(jié)構(gòu),熟練把握知識的邏輯體系,細(xì)致領(lǐng)悟教材改革的精髓,逐步明確教材對教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響。
2、準(zhǔn)確把握新大綱。新大綱修改了部分內(nèi)容的教學(xué)要求層次,準(zhǔn)確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數(shù)學(xué)應(yīng)用;重視數(shù)學(xué)思想方法的滲透。如增加閱讀材料(開闊學(xué)生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學(xué)生為主體的教育觀念。學(xué)生的發(fā)展是課程實施的出發(fā)點和歸宿,教師必須面向全體學(xué)生因材施教,以學(xué)生為主體,構(gòu)建新的認(rèn)識體系,營造有利于學(xué)生學(xué)習(xí)的氛圍。
4、發(fā)揮教材的多種教學(xué)功能。用好章頭圖,激發(fā)學(xué)生的學(xué)習(xí)興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學(xué)生用數(shù)學(xué)的意識;組織好研究性課題的教學(xué),讓學(xué)生感受社會生活之所需;小結(jié)和復(fù)習(xí)是培養(yǎng)學(xué)生自學(xué)的好材料。
5、落實課外活動的內(nèi)容。組織和加強數(shù)學(xué)興趣小組的活動內(nèi)容。
三、教學(xué)內(nèi)容
第一章集合與函數(shù)概念
1.通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識別給定集合的子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。
6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
7.能使用Venn圖表達(dá)集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。
8.通過豐富實例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。
9.在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
10.通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用。
11.通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(?。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義。
12.學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。
課時分配(14課時)
1.1.1 | 集合的含義與表示 | 約1課時 | 9月1日 |
1.1.2 | 集合間的基本關(guān)系 | 約1課時 | 9月4日 | | 9月12日 |
1.1.3 | 集合的基本運算 | 約2課時 | |
小結(jié)與復(fù)習(xí) | 約1課時 | ||
1.2.1 | 函數(shù)的概念 | 約2課時 | |
1.2.2 | 函數(shù)的表示法 | 約2課時 | 9月13日 | | 9月25日 |
1.3.1 | 單調(diào)性與最大(?。┲?/td> | 約2課時 | |
1.3.2 | 奇偶性 | 約1課時 | |
小結(jié)與復(fù)習(xí) | 約2課時 |
第二章基本初等函數(shù)(I)
1.通過具體實例,了解指數(shù)函數(shù)模型的實際背景。
2.理解有理指數(shù)冪的含義,通過具體實例了解實數(shù)指數(shù)冪的意義,掌握冪的運算。
3。理解指數(shù)函數(shù)的概念和意義,能借助計算器或計算機畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點。
4.在解決簡單實際問題過程中,體會指數(shù)函數(shù)是一類重要的函數(shù)模型。
5。理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);通過閱讀材料,了解對數(shù)的發(fā)現(xiàn)歷史以及其對簡化運算的作用。
6。通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性和特殊點。
7.通過實例,了解冪函數(shù)的概念;結(jié)合函數(shù)的圖象,了解它們的變化情況。
課時分配(15課時)
2.1.1 | 引言、指數(shù)與指數(shù)冪的運算 | 約3課時 | 9月27日30日 |
2.1.2 | 指數(shù)函數(shù)及其性質(zhì) | 約3課時 | 10月8日10日 |
2.2.1 | 對數(shù)與對數(shù)運算 | 約3課時 | 10月11日14日 |
2.2.2 | 對數(shù)函數(shù)及其性質(zhì) | 約3課時 | 10月15日18日 |
2.3 | 冪函數(shù) | 約1課時 | 10月19日24日 |
小結(jié) | 約2課時 |
第三章函數(shù)的應(yīng)用
1。結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個數(shù),從而了解函數(shù)的零點與方程根的聯(lián)系。
根據(jù)具體函數(shù)的圖象,能夠借助計算器用二分法求相應(yīng)方程的近似解,了解這種方法是求方程近似解的常用方法。
2。利用計算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。
3。收集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實例,了解函數(shù)模型的廣泛應(yīng)用。
4。根據(jù)某個主題,收集17世紀(jì)前后發(fā)生的一些對數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關(guān)資料或現(xiàn)實生活中的函數(shù)實例,采取小組合作的方式寫一篇有關(guān)函數(shù)概念的形成、發(fā)展或應(yīng)用的文章,在班級中進(jìn)行交流。
課時分配(8課時)
3.1.1 | 方程的根與函數(shù)的零點 | 約1課時 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時 | 10月26日27日 |
3.2.1 | 幾類不同增長的函數(shù)模型 | 約2課時 | 10月30日 | 11月3日 |
3.2.2 | 函數(shù)模型的應(yīng)用實例 | 約2課時 | |
小結(jié) | 約1課時 |
考生只要在全面復(fù)習(xí)的基礎(chǔ)上,抓住重點、難點、易錯點,各個擊破,夯實基礎(chǔ),規(guī)范答題,一定會穩(wěn)中求進(jìn),取得優(yōu)異的成績。
高一數(shù)學(xué)教學(xué)計劃7
教學(xué)目標(biāo) :
(1)理解子集、真子集、補集、兩個集合相等概念;
(2)了解全集、空集的意義,
(3)掌握有關(guān)的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學(xué)生的符號表示的能力;
(4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;
(5)能判斷兩集合間的包含、相等關(guān)系,并會用符號及圖形(文氏圖)準(zhǔn)確地表示出來,培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;
(6)培養(yǎng)學(xué)生用集合的觀點分析問題、解決問題的能力.
