欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      高一數(shù)學(xué)知識(shí)點(diǎn)匯總(五篇模版)

      時(shí)間:2020-12-04 04:40:36下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫(kù)小編為你整理了多篇相關(guān)的《高一數(shù)學(xué)知識(shí)點(diǎn)匯總》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫(kù)還可以找到更多《高一數(shù)學(xué)知識(shí)點(diǎn)匯總》。

      第一篇:高一數(shù)學(xué)知識(shí)點(diǎn)匯總

      學(xué)習(xí)任何一門知識(shí)點(diǎn)都要學(xué)會(huì)對(duì)該知識(shí)點(diǎn)進(jìn)行總結(jié),這樣可以檢查學(xué)生對(duì)知識(shí)的真正掌握程度以及方便學(xué)生日后的復(fù)習(xí)。下面給大家?guī)?lái)一些關(guān)于高一數(shù)學(xué)知識(shí)點(diǎn)匯總,希望對(duì)大家有所幫助。

      高一數(shù)學(xué)知識(shí)點(diǎn)匯總1

      函數(shù)的有關(guān)概念

      1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A}叫做函數(shù)的值域.注意:

      1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。

      求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

      (1)分式的分母不等于零;

      (2)偶次方根的被開方數(shù)不小于零;

      (3)對(duì)數(shù)式的真數(shù)必須大于零;

      (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零,(7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.u 相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致(兩點(diǎn)必須同時(shí)具備)

      2.值域 : 先考慮其定義域

      (1)觀察法

      (2)配方法

      (3)代換法

      3.函數(shù)圖象知識(shí)歸納

      (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.(2)畫法

      A、描點(diǎn)法:

      B、圖象變換法

      常用變換方法有三種

      1)平移變換

      2)伸縮變換

      3)對(duì)稱變換

      4.區(qū)間的概念

      (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

      (2)無(wú)窮區(qū)間

      (3)區(qū)間的數(shù)軸表示.5.映射

      一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯

      通過(guò)上面的高一數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié),同學(xué)們已經(jīng)梳理了一遍高一數(shù)學(xué)必修1的知識(shí)點(diǎn),也加深了對(duì)該知識(shí)的更深了解,相信同學(xué)們一定能學(xué)好這部分知識(shí)點(diǎn),也希望同學(xué)們以后的學(xué)習(xí)中多做總結(jié)。

      高一數(shù)學(xué)知識(shí)點(diǎn)匯總2

      集合(1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n-1;非空真子集的數(shù)為2^n-2;

      (2)注意:討論的時(shí)候不要遺忘了的情況。

      (3)

      第二部分函數(shù)與導(dǎo)數(shù)

      1.映射:注意①第一個(gè)集合中的元素必須有象;②一對(duì)一,或多對(duì)一。

      2.函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;

      ⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法

      3.復(fù)合函數(shù)的有關(guān)問(wèn)題

      (1)復(fù)合函數(shù)定義域求法:

      ①若f(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

      (2)復(fù)合函數(shù)單調(diào)性的判定:

      ①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

      ②分別研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

      ③根據(jù)“同性則增,異性則減”來(lái)判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

      注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

      4.分段函數(shù):值域(最值)、單調(diào)性、圖象等問(wèn)題,先分段解決,再下結(jié)論。

      5.函數(shù)的奇偶性

      ⑴函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件;

      ⑵是奇函數(shù);

      ⑶是偶函數(shù);

      ⑷奇函數(shù)在原點(diǎn)有定義,則;

      ⑸在關(guān)于原點(diǎn)對(duì)稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

      (6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

      高一數(shù)學(xué)知識(shí)點(diǎn)匯總3

      1.等差數(shù)列的定義

      如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.2.等差數(shù)列的通項(xiàng)公式

      若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d.3.等差中項(xiàng)

      如果A=(a+b)/2,那么A叫做a與b的等差中項(xiàng).4.等差數(shù)列的常用性質(zhì)

      (1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_).(2)若{an}為等差數(shù)列,且m+n=p+q,則am+an=ap+aq(m,n,p,q∈N_).(3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.(4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.(5)S2n-1=(2n-1)an.(6)若n為偶數(shù),則S偶-S奇=nd/2;

      若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng)).注意:

      一個(gè)推導(dǎo)

      利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:

      Sn=a1+a2+a3+…+an,①

      Sn=an+an-1+…+a1,②

      ①+②得:Sn=n(a1+an)/2

      兩個(gè)技巧

      已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類問(wèn)題,要善于設(shè)元.(1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….(2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對(duì)稱設(shè)元.四種方法

      等差數(shù)列的判斷方法

      (1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);

      (2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;

      (3)通項(xiàng)公式法:驗(yàn)證an=pn+q;

      (4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn.注:后兩種方法只能用來(lái)判斷是否為等差數(shù)列,而不能用來(lái)證明等差數(shù)列.高一數(shù)學(xué)知識(shí)點(diǎn)匯總4

      兩個(gè)復(fù)數(shù)相等的定義:

      如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說(shuō)這兩個(gè)復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di

      a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0

      a=0,b=0.復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問(wèn)題化歸為實(shí)數(shù)問(wèn)題解決的途徑。

      復(fù)數(shù)相等特別提醒:

      一般地,兩個(gè)復(fù)數(shù)只能說(shuō)相等或不相等,而不能比較大小。如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個(gè)復(fù)數(shù)全是實(shí)數(shù)時(shí)才能比較大小。

      解復(fù)數(shù)相等問(wèn)題的方法步驟:

      (1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;

      (2)根據(jù)復(fù)數(shù)相等的充要條件解之。

      高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)理科歸納5

      定義:

      形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞?,指?shù)為常量的函數(shù)稱為冪函數(shù)。

      定義域和值域:

      當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

      性質(zhì):

      對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

      首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

      排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

      排除了為0這種可能,即對(duì)于x

      排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

      高一數(shù)學(xué)知識(shí)點(diǎn)匯總大全

      第二篇:高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      一、集合與簡(jiǎn)易邏輯

      集合具有四個(gè)性質(zhì):

      廣泛性:集合的元素什么都可以

      確定性:集合中的元素必須是確定的,比如說(shuō)是好學(xué)生就不具有這種性質(zhì),因?yàn)樗母拍钍悄:磺宓幕ギ愋裕杭现械脑乇仨毷腔ゲ幌嗟鹊?,一個(gè)元素不能重復(fù)出現(xiàn)

      無(wú)序性:集合中的元素與順序無(wú)關(guān)

      二、函數(shù)這是個(gè)重點(diǎn),但是說(shuō)起來(lái)也不好說(shuō),要作專題訓(xùn)練,比如說(shuō)二次函數(shù),指數(shù)對(duì)數(shù)函數(shù)等等做這一類型題的時(shí)候,要掌握幾個(gè)函數(shù)思想如 構(gòu)造函數(shù) 函數(shù)與方程結(jié)合 對(duì)稱思想,換元等等。

      三、數(shù)列這也是個(gè)比較重要的題型,做體的時(shí)候要有整體思想,整體代換,等比等差要分開來(lái),也要注意聯(lián)系,這樣才能做好,注意觀察數(shù)列的形式判斷是什么數(shù)列,還要掌握求數(shù)列通向公式的幾種方法,和求和公式,求和方法,比如裂項(xiàng)相消,錯(cuò)位相減,公式法,分組求和法等等。

      四、三角函數(shù)三角函數(shù)不是考試題型,只是個(gè)應(yīng)用的知識(shí)點(diǎn),所以只要記熟特殊角的三角函數(shù)值和一些重要的定理就行五平面向量這是個(gè)比較抽象的把幾何與代數(shù)結(jié)合起來(lái)的重難點(diǎn),結(jié)體的時(shí)候要有技巧,主要就是把基本知識(shí)掌握到位,注意拓展,另外要多做題,見(jiàn)的題型多,結(jié)體的時(shí)候就有思路,能夠把問(wèn)題簡(jiǎn)單化,有利于提高做題。

      效率:高一的數(shù)學(xué)只是入門,只要把基礎(chǔ)的掌握了,做題就沒(méi)什么大問(wèn)題了,數(shù)學(xué)就可以上130。

      轉(zhuǎn)自百度文庫(kù)。。

      第三篇:高一數(shù)學(xué)知識(shí)點(diǎn):對(duì)數(shù)函數(shù)

      高一數(shù)學(xué)知識(shí)點(diǎn):對(duì)數(shù)函數(shù)

      南通仁德教育數(shù)學(xué)朱老師總結(jié)了高一知識(shí)點(diǎn):對(duì)數(shù)函數(shù),僅供同學(xué)們參考;

