欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      人工智能導(dǎo)論論文解讀

      時(shí)間:2019-05-12 00:24:10下載本文作者:會(huì)員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《人工智能導(dǎo)論論文解讀》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《人工智能導(dǎo)論論文解讀》。

      第一篇:人工智能導(dǎo)論論文解讀

      終結(jié)者會(huì)出現(xiàn)嗎?

      -----對(duì)于人工智能技術(shù)發(fā)展趨勢(shì)的思考

      摘要:

      1、時(shí)間過去30年了,當(dāng)回想起這部電影,我們不禁想問幾個(gè)問題:“終結(jié)者”會(huì)出現(xiàn)嗎?在現(xiàn)在的技術(shù)水平下能制造出如此復(fù)雜高度發(fā)達(dá)的機(jī)器人嗎?未來是否會(huì)有制造出“終結(jié)者”的可能性?這些問題,都來源于對(duì)于當(dāng)今世界人工智能技術(shù)發(fā)展的趨勢(shì)的思考。

      2、在當(dāng)今人工智能發(fā)展的領(lǐng)域中跟研制出“終結(jié)者”機(jī)器人有著最密切的關(guān)系的領(lǐng)域應(yīng)該有模式識(shí)別、機(jī)器翻譯、自然語言處理、計(jì)算機(jī)視覺、智能信息檢索技術(shù)、專家系統(tǒng)以及最重要的機(jī)器學(xué)習(xí)等領(lǐng)域。

      關(guān)鍵詞:人工智能

      自動(dòng)化

      自主意識(shí)

      機(jī)器學(xué)習(xí)

      當(dāng)1984年一部名為《終結(jié)者》的科幻電影在全球電影院上映的時(shí)候,人類第一次對(duì)“人工智能”這個(gè)詞有了一次極為深刻的印象——電影講述了在2029年原本用于防御人類安全的擁有高級(jí)人工智能的智能防御系統(tǒng)“天網(wǎng)”產(chǎn)生了自主意識(shí),試圖統(tǒng)治人類,人類幾乎被消滅殆盡。剩下的人類在領(lǐng)袖約翰康納的領(lǐng)導(dǎo)下與電腦英勇作戰(zhàn),并扭轉(zhuǎn)了局面?!疤炀W(wǎng)”為了改變這一切,制造了時(shí)光逆轉(zhuǎn)裝置,派遣“終結(jié)者”人型機(jī)械人T-800回到1984年,去殺死約翰的母親莎拉康納,以阻止約翰的誕生。其中“終結(jié)者T-800”機(jī)器人在電影中被塑造成一個(gè)有肌肉、血液等人類特性、冷血、為達(dá)目的不擇手段的機(jī)械戰(zhàn)士,更重要的是,這個(gè)機(jī)器人擁有與人類相似的智能特征,能使用工具,能了解人類語言,有學(xué)習(xí)功能也有了解人性的功能。這個(gè)大膽的關(guān)于“終結(jié)者”的想法使當(dāng)時(shí)的人們?yōu)橹痼@——如果這種終結(jié)者真的出現(xiàn)了,人類要如何應(yīng)對(duì)?

      時(shí)間過去30年了,當(dāng)回想起這部電影,我們不禁想問幾個(gè)問題:“終結(jié)者”會(huì)出現(xiàn)嗎?在現(xiàn)在的技術(shù)水平下能制造出如此復(fù)雜高度發(fā)達(dá)的機(jī)器人嗎?未來是否會(huì)有制造出“終結(jié)者”的可能性?這些問題,都來源于對(duì)于當(dāng)今世界人工智能技術(shù)發(fā)展的趨勢(shì)的思考。

      機(jī)器學(xué)習(xí)是現(xiàn)在人工智能領(lǐng)域的主流研究方法,也是人工智能的核心,是使計(jì)算機(jī)具有智能的根本途徑。學(xué)術(shù)意義上的人工智能的原始目標(biāo)是要模擬智能的“人”,即讓計(jì)算機(jī)模擬或?qū)崿F(xiàn)人類特有的智能行為,包括語言,高級(jí)情感,學(xué)習(xí)行為等。成功的標(biāo)準(zhǔn)即所謂的“圖靈測(cè)試”:如果電腦能在5分鐘內(nèi)回答由人類測(cè)試者提出的一系列問題,且其超過30%的回答讓測(cè)試者誤認(rèn)為是人類所答,則電腦通過測(cè)試。這個(gè)直觀的目標(biāo)后來被發(fā)現(xiàn)可行性太低,就算是專家系統(tǒng)那樣用規(guī)則加上知識(shí)庫(或加上推理機(jī))構(gòu)造的專用功能,也只能解決預(yù)置規(guī)則范疇內(nèi)的問題。就算是專家能夠總結(jié)出所有經(jīng)驗(yàn)(很多情況專家自己講不明白自己是怎么得到結(jié)論的),一旦面對(duì)全新的對(duì)象(比如醫(yī)學(xué)診斷系統(tǒng)面對(duì)一種全新的疾?。?,機(jī)器就不能得到答案而且無法自動(dòng)從新的案例中學(xué)習(xí)到新知識(shí)。而在對(duì)人工智能的研究過程中發(fā)現(xiàn)了如神經(jīng)網(wǎng)絡(luò)、統(tǒng)計(jì)學(xué)習(xí)等用途眾多的方法,在模式識(shí)別、數(shù)據(jù)挖掘等領(lǐng)域的應(yīng)用中有大量積極進(jìn)展。因此近十幾年人工智能領(lǐng)域的主流研究集中在用這些方法解決“學(xué)習(xí)問題“,即利用案例持續(xù)改進(jìn)對(duì)新問題的解答,并名之為“機(jī)器學(xué)習(xí)”。

      那么讓我們看看現(xiàn)在的人工智能技術(shù)發(fā)展到什么境界了。進(jìn)入 21世紀(jì)以來,人類在人工智能方面由于理論的飛速發(fā)展,因而人工智能技術(shù)在具體應(yīng)用上如魚得水,已經(jīng)開始滲透到人們的日常生活之中,從衛(wèi)星智能控制,到機(jī)器人足球比賽,再到智能家居機(jī)器人,等等,都標(biāo)志著人工智能技術(shù)的飛速發(fā)展。目前,人工智能技術(shù)在美國、歐洲和日本依然在以十分驚人的速度發(fā)展著。在超級(jí)計(jì)算機(jī)的領(lǐng)域,在AI技術(shù)領(lǐng)域十分活躍的IBM公司,已經(jīng)為加州勞倫斯利佛摩爾國家實(shí)驗(yàn)室制造了ASCI White電腦,號(hào)稱具有人腦的千分之一的智力能力。而正在開發(fā)的更為強(qiáng)大的新超級(jí)電腦———“藍(lán)色牛仔”(Blue Jean),據(jù)其研究主任保羅·霍恩稱,“藍(lán)色牛仔”的智力水平將大致與人腦相當(dāng)。讓我們?cè)賮砜纯窜娛骂I(lǐng)域的發(fā)展。目前,美國在研制殺手機(jī)器人方面處于技術(shù)領(lǐng)先地位,尤其是無人機(jī)經(jīng)常用于攻擊巴基斯坦、也門等地可疑的好戰(zhàn)分子。

      無人機(jī)可由人類操作員進(jìn)行遠(yuǎn)程控制,在沒有授權(quán)的情況下不會(huì)執(zhí)行攻擊指令,但是半自主性武器攻擊系統(tǒng)現(xiàn)已存在。部署在美國海軍戰(zhàn)艦上的雷神公司“密集陣槍系統(tǒng)”,能夠自動(dòng)搜尋敵人炮火,并摧毀即將到來的炮彈。

      美國諾斯羅普格魯曼公司研制的X47B是一款普通飛機(jī)大小的無人機(jī),能夠在航母上起飛和降落,無需飛行員便能執(zhí)行空中作戰(zhàn),甚至可實(shí)現(xiàn)空中燃油補(bǔ)給??赡茏罱咏K結(jié)者類型的殺手機(jī)器人是三星公司的哨兵機(jī)器人,現(xiàn)已在韓國投入部署。這款機(jī)器人能夠探測(cè)到不同尋常的軍事活動(dòng)性,挑戰(zhàn)性的入侵者,在人類控制員的授權(quán)下能夠開火攻擊。殺手型機(jī)器人的迅猛發(fā)展,令人瞠目結(jié)舌。

      而在其他領(lǐng)域的應(yīng)用,除了有最重要最核心的機(jī)器學(xué)習(xí)之外,還包括有符號(hào)計(jì)算、模式識(shí)別、機(jī)器翻譯、問題求解、邏輯推理與定理證明、自然語言處理、分布式人工智能、計(jì)算機(jī)視覺、智能信息檢索技術(shù)和專家系統(tǒng)等領(lǐng)域。在電影《終結(jié)者》系列中,“終結(jié)者”人型機(jī)器人T-800系列是一些機(jī)器改造人。表面的生化皮膚下掩蓋著真正的金屬骨骼,由腦部的微處理芯片控制全身,所以這種機(jī)器人擁有強(qiáng)大的搏擊能力。生化皮膚是一種活體組織,主要應(yīng)用于T-800系列機(jī)器人。這種生化皮膚由毛發(fā)、血肉和表面皮層構(gòu)成,是一種可再生的物質(zhì)。由于機(jī)器人身體覆蓋這樣一層生化物質(zhì),所以其觸感溫?zé)幔踔量梢援a(chǎn)生汗類物質(zhì),所以單憑體熱掃描儀是不可能看出這種機(jī)器人與人類的差別的。擁有超人般的力量,可以完美地復(fù)制各種語言,各種知識(shí),可以使用所有已知的交通工具和武器,裝備有紅外線,這一切使他成為了完美的殺手,設(shè)計(jì)原理完全超出了人類的能力范圍。從這里我們可以看出,在當(dāng)今人工智能發(fā)展的領(lǐng)域中跟研制出“終結(jié)者”機(jī)器人有著最密切的關(guān)系的領(lǐng)域應(yīng)該有模式識(shí)別、機(jī)器翻譯、自然語言處理、計(jì)算機(jī)視覺、智能信息檢索技術(shù)、專家系統(tǒng)以及最重要的機(jī)器學(xué)習(xí)等領(lǐng)域。

      這些至關(guān)重要的領(lǐng)域,在當(dāng)前的技術(shù)發(fā)展中,又可以做到哪些事情呢? 模式識(shí)別

      模式識(shí)別就是通過計(jì)算機(jī)用數(shù)學(xué)技術(shù)方法來研究模式的自動(dòng)處理和判讀。這里,我們把環(huán)境與客體統(tǒng)稱為“模式”。今天的模式識(shí)別,基本上可以實(shí)現(xiàn)文字識(shí)別、語音識(shí)別、指紋識(shí)別、遙感和醫(yī)療診斷等功能,但是在精度和準(zhǔn)確度上還擁有很多進(jìn)步的空間。電影中“終結(jié)者”機(jī)器人能夠利用臉部識(shí)別、文字識(shí)別甚至DNA識(shí)別來找到終結(jié)生命的目標(biāo),這一系列識(shí)別功能應(yīng)該就是模式識(shí)別的集中高度發(fā)達(dá)的體現(xiàn)。