教學(xué)重點:子集、補集的概念
教學(xué)難點 :弄清元素與子集、屬于與包含之間的區(qū)別
教學(xué)用具:幻燈機
教學(xué)過程 設(shè)計
(一)導(dǎo)入 新課
上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識.
【提出問題】(投影打出)
已知 , , ,問:
1.哪些集合表示方法是列舉法.
2.哪些集合表示方法是描述法.
3.將集M、集從集P用圖示法表示.
4.分別說出各集合中的元素.
5.將每個集合中的元素與該集合的關(guān)系用符號表示出來.將集N中元素3與集M的關(guān)系用符號表示出來.
6.集M中元素與集N有何關(guān)系.集M中元素與集P有何關(guān)系.
【找學(xué)生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(筆練結(jié)合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5. , , , , , , , (筆練結(jié)合板演)
6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)
【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關(guān)系,而具有這種關(guān)系的兩個集合在今后學(xué)習(xí)中會經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個集合間關(guān)系的問題.
(二)新授知識
1.子集
(1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。
記作: 讀作:A包含于B或B包含A
當(dāng)集合A不包含于集合B,或集合B不包含集合A時,則記作:A B或B A.
性質(zhì):① (任何一個集合是它本身的子集)
② (空集是任何集合的子集)
【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?
【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.
因為B的子集也包括它本身,而這個子集是由B的全體元素組成的.空集也是B的子集,而這個集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.
(2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。
例: ,可見,集合 ,是指A、B的所有元素完全相同.
(3)真子集:對于兩個集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。
【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集.”
集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個圓的內(nèi)部分別表示集合A,B.
【提問】
(1) 寫出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。
(2) 判斷下列寫法是否正確
① A ② A ③ ④A A
性質(zhì):
(1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;
(2)如果 , ,則 .
例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.
【注意】(1)子集與真子集符號的方向。
(2)易混符號
①“ ”與“ ”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如 R,{1} {1,2,3}
②{0}與 :{0}是含有一個元素0的集合, 是不含任何元素的集合。
如: {0}。不能寫成 ={0}, ∈{0}
例2 見教材P8(解略)
例3 判斷下列說法是否正確,如果不正確,請加以改正.
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么B必是A的真子集;
(6) 與 不能同時成立.
解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;
(2)不正確.空集是任何非空集合的真子集;
(3)不正確. 與 表示同一集合;
(4)不正確. 的所有子集是 ;
(5)正確
(6)不正確.當(dāng) 時, 與 能同時成立.
例4 用適當(dāng)?shù)姆? , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)設(shè) , , ,則A B C.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C.
【練習(xí)】教材P9
用適當(dāng)?shù)姆? , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提問:見教材P9例子
(二) 全集與補集
1.補集:一般地,設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作 ,即
.
A在S中的補集 可用右圖中陰影部分表示.
性質(zhì): S( SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};
(2)若A={0},則 NA=N*;
(3) RQ是無理數(shù)集。
2.全集:
如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用表示.
注: 是對于給定的全集 而言的,當(dāng)全集不同時,補集也會不同.
例如:若 ,當(dāng) 時, ;當(dāng) 時,則 .
例5 設(shè)全集 , , ,判斷 與 之間的關(guān)系.
高一數(shù)學(xué)教學(xué)計劃8
一、指導(dǎo)思想
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)。
二、學(xué)情分析及學(xué)生情況分析
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新高考我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。
三、具體措施
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項突破難點、所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。、
(3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
(6)注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
高一數(shù)學(xué)教學(xué)計劃9
一、指導(dǎo)思想:
在新課程改革的教學(xué)理念下,以發(fā)展教育的觀念為指引,以學(xué)校和教導(dǎo)處的工作計劃為指南,改變教學(xué)觀念,改進(jìn)教學(xué)方法,更新教學(xué)手段,提高教學(xué)效率,提高學(xué)生的閱讀能力、解題能力,促進(jìn)學(xué)生學(xué)習(xí)態(tài)度、學(xué)習(xí)方式的轉(zhuǎn)變,培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探究、樂于合作的精神,注重學(xué)生數(shù)學(xué)素養(yǎng)的提高, 關(guān)注學(xué)生的思想情感和交流,培養(yǎng)學(xué)生的創(chuàng)新思維和創(chuàng)造能力,為學(xué)生的可持續(xù)發(fā)展奠定基礎(chǔ)。新課標(biāo)理念下的政治教學(xué)活動應(yīng)該不同于傳統(tǒng)的課堂教學(xué),改變教師的教法和學(xué)生的學(xué)法是在教學(xué)活動中體現(xiàn)最新教學(xué)理念的關(guān)鍵?!皩?dǎo)學(xué)案”應(yīng)課堂教學(xué)改革與傳統(tǒng)教學(xué)模式的矛盾而生,它既可以將學(xué)生自主學(xué)習(xí)引入正軌,又將學(xué)生可以自主探究理解完成的知識點與題目在課下解決,這樣,課堂上教師就有足夠的時間與學(xué)生共同研究解決本節(jié)課的重點與難點,從而提高了課堂效率。我們應(yīng)該認(rèn)識到改革是教學(xué)的生命,課程改革與課堂教學(xué)改革是一個不斷發(fā)展、不斷探索的過程。在這個過程中,要求教師能夠正確、深刻地理解新課程理念,辯證地分析和處理各種在課程改革中產(chǎn)生的觀念和做法,樹立正確的育人理念,開拓進(jìn)取,不斷尋求新的有效的方法促進(jìn)學(xué)生的全面發(fā)展。 二、教材特點:
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(A版)》必修1、必修2,根據(jù)必修1、2設(shè)計的導(dǎo)學(xué)案。它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時代性,典型性和可接受性,辯證地分析和處理各種在課程改革中產(chǎn)生的觀念和做法,樹立正確的育人理念,開拓進(jìn)取,不斷尋求新的有效的方法促進(jìn)學(xué)生的全面發(fā)展。
三、學(xué)情分析:
本學(xué)期任教高一(35、36)班的數(shù)學(xué),(35、36)班是平衡班,部分學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情較高漲,比較自覺,能認(rèn)真完成作業(yè),但數(shù)學(xué)層次并不相同,部分同學(xué)基礎(chǔ)薄弱,缺乏學(xué)習(xí)數(shù)學(xué)的方法。
四、教學(xué)策略、教研活動:
1、落實提高課堂效率,導(dǎo)學(xué)案的設(shè)計目的是為了將學(xué)生的導(dǎo)學(xué)案與教師的集體備課設(shè)計為一體,第一、課前預(yù)習(xí)。教師設(shè)計此部分內(nèi)容之前必須針對本課
題的三維目標(biāo)與考綱認(rèn)真?zhèn)湔n,列出本節(jié)課的知識要點,對于重難點做特殊標(biāo)記,并針對預(yù)習(xí)提綱給出的內(nèi)容設(shè)計預(yù)習(xí)檢測題,預(yù)習(xí)檢測題難度不易過高,與本課題的重難點相關(guān)的知識點有選擇性的錄入此處,讓學(xué)生在做此部分時不能感覺太簡單了也不能感覺無從下手,要有一部分題目讓他能夠通過討論探究完成。第二,探究活動。第三、課堂檢測。此處設(shè)置的題目難度深度一定比預(yù)習(xí)檢測部分要更難更深。此部分不要求所有的學(xué)生都在課前做。從此處開始分“才”完成,有能力的同學(xué)可以提前嘗試著做,做題慢的同學(xué)可以先不必看,學(xué)生按照自己的情況自行決定。第四,拓展延伸。這里出現(xiàn)的題目屬于拔高題,一般很少有學(xué)生在課前能夠做對,所以此處也不要求學(xué)生課前做,當(dāng)然不排除有的同學(xué)想要挑戰(zhàn)一下,這是提倡并且大力表揚的。第五,反思總結(jié)。學(xué)生利用這部分一方面可以小結(jié)本節(jié)課的內(nèi)容,另一方面可以對自己本課題從預(yù)習(xí)探究到課堂探究各個環(huán)節(jié)進(jìn)行反思,便于日后改進(jìn)。上課時要明確重點、難點,重點要突出,難點要分散,并且難點要解決好。課堂講新課的時間一定要控制在20分鐘之內(nèi),最好能在10分鐘之內(nèi)解決問題,多給時間學(xué)生練習(xí)或進(jìn)行與學(xué)習(xí)有關(guān)的活動。
2、做到課后教學(xué)反思
上完課之后需要思考三個問題:我這節(jié)課上得如何有沒有要糾正與改進(jìn)的?有誰的課比我還優(yōu)秀?怎樣上這節(jié)課更好、最好?并在學(xué)案、備課筆記上做好記錄,為以后的教育教學(xué)提供參考。
3、落實好備課電子化,為加快對試驗課的理解和掌握,積極探索教改進(jìn)程,建立備課組資料庫,備課組成員要積極借助網(wǎng)絡(luò)信息收集和篩選資料存庫,發(fā)揮集體智慧,在備課組會議上整理,及時應(yīng)用到具體教學(xué)中。注重學(xué)案導(dǎo)學(xué),編好用好導(dǎo)學(xué)案。
4、積極聽有經(jīng)驗的教師的課,認(rèn)真改進(jìn)課堂教學(xué)上的薄弱環(huán)節(jié)。注重研究教師如何講、注重研究學(xué)生如何學(xué),積極推進(jìn)新課改,提高課堂效率。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生交流等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣。
3、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
4、扎實基礎(chǔ)的同時重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
5、落實抓好平時的一周一限時訓(xùn)練,一周一綜合,注重知識的滲透 6、落實競賽輔導(dǎo):主要利用下午第三節(jié)時間,一個星期進(jìn)行一至兩次輔導(dǎo)。
高一數(shù)學(xué)教學(xué)計劃10
本學(xué)期我擔(dān)任高一(3)、(4)兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有138人。大部分學(xué)生初中的基礎(chǔ)較差,整體水平不高。從上課兩周來看,學(xué)生的學(xué)習(xí)進(jìn)取性還比較高,愛問問題的學(xué)生比較多;但由于基礎(chǔ)知識不太牢固,沒有良好的學(xué)習(xí)習(xí)慣,自控本事較差,不能正確地定位自我;所以上課效率一般,教學(xué)工作有必須的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計劃。