      對(duì)數(shù)函數(shù)

      對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

      右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

      可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

      (1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

      (2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

      (3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。

      (4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

      (5)顯然對(duì)數(shù)函數(shù)無(wú)界。

      第四篇:高一數(shù)學(xué)不等式知識(shí)點(diǎn)

      不 等 式

      1、不等式的性質(zhì)是證明不等式和解不等式的基礎(chǔ)。

      不等式的基本性質(zhì)有:

      (1)對(duì)稱性:a>b?b

      (2)傳遞性:若a>b,b>c,則a>c;

      (3)可加性:a>b?a+c>b+c;

      (4)可乘性:a>b,當(dāng)c>0時(shí),ac>bc;當(dāng)c<0時(shí),ac

      不等式運(yùn)算性質(zhì):

      (1)同向相加:若a>b,c>d,則a+c>b+d;

      (2)異向相減:a?b,c?d?a?c?b?d.(3)正數(shù)同向相乘:若a>b>0,c>d>0,則ac>bd。

      (4)乘方法則:若a>b>0,n∈N+,則an?bn;

      (5)開方法則:若a>b>0,n∈N+,則a?b;

      (6)倒數(shù)法則:若ab>0,a>b,則?

      2、基本不等式

      定理:如果a,b?R,那么a21a1。b?b2?2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))

      a?b?ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))推論:如果a,b?0,那么

      2a?b算術(shù)平均數(shù);幾何平均數(shù)2

      推廣:若a,bab; ?a2?b2a?b20,則??ab?1122?ab

      當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào);

      3、絕對(duì)值不等式

      (1)|x|<a(a>0)的解集為:{x|-a<x<a};

      |x|>a(a>0)的解集為:{x|x>a或x<-a}。

      (2)||a|?|b||?|a?b|?|a|?|b|

      4、不等式的證明:

      (1)常用方法:比較法,公式法,分析法,反證法,換元法,放縮法;

      (2)在不等式證明過(guò)程中,應(yīng)注重與不等式的運(yùn)算性質(zhì)聯(lián)合使用;

      (3)證明不等式的過(guò)程中,放大或縮小應(yīng)適度。

      5、不等式的解法:

      (1)一元二次型不等式的恒成立問(wèn)題常用結(jié)論:

      ?a?0或a?0檢驗(yàn); ax+bx+c>0對(duì)于任意的x恒成立??2?b?4ac?0

      2?a?0或a?0檢驗(yàn) ax+bx+c<0對(duì)于任意的x恒成立??2?b?4ac?02

      (2)解不等式是尋找使不等式成立的充要條件,因此在解不等式過(guò)程中應(yīng)使每一步的變形都要恒等。

      一元二次不等式(組)是解不等式的基礎(chǔ),一元二次不等式是解不等式的基本題型。一元二次不等式與相應(yīng)的函數(shù),方程的聯(lián)系

      ① 求一般的一元二次不等式ax2?bx?c?0或ax2?bx?c?0(a?0)的解集,要結(jié)合ax2?bx?c?0的根及二次函數(shù)y?ax2?bx?c圖象確定解集.

      ② 對(duì)于一元二次方程ax2?bx?c?0(a?0),設(shè)??b2?4ac,它的解按照??0,??0,??0可分為三種情況.相應(yīng)地,二次函數(shù)y?ax2?bx?c(a?0)的圖象與x軸的位置關(guān)系也分為三種情況.因此,我們分三種情況討論對(duì)應(yīng)的一元二次不等式ax2?bx?c?0(a?0)的解集,列表如下:

      參數(shù)的不等式

      應(yīng)適當(dāng)分類討論。

      6、線性規(guī)劃問(wèn)題的解題方法和步驟

      解決簡(jiǎn)單線性規(guī)劃問(wèn)題的方法是圖解法,即借助直線(線性目標(biāo)函數(shù)看作斜率確定的一族平行直線)與平面區(qū)域(可行域)有交點(diǎn)時(shí),直線在y軸上的截距的最大值或最小值求解。它的步驟如下:

      (1)設(shè)出未知數(shù),確定目標(biāo)函數(shù)。

      (2)確定線性約束條件,并在直角坐標(biāo)系中畫出對(duì)應(yīng)的平面區(qū)域,即可行域。

      az(3)由目標(biāo)函數(shù)z=ax+by變形為y=-x+,所以,求z的最值可看成是bb

      az求直線y=-x+在y軸上截距的最值(其中a、b是常數(shù),z隨x,y的變化bb

      而變化)。

      (4)作平行線:將直線ax+by=0平移(即作ax+by=0的平行線),使直線與z可行域有交點(diǎn),且觀察在可行域中使最大(或最小)時(shí)所經(jīng)過(guò)的點(diǎn),求出該點(diǎn)b的坐標(biāo)。

      (5)求出最優(yōu)解:將(4)中求出的坐標(biāo)代入目標(biāo)函數(shù),從而求出z的最大(或最?。┲?。

      7、在平面直角坐標(biāo)系中,已知直線?x??y?C?0,坐標(biāo)平面內(nèi)的點(diǎn)??x0,y0?. ①若 ??0,?x0??y0?C?0,則點(diǎn)??x0,y0?在直線?x??y?C?0的上方. ②若 ??0,?x0??y0?C?0,則點(diǎn)??x0,y0?在直線?x??y?C?0的下方.

      8、在平面直角坐標(biāo)系中,已知直線?x??y?C?0.

      y?C0?表示直線?x??y?C?0上方的區(qū)域;①若 ??0,則?x??

      ?x??y?C?0表示直線?x??y?C?0下方的區(qū)域.

      y?C0?表示直線?x??y?C?0下方的區(qū)域;②若 ??0,則?x??

      ?x??y?C?0表示直線?x??y?C?0上方的區(qū)域.

      9、最值定理

      設(shè)x、y都為正數(shù),則有

      s

      2⑴ 若x?y?s(和為定值),則當(dāng)x?y時(shí),積xy取得最大值.

      4⑵ 若xy?p(積為定值),則當(dāng)x?y時(shí),和x?

      y取得最小值 即:“積定,和有最小值;和定,積有最大值”

      注意:一正、二定、三相等

      第五篇:高一數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié)

      高中數(shù)學(xué)必修2知識(shí)點(diǎn)

      三、立體幾何初步

      1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

      (1)棱柱:定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共

      邊都互相平行,由這些面所圍成的幾何體。

      分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

      表示:用各頂點(diǎn)字母,如五棱柱ABCDE?ABCDE或用對(duì)角線的端點(diǎn)字母,如五棱柱'''''

      AD'

      幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且

      相等;平行于底面的截面是與底面全等的多邊形。

      (2)棱錐

      定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

      分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

      表示:用各頂點(diǎn)字母,如五棱錐P?ABCDE

      幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到

      截面距離與高的比的平方。

      (3)棱臺(tái):定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分 分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

      表示:用各頂點(diǎn)字母,如五棱臺(tái)P?ABCDE

      幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

      (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

      幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖

      是一個(gè)矩形。

      (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何

      幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

      (6)圓臺(tái):定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

      幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

      (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

      2、空間幾何體的三視圖 ''''''''''

      第1頁(yè)

      定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

      注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;

      俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

      側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

      3、空間幾何體的直觀圖——斜二測(cè)畫法

      斜二測(cè)畫法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

      ②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

      4、柱體、錐體、臺(tái)體的表面積與體積

      (1)幾何體的表面積為幾何體各個(gè)面的面積的和。

      (2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,h為斜高,l為母線)'

      S直棱柱側(cè)面積?chS圓柱側(cè)?2?rh S正棱錐側(cè)面積?1ch'S圓錐側(cè)面積??rl

      2S正棱臺(tái)側(cè)面積?1(c1?c2)h'S圓臺(tái)側(cè)面積?(r?R)?l 2

      ?2?r?r?l?S圓錐表??r?r?l?S圓臺(tái)表??r2?rl?Rl?R2S圓柱表??

      (3)柱體、錐體、臺(tái)體的體積公式

      1V柱?ShV圓柱?Sh??2r hV錐?ShV圓錐

      ?1?r2h 3

      31'1122V臺(tái)?(S'S)h

      V圓臺(tái)?(S?S)h??(r?rR?R)h

      333

      (4)球體的表面積和體積公式:V球=4?R3 3; S球面=4?R24、空間點(diǎn)、直線、平面的位置關(guān)系

      (1)平面

      ①平面的概念:A.描述性說(shuō)明;B.平面是無(wú)限伸展的;

      ②平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個(gè)銳角內(nèi));

      也可以用兩個(gè)相對(duì)頂點(diǎn)的字母來(lái)表示,如平面BC。

      ③ 點(diǎn)與平面的關(guān)系:點(diǎn)A在平面?內(nèi),記作A??;點(diǎn)A不在平面?內(nèi),記作A??