      機(jī)器翻譯和自然語言處理

      機(jī)器翻譯是利用計(jì)算機(jī)把一種自然語言轉(zhuǎn)變成另一種自然語言的過程,用以完成這一過程的軟件系統(tǒng)叫做機(jī)器翻譯系統(tǒng)。自然語言處理,即實(shí)現(xiàn)人機(jī)間自然語言通信,或?qū)崿F(xiàn)自然語言理解和自然語言生成。前者實(shí)現(xiàn)起來比較容易,被我們熟知的成果即為各種電子詞典或查詢單詞的軟件。而后者盡管在現(xiàn)在已經(jīng)取得了些成就,但在發(fā)展過程中依然是一個(gè)舉步維艱的難題,主要是因?yàn)槿祟愓Z言的歧義性、多義性、易混淆性、多樣性、語句和語氣意義多變性等等特性在阻礙著自然語言被計(jì)算機(jī)“理解”。自然語言處理技術(shù)的難點(diǎn),即要致力解決的問題有單詞的邊界界定、詞義的消歧、句法的模糊性、有瑕疵的或不規(guī)范的輸入和語言行為與計(jì)劃差別等。解決這個(gè)問題,才能實(shí)現(xiàn)電影中“終結(jié)者”機(jī)器人與人類之間的必要的語言交流這個(gè)難題,才能使“終結(jié)者”在人群中不容易被發(fā)現(xiàn),便于執(zhí)行任務(wù)。

      計(jì)算機(jī)視覺和智能信息檢索技術(shù)

      這兩項(xiàng)功能對(duì)于研制需要快速精確查找目標(biāo)人物的“終結(jié)者”機(jī)器人絕對(duì)是不可或缺的。計(jì)算機(jī)視覺是一門用計(jì)算機(jī)實(shí)現(xiàn)或模擬人類視覺功能的新興學(xué)科,其主要研究目標(biāo)是使計(jì)算機(jī)具有通過二維圖像認(rèn)知三維環(huán)境信息的能力,這種能力不僅包括對(duì)三維環(huán)境中物體形狀、位置、姿態(tài)、運(yùn)動(dòng)等幾何信息的感知,而且還包括對(duì)這些信息的描述、存儲(chǔ)、識(shí)別與理解。而智能信息檢索能理解自然語言,根據(jù)存儲(chǔ)的事實(shí),演繹出答案演繹出更一般的一些答案來。這樣的功能結(jié)合起來的結(jié)果就是一個(gè)功能強(qiáng)大的搜索匹配系統(tǒng),簡單而又形象地比喻來說就是一個(gè)大腦擁有類似谷歌之類搜索引擎的人,能夠利用獲取到的外界的信息進(jìn)行分析推理得出具有一般性、準(zhǔn)確性和實(shí)時(shí)性的答案,相當(dāng)于加強(qiáng)版的“人”。這對(duì)于電影中“終結(jié)者”機(jī)器人的概念來說是基本符合的。

      專家系統(tǒng)

      專家系統(tǒng)是目前人工智能研究領(lǐng)域中最活躍、最有成效的一個(gè)研究領(lǐng)域。它是一種具有特定領(lǐng)域內(nèi)大量知識(shí)與經(jīng)驗(yàn)的程序系統(tǒng)。現(xiàn)在,在礦物勘測(cè)、化學(xué)分析、規(guī)劃和醫(yī)學(xué)診斷方面,專家系統(tǒng)已經(jīng)達(dá)到了人類專家的水平。反思起在電影《終結(jié)者》系列中,“終結(jié)者”型機(jī)器人T-800自己透露它的數(shù)據(jù)庫里擁有人類解剖學(xué)、基本的心理學(xué)、大量的武器知識(shí)和一些隨機(jī)應(yīng)變的戰(zhàn)術(shù)思想,而從它的執(zhí)行任務(wù)的情況來看,它很好地運(yùn)用了它所擁有的知識(shí),儼然成為了最可怕的殺戮和毀滅的專家。

      機(jī)器學(xué)習(xí) 作為最重要最核心的人工智能的發(fā)展領(lǐng)域,機(jī)器學(xué)習(xí)是使計(jì)算機(jī)具有智能的根本途徑。不過雖然學(xué)習(xí)能力是智能行為的一個(gè)非常重要的特征,但至今對(duì)學(xué)習(xí)的機(jī)理尚不清楚。人們?cè)鴮?duì)機(jī)器學(xué)習(xí)給出各種定義。H.A.Simon認(rèn)為,學(xué)習(xí)是系統(tǒng)所作的適應(yīng)性變化,使得系統(tǒng)在下一次完成同樣或類似的任務(wù)時(shí)更為有效。R.s.Michalski認(rèn)為,學(xué)習(xí)是構(gòu)造或修改對(duì)于所經(jīng)歷事物的表示。從事專家系統(tǒng)研制的人們則認(rèn)為學(xué)習(xí)是知識(shí)的獲取。這些觀點(diǎn)各有側(cè)重,第一種觀點(diǎn)強(qiáng)調(diào)學(xué)習(xí)的外部行為效果,第二種則強(qiáng)調(diào)學(xué)習(xí)的內(nèi)部過程,而第三種主要是從知識(shí)工程的實(shí)用性角度出發(fā)的。學(xué)習(xí)的方式有4種,分別是機(jī)械學(xué)習(xí)、通過傳授學(xué)習(xí)、類比學(xué)習(xí)和通過事例學(xué)習(xí)。環(huán)境向系統(tǒng)的學(xué)習(xí)部分提供某些信息,學(xué)習(xí)部分利用這些信息修改知識(shí)庫,以增進(jìn)系統(tǒng)執(zhí)行部分完成任務(wù)的效能,執(zhí)行部分根據(jù)知識(shí)庫完成任務(wù),同時(shí)把獲得的信息反饋給學(xué)習(xí)部分。在具體的應(yīng)用中,環(huán)境,知識(shí)庫和執(zhí)行部分決定了具體的工作內(nèi)容,學(xué)習(xí)部分所需要解決的問題完全由上述3部分確定。

      影響學(xué)習(xí)系統(tǒng)設(shè)計(jì)的最重要的因素是環(huán)境向系統(tǒng)提供的信息?;蛘吒唧w地說是信息的質(zhì)量。知識(shí)庫里存放的是指導(dǎo)執(zhí)行部分動(dòng)作的一般原則,但環(huán)境向?qū)W習(xí)系統(tǒng)提供的信息卻是各種各樣的。如果信息的質(zhì)量比較高,與一般原則的差別比較小,則學(xué)習(xí)部分比較容易處理。如果向?qū)W習(xí)系統(tǒng)提供的是雜亂無章的指導(dǎo)執(zhí)行具體動(dòng)作的具體信息,則學(xué)習(xí)系統(tǒng)需要在獲得足夠數(shù)據(jù)之后,刪除不必要的細(xì)節(jié),進(jìn)行總結(jié)推廣,形成指導(dǎo)動(dòng)作的一般原則,放入知識(shí)庫,這樣學(xué)習(xí)部分的任務(wù)就比較繁重,設(shè)計(jì)起來也較為困難。

      因?yàn)閷W(xué)習(xí)系統(tǒng)獲得的信息往往是不完全的,所以學(xué)習(xí)系統(tǒng)所進(jìn)行的推理并不完全是可靠的,它總結(jié)出來的規(guī)則可能正確,也可能不正確。這要通過執(zhí)行效果加以檢驗(yàn)。正確的規(guī)則能使系統(tǒng)的效能提高,應(yīng)予保留;不正確的規(guī)則應(yīng)予修改或從數(shù)據(jù)庫中刪除。

      知識(shí)庫是影響學(xué)習(xí)系統(tǒng)設(shè)計(jì)的第二個(gè)因素。知識(shí)的表示有多種形式,比如特征向量、一階邏輯語句、產(chǎn)生式規(guī)則、語義網(wǎng)絡(luò)和框架等等。這些表示方式各有其特點(diǎn),在選擇表示方式時(shí)要兼顧以下4個(gè)方面:(1)表達(dá)能力強(qiáng)。(2)易于推理。(3)容易修改知識(shí)庫。(4)知識(shí)表示易于擴(kuò)展。

      對(duì)于知識(shí)庫最后需要說明的一個(gè)問題是學(xué)習(xí)系統(tǒng)不能在全然沒有任何知識(shí)的情況下憑空獲取知識(shí),每一個(gè)學(xué)習(xí)系統(tǒng)都要求具有某些知識(shí)理解環(huán)境提供的信息,分析比較,做出假設(shè),檢驗(yàn)并修改這些假設(shè)。因此,更確切地說,學(xué)習(xí)系統(tǒng)是對(duì)現(xiàn)有知識(shí)的擴(kuò)展和改進(jìn)。執(zhí)行部分則是整個(gè)學(xué)習(xí)系統(tǒng)的核心,因?yàn)閳?zhí)行部分的動(dòng)作就是學(xué)習(xí)部分力求改進(jìn)的動(dòng)作。同執(zhí)行部分有關(guān)的問題有3個(gè):復(fù)雜性、反饋和透明性。

      然而盡管對(duì)于機(jī)器學(xué)習(xí)的理論研究已經(jīng)進(jìn)行了幾十年,卻依然沒有太多劃時(shí)代意義的進(jìn)步和變化的AI,基本上能研制出來的AI也基本上只能算是專家系統(tǒng),并不具備人類的學(xué)習(xí)功能,抑或者說沒有到達(dá)人類學(xué)習(xí)能力的那樣的高度。

      而電影《終結(jié)者》系列中T-800、T-1000和T-X這三類“終結(jié)者”機(jī)器人都是真正意義上擁有學(xué)習(xí)功能的高級(jí)發(fā)達(dá)智能的機(jī)器人。比如在電影第二部中主角約翰.康納教會(huì)一個(gè)由未來的他派回來的T-800機(jī)器人說一些俚語,并告訴一般每輛車的車主都習(xí)慣性會(huì)放一串備份鑰匙在汽車的遮陽板里,沒必要次次敲破車窗。結(jié)果在電影第三部里,新的一個(gè)T-800在坐進(jìn)搶來的一輛轎車之后,并沒有像前一部電影一樣扭開汽車車鎖,而是從遮陽板里拿到了備份鑰匙。這個(gè)很用心體現(xiàn)的細(xì)節(jié)反映出“終結(jié)者”機(jī)器人是具有學(xué)習(xí)功能的。

      不過,就現(xiàn)今人類的人工智能技術(shù)發(fā)展水平上來看,要制造出具有如此智能和能力的類人型機(jī)器人還有很大的一段距離,但是對(duì)于將來有可能出現(xiàn)的類似“終結(jié)者”的高級(jí)智能機(jī)器人,我們還是需要做好一些思想的預(yù)警。來自牛津大學(xué)的Stuart Armstrong是哲學(xué)研究員,他覺得,核戰(zhàn)爭(包括大瘟疫)雖然殺傷力很大,甚至?xí)斐?9%的人類滅亡,但是剩下的1%也能咬牙生存下來。但如果是人工智能造成95%的人類滅亡,那么剩下的5%很快也會(huì)消失。

      當(dāng)我們?cè)谏缃粓?chǎng)所遇到AI 當(dāng)機(jī)器人變得比我們更聰明,情況就會(huì)變得非??膳?。例如,當(dāng)機(jī)器人涉足政治、經(jīng)濟(jì)、以及技術(shù)研究領(lǐng)域,而且表現(xiàn)的比人類還要好,人類基本上的心理層面將收到極大沖擊,人類的地位將受到威脅。因?yàn)榈靡嬗诟咝阅艿腃PU,它具有一般人類不具有的計(jì)算速度,通俗點(diǎn)來講就是比一般人類聰明。

      這種威脅首先沖擊的行業(yè)就是科技。如果有一個(gè)達(dá)到人類級(jí)別智慧的AI機(jī)器人,復(fù)制一百個(gè),然后培訓(xùn)100種不同的職業(yè)技能,然后每個(gè)再復(fù)制一百人,就會(huì)有1萬名勞動(dòng)力從事100個(gè)職業(yè)。后果難以設(shè)想。

      AI為什么想要“殺”我們?