一、教學(xué)質(zhì)量目標(biāo)
(1)獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。
(2)培養(yǎng)學(xué)生的邏輯思維本事、運算本事、空間想象本事,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的本事。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的本事;運用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的本事。
(3)根據(jù)數(shù)學(xué)的學(xué)科特點,加強學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。
(4)使學(xué)生具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會經(jīng)過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重職責(zé),既要不斷夯實基礎(chǔ),加強綜合本事的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二、教學(xué)目標(biāo)、
(一)情感目標(biāo)
(1)經(jīng)過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
(2)供給生活背景,經(jīng)過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。
(3)在探究基本函數(shù)的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識。
(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。
(5)還時間和空間給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機會,在發(fā)展他們思維本事的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
(6)讓學(xué)生體驗發(fā)現(xiàn)挫折矛盾頓悟新的發(fā)現(xiàn)這一科學(xué)發(fā)現(xiàn)歷程法。
(二)本事要求
1、培養(yǎng)學(xué)生記憶本事。
(1)經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(2)經(jīng)過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶本事。
2、培養(yǎng)學(xué)生的運算本事。
(1)經(jīng)過概率的訓(xùn)練,培養(yǎng)學(xué)生的運算本事。
(2)加強對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算本事。
(3)經(jīng)過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性本事。
(4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算本事,促使知識間的滲透和遷移。
(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算本事。
三、學(xué)情分析
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。
四、促進(jìn)目標(biāo)達(dá)成的重點工作及措施
重點工作:
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以雙基教學(xué)為主要資料,堅持抓兩頭、帶中間、整體推進(jìn),使每個學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。
分層推進(jìn)措施
1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學(xué)生,增強學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、培養(yǎng)學(xué)生解答考題的本事,經(jīng)過例題,從形式和資料兩方應(yīng)對所學(xué)知識進(jìn)行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。
4、讓學(xué)生經(jīng)過單元考試,檢測自我的實際應(yīng)用本事,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備
5、抓住公式的`推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。
6、加強培養(yǎng)學(xué)生的邏輯思維本事和解決實際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育;同時重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。
7、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動理解知識轉(zhuǎn)化主動學(xué)習(xí)知識。
8、注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。集中精力打好基礎(chǔ),分項突破難點、所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點資料,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。
高一數(shù)學(xué)教學(xué)計劃11
高一年級學(xué)生往往對課程增多、課堂學(xué)習(xí)容量加大不適應(yīng),顧此失彼,精力分散,使聽課效率下降,要重視聽法的指導(dǎo)。數(shù)學(xué)網(wǎng)高中頻道整理了高一數(shù)學(xué)下冊教學(xué)計劃,希望能幫助教師授課!
本學(xué)期高一數(shù)學(xué)備課組的工作緊緊圍繞學(xué)校、教科處及教研組的計劃安排來開展,以教學(xué)改革為動力、以學(xué)校創(chuàng)建為前提、以提高課堂效率為目的、以自主教育為模式、以現(xiàn)代信息技術(shù)為手段、以培養(yǎng)學(xué)生的創(chuàng)新能力為目標(biāo),全面改進(jìn)教育教學(xué)方法,更新教育觀念,改變傳統(tǒng)教學(xué)模式,培養(yǎng)學(xué)生綜合素質(zhì),搞好本學(xué)期工作。