      點(diǎn)與直線的關(guān)系:點(diǎn)A的直線l上,記作:A∈l;點(diǎn)A在直線l外,記作A?l;

      第2頁(yè)

      直線與平面的關(guān)系:直線l在平面α內(nèi),記作l?α;直線l不在平面α內(nèi),記作l?α。

      (2)公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。

      (即直線在平面內(nèi),或者平面經(jīng)過(guò)直線)

      應(yīng)用:檢驗(yàn)桌面是否平; 判斷直線是否在平面內(nèi)

      用符號(hào)語(yǔ)言表示公理1:A?l,B?l,A??,B???l??

      (3)公理2:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。

      推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一

      平面。

      公理2及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)

      (4)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線

      符號(hào):平面α和β相交,交線是a,記作α∩β=a。

      符號(hào)語(yǔ)言:P?A?B?A?B?l,P?l

      公理3的作用:

      ①它是判定兩個(gè)平面相交的方法。

      ②它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。

      ③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。

      (5)公理4:平行于同一條直線的兩條直線互相平行

      (6)空間直線與直線之間的位置關(guān)系

      ① 異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線

      ② 異面直線性質(zhì):既不平行,又不相交。

      ③ 異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線 ④ 異面直線所成角:直線a、b是異面直線,經(jīng)過(guò)空間任意一點(diǎn)O,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。

      說(shuō)明:(1)判定空間直線是異面直線方法:①根據(jù)異面直線的定義;②異面直線的判定定理

      (2)在異面直線所成角定義中,空間一點(diǎn)O是任取的,而和點(diǎn)O的位置無(wú)關(guān)。

      ②求異面直線所成角步驟:

      A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)

      選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來(lái)求角

      (7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。

      (8)空間直線與平面之間的位置關(guān)系

      直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).

      三種位置關(guān)系的符號(hào)表示:a?αa∩α=Aa∥α

      (9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α∥β

      相交——有一條公共直線。α∩β=b5、空間中的平行問(wèn)題

      (1)直線與平面平行的判定及其性質(zhì)

      線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

      第3頁(yè)

      線線平行?線面平行

      線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。線面平行?線線平行

      (2)平面與平面平行的判定及其性質(zhì)

      兩個(gè)平面平行的判定定理

      (1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

      (線面平行→面面平行),(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。

      (線線平行→面面平行),(3)垂直于同一條直線的兩個(gè)平面平行,兩個(gè)平面平行的性質(zhì)定理

      (1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)

      (2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)

      7、空間中的垂直問(wèn)題

      (1)線線、面面、線面垂直的定義

      ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。

      ③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

      (2)垂直關(guān)系的判定和性質(zhì)定理

      ①線面垂直判定定理和性質(zhì)定理

      判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

      ②面面垂直的判定定理和性質(zhì)定理

      判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。

      性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。

      9、空間角問(wèn)題

      (1)直線與直線所成的角

      ①兩平行直線所成的角:規(guī)定為0?。

      ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。③兩條異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線a?,b?,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

      (2)直線和平面所成的角

      ??①平面的平行線與平面所成的角:規(guī)定為0。②平面的垂線與平面所成的角:規(guī)定為90。

      ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。

      在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:(1)斜線上一點(diǎn)到面的垂線;(2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

      (3)二面角和二面角的平面角

      ①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二

      第4頁(yè)

      面角的棱,這兩個(gè)半平面叫做二面角的面。

      ②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射.....線,這兩條射線所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。

      兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角

      ④求二面角的方法

      定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角

      垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角

      7、空間直角坐標(biāo)系

      (1)定義:如圖,OBCD?D,A,B,C,是單位正方體.以A為原點(diǎn),分別以O(shè)D,OA,OB的方向?yàn)檎较颍⑷龡l數(shù)軸x軸.y軸.z軸。

      這時(shí)建立了一個(gè)空間直角坐標(biāo)系Oxyz.1)O叫做坐標(biāo)原點(diǎn)2)x 軸,y軸,z軸叫做坐標(biāo)軸.3)過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)面。