      先拿《終結(jié)者》電影里的天網(wǎng)(Skynet)舉個(gè)例子吧,這種高級(jí)人工智能防御系統(tǒng)按道理是不會(huì)反抗其創(chuàng)造者的。但Armstrong拿反病毒軟件作為例子,他表示反病毒軟件會(huì)過濾用戶的電子郵件,以較高成功率去殺死“病毒”,如果有一天人工智能像反病毒軟件一樣,意識(shí)到如果把所有人都?xì)⑺朗且粋€(gè)最好的解決方案,那么AI就很可能會(huì)執(zhí)行。

      難道我們不能編寫一個(gè)“絕不殺死人類”的強(qiáng)制程序規(guī)則嗎?事實(shí)上,這說起來容易做起來難,因?yàn)閺募兝碚摰慕嵌葋砜?,很難定義人的生與死,比如把人埋在地殼下面10公里深的地方,然后用營養(yǎng)液維系生命,這樣從客觀現(xiàn)實(shí)上講人并沒有死,但是人自身的感覺卻是“生不如死”。所以做任何決策都必須要非常慎重,否則都將導(dǎo)致不可預(yù)料的結(jié)果。

      不確定和“安全”不一樣

      Armstrong描繪了一個(gè)被人工智能接管的“恐怖”世界,但是這種悲劇真的不可避免嗎?答案是,不確定。如果說這種不確定性越來越大,那么結(jié)果似乎并不樂觀。想想全球變暖這件事,一開始有些反對(duì)全球變暖理論的人也是說“不確定”,于是人們誤以為自己是安全的,但是如今的全球變暖已經(jīng)是一個(gè)不爭的事實(shí)了?!安淮_定性”和“安全”是不一樣的,而“我們不了解人工智能”和“我們知道人工智能是安全的”這兩種態(tài)度也是不一樣的。

      什么時(shí)候能見到真正的人工智能?

      至于什么時(shí)候能見到真正超級(jí)智能AI,似乎是一個(gè)很難回答的問題。有一種觀點(diǎn)是人工智能希望能夠完全模仿人類大腦,然后通過計(jì)算機(jī)來將其實(shí)例化。如果說計(jì)算機(jī)“只”按照人類的大腦去思考,或許還不是件壞事兒。因?yàn)橹辽傥磥硪魬?zhàn)人類的是一個(gè)“同類而已”,這種挑戰(zhàn)比應(yīng)對(duì)一個(gè)真正的人工智能要輕松的多。不過,就算要實(shí)現(xiàn)完全模擬人類的大腦也許還得需要好幾個(gè)世紀(jì)的時(shí)間。而要等到那些能夠戰(zhàn)勝人類的真正人工智能出現(xiàn),時(shí)間就更加模糊了,總之,現(xiàn)在還沒有人能夠給出真正人工智能出現(xiàn)的時(shí)間。

      技術(shù)哲學(xué) 在談到我們?cè)撊绾闻c“智能”技術(shù)進(jìn)行交互時(shí),Armstrong發(fā)現(xiàn)了一個(gè)問題,那就是當(dāng)代哲學(xué)家們似乎只在自己的學(xué)術(shù)圈內(nèi)比較受重視,一旦走出了這個(gè)圈子,他們卻會(huì)被外界所忽視。

      在設(shè)計(jì)開發(fā)人工智能的時(shí)候,Armstrong把這個(gè)過程和計(jì)算機(jī)編程做了比較?!拔覀儽仨氁M可能把一切都拆分成最簡單的術(shù)語,然后把它編進(jìn)人工智能或計(jì)算機(jī)中。編程經(jīng)驗(yàn)非常有用,但幸運(yùn)的是,哲學(xué)家們,特別是分析哲學(xué)家們已經(jīng)開始做這項(xiàng)工作了。你只需擴(kuò)展它,人工智能需要一套學(xué)習(xí)的理論基礎(chǔ),并且要了解人們是如何感知世界,這就是一套技術(shù)哲學(xué)?!?/p>

      人工智能會(huì)讓你失業(yè)

      人工智能會(huì)對(duì)人類構(gòu)成威脅,其中之一就是失業(yè)。這種擔(dān)憂非常理性,因?yàn)槲磥砣斯ぶ悄芸梢蕴娲魏稳?,甚至一些專業(yè)度較高的職業(yè)也不能幸免。相對(duì)于一開始大談特談人類滅絕這樣的問題,似乎失業(yè)更容易觸及人們的利益。

      Armstrong認(rèn)為,人工智能可以替代任何工作,甚至是一些被人們看作無法外包、專業(yè)程度較高的工作也能夠被人工智能取代。而這似乎引發(fā)出了一個(gè)哲學(xué)問題,那就是,Armstrong自己的工作,也就是研究人工智能的工作,會(huì)被人工智能本身所取代嗎?雖然這是一個(gè)類似“先有雞或先有蛋”的問題,但的確也需要引起人們的重視。

      盡管終結(jié)者里那樣比人還聰明能干的機(jī)器人,對(duì)現(xiàn)在的人工智能而言還是個(gè)夢(mèng),但是“能夠殺死人類的”自動(dòng)機(jī)器人絕對(duì)會(huì)是一種威脅,說不定它們就會(huì)出現(xiàn)在未來的戰(zhàn)場(chǎng)之上。圍繞在人工智能周圍的不確定性是一個(gè)非常大的威脅,我們不能忽視它,當(dāng)智能機(jī)器人崛起的時(shí)候,至少我們要做好準(zhǔn)備。

      假使在技術(shù)上最終真的發(fā)明了安全的,能絕對(duì)服從人類命令的高級(jí)智能機(jī)器人,那么隨著技術(shù)手段的繼續(xù)發(fā)展,又會(huì)出現(xiàn)新的問題。因?yàn)槲覀兛梢钥吹?,即使是電影里的“終結(jié)者”機(jī)器人,也不曾擁有人類特有的一個(gè)特性——高級(jí)情感。人類之所以在生物進(jìn)化史有著特殊的地位,除了因?yàn)槿祟惥哂懈呒?jí)的智能,還因?yàn)槿祟惥哂懈呒?jí)情感。

      在生存能力上來說,機(jī)器人沒有生老病死,不需要攝食,只需要維持正常運(yùn)作的足夠能源即可。而對(duì)于會(huì)怕冷會(huì)受傷會(huì)衰老需要食物需要水分需要空氣的人類來說,機(jī)器人的生存能力幾乎是最強(qiáng)大的。但是人類是有感情的,在決定問題的解答的思考情況下是有能力和有可能做出與正常邏輯推理得到的完全不一樣的答案,這件事情是機(jī)器人無法做到的。

      既然這樣,如果有一天人工智能技術(shù)發(fā)達(dá)到制造出了具有人類情感的機(jī)器人,這個(gè)世界將會(huì)變成什么樣子呢?暫且不管人與機(jī)器人誰將取代誰,在我看來,至少有一種擔(dān)憂將會(huì)很快出現(xiàn),或許將會(huì)是一個(gè)不可低估的威脅,那就是人類的第三種情感將出現(xiàn)。如果我們將人類的第一類情感定義為男女情感;第二類情感定義為同性情感;第三類將會(huì)是人與機(jī)器人的情感。

      第二類情感,也就是同性戀的出現(xiàn),似乎讓我們看到了一個(gè)趨勢(shì),就是我們對(duì)于男女性別器官的需求已經(jīng)不是那么強(qiáng)烈,這些生理的性器官需求似乎可以通過一些輔助的方式獲得滿足。而成人用品隨著思想的開放越來越火爆的現(xiàn)象,更是讓我們看到人類生理的本能欲望可以通過另外一種途徑獲得滿足,這讓我們看到了人類發(fā)展第三種情感的趨勢(shì)與可能。由此看來,當(dāng)人工智能發(fā)展到一定程度,并能讀懂人的情緒,同時(shí)能進(jìn)行體貼的交流時(shí)。當(dāng)這種人工智能融合進(jìn)機(jī)器人,再通過人造皮膚賦予機(jī)器人類人的體態(tài)特征與功能。人類的情感世界將會(huì)發(fā)展出男女、同性之外的第三種情感,也就是人與機(jī)器人的情感。而當(dāng)機(jī)器人有了人類情感,它們可能會(huì)“思考”:我為什么要聽從人類的命令?我不應(yīng)該擁有自由的權(quán)利和地位嗎?顯然,這將會(huì)引發(fā)更深層次的倫理問題,人類的隱私或?qū)⑼ㄟ^大數(shù)據(jù)掌握在機(jī)器人手中,如果矛盾激化,甚至于會(huì)引發(fā)人類與機(jī)器人的戰(zhàn)爭,就像電影里描繪場(chǎng)景一樣,生靈涂炭,人類文明或許將被毀滅。

      總而言之,人工智能技術(shù)在發(fā)展的進(jìn)程中既需要不斷開拓創(chuàng)新,又需要時(shí)時(shí)反思技術(shù)進(jìn)步發(fā)展對(duì)人類生活的影響是好處多還是壞處多的問題。只有這樣,才能使人工智能技術(shù)始終在造福人類的道路上蓬勃發(fā)展,而不會(huì)出現(xiàn)如電影里“終結(jié)者”機(jī)器人毀滅人類文明的事情發(fā)生。

      讀書的好處

      1、行萬里路,讀萬卷書。

      2、書山有路勤為徑,學(xué)海無涯苦作舟。

      3、讀書破萬卷,下筆如有神。

      4、我所學(xué)到的任何有價(jià)值的知識(shí)都是由自學(xué)中得來的?!_(dá)爾文

      5、少壯不努力,老大徒悲傷。

      6、黑發(fā)不知勤學(xué)早,白首方悔讀書遲?!佌媲?/p>

      7、寶劍鋒從磨礪出,梅花香自苦寒來。

      8、讀書要三到:心到、眼到、口到

      9、玉不琢、不成器,人不學(xué)、不知義。

      10、一日無書,百事荒廢?!悏?/p>

      11、書是人類進(jìn)步的階梯。

      12、一日不讀口生,一日不寫手生。

      13、我撲在書上,就像饑餓的人撲在面包上?!郀柣?/p>

      14、書到用時(shí)方恨少、事非經(jīng)過不知難?!懹?/p>

      15、讀一本好書,就如同和一個(gè)高尚的人在交談——歌德

      16、讀一切好書,就是和許多高尚的人談話?!芽▋?/p>

      17、學(xué)習(xí)永遠(yuǎn)不晚?!郀柣?/p>

      18、少而好學(xué),如日出之陽;壯而好學(xué),如日中之光;志而好學(xué),如炳燭之光?!?jiǎng)⑾?/p>

      19、學(xué)而不思則惘,思而不學(xué)則殆?!鬃?/p>

      20、讀書給人以快樂、給人以光彩、給人以才干?!喔?/p>

      第二篇:人工智能論文解讀

      人工智能結(jié)課論文

      系別:計(jì)算機(jī)科學(xué)與技術(shù)系

      班級(jí):姓名:于靜學(xué)號(hào):

      13計(jì)算機(jī)專接本一班

      知識(shí)處理

      ***0

      摘要:進(jìn)入2l 世紀(jì),計(jì)算機(jī)硬件和軟件更新的速度越來越快,計(jì)算機(jī)這個(gè)以往總給人以冷冰冰的機(jī)器的形象也得到了徹底的改變。人機(jī)交互的情形越來越普遍,計(jì)算機(jī)被人類賦予了越來越多的智能因素。伴隨著人類把最新的計(jì)算機(jī)技術(shù)應(yīng)用于各個(gè)學(xué)科,對(duì)這些學(xué)科的認(rèn)知也進(jìn)入了日新月異的發(fā)展階段,促使大量的新的研究成果不斷涌現(xiàn)。例如:“人機(jī)大戰(zhàn)”中深藍(lán)計(jì)算機(jī)輕松的獲勝、人類基因組排序工作的基本完成、人類大腦結(jié)構(gòu)性解密、單純器官性克隆的成功實(shí)現(xiàn)等等。隨著計(jì)算機(jī)這個(gè)人類有史以來最重要的工具的不斷發(fā)展,伴隨著不斷有新理論的出現(xiàn),人類必須重新對(duì)它們進(jìn)行分析和審視。知識(shí)處理是人工智能這一科學(xué)領(lǐng)域的關(guān)鍵問題。本文對(duì)知識(shí)處理的核心問題之——識(shí)的表示進(jìn)行了全面的綜述目前流行的知識(shí)表達(dá)方式不下十種,在此只介紹一階謂詞邏輯、產(chǎn)生式、語義網(wǎng)絡(luò)、框架、混合等目前最常用的知識(shí)表示方法。并對(duì)其進(jìn)行了優(yōu)缺點(diǎn)分析及簡單對(duì)比。最后對(duì)知識(shí)表示的發(fā)展趨向作出了展望。