一、指導(dǎo)思想
以教研組工作計劃為指導(dǎo),按照均衡、優(yōu)質(zhì)、高效原則,精誠團結(jié),和諧創(chuàng)新,加強科組建設(shè),提高高一數(shù)學(xué)備課組的整體實力;努力完成本學(xué)期的教學(xué)目標(biāo),進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足學(xué)生發(fā)展與社會進(jìn)步的需要。這學(xué)期的工作重點是繼續(xù)進(jìn)行新課標(biāo)和新教材的研究,要著重抓好差生輔導(dǎo)和尖子生的培養(yǎng),讓絕大部分學(xué)生跟上教學(xué)進(jìn)度。
二、工作思路
1.在學(xué)??蒲刑幒徒虅?wù)處的領(lǐng)導(dǎo)下,有計劃地組織好全組教師的學(xué)習(xí)與培訓(xùn)工作,特別是搞好新課程標(biāo)準(zhǔn)和新教材的學(xué)習(xí)、研究和交流,落實學(xué)校的辦學(xué)理念。推廣現(xiàn)代教育科研成果,定期開展多種形式的教研活動。
2.以組風(fēng)建設(shè)為主線,以新課程標(biāo)準(zhǔn)為指導(dǎo),以教法探索為重點,以構(gòu)建主動發(fā)展型課堂教學(xué)模式為主題,以提高隊伍素質(zhì),提高課堂效率,提高教學(xué)質(zhì)量為目的。深化課堂教學(xué)改革,努力改善教與學(xué)的方式。
3.教學(xué)研究要以集體備課為基礎(chǔ),以作課、聽課、評課活動以及出考卷活動為載體,以課題研究、論文、案例撰寫為提高,在研究狀態(tài)下理性的工作。培養(yǎng)本組教師養(yǎng)成教學(xué)反思的習(xí)慣,
三、教材分析(結(jié)構(gòu)系統(tǒng)、單元內(nèi)容、重難點)
必修5:
第一章:解三角形;重點是正弦定理與余弦定理;難點是正弦定理與余弦定理的應(yīng)用;
第二章:數(shù)列;重點是等差數(shù)列與等比數(shù)列的前n項的和;難點是等差數(shù)列與等比數(shù)列前n項的和與應(yīng)用;
第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與基本不等式;難點是二元一次不等式(組)及應(yīng)用;
必修2:
第一章:立體幾何初步。重點是空間幾何體的三視圖和直觀圖及表面積與體積,直線與平面平行及垂直的判定及其性質(zhì);難點是空間幾何體的三視圖,直線與平面平行及垂直的判定及其性質(zhì);
第二章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當(dāng)?shù)闹本€方程求解題目;圓與方程;重點是圓的方程及直線與圓的位置關(guān)系;難點是直線與圓的位置關(guān)系。
四、學(xué)情分析
經(jīng)過一學(xué)期的觀察發(fā)現(xiàn)學(xué)生的基礎(chǔ)知識水平、學(xué)習(xí)自覺性與基本學(xué)習(xí)方法比較欠缺,學(xué)生心理不穩(wěn)定,空間思維、抽象思維、邏輯思維較差,而本學(xué)期所要學(xué)習(xí)的內(nèi)容包含了高中數(shù)學(xué)中重要而難學(xué)的數(shù)列、不等式、立體幾何部分,因而教學(xué)時盡可能以課本為本,注重基礎(chǔ)和規(guī)范,不隨意拔高難度,努力使絕大部分學(xué)生打好三基。教學(xué)時在完成市教學(xué)進(jìn)度的前提下,盡可能的放慢速度,確保絕大部分學(xué)生的學(xué)習(xí)質(zhì)量。平時教學(xué)中老師要注意不斷鼓勵和欣賞學(xué)生的優(yōu)點和進(jìn)步,使學(xué)生不斷體驗到學(xué)習(xí)數(shù)學(xué)的樂趣。平時測試要注重考查三基,嚴(yán)格控制難度,使絕大部分學(xué)生及格,使學(xué)生體驗到進(jìn)步和成功的喜悅。同時需進(jìn)一步加強學(xué)法指導(dǎo),多于學(xué)生進(jìn)行情感交流。
五、工作目標(biāo)
1、狠抓教學(xué)常規(guī)和學(xué)習(xí)常規(guī)的貫徹落實。在數(shù)學(xué)教學(xué)研究中努力做到三主(教學(xué)研究以學(xué)習(xí)理論為主導(dǎo)、大綱教材課程標(biāo)準(zhǔn)為主體、探索教學(xué)模式為主線)和三有(教學(xué)研究要對教學(xué)實踐有指導(dǎo)、對教學(xué)質(zhì)量有促進(jìn)、對教師有提高)。
2、加強現(xiàn)代教育教學(xué)理論的學(xué)習(xí),積極進(jìn)行課堂教學(xué)改革試驗、逐步形成本學(xué)科特色,把我組建設(shè)成一個團結(jié)協(xié)作、富有開拓創(chuàng)新精神的先進(jìn)集體。
3、把對新課程標(biāo)準(zhǔn)的學(xué)習(xí)與對新教材的研究結(jié)合起來,力求使每一位數(shù)學(xué)老師都能較好地領(lǐng)會新課程標(biāo)準(zhǔn)的基本理念和目標(biāo),較好地把握數(shù)學(xué)學(xué)習(xí)內(nèi)容中有關(guān)數(shù)感、符號感、空間觀念、統(tǒng)計觀念、應(yīng)用意識、推理能力等核心概念的內(nèi)涵和要求,初步掌握所教教材的結(jié)構(gòu)特點、每章每節(jié)教材的地位、作用和目標(biāo)要求。
4、認(rèn)真做好義務(wù)教育數(shù)學(xué)實驗教材和高中新教材的階段總結(jié),加強教法的研究,注意總結(jié)和發(fā)現(xiàn)典型的教學(xué)案例,積極組織本組教師做好資料、信息收集工作,撰寫教育教學(xué)論文、案例,爭取在全國等各級論文評比中獲獎。
六、具體措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
7、積極做好集體備課工作,達(dá)到內(nèi)容統(tǒng)一、進(jìn)度統(tǒng)一、目標(biāo)統(tǒng)一、例習(xí)題統(tǒng)一、資料統(tǒng)一、測試統(tǒng)一;上好每一節(jié)課,及時對學(xué)生的學(xué)習(xí)進(jìn)行觀察與指導(dǎo);課后進(jìn)行有效的輔導(dǎo);進(jìn)行有效的課堂反思。
高一數(shù)學(xué)教學(xué)計劃12
一、指導(dǎo)思想:
使學(xué)生學(xué)好從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代科學(xué)技術(shù)所必需的數(shù)學(xué)基礎(chǔ)知識和基本技能,培養(yǎng)學(xué)生的運算能力、邏輯思維能力和空間想象能力,以逐步形成運用數(shù)學(xué)知識來分析和解決實際問題的能力。要培養(yǎng)學(xué)生對數(shù)學(xué)的興趣,激勵學(xué)生為實現(xiàn)四個現(xiàn)代化學(xué)好數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的科學(xué)態(tài)度和辨證唯物主義的觀點。