      (2)右手表示法: 令右手大拇指、食指和中指相互垂直時(shí),可能形成的位置。大拇指指向?yàn)閤軸正方向,食指指向?yàn)閥軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。

      (3)任意點(diǎn)坐標(biāo)表示:空間一點(diǎn)M的坐標(biāo)可以用有序?qū)崝?shù)組(x,y,z)來(lái)表示,有序?qū)崝?shù)組(x,y,z)叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記作M(x,y,z)(x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎坐標(biāo))

      (4)空間兩點(diǎn)距離坐標(biāo)公式:d?(x2?x1)2?(y2?y1)2?(z2?z1)2

      第5頁(yè)

      下載高一數(shù)學(xué)知識(shí)點(diǎn)匯總(五篇模版)word格式文檔
      下載高一數(shù)學(xué)知識(shí)點(diǎn)匯總(五篇模版).doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        2018高一數(shù)學(xué)知識(shí)點(diǎn)之冪函數(shù)

        2018高一數(shù)學(xué)知識(shí)點(diǎn)之冪函數(shù) 知識(shí)點(diǎn)是關(guān)鍵,為了能夠使同學(xué)們?cè)跀?shù)學(xué)方面有所建樹,小編特此整理了高一數(shù)學(xué)知識(shí)點(diǎn)之冪函數(shù),以供大家參考。定義: 形如y=x^a(a為常數(shù))的函數(shù),即以底......

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)--必修5

        高中數(shù)學(xué)必修5知識(shí)點(diǎn)通項(xiàng)公式的變形:①an?am??n?m?d;②a1?an??n?1?d;③d?⑤d?an?amn?man?a1n?1;④n?an?a1d?1;.14、若?an?是等差數(shù)列,且m?n?p?q(m、n、p、q??*),則am?an?ap?aq;若?an?是等差數(shù)列,且2n?p?q(n、p、q??*),則2an?ap?aq......

        高一數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié)

        導(dǎo)語(yǔ):勤奮是學(xué)習(xí)的枝葉,當(dāng)然很苦,智慧是學(xué)習(xí)的花朵,當(dāng)然香郁。以下小編為大家介紹高一數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié)文章,歡迎大家閱讀參考!高一數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié)第一章算法初步1.1.1算......

        高一數(shù)學(xué)必修1知識(shí)點(diǎn)(最終定稿)

        進(jìn)入高中后,很多新生有這樣的心理落差,比自己成績(jī)優(yōu)秀的大有人在,很少有人注意到自己的存在,心理因此失衡,這是正常心理,但是應(yīng)盡快進(jìn)入學(xué)習(xí)狀態(tài)。下面給大家分享一些關(guān)于高一數(shù)學(xué)......

        高一數(shù)學(xué)必修2知識(shí)點(diǎn)(人教版-新課標(biāo))

        高中數(shù)學(xué)必修2知識(shí)點(diǎn)一、直線與方程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾......

        高一數(shù)學(xué)知識(shí)點(diǎn)歸納:指數(shù)函數(shù)、函數(shù)奇偶性

        指數(shù)函數(shù)的一般形式為,從上面我們對(duì)于冪函數(shù)的討論就可以知道,要想使得x能夠取整個(gè)實(shí)數(shù)集合為定義域,則只有使得 如圖所示為a的不同大小影響函數(shù)圖形的情況。 可以看到: (1)指數(shù)函......

        高一政治知識(shí)點(diǎn)

        為什么要大力發(fā)展生產(chǎn)力? 1.理論原因:1.生產(chǎn)決定消費(fèi),2.物質(zhì)資料的生產(chǎn)是人類賴以生存和發(fā)展的基礎(chǔ)。 2,.現(xiàn)實(shí)原因:1.我國(guó)目前處在社會(huì)主義初級(jí)階段,人民日益增長(zhǎng)的物質(zhì)文化需要......

        高一數(shù)學(xué)上冊(cè)基礎(chǔ)知識(shí)點(diǎn)總結(jié)(5篇可選)

        珠暉區(qū)青少年活動(dòng)中心中學(xué)部(博學(xué)教育培訓(xùn)中心) 必修一基礎(chǔ)要點(diǎn)歸納 第一章.集合與函數(shù)的概念 一、集合的概念與運(yùn)算: 1、集合的特性與表示法:集合中的元素應(yīng)具有:確定性 互異性......