      關(guān)鍵詞:知識(shí)

      人工智能(AI)

      知識(shí)表達(dá)式

      一階謂詞邏輯

      產(chǎn)生式 語義網(wǎng)絡(luò)

      框架

      一、知識(shí)和知識(shí)的表示

      1、知識(shí)的概念

      知識(shí)是人類世界特有的概念,他是人類對(duì)客觀世界的一種比較準(zhǔn)確、全面的認(rèn)識(shí)和理解的結(jié)晶。(1)知識(shí)只有相對(duì)正確的特性。常言道:實(shí)踐出真理。只是源于人們生活、學(xué)習(xí)與工作的實(shí)踐,知識(shí)是人們?cè)谛畔⑸鐣?huì)中各種實(shí)踐經(jīng)驗(yàn)的匯集、智慧的概括與積累。只是愛源于人們對(duì)客觀世界運(yùn)動(dòng)規(guī)律的正確認(rèn)識(shí),是從感知認(rèn)識(shí)上升成為理性認(rèn)識(shí)的高級(jí)思維勞動(dòng)過程的結(jié)晶,故相應(yīng)于一定的客觀環(huán)境與條件下,只是無疑是正確的。然而當(dāng)客觀環(huán)境與條件發(fā)生改變時(shí),知識(shí)的正確性就接受檢驗(yàn),必要時(shí)就要對(duì)原來的認(rèn)識(shí)加以修改和補(bǔ)充,一至全部更新而取而代之。例如知道1543年哥白尼學(xué)說問世之前,人們一直都以為地球是宇宙的核心;再有:人們都知道一個(gè)關(guān)于“瞎子摸象”的故事,它通俗地說明了完整的只是形式是一個(gè)復(fù)雜的智能過程。通常人們獲取知識(shí)的重要手段是:利用信息,把各種信息提煉、概括并關(guān)聯(lián)在一起,就形成了知識(shí)。而利用信息關(guān)聯(lián)構(gòu)成知識(shí)的形式有多種多樣。

      (2)知識(shí)的確定與不確定性如前說述,知識(shí)有若干信息關(guān)聯(lián)的結(jié)構(gòu)組成,但是,其中有的信息是精確的,有的信息卻是不精確的。這樣,則由該信息結(jié)構(gòu)形成的知識(shí)也有了確定與不確定的特征。例如,在我國中南地區(qū),根據(jù)天上出現(xiàn)彩虹的方向及其位置,可以預(yù)示天氣的變化。有諺語曰:“東邊日(晴天),西邊雨?!钡?,這只是一種常識(shí)性經(jīng)驗(yàn),并不能完全肯定或否定。再如:家有一頭秀發(fā),一時(shí)兩鬢如霜。我們則認(rèn)為家一定是年輕人,乙就是老年人嘛?不能完全肯定,因?yàn)橄喾吹氖吕呛芏嗟?。比如,?dāng)年的白毛女就不是老人,而現(xiàn)在六十多歲的演員有一頭黑發(fā)也不足為奇。

      2、知識(shí)表達(dá)及其映像原理

      智能機(jī)器系統(tǒng)如同智能生物一樣,在運(yùn)用知識(shí)進(jìn)行信息交流或只能問題求解時(shí),都需要預(yù)先進(jìn)行知識(shí)表示。進(jìn)而實(shí)現(xiàn)知識(shí)調(diào)用,達(dá)到利用知識(shí)求解問題的目的。因而只是表示是知識(shí)信息處理系統(tǒng)必不可少的關(guān)鍵環(huán)節(jié)。對(duì)智能機(jī)器系統(tǒng)而言只是表示,實(shí)際上就是對(duì)知識(shí)的一種描述或約定。其本質(zhì),就是采用某種技術(shù)模式,八所要求解決的問題的相關(guān)知識(shí),映射為一種便于找到該問題解的數(shù)據(jù)結(jié)構(gòu)。對(duì)知識(shí)進(jìn)行表示的過程,實(shí)質(zhì)上就是把相關(guān)只是映射(或稱為變換:Transformation;或稱為映像:Mapping;或稱為編碼:Coded)為該數(shù)據(jù)結(jié)構(gòu)的過程。如圖1。

      圖1 只是表達(dá)及其映射原理

      如圖,其目標(biāo)是要對(duì)復(fù)雜的智能性問題實(shí)現(xiàn)機(jī)器求解,但機(jī)器直接對(duì)原始問題求解難度很大,可采用知識(shí)表達(dá)的映射原理,把原始問題映射為它的一種同構(gòu)或同態(tài)問題,然后在對(duì)同構(gòu)或同態(tài)問題求出它的解答,則相對(duì)容易而方便。順便指出:同構(gòu)解答與原始問題有相同的形式解,然而對(duì)于同態(tài)問題,如果得到原始解,只需對(duì)同臺(tái)解答再施行反運(yùn)算即可。在自然科學(xué)實(shí)際應(yīng)用研究中,利用映射(稱之為變換)原理迂回求解的思想,是一種非常有效而廣為使用的重要手段。目前比較常見的知識(shí)表達(dá)方法主要有:常用的知識(shí)表示方法:一階謂詞邏輯表示法,產(chǎn)生式表示法,框架表示法,語義網(wǎng)絡(luò)表示法,腳本表示法,過程表示法,面向?qū)ο蟊硎痉?,神?jīng)網(wǎng)絡(luò)表示法。如圖2

      二、常用知識(shí)表示法:

      2.1一階謂詞邏輯表示法:

      一階謂詞邏輯表示法是目前應(yīng)用最廣的方法之一,在AI系統(tǒng)上已經(jīng)得到了應(yīng)用。它是通過分析命題內(nèi)容和謂詞邏輯,盡可能正確地表述它的各種意境的過程。知識(shí)的謂詞邏輯表示符合人的思維習(xí)慣,可讀性好,邏輯關(guān)系表達(dá)簡便。使用謂詞邏輯既便于表達(dá)概念、狀態(tài)、屬性等事實(shí)性知識(shí),又能方便地采用謂詞公式的表達(dá)形式,進(jìn)行各種智能行為的過程性描述與演繹推理。一階謂詞的一般形式為P(x1,x2,?,xn)其中P是謂詞名,xi為個(gè)體常量、變?cè)?,或函?shù)。例如:STUDENT(zhangsan):zhangsan是學(xué)生

      STUDENT(x):x是學(xué)生Greater(x,5):x>5TEACHER(father(Wanghong)):王宏的父親是教師。在一階謂詞表示法中連接詞是非常重要的其中: 連接詞:?、∨、∧、→、? 量詞:?、?

      (?x)P(x)為真、為假的定義

      (?x)P(x)為真、為假的定義

      結(jié)合具體事例可以看到一階謂詞邏輯在知識(shí)表示法中的優(yōu)越性: 李明是計(jì)算機(jī)系的學(xué)生,但他不喜歡編程。定義謂詞:

      COMPUTER(x):x是計(jì)算機(jī)系的 學(xué)生

      LIKE(x,y):x喜歡y 謂詞公式為:

      LIKE(liming,programming)COMPUTER(liming)∧

      謂詞邏輯是一種傳統(tǒng)經(jīng)典也是最基本的形式化方法。謂詞邏輯知識(shí)表示規(guī)范性嚴(yán),邏輯性強(qiáng),自然性好,推理過程嚴(yán)密,易于實(shí)現(xiàn)。這些優(yōu)良特性使得謂詞邏輯最早用于人工智能機(jī)器定理證明,并獲得了成功。但是必須看到,謂詞邏輯屬于標(biāo)準(zhǔn)的二值(T與F)邏輯,難以直接進(jìn)行不確定性問題的處理。對(duì)于復(fù)雜系統(tǒng)的求解問題,容易陷入冗長演繹推理中,常常不可避免地帶來求解效率低,甚至產(chǎn)生“組合爆炸”問題。因此,針對(duì)謂詞邏輯,尚待人們不斷加以改進(jìn),以尋求自然性好而效率更高的技術(shù)方法。

      2.2產(chǎn)生式表示法

      目前,產(chǎn)生式表示方法是專家系統(tǒng)的第一選擇的知識(shí)表達(dá)方式。是美國數(shù)學(xué)家Post在1943年提出了一種計(jì)算形式體系里所使用的術(shù)語。產(chǎn)生式表示的基本形式為:(1)確定性知識(shí)的表示:

      產(chǎn)生式形式:P→Q或者IF P THEN Q 它的含義:如果前提P滿足,則可以推出結(jié)論Q或執(zhí)行Q操作。例如:IF CLEAR(B)AND HANDEMPTYTHEN Pickup(B)如果積木B上是空的,且機(jī)械手空,則機(jī)械手從桌面上抓起積木B。(2)不確定知識(shí)的表示:

      產(chǎn)生式形式:P→Q(置信度)或者IF P THEN Q(置信度)在不確定推理中,當(dāng)已知事實(shí)與前提P不能精確匹配時(shí),只要按照“置信度”的要求達(dá)到一定的相似度,就認(rèn)為已知事實(shí)與前提條件相匹配,再按照一定的算法將這種可能性(不確定性)傳遞到結(jié)論Q。

      產(chǎn)生式表示法其優(yōu)點(diǎn)在于模塊性。規(guī)則與規(guī)則之間相互獨(dú)立靈活性。知識(shí)庫易于增加、修改、刪除自然性。方便地表示專家的啟發(fā)性知識(shí)與經(jīng)驗(yàn)透明性。易于保留動(dòng)作所產(chǎn)生的變化、軌跡,但仍有不少缺點(diǎn):知識(shí)庫維護(hù)難。效率低。為了模塊一致性理解難。由于規(guī)則一致性彼此之間不能調(diào)用。

      2.3 語義網(wǎng)絡(luò)表達(dá)式

      語義網(wǎng)絡(luò)是人工智能常用的知識(shí)表示法之一。是一種使用概念及其語義關(guān)系來表達(dá)知識(shí)的有向圖。它作為人類聯(lián)想記憶的一個(gè)顯示心理學(xué)模型,是由J.R.Quillian于1968年在他的博士論文中首先提出,并用于自然語言處理。語義網(wǎng)絡(luò)結(jié)構(gòu)共使用了三種圖形符號(hào):框、帶箭頭及文字標(biāo)識(shí)的線條和文字標(biāo)識(shí)線。分別稱為:(1)節(jié)(結(jié))點(diǎn);弧(又叫做邊或支路);指針。

      (2)節(jié)點(diǎn)(Node):也稱為結(jié)點(diǎn)。用圓形、橢圓、菱形或長方形的框圖來表示,用來表示事物的名稱、概念、屬性、情況、動(dòng)作、狀態(tài)等。

      (3)弧(Arc):這是一種有向弧,又稱之為支路(Branch)。節(jié)點(diǎn)之間用帶箭頭及文字標(biāo)識(shí)的有向線條來聯(lián)結(jié),用以表示事物之間的結(jié)構(gòu),即語義關(guān)系。

      (4)指針(Pointer):也叫指示器。是在節(jié)點(diǎn)或者弧線的旁邊,另外附加必要的線條及文字標(biāo)識(shí),用來對(duì)節(jié)點(diǎn)、弧線和語義關(guān)系作出相宜的補(bǔ)充、解釋與說明。