二、基本情況分析:
1、4班共xx人,男生xx人,女生xx人;本班相對而言,數(shù)學(xué)尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。
5班共xx人,男生xx人,女生xx人;本班相對而言,數(shù)學(xué)尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。
2、4班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分為xx,最低分為xx。
5班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分為xx,最低分為xx。
3、4/5班分別為高一年級9個班中編排一個普高班和一個普高班之后的體育班,整體分析的結(jié)果是:
三、教材分析:
1、教材內(nèi)容:集合、一元二次不等式、簡易邏輯、映射與函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)、數(shù)列、等差數(shù)列、等比數(shù)列。
2、集合概念及其基本理論,是近代數(shù)學(xué)最基本的內(nèi)容之一;函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一;數(shù)列有著廣泛的應(yīng)用,是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。
3、教材重點:幾種函數(shù)的圖像與性質(zhì)、不等式的解法、數(shù)列的概念、等差數(shù)列與等比數(shù)列的通項公式、前n項和的公式。
4、教材難點:關(guān)于集合的各個基本概念的涵義及其相互之間的區(qū)別和聯(lián)系、映射的概念以及用映射來刻畫函數(shù)概念、反函數(shù)、一些代數(shù)命題的證明、
5、教材關(guān)鍵:理解概念,熟練、牢固掌握函數(shù)的圖像與性質(zhì)。
6、采用了由淺入深、減緩坡度、分散難點,逐步展開教材內(nèi)容的做法,符合從有限到無限的認(rèn)識規(guī)律,體現(xiàn)了從量變到質(zhì)變和對立統(tǒng)一的辯證規(guī)律。每階段的內(nèi)容相對獨立,方法比較單一,有助于掌握每一階段內(nèi)容。
7、各部分知識之間的聯(lián)系較強,每一階段的知識都是以前一階段為基礎(chǔ),同時為下階段的學(xué)習(xí)作準(zhǔn)備。
8、全期教材重要的內(nèi)容是:集合運算、不等式解法、函數(shù)的奇偶性與單調(diào)性、等差與等比數(shù)列的通項和前n項和。
四、教學(xué)要求:
1、理解集合、子集、交集、并集、補集的概念。了解空集和全集的意義,了解屬于、包含、相等關(guān)系的意義,能掌握有關(guān)的術(shù)語和符號,能正確地表示一些簡單的集合。
2、掌握一元二次不等式的解法和絕對值不等式的解法,并能熟練求解。
3、了解命題的概念、邏輯聯(lián)結(jié)詞的含義,掌握四種命題及其關(guān)系,掌握充分、必要、充要條件,初步掌握反證法。
4、了解映射的概念,在此基礎(chǔ)上理解函數(shù)及其有關(guān)的概念,掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系。
5、理解函數(shù)的單調(diào)性和奇偶性的概念,并能判斷一些簡單函數(shù)的單調(diào)性和奇偶性,能利用函數(shù)的奇偶性與圖象的對稱性的關(guān)系描繪圖象。
6、掌握指數(shù)函數(shù)、對數(shù)函數(shù)的概念及其圖象和性質(zhì),并會解簡單的函數(shù)應(yīng)用問題。
7、使學(xué)生理解數(shù)列的有關(guān)概念,掌握等差數(shù)列與等比數(shù)列的概念、通項公式、前n項和的公式,并能夠運用這些知識解決一些問題。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
高一數(shù)學(xué)教學(xué)計劃13
高一年級學(xué)生對學(xué)習(xí)缺乏熱情,學(xué)習(xí)習(xí)慣不好,學(xué)生學(xué)習(xí)動機不明確,這給教學(xué)工作帶來了一定的難度,課堂上能聽講,但是課后不歸納總結(jié),不做題,學(xué)習(xí)效率低。另外,高中數(shù)學(xué)知識難度大,學(xué)生基礎(chǔ)差,導(dǎo)致學(xué)生興趣下降。學(xué)生意志薄弱,耐挫力差。許多學(xué)生意志不堅定,因此很多學(xué)生堅持性差,意志薄弱,一旦碰到困難便打退堂鼓,害怕去學(xué)、去動腦,長期下去,便產(chǎn)生厭學(xué)情緒。針對這種情況,特作以下計劃:
一、學(xué)生狀況分析
本學(xué)年,我擔(dān)任高一(9)和(10)班的數(shù)學(xué)課。兩個班整體水平都一般,成績以中下等為主,中上不多,后進(jìn)生有很多。其中在中考成績兩個班中都存在20人以上等級分在5分以下。從而看出基礎(chǔ)知識不太牢固,當(dāng)然上課效率也不是很高。
二、教材簡析
使用人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(A版)》,教材在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可接受性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修2有四章(空間幾何體;點線平面間的位置關(guān)系;直線與方程;圓與方程)。
三、教學(xué)任務(wù)
本期授課內(nèi)容為必修1和必修2,必修1在期中考試前完成;必修2在期末考試前完成。
四、教學(xué)質(zhì)量目標(biāo)
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。
2.提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高學(xué)生提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進(jìn)目標(biāo)達(dá)成的重點工作及措施
重點工作:
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要內(nèi)容,堅持“抓兩頭、帶中間、整體推進(jìn)”,使每個學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。
分層推進(jìn)措施
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。在教學(xué)的過程中注意降低難度。
(2)集中精力打好基礎(chǔ),分項突破難點.所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。.