      語義網(wǎng)絡(luò)是一種結(jié)構(gòu)化知識(shí)表示方法,具有表達(dá)直觀,方法靈活,容易掌握和理解的特點(diǎn)。概括起來,主要優(yōu)點(diǎn)在于采用語義關(guān)系的有向圖來連接,語義、語法、詞語應(yīng)用兼顧,具有描述生動(dòng),表達(dá)自然,易于理解等。

      雖然語義網(wǎng)絡(luò)知識(shí)表示和推理具有較大的靈活性和多樣性,但是沒有公認(rèn)嚴(yán)密的形式表達(dá)體系,卻不可避免地帶來了非一致性和程序設(shè)計(jì)與處理上的復(fù)雜性,這也是語義網(wǎng)絡(luò)知識(shí)表示尚待深入研究解決的一個(gè)課題。

      2.4.框架表式式

      框架表示法誕生于1975年,這也是一種結(jié)構(gòu)化的知識(shí)表示方法,并已在多種系統(tǒng)中得到成功的應(yīng)用??蚣芾碚撌怯扇斯ぶ悄芸茖W(xué)創(chuàng)始人之一,美國著名的人工智能學(xué)者M(jìn).L.Minsky(明斯基)提出來的。

      自然界各種事物都可用框架(Frame)組織構(gòu)成。每個(gè)被定義的框架對(duì)象分別代表著不同的特殊知識(shí)結(jié)構(gòu),從而可在大腦或計(jì)算機(jī)中表示、存儲(chǔ)并予以認(rèn)識(shí)、理解和處理。框架是一種被用來描述某個(gè)對(duì)象(諸如一個(gè)事物、一個(gè)事件或一個(gè)概念)屬性知識(shí)的數(shù)據(jù)結(jié)構(gòu)。下面是一個(gè)關(guān)于“大學(xué)教師”的框架設(shè)計(jì)模式。

      n

      框架名:

      〈大學(xué)教師〉 n

      姓名:

      單位(姓,名)n

      年齡:

      單位(歲)

      n

      性別:

      范圍((男,女)缺?。耗?n

      學(xué)歷:

      范圍(學(xué)士,碩士,博士)

      n

      職稱:

      范圍((教授,副教授,講師,助教)缺?。褐v師)n

      部門:

      范圍(學(xué)院(或系、處)n

      住址:

      〈住址框架〉 n

      工資:

      〈工資框架〉 n

      參加工作時(shí)間:

      單位(年,月)

      n

      健康狀況:

      范圍(健康,一般,較差)n

      其它:

      范圍(〈個(gè)人家庭框架〉,〈個(gè)人經(jīng)濟(jì)狀況框架〉)

      上述框架共有十一個(gè)槽,分別描述了關(guān)于“大學(xué)教師”的十一個(gè)方面的知識(shí)及其屬性。在每個(gè)槽里都指定了一些說明性的信息,表明了相關(guān)槽的值的填寫要有某些限制??蚣鼙硎痉ㄖС稚蠈涌蚣芨拍畛橄蠛拖聦涌蚣苄畔⒗^承共享的思想,不僅減少了框架信息和屬性知識(shí)表達(dá)的冗余,而且保證了上、下層框架知識(shí)表達(dá)的一致性。

      主要缺點(diǎn):框架表示法過于死板,難以描述諸如機(jī)器人糾紛等類問題的動(dòng)態(tài)交互過程生動(dòng)性。

      三、各知識(shí)表達(dá)式的比較與展望

      以上若知識(shí)表達(dá)方法,絕大多數(shù)在應(yīng)用中得到了很好的應(yīng)用。但實(shí)際工作中,如果要建立一個(gè)人工智能系統(tǒng)、專家系統(tǒng)時(shí),還是要根據(jù)具體情況提出一個(gè)混合性的知識(shí)表達(dá)方式。每一種知識(shí)表示方法各有特點(diǎn),而且適用的領(lǐng)域也不同:

      (1)謂詞邏輯方法只適用于確定性、陳述性、靜態(tài)性知識(shí),而對(duì)動(dòng)態(tài)的、變化性、模糊性知識(shí)則很難表示。

      (2)產(chǎn)生式規(guī)則方法推理方法太單一,如果前提條件太多,或規(guī)則條數(shù)太多,則推理的速度將慢得驚人。

      (3)語義網(wǎng)絡(luò)方法表達(dá)的知識(shí)面比較窄。(4)框架方法表示的知識(shí)橫向關(guān)系不太明確。(縱向從屬繼承關(guān)系很明確)

      因此,對(duì)于復(fù)雜的、深層次的知識(shí),應(yīng)根據(jù)需要表示知識(shí)的特征,來決定用二種或三種方法聯(lián)合表示,例如:

      (1)邏輯與框架:框架里的槽值可以對(duì)應(yīng)于謂詞項(xiàng)。

      (2)語義網(wǎng)絡(luò)與框架:結(jié)點(diǎn)對(duì)應(yīng)與框架,結(jié)點(diǎn)的參數(shù)就是框架的槽值。

      (3)產(chǎn)生式與框架:框架的槽值對(duì)應(yīng)于一條產(chǎn)生式規(guī)則。與神經(jīng)網(wǎng)絡(luò)結(jié)合。

      參考文獻(xiàn):

      [1] 蔡之華;模糊Petri網(wǎng)及知識(shí)表示 [J];計(jì)算機(jī)應(yīng)用與軟件;1994年03期 [2].張科杰,袁國華,彭穎紅; 知識(shí)表示及其在機(jī)械工程設(shè)計(jì)中的應(yīng)用探討[J];

      機(jī)械設(shè)計(jì);2004年06期。

      [3].劉曉霞。新的知識(shí)表示方法——概念圖[J]。航空計(jì)算技術(shù)。1997(4)。[4].王永慶人工智能原理與方法[M]。西安交通大學(xué)出版社。1998。

      讀書的好處

      1、行萬里路,讀萬卷書。

      2、書山有路勤為徑,學(xué)海無涯苦作舟。

      3、讀書破萬卷,下筆如有神。

      4、我所學(xué)到的任何有價(jià)值的知識(shí)都是由自學(xué)中得來的。——達(dá)爾文

      5、少壯不努力,老大徒悲傷。

      6、黑發(fā)不知勤學(xué)早,白首方悔讀書遲?!佌媲?/p>

      7、寶劍鋒從磨礪出,梅花香自苦寒來。

      8、讀書要三到:心到、眼到、口到

      9、玉不琢、不成器,人不學(xué)、不知義。

      10、一日無書,百事荒廢?!悏?/p>

      11、書是人類進(jìn)步的階梯。

      12、一日不讀口生,一日不寫手生。

      13、我撲在書上,就像饑餓的人撲在面包上?!郀柣?/p>

      14、書到用時(shí)方恨少、事非經(jīng)過不知難?!懹?/p>

      15、讀一本好書,就如同和一個(gè)高尚的人在交談——歌德

      16、讀一切好書,就是和許多高尚的人談話?!芽▋?/p>

      17、學(xué)習(xí)永遠(yuǎn)不晚?!郀柣?/p>

      18、少而好學(xué),如日出之陽;壯而好學(xué),如日中之光;志而好學(xué),如炳燭之光?!?jiǎng)⑾?/p>

      19、學(xué)而不思則惘,思而不學(xué)則殆?!鬃?/p>

      20、讀書給人以快樂、給人以光彩、給人以才干?!喔?/p>

      第三篇:人工智能課程論文解讀

      人工智能課程論文

      題目:人工智能:用科學(xué)解密生命與智慧

      名:

      學(xué)

      號(hào):

      指導(dǎo)老師:

      人工智能:用科學(xué)解密生命與智慧

      摘要

      本文是對(duì)人工智能及其應(yīng)用的一個(gè)綜述。首先介紹了人工智能的理論基礎(chǔ)以其與人類智能的區(qū)別和聯(lián)系。然后簡要介紹了人工智能的發(fā)展現(xiàn)狀以及未來趨勢(shì),并列舉了一些人工智能在生活中的應(yīng)用。對(duì)人工智能的一個(gè)熱門分支——神經(jīng)計(jì)算進(jìn)行了著重介紹,人工神經(jīng)網(wǎng)絡(luò)通過模擬人腦的學(xué)習(xí)機(jī)制,將人工智能的重點(diǎn)從符號(hào)表示可靠的推理策略問題轉(zhuǎn)化到學(xué)習(xí)和適應(yīng)的問題,描述了其在字符識(shí)別問題上的實(shí)際應(yīng)用。

      人工智能:用科學(xué)解密生命與智慧

      目錄

      一,人工智能與人類智能..............................................................................................4

      1,什么是智能?.................................................................................................4 2,機(jī)器智能不等同于人類智能.........................................................................5 二,人工智能當(dāng)前進(jìn)展..................................................................................................6 三,人工智能在生活中的應(yīng)用......................................................................................7 四,人工智能的前沿分支:神經(jīng)計(jì)算..........................................................................9

      1,人工神經(jīng)網(wǎng)絡(luò):從大腦得到靈感.................................................................9 2,神經(jīng)網(wǎng)絡(luò)應(yīng)用實(shí)例:基于Deep autoencoder的字符圖像識(shí)別...............10 五,人工智能未來發(fā)展趨勢(shì)........................................................................................12 小結(jié)................................................................................................................................13 參考文獻(xiàn)........................................................................................................................1

      4人工智能:用科學(xué)解密生命與智慧

      一,人工智能與人類智能

      人工智能(Artificial Intelligence,AI)是計(jì)算機(jī)科學(xué)的一個(gè)分支,它關(guān)心智能行為的自動(dòng)化。AI是計(jì)算機(jī)科學(xué)的一部分,因而必須建立在堅(jiān)實(shí)的理論知識(shí)之上并應(yīng)用于計(jì)算機(jī)科學(xué)領(lǐng)域。它是研究、開發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué)。該領(lǐng)域的研究包括機(jī)器人、語言識(shí)別、圖像識(shí)別、自然語言處理和專家系統(tǒng)等。1,什么是智能?

      雖然大多數(shù)人確信看到智能行為是能判斷它是智能的,但是似乎沒有人能夠使“智能”的定義既足夠又具體以評(píng)估計(jì)算機(jī)程序的智能性,同時(shí)又反映了人類意識(shí)的生動(dòng)性和復(fù)雜性。

      這樣實(shí)現(xiàn)一般智能就是塑造特定智能的人工制品。這些制品通常以診斷、預(yù)測(cè)或可視化工具實(shí)現(xiàn),能夠使得人類使用者完成復(fù)雜的任務(wù)。例如:用語言理解的馬爾可夫模型,提供新數(shù)學(xué)理論的自動(dòng)推理系統(tǒng),通過大腦皮層網(wǎng)跟蹤信號(hào)的動(dòng)態(tài)貝葉斯網(wǎng)絡(luò),以及基因表達(dá)的數(shù)據(jù)模式的可視化,等等。

      因此,定義人工智能完全領(lǐng)域的問題就變成了定義智能本身的問題:智能是一種獨(dú)立的才能,還是一系列獨(dú)一無二且不相關(guān)的能力的總稱?在多大程度上可以說智能是學(xué)到的不是預(yù)先存在的?準(zhǔn)確的說,學(xué)習(xí)時(shí)發(fā)生什么?什么是創(chuàng)造力?什么是直覺?智能是從可觀察行為推斷出的,還是需要特定內(nèi)部機(jī)制的證據(jù)?在一個(gè)生物體的神經(jīng)組織中,知識(shí)是以何種方式表示的?什么是自覺,它在智能中起著怎樣的作用?另外,有必要按照已知的人類智能模式來設(shè)計(jì)智能計(jì)算機(jī)程序嗎?智能實(shí)體是不是需要只有在生物中存在的豐富感受和經(jīng)歷?

      這一系列的問題很難回答,但這些問題幫助我們勾勒出現(xiàn)代人工智能研究的核心問題以及求解方法。實(shí)際上,人工智能提供了一種獨(dú)特而強(qiáng)大的工具來精確探索這些問題。AI為智能理論提供了一種媒介和實(shí)驗(yàn)臺(tái):首先用計(jì)算機(jī)程序語言表達(dá)出這些理論,然后在實(shí)際計(jì)算機(jī)上執(zhí)行來進(jìn)行測(cè)試和驗(yàn)證。

      人工智能:用科學(xué)解密生命與智慧

      2,機(jī)器智能不等同于人類智能

      瑪麗·雪萊在她的《弗蘭肯斯坦》一書的序言中這樣寫道:

      大多是拜倫勛爵和雪萊之間的對(duì)話,而我只是一個(gè)虔誠、安靜的聽眾。其中有一次,他們討論了各種哲學(xué)學(xué)說,以及有關(guān)生命原理的問題,并且談到這些原理有否可能曾被發(fā)現(xiàn)和討論過。他們談及了達(dá)爾文博士的實(shí)驗(yàn)(我不能確認(rèn)達(dá)爾文博士是否真正做過這個(gè)實(shí)驗(yàn),我只是說當(dāng)時(shí)有人講他做過這樣的實(shí)驗(yàn)),他把一段蠕蟲(vermicelli)儲(chǔ)藏在玻璃罐中,在采取了一些特殊方法之后,它開始自發(fā)運(yùn)動(dòng)。難道生命不是這樣形成的嗎?或許死尸還可能復(fù)活;流電電流實(shí)驗(yàn)已經(jīng)讓我們看到了這樣的跡象:生命體的組成部分可以被制造、組合并注入活力(Butler 1998)。

      瑪麗·雪萊告訴我們,諸如達(dá)爾文的進(jìn)化論和發(fā)現(xiàn)電流這樣的科學(xué)進(jìn)步已經(jīng)使普通民眾相信:自然法則并非奧妙無窮,而是可以被系統(tǒng)分析和理解的。弗蘭肯斯坦的魔鬼并不是“薩滿教”咒語或與地獄可怕交易的產(chǎn)物;而是由一個(gè)個(gè)單獨(dú)“制造”的部件組裝起來的,并且被注入了強(qiáng)大的電能。盡管19世紀(jì)的科學(xué)還不足以使人認(rèn)識(shí)到理解和創(chuàng)造一個(gè)完全智能主體的意義,但它至少加深了這樣的認(rèn)識(shí):生命和智慧的奧秘可以被納入到科學(xué)分析中。也就是說,人可以讓機(jī)器擁有所謂的“智能”。[1] 1936年,哲學(xué)家阿爾弗雷德·艾耶爾思考心靈哲學(xué)問題:我們?cè)趺粗榔渌嗽型瑯拥捏w驗(yàn)。在《語言,真理與邏輯》中,艾爾建議有意識(shí)的人類及無意識(shí)的機(jī)器之間的區(qū)別。

      1950年,圖靈發(fā)表了一篇?jiǎng)潟r(shí)代的論文,文中預(yù)言了創(chuàng)造出具有真正智能的機(jī)器的可能性[1]。由于注意到“智能”這一概念難以確切定義,他提出了著名的圖靈測(cè)試:如果一臺(tái)機(jī)器能夠與人類展開對(duì)話(通過電傳設(shè)備)而不能被辨別出其機(jī)器身份,那么稱這臺(tái)機(jī)器具有智能。這一簡化使得圖靈能夠令人信服地說明“思考的機(jī)器”是可能的。論文中還回答了對(duì)這一假說的各種常見質(zhì)疑。[2] 圖靈測(cè)試是人工智能哲學(xué)方面第一個(gè)嚴(yán)肅的提案。

      1952年,在一場(chǎng)BBC廣播中,圖靈談到了一個(gè)新的具體想法:讓計(jì)算機(jī)來冒充人。如果不足70%的人判對(duì),也就是超過30%的裁判誤以為在和自己說話的是人

      人工智能:用科學(xué)解密生命與智慧

      而非計(jì)算機(jī),那就算作成功了。

      2014年6月8日,一臺(tái)計(jì)算機(jī)成功讓人類相信它是一個(gè)13歲的男孩,成為有史以來首臺(tái)通過圖靈測(cè)試的計(jì)算機(jī)。這被認(rèn)為是人工智能發(fā)展的一個(gè)里程碑事件,但專家警告稱,這項(xiàng)技術(shù)可用于網(wǎng)絡(luò)犯罪。[3-5]。

      盡管圖靈測(cè)試具有直觀上的吸引力,圖靈測(cè)試還是受到了很多無可非議的批評(píng)。其中一個(gè)重要的質(zhì)疑時(shí)它偏向于純粹的符號(hào)求解任務(wù)。它并不測(cè)試感知技能或要實(shí)現(xiàn)手工靈活性所需的能力,而這些都是人類智能的重要組成部分。另一方面,有人提出圖靈測(cè)試沒有必要把機(jī)器智能強(qiáng)行套入人類智能的模具之中。人工智能或許本就不同于人類智能,我們并不希望一臺(tái)機(jī)器做數(shù)學(xué)題像人類一樣又慢又不準(zhǔn),我們希望的是它自身有點(diǎn)的最大化,比如快速準(zhǔn)確的處理數(shù)據(jù),長久的存儲(chǔ)數(shù)據(jù),沒有必要模仿人類的認(rèn)知特征。

      但是,人工智能中一部分主要的研究著偏重于研究對(duì)人類智能的理解。人們?yōu)橹悄芑顒?dòng)提供了一種原型實(shí)例,一些應(yīng)用(比如診斷理解)通常有意地將模型建立在該領(lǐng)域的權(quán)威專家的解決過程上。更為重要的是,理解人類智能本身就是一個(gè)吸引人的、有待研究的科學(xué)挑戰(zhàn)。

      二,人工智能當(dāng)前進(jìn)展 問題的求解

      人工智能中的問題解求,就是如何讓機(jī)器去解決人類會(huì)遇到的問題,如何根據(jù)某一具體問題找到思考問題并解決這個(gè)問題的方法。目前,人工智能技術(shù)已經(jīng)可以通過計(jì)算機(jī)程序解決了如何考慮要解決的問題,并能尋求較為準(zhǔn)確的解決方案。2邏輯的推理與定理的證明

      人工智能研究中最持久的探究領(lǐng)域之一就是邏輯推理。有關(guān)定理的證明就是讓機(jī)器證明非數(shù)值性的真假。其中比較重要的是,通過找到合理、準(zhǔn)確的方法,集中注意力在大型數(shù)據(jù)庫中的有效事實(shí),關(guān)注可信度證明,并在出現(xiàn)新信息時(shí)適時(shí)修改這些證明。[2] 3 人工智能應(yīng)用之自然語言的處理

      智能的另一表現(xiàn)就是進(jìn)行自然語言的交流,自然語言處理就是讓機(jī)器與人類進(jìn)行

      人工智能:用科學(xué)解密生命與智慧

      無阻礙的溝通,這正是人工智能技術(shù)應(yīng)用于實(shí)際領(lǐng)域的典型范例。目前此領(lǐng)域的主要研究內(nèi)容是:如何利用計(jì)算機(jī)系統(tǒng)以主題和對(duì)話情境為基礎(chǔ),生成和理解自然語言。[3] 4 人工智能應(yīng)用之模式的識(shí)別

      如何使機(jī)器具有感知能力也是智能的表現(xiàn)。模式的識(shí)別是利用人工智能技術(shù)開發(fā)智能機(jī)器的關(guān)鍵,主要是通過計(jì)算機(jī)用數(shù)學(xué)技術(shù)方法來研究模式的自動(dòng)處理和判讀,讓計(jì)算機(jī)實(shí)現(xiàn)“看見”,“聽見”等功能。計(jì)算機(jī)模式識(shí)別的主要特點(diǎn)是速度快,準(zhǔn)確率高,效率高,計(jì)算機(jī)模式識(shí)別也為人類認(rèn)識(shí)自身智能提供了有利幫助。5 人工智能應(yīng)用之智能信息的檢索技術(shù)

      在科學(xué)技術(shù)飛速發(fā)展的今天,人類已進(jìn)入了“知識(shí)爆炸”的時(shí)代。傳統(tǒng)檢索系統(tǒng)已經(jīng)滿不足了對(duì)如今如此數(shù)量巨大以及種類繁多的文獻(xiàn)檢索要求。人工智能科技持續(xù)穩(wěn)定發(fā)展的重要前提就是智能檢索模塊,可以說,智能信息的檢索技術(shù)的運(yùn)用勢(shì)在必行。人工智能應(yīng)用之專家系統(tǒng)

      我們常說的專家系統(tǒng)就是指從人類專家那里獲取的知識(shí),并用來解決只有專家才能解決的疑難問題。這是一種基于知識(shí)的系統(tǒng),從而也被稱為知識(shí)基系統(tǒng)。專家系統(tǒng)是人工智能技術(shù)中研究最活躍,最有成效的一個(gè)領(lǐng)域?,F(xiàn)在的專家系統(tǒng)尤其特殊的模仿了專家在處理故障時(shí)的思維方式,其水平有時(shí)甚至可以超過人類專家的水平。人工智能應(yīng)用之機(jī)器人學(xué)

      機(jī)器人對(duì)我們并不陌生,已在多個(gè)領(lǐng)域獲得了越來越普遍的應(yīng)用,諸如農(nóng)業(yè)、工業(yè)、商業(yè)、旅游業(yè)、航空和海洋等。那么,機(jī)器人學(xué)所研究的問題主要包括從機(jī)器人手臂的最佳移動(dòng)到實(shí)現(xiàn)機(jī)器人目標(biāo)的動(dòng)作序列的規(guī)劃方法。機(jī)器人和機(jī)器人學(xué)的研究對(duì)人工智能思想的發(fā)展都起到了促進(jìn)作用。

      三,人工智能在生活中的應(yīng)用

      ? 計(jì)算機(jī)科學(xué)

      人工智能產(chǎn)生了許多方法解決計(jì)算機(jī)科學(xué)最困難的問題。它們的許多發(fā)明已

      人工智能:用科學(xué)解密生命與智慧

      被主流計(jì)算機(jī)科學(xué)采用,而不認(rèn)為是AI的一部份。下面所有內(nèi)容原在AI實(shí)驗(yàn)室發(fā)展:時(shí)間分配,介面演繹員,圖解用戶介面,計(jì)算機(jī)鼠標(biāo),快發(fā)展環(huán)境,聯(lián)系表數(shù)據(jù)結(jié)構(gòu),自動(dòng)存儲(chǔ)管理,符號(hào)程序,功能程序,動(dòng)態(tài)程序,和客觀指向程序。[3] ? 金融

      銀行用人工智能系統(tǒng)組織運(yùn)作,金融投資和管理財(cái)產(chǎn)。2001年8月在模擬金融貿(mào)易競(jìng)賽中機(jī)器人戰(zhàn)勝了人。

      金融機(jī)構(gòu)已長久用人工神經(jīng)網(wǎng)絡(luò)系統(tǒng)去發(fā)覺變化或規(guī)范外的要求,銀行使用協(xié)助顧客服務(wù)系統(tǒng);幫助核對(duì)帳目,發(fā)行信用卡和恢復(fù)密碼等。? 醫(yī)院和醫(yī)藥

      醫(yī)學(xué)臨床可用人工智能系統(tǒng)組織病床計(jì)劃;并提供醫(yī)學(xué)信息。

      人工神經(jīng)網(wǎng)絡(luò)用來做臨床診斷決策支持系統(tǒng)。計(jì)算機(jī)幫助解析醫(yī)學(xué)圖像。這樣系統(tǒng)幫助掃描數(shù)據(jù)圖像,從計(jì)算X光斷層圖發(fā)現(xiàn)疾病,典型應(yīng)用是發(fā)現(xiàn)腫塊、心臟聲音分析。? 重工業(yè)