(3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作
(6)注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
(7)重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學(xué)生,增強學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
(8)合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
高一數(shù)學(xué)教學(xué)計劃14
本學(xué)期擔(dān)任高一5、6兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有110人,初中的基礎(chǔ)參差不齊,但兩個班的學(xué)生整體水平還能夠;部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評價自我,這給教學(xué)工作帶來了必須的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計劃。
一、教學(xué)目標(biāo)、
(一)情意目標(biāo)
(1)經(jīng)過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
(2)供給生活背景,經(jīng)過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。
(3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識
(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。
(5)還時空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機會,在發(fā)展他們思維本事的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
(6)讓學(xué)生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。
(二)本事要求
1、培養(yǎng)學(xué)生記憶本事。
(1)經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(3)經(jīng)過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶本事。
2、培養(yǎng)學(xué)生的運算本事。
(1)經(jīng)過概率的訓(xùn)練,培養(yǎng)學(xué)生的運算本事。
(2)加強對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算本事。
(3)經(jīng)過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性本事。
(4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算本事,促使知識間的滲透和遷移。
(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算本事。
3、培養(yǎng)學(xué)生的思維本事。
(1)經(jīng)過對簡易邏輯的教學(xué),培養(yǎng)學(xué)生思維的周密性及思維的邏輯性。
(2)經(jīng)過不等式、函數(shù)的一題多解、多題一解,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維本事。
(3)經(jīng)過不等式、函數(shù)的引伸、推廣,培養(yǎng)學(xué)生的創(chuàng)造性思維。
(4)加強知識的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的本事。
(5)經(jīng)過典型例題不一樣思路的分析,培養(yǎng)思維的靈活性,是學(xué)生掌握轉(zhuǎn)化思想方法。
(三)知識目標(biāo)
1、集合、簡易邏輯
(1)理解集合、子集、補訂、交集、交集的概念、了解空集和全集的意義、了解屬于、包含、相等關(guān)系的意義、掌握有關(guān)的術(shù)語和符號,并會用它們正確表示一些簡單的集合。
(2)理解邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義、理解四種命題及其相互關(guān)系、掌握充分條件、必要條件及充要條件的意義。
(3)掌握一元二次不等式、絕對值不等式的解法。
2、函數(shù)
(1)了解映射的概念,理解函數(shù)的概念。
(2)了解函數(shù)的單調(diào)性、奇偶性的概念,掌握確定一些簡單函數(shù)的單調(diào)性、奇偶性的方法。
(3)了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖像間的關(guān)系,會求一些簡單函數(shù)的反函數(shù)。
(4)理解分?jǐn)?shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像和性質(zhì)。
(5)理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì)、掌握對數(shù)函數(shù)的概念、圖像和性質(zhì)。
(6)能夠運用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)解決某些簡單的實際問題。
3、數(shù)列
(1)理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。
(2)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題。
(3)理解等比數(shù)列的概念,掌握等比數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題。
二、教學(xué)重點
1、集合、子集、補集、交集、并集、一元二次不等式的解法
四種命題、充分條件和必要條件、
2、映射、函數(shù)、函數(shù)的單調(diào)性、反函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應(yīng)用。
3、等差數(shù)列及其通項公式、等差數(shù)列前n項和公式。
等比數(shù)列及其通項公式、等比數(shù)列前n項和公式。
三、教學(xué)難點
1、四種命題、充分條件和必要條件
2、反函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)
3、等差、等比數(shù)列的性質(zhì)
四、工作措施
抓好課堂教學(xué),提高教學(xué)效益。課堂教學(xué)是教學(xué)的主要環(huán)節(jié),所以,抓好課堂教學(xué)是教學(xué)之根本,是大面積提高數(shù)學(xué)成績的主途徑。
(1)、扎實落實團體備課,經(jīng)過團體討論,抓住教學(xué)資料的實質(zhì),構(gòu)成較好的教學(xué)方案,擬好典型例題、練習(xí)題、周練題、章考題、月考題。
(2)、加大課堂教改力度,培養(yǎng)學(xué)生的自主學(xué)習(xí)本事。最有效的學(xué)習(xí)是自主學(xué)習(xí),所以,課堂教學(xué)要大力培養(yǎng)學(xué)生自主探究的精神,經(jīng)過“知識的產(chǎn)生,發(fā)展”,逐步構(gòu)成知識體系;經(jīng)過“知識質(zhì)疑、展活”遷移知識、應(yīng)用知識,提高本事。同時要養(yǎng)成學(xué)生良好的學(xué)習(xí)習(xí)慣,不斷提高學(xué)生的數(shù)學(xué)素養(yǎng),從而提高數(shù)學(xué)素養(yǎng),并大面積提高數(shù)學(xué)成績。
高一數(shù)學(xué)教學(xué)計劃15
(一)教學(xué)目標(biāo)
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.
(2)能使用Venn圖表示集合的并集和交集運算結(jié)果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關(guān)的術(shù)語和符號,并會用它們正確進(jìn)行集合的并集與交集運算。
2.過程與方法
通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質(zhì)與內(nèi)涵,增強學(xué)生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力.