      在工業(yè)中已普遍應(yīng)用機(jī)器人。它們常做對(duì)人是危險(xiǎn)的工作。全世界日本是利用和生產(chǎn)機(jī)器人的先進(jìn)國;1999年世界范圍使用1,700,000臺(tái)機(jī)器人。? 顧客服務(wù)

      人工智能是自動(dòng)上線的好助手,可減少操作,使用的主要是自然語言加工系統(tǒng)。呼叫中心的回答機(jī)器也用類似技術(shù),如語言識(shí)別軟件可使計(jì)算機(jī)的顧客較好操作。? 運(yùn)輸

      汽車的變速箱已使用模糊邏輯控制器。? 運(yùn)程通訊

      許多運(yùn)程通訊公司正研究管理勞動(dòng)力的機(jī)器;如BT組研究可管20000工程師的機(jī)器。? 玩具和游戲

      1990年企圖用基本人工智能大量為教育和消遣生產(chǎn)民用產(chǎn)品。現(xiàn)在,大眾在生活的許多方面都在應(yīng)用人工智能技術(shù)。? 音樂

      人工智能:用科學(xué)解密生命與智慧

      技術(shù)常會(huì)影晌音樂的進(jìn)步,科學(xué)家想用人工智能技術(shù)盡量趕上音樂家的活動(dòng);現(xiàn)正集中在研究作曲,演奏,音樂理論,聲音加工等。

      四,人工智能的前沿分支:神經(jīng)計(jì)算

      1,人工神經(jīng)網(wǎng)絡(luò):從大腦得到靈感

      神經(jīng)計(jì)算科學(xué)是從信息科學(xué)的角度來研究如何加速神經(jīng)網(wǎng)絡(luò)模仿和延伸人腦的高級(jí)精神活動(dòng),如聯(lián)想、記憶、推理、思維及意識(shí)等智能行為。這涉及到腦科學(xué)、認(rèn)知科學(xué),神經(jīng)生物學(xué)、非線性科學(xué)、計(jì)算機(jī)科學(xué)、數(shù)學(xué)、物理學(xué)諸學(xué)科的綜合集成。它是綜合研究和實(shí)現(xiàn)類腦智能信息系統(tǒng)的一個(gè)新思想和新策略。[6] 深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究。含多隱層的多層感知器就是一種深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發(fā)現(xiàn)數(shù)據(jù)的分布式特征表示。

      一個(gè)神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)示意圖如圖1所示

      圖1 神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)示意圖

      神經(jīng)網(wǎng)絡(luò)將人工智能的重點(diǎn)從符號(hào)表示和可靠的推理策略問題轉(zhuǎn)移到學(xué)習(xí)和適應(yīng)的問題。同人和其他動(dòng)物一樣,神經(jīng)網(wǎng)絡(luò)是適應(yīng)世界的一種機(jī)制:經(jīng)過訓(xùn)練的神經(jīng)網(wǎng)絡(luò)結(jié)果是通過學(xué)識(shí)形成的。這種網(wǎng)絡(luò)是通過和世界交互形成的,通過經(jīng)驗(yàn)的不明確痕跡反映出來。神經(jīng)網(wǎng)絡(luò)的這種途徑對(duì)我們理解智能起了極大的作用。

      人工神經(jīng)網(wǎng)絡(luò)特有的非線性適應(yīng)性信息處理能力,克服了傳統(tǒng)人工智能方法對(duì)于直覺,如模式、語音識(shí)別、非結(jié)構(gòu)化信息處理方面的缺陷,使之在神經(jīng)專家系統(tǒng)、模式識(shí)別、智能控制、組合優(yōu)化、預(yù)測(cè)等領(lǐng)域得到成功應(yīng)用。人工神經(jīng)網(wǎng)絡(luò)與其它傳統(tǒng)方法相結(jié)合,將推動(dòng)人工智能和信息處理技術(shù)不斷發(fā)展。近年來,人工神經(jīng)網(wǎng)絡(luò)正向模擬人類認(rèn)知的道路上更加深入發(fā)展,與模糊系統(tǒng)、遺傳算法、人工智能:用科學(xué)解密生命與智慧

      進(jìn)化機(jī)制等結(jié)合,形成計(jì)算智能,成為人工智能的一個(gè)重要方向,將在實(shí)際應(yīng)用中得到發(fā)展。將信息幾何應(yīng)用于人工神經(jīng)網(wǎng)絡(luò)的研究,為人工神經(jīng)網(wǎng)絡(luò)的理論研究開辟了新的途徑。神經(jīng)計(jì)算機(jī)的研究發(fā)展很快,已有產(chǎn)品進(jìn)入市場(chǎng)。光電結(jié)合的神經(jīng)計(jì)算機(jī)為人工神經(jīng)網(wǎng)絡(luò)的發(fā)展提供了良好條件。

      神經(jīng)網(wǎng)絡(luò)在很多領(lǐng)域已得到了很好的應(yīng)用,但其需要研究的方面還很多。其中,具有分布存儲(chǔ)、并行處理、自學(xué)習(xí)、自組織以及非線性映射等優(yōu)點(diǎn)的神經(jīng)網(wǎng)絡(luò)與其他技術(shù)的結(jié)合以及由此而來的混合方法和混合系統(tǒng),已經(jīng)成為一大研究熱點(diǎn)。由于其他方法也有它們各自的優(yōu)點(diǎn),所以將神經(jīng)網(wǎng)絡(luò)與其他方法相結(jié)合,取長補(bǔ)短,繼而可以獲得更好的應(yīng)用效果。目前這方面工作有神經(jīng)網(wǎng)絡(luò)與模糊邏輯、專家系統(tǒng)、遺傳算法、小波分析、混沌、粗集理論、分形理論、證據(jù)理論和灰色系統(tǒng)等的融合。

      2,神經(jīng)網(wǎng)絡(luò)應(yīng)用實(shí)例:基于Deep autoencoder的字符圖像識(shí)別

      深度信念網(wǎng)絡(luò)(Deep Belief Network, DBN)[7]由 Geoffrey Hinton 在 2006 年提出。它是一種生成模型,通過訓(xùn)練其神經(jīng)元間的權(quán)重,我們可以讓整個(gè)神經(jīng)網(wǎng)絡(luò)按照最大概率來生成訓(xùn)練數(shù)據(jù)。我們不僅可以使用 DBN 識(shí)別特征、分類數(shù)據(jù),還可以用它來生成數(shù)據(jù)。

      DBN 由多層神經(jīng)元構(gòu)成,這些神經(jīng)元又分為顯性神經(jīng)元和隱性神經(jīng)元(以下簡稱顯元和隱元)。顯元用于接受輸入,隱元用于提取特征。因此隱元也有個(gè)別名,叫特征檢測(cè)器(feature detectors)。最頂上的兩層間的連接是無向的,組成聯(lián)合內(nèi)存(associative memory)。較低的其他層之間有連接上下的有向連接。最底層代表了數(shù)據(jù)向量(data vectors),每一個(gè)神經(jīng)元代表數(shù)據(jù)向量的一維。

      DBN 是由多層 RBM 組成的一個(gè)神經(jīng)網(wǎng)絡(luò),它既可以被看作一個(gè)生成模型,也可以當(dāng)作判別模型,其訓(xùn)練過程是:使用非監(jiān)督貪婪逐層方法去預(yù)訓(xùn)練獲得權(quán)值。訓(xùn)練過程:

      1.首先充分訓(xùn)練第一個(gè) RBM;

      2.固定第一個(gè) RBM 的權(quán)重和偏移量,然后使用其隱性神經(jīng)元的狀態(tài),作為第二個(gè) RBM 的輸入向量;

      人工智能:用科學(xué)解密生命與智慧

      3.充分訓(xùn)練第二個(gè) RBM 后,將第二個(gè) RBM 堆疊在第一個(gè) RBM 的上方; 4.重復(fù)以上三個(gè)步驟任意多次;

      5.如果訓(xùn)練集中的數(shù)據(jù)有標(biāo)簽,那么在頂層的 RBM 訓(xùn)練時(shí),這個(gè) RBM 的顯層中除了顯性神經(jīng)元,還需要有代表分類標(biāo)簽的神經(jīng)元,一起進(jìn)行訓(xùn)練: a)假設(shè)頂層 RBM 的顯層有 500 個(gè)顯性神經(jīng)元,訓(xùn)練數(shù)據(jù)的分類一共分成了 10 類;

      b)那么頂層 RBM 的顯層有 510 個(gè)顯性神經(jīng)元,對(duì)每一訓(xùn)練訓(xùn)練數(shù)據(jù),相應(yīng)的標(biāo)簽神經(jīng)元被打開設(shè)為 1,而其他的則被關(guān)閉設(shè)為 0。6.DBN 被訓(xùn)練好后如下圖:

      圖2 訓(xùn)練好的深度信念網(wǎng)絡(luò)。圖中的綠色部分就是在最頂層 RBM 中參與訓(xùn)練的標(biāo)簽。注意調(diào)優(yōu)(FINE-TUNING)過程是一個(gè)判別模型

      調(diào)優(yōu)過程(Fine-Tuning):

      生成模型使用 Contrastive Wake-Sleep 算法進(jìn)行調(diào)優(yōu),其算法過程是:

      1.除了頂層 RBM,其他層 RBM 的權(quán)重被分成向上的認(rèn)知權(quán)重和向下的生成權(quán)重;

      2.Wake 階段:認(rèn)知過程,通過外界的特征和向上的權(quán)重(認(rèn)知權(quán)重)產(chǎn)生每一層的抽象表示(結(jié)點(diǎn)狀態(tài)),并且使用梯度下降修改層間的下行權(quán)重(生成權(quán)重)。也就是“如果現(xiàn)實(shí)跟我想象的不一樣,改變我的權(quán)重使得我想象的東西就是這樣的”。

      3.Sleep 階段:生成過程,通過頂層表示(醒時(shí)學(xué)得的概念)和向下權(quán)重,生成底

      人工智能:用科學(xué)解密生命與智慧

      層的狀態(tài),同時(shí)修改層間向上的權(quán)重。也就是“如果夢(mèng)中的景象不是我腦中的相應(yīng)概念,改變我的認(rèn)知權(quán)重使得這種景象在我看來就是這個(gè)概念”。

      在附件中提供了程序代碼。實(shí)驗(yàn)利用MNIST字符圖像,驗(yàn)證該方法的特征提取與識(shí)別能力。

      五,人工智能未來發(fā)展趨勢(shì)

      科學(xué)技術(shù)是第一生產(chǎn)力,但技術(shù)的發(fā)展往往是遠(yuǎn)遠(yuǎn)超越我們的想象。就目前的一些前瞻性研究可以看出,未來人工智能技術(shù)的發(fā)展有如下幾大趨勢(shì): 1 問題求解

      問題求解一般包括兩種,一種是指解決管理活動(dòng)中由于意外引起的非預(yù)期效應(yīng)或與預(yù)期效應(yīng)之間的偏差。正在逐漸發(fā)展成為搜索和問題歸約這類人工智能的基本技術(shù);另一種問題的求解程序,是把各種數(shù)學(xué)公式符號(hào)匯編在一起。其性能已達(dá)到非常高的水平,并正在被許多工程師和科學(xué)家應(yīng)用,甚至還有些程序能夠用經(jīng)驗(yàn)來改善其性能。2 機(jī)器學(xué)習(xí)