3.情感、態(tài)度與價值觀
通過集合的并集與交集運算法則的發(fā)現(xiàn)、完善,增強學(xué)生運用數(shù)學(xué)知識和數(shù)學(xué)思想認(rèn)識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學(xué)的應(yīng)用價值.
(二)教學(xué)重點與難點
重點:交集、并集運算的含義,識記與運用.
難點:弄清交集、并集的含義,認(rèn)識符號之間的區(qū)別與聯(lián)系
(三)教學(xué)方法
在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結(jié)合.
(四)教學(xué)過程
教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動 設(shè)計意圖
提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實數(shù)加法運算,探究集合能否進(jìn)行類似“加法”運算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理數(shù)},
B = {x | x是無理數(shù)},
C = {x | x是實數(shù)}.
師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實數(shù)能進(jìn)行加減運算,探究集合是否有相應(yīng)運算.
生:集合A與B的元素合并構(gòu)成C.
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算. 生疑析疑,
導(dǎo)入新知
形成
概念
思考:并集運算.
集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.
定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:
師:請同學(xué)們將上述兩組實例的共同規(guī)律用數(shù)學(xué)語言表達(dá)出來.
學(xué)生合作交流:歸納→回答→補充或修正→完善→得出并集的定義. 在老師指導(dǎo)下,學(xué)生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.
應(yīng)用舉例 例1 設(shè)A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 設(shè)集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
師:求并集時,兩集合的相同元素如何在并集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問題.
注意利用數(shù)軸,運用數(shù)形結(jié)合思想求解.
生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時注意集合元素的互異性. 學(xué)生嘗試求解,老師適時適當(dāng)指導(dǎo),評析.
固化概念
提升能力
探究性質(zhì) ①A∪A = A, ②A∪ = A,
③A∪B = B∪A,
④ ∪B, ∪B.
老師要求學(xué)生對性質(zhì)進(jìn)行合理解釋. 培養(yǎng)學(xué)生數(shù)學(xué)思維能力.
形成概念 自學(xué)提要:
①由兩集合的所有元素合并可得兩集合的并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?
②交集運算具有的運算性質(zhì)呢?
交集的定義.
由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.
即A∩B = {x | x∈A且x∈B}
Venn圖表示
老師給出自學(xué)提要,學(xué)生在老師的引導(dǎo)下自我學(xué)習(xí)交集知識,自我體會交集運算的含義. 并總結(jié)交集的性質(zhì).
生:①A∩A = A;
②A∩ = ;
③A∩B = B∩A;
④A∩ ,A∩ .
師:適當(dāng)闡述上述性質(zhì).
自學(xué)輔導(dǎo),合作交流,探究交集運算. 培養(yǎng)學(xué)生的自學(xué)能力,為終身發(fā)展培養(yǎng)基本素質(zhì).
應(yīng)用舉例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新華中學(xué)開運動會,設(shè)
A = {x | x是新華中學(xué)高一年級參加百米賽跑的同學(xué)},
B = {x | x是新華中學(xué)高一年級參加跳高比賽的同學(xué)},求A∩B.
例2 設(shè)平面內(nèi)直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關(guān)系. 學(xué)生上臺板演,老師點評、總結(jié).
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新華中學(xué)高一年級中那些既參加百米賽跑又參加跳高比賽的同學(xué)組成的集合. 所以,A∩B = {x | x是新華中學(xué)高一年級既參加百米賽跑又參加跳高比賽的同學(xué)}.
例2 解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點,平行或重合.
(1)直線l1,l2相交于一點P可表示為 L1∩L2 = {點P};
(2)直線l1,l2平行可表示為
L1∩L2 = ;
(3)直線l1,l2重合可表示為
L1∩L2 = L1 = L2. 提升學(xué)生的動手實踐能力.
歸納總結(jié) 并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性質(zhì):①A∩A = A,A∪A = A,
②A∩ = ,A∪ = A,
③A∩B = B∩A,A∪B = B∪A. 學(xué)生合作交流:回顧→反思→總理→小結(jié)
老師點評、闡述 歸納知識、構(gòu)建知識網(wǎng)絡(luò)
課后作業(yè) 1.1第三課時習(xí)案 學(xué)生獨立完成 鞏固知識,提升能力,反思升華
備選例題
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
當(dāng)a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
當(dāng)a = –3時,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
當(dāng)a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
當(dāng)a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值范圍;
(2)若A∪B = {x | x<1},求a的取值范圍.
【解析】(1)如下圖所示:A = {x | –1
∴數(shù)軸上點x = a在x = – 1左側(cè).
∴a≤–1.
(2)如右圖所示:A = {x | –1
∴數(shù)軸上點x = a在x = –1和x = 1之間.
∴–1
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實數(shù)時,A∩B 與A∩C = 同時成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C = 同時成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
當(dāng)a = 5時,A = {x | x2 – 5x + 6 = 0} = {2,3},此時A∩C = {2},與題設(shè)A∩C = 相矛盾,故不適合.
當(dāng)a = –2時,A = {x | x2 + 2x – 15 = 0} = {3,5},此時A∩B 與A∩C = ,同時成立,∴滿足條件的實數(shù)a = –2.
例4 設(shè)集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.
【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
當(dāng)x = 3時,A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.
當(dāng)x = –3時,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.
當(dāng)x = 5時,A = {25,9,– 4},B = {0,– 4,9},此時A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.
綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.