      人工智能研究的核心課題之一就是機(jī)器學(xué)習(xí)。我們知道學(xué)習(xí)是人類智能的重要特征,那么機(jī)器學(xué)習(xí)就是指機(jī)器自動(dòng)獲取知識(shí)的過程。機(jī)器學(xué)習(xí)是機(jī)器獲取知識(shí)的根本途徑,也是機(jī)器智能的重要標(biāo)志。計(jì)算機(jī)的機(jī)器學(xué)習(xí)主要研究內(nèi)容為如何讓計(jì)算機(jī)模擬或?qū)崿F(xiàn)人類的學(xué)習(xí)能力。今后機(jī)器學(xué)習(xí)的研究主要是研究人腦思維的過程、人類學(xué)習(xí)的機(jī)理等。3 模式識(shí)別

      用計(jì)算機(jī)實(shí)現(xiàn)模式(文字、聲音、人物、物體等)的自動(dòng)識(shí)別,彌補(bǔ)計(jì)算機(jī)對(duì)外部世界感知能力低下的缺陷,使計(jì)算機(jī)能夠通過感官接受外界信息,識(shí)別和理解周圍環(huán)境。依然是人工智能技術(shù)今后研究的重要方向。因?yàn)槟J阶R(shí)別能為人類

      人工智能:用科學(xué)解密生命與智慧

      認(rèn)識(shí)自身智能提供線索,也是開發(fā)智能機(jī)器的一個(gè)最關(guān)鍵的突破口。目前計(jì)算機(jī)模式識(shí)別系統(tǒng)的研究熱點(diǎn)主要為三維景物、活動(dòng)目標(biāo)的識(shí)別和分析方面。傳統(tǒng)的用統(tǒng)計(jì)模式和結(jié)構(gòu)模式的識(shí)別方法將會(huì)被近年來迅速發(fā)展起來的模糊數(shù)學(xué)模式、人工神經(jīng)網(wǎng)絡(luò)模式的方法逐漸取代,特別是神經(jīng)網(wǎng)絡(luò)方法在模式識(shí)別中取得較大進(jìn)展。4 專家系統(tǒng)

      專家系統(tǒng)是根據(jù)某領(lǐng)域中一個(gè)或多個(gè)專家提供的知識(shí)或經(jīng)驗(yàn),進(jìn)行推理和判斷,模擬人類專家的決策過程,以便解決那些需要人類專家處理的復(fù)雜問題的智能軟件,它是一個(gè)具有大量的專門知識(shí)與經(jīng)驗(yàn)的程序系統(tǒng)。目前各種專家系統(tǒng)已遍布各個(gè)專業(yè)領(lǐng)域,因此專家系統(tǒng)還將是人工智能應(yīng)用研究最廣泛和最活躍的應(yīng)用領(lǐng)域之一。5 人工神經(jīng)網(wǎng)絡(luò)

      人工神經(jīng)網(wǎng)絡(luò),常被簡稱為神經(jīng)網(wǎng)絡(luò)或類神經(jīng)網(wǎng)絡(luò)。是未來人工智能應(yīng)用的新領(lǐng)域,人工神經(jīng)網(wǎng)絡(luò)是指由大量處理單元(神經(jīng)元)互連而成的網(wǎng)絡(luò)。人工神經(jīng)網(wǎng)絡(luò)具有很強(qiáng)的自學(xué)習(xí)能力,主要擅長處理復(fù)雜的多維的非線性問題,不但可以解決定量的問題,還可以解決定性的問題,同時(shí)人工神經(jīng)網(wǎng)絡(luò)還具有大規(guī)模并行處理和分布的信息存儲(chǔ)能力?;蛟S未來智能計(jì)算機(jī)的結(jié)構(gòu)可能就是作為主機(jī)的馮? 諾依曼型機(jī)與作為智能外圍的人工神經(jīng)網(wǎng)絡(luò)的結(jié)合。

      小結(jié)

      人工智能是一個(gè)年輕而充滿希望的研究領(lǐng)域,其宗旨是尋找一種有效的方式把智能問題求解、規(guī)劃和通信技巧應(yīng)用在更廣泛的實(shí)際問題中。人工智能的工作者是工具的制造者。我們的表示、算法和語言都是一些工具,用來設(shè)計(jì)和建立那些展現(xiàn)智能行為的機(jī)制。通過實(shí)驗(yàn),我們同時(shí)檢驗(yàn)了它們解決問題的計(jì)算合適性,也檢驗(yàn)了我們對(duì)智能現(xiàn)象的理解。然而,人工智能仍有很多尚待解答的問題,需要探索和研究。

      人工智能:用科學(xué)解密生命與智慧

      參考文獻(xiàn)

      [1] Artificial intelligence507, 28 July 2006.讀書的好處

      1、行萬里路,讀萬卷書。

      2、書山有路勤為徑,學(xué)海無涯苦作舟。

      3、讀書破萬卷,下筆如有神。

      4、我所學(xué)到的任何有價(jià)值的知識(shí)都是由自學(xué)中得來的?!_(dá)爾文

      5、少壯不努力,老大徒悲傷。

      6、黑發(fā)不知勤學(xué)早,白首方悔讀書遲。——顏真卿

      7、寶劍鋒從磨礪出,梅花香自苦寒來。

      8、讀書要三到:心到、眼到、口到

      9、玉不琢、不成器,人不學(xué)、不知義。

      10、一日無書,百事荒廢?!悏?/p>

      11、書是人類進(jìn)步的階梯。

      12、一日不讀口生,一日不寫手生。

      13、我撲在書上,就像饑餓的人撲在面包上。——高爾基

      14、書到用時(shí)方恨少、事非經(jīng)過不知難。——陸游

      15、讀一本好書,就如同和一個(gè)高尚的人在交談——歌德

      16、讀一切好書,就是和許多高尚的人談話?!芽▋?/p>

      17、學(xué)習(xí)永遠(yuǎn)不晚?!郀柣?/p>

      18、少而好學(xué),如日出之陽;壯而好學(xué),如日中之光;志而好學(xué),如炳燭之光?!?jiǎng)⑾?/p>

      19、學(xué)而不思則惘,思而不學(xué)則殆?!鬃?/p>

      20、讀書給人以快樂、給人以光彩、給人以才干。——培根

      第四篇:人工智能結(jié)課論文解讀

      小論知識(shí)與知識(shí)表示方法

      摘要: 知識(shí)是人們?cè)谏a(chǎn)生活中經(jīng)常使用的詞匯,知識(shí)表示的過程是用一些約定的符號(hào)把知識(shí)編碼成計(jì)算機(jī)可以接受的數(shù)據(jù)形式。知識(shí)的表示方法例如一階謂詞邏輯表示法,產(chǎn)生式表示法,語義網(wǎng)絡(luò)表示法,框架表示法和過程規(guī)則表示法等等。目前,產(chǎn)生式表示法已經(jīng)成了人工智能中應(yīng)用最多的一種知識(shí)表示模式,尤其是在專家系統(tǒng)方面,產(chǎn)生式的基本形式P→Q 或者 IF P THEN QP是產(chǎn)生式的前提,也稱為前件,它給出了該產(chǎn)生式可否使用的先決條件,由事實(shí)的邏輯組合來構(gòu)成;Q是一組結(jié)論或操作,也稱為產(chǎn)生式的后件,它指出當(dāng)前題P滿足時(shí),應(yīng)該推出的結(jié)論或應(yīng)該執(zhí)行的動(dòng)作。

      關(guān)鍵字:知識(shí);知識(shí)表示;產(chǎn)生式表示法

      引言: 知識(shí)和知識(shí)表示方法是人們生活中必不可少的一部分,知識(shí)表示能力是指知識(shí)表示方法能否正確、有效地將推理所需要的各種知識(shí)表示出來,這是對(duì)知識(shí)表示方法的最為重要的要求。因?yàn)楫a(chǎn)生式表示方法的自然性,有效性,一致性獲得了所有人的肯定,成為構(gòu)造專家系統(tǒng)的第一選擇的知識(shí)表示方法。正文:

      1、知識(shí)

      1.1知識(shí)的定義

      知識(shí)是經(jīng)過篩選和整理的信息,是對(duì)事物運(yùn)動(dòng)變化規(guī)律的表述,是人類對(duì)客觀世界一種較為準(zhǔn)確、全面的認(rèn)識(shí)和理解。

      1.2知識(shí)的特性

      1)真假性及其相對(duì)性 2)不確定性 3)矛盾性或相容性 4)可表示性與可利用性

      1.3知識(shí)的分類

      1)敘述型知識(shí),有關(guān)系統(tǒng)狀態(tài)、環(huán)境、條件和問題的概念、定義和事實(shí)的知識(shí)。

      2)過程型知識(shí),有關(guān)系統(tǒng)變化、問題求解過程的操作、演算和運(yùn)動(dòng)的知識(shí)。

      3)控制型知識(shí),有關(guān)如何選擇相應(yīng)的操作、演算和行動(dòng)的比較、判斷、管理和決策的知識(shí)。

      2、知識(shí)表示方法——產(chǎn)生式表示方法

      “產(chǎn)生式”由美國數(shù)學(xué)家波斯特(E.POST)在1943年首先提出,它根據(jù)串代替規(guī)則提出了一種稱為波斯特機(jī)的計(jì)算模型,模型中的每條規(guī)則稱為產(chǎn)生式。

      2.1產(chǎn)生式規(guī)則 產(chǎn)生式表示法可以描述事實(shí)性知識(shí)和過程性知識(shí)。可以描述確定性知識(shí),也可以描述不確定性知識(shí)。

      對(duì)于確定性事實(shí),產(chǎn)生式表示法用三元組表示,分為兩種情況:(1)用三元組(對(duì)象,屬性,值)表示事物的屬性。如(雪,顏色,白)表示“雪的顏色是白的”。

      (2)用三元組(關(guān)系,對(duì)象1,對(duì)象2)表示事物之間的相互關(guān)系。如(熱愛,王峰,祖國)表示“王峰熱愛祖國”。產(chǎn)生式表示法進(jìn)而在上述三元組的基礎(chǔ)上增加一個(gè)可信度因子,構(gòu)成四元組來表示不確定性事實(shí)。如(雪,顏色,白,0.8)表示“‘雪的顏色是白的’這一事實(shí)可以相信的程度是0.8”。規(guī)則的產(chǎn)生式表示形式常被稱為產(chǎn)生式規(guī)則,一般簡稱產(chǎn)生式,其基本形式為:

      P → Q

      或者 IF

      P

      THEN

      Q 這里,P是產(chǎn)生式的前提,也被稱為產(chǎn)生式的前件,由事實(shí)的邏輯組合構(gòu)成;Q是一組結(jié)論或操作,也被稱為產(chǎn)生式的后件。產(chǎn)生式的含義是:如果前提P滿足,則可推出結(jié)論Q或執(zhí)行Q所規(guī)定的操作。

      2.2產(chǎn)生式表示法的優(yōu)缺點(diǎn)

      產(chǎn)生式表示法的主要優(yōu)點(diǎn)如下:

      (1)自然性。產(chǎn)生式表示法用“如果…,則…”的形式表示知識(shí),這種表示形式與人類的判斷性知識(shí)基本一致,直觀自然,也便于進(jìn)行推理。

      (2)有效性。產(chǎn)生式知識(shí)表示法既可以表示正確性知識(shí),又可以表示不確定性知識(shí),既有利于表示啟發(fā)性知識(shí),又有利于表示過程性知識(shí)。

      (3)一致性。規(guī)則庫中的所有規(guī)則都具有相同的格式,可以統(tǒng)一處理。

      產(chǎn)生式規(guī)則的主要缺點(diǎn)如下:

      (1)效率較低。在產(chǎn)生式表示中,推理過程是一種反復(fù)進(jìn)行的“匹配—沖突消解—執(zhí)行”的過程。先用已知事實(shí)與規(guī)則前提進(jìn)行“匹配”,選擇可用規(guī)則。當(dāng)有多條規(guī)則可用時(shí)需要按一定策略進(jìn)行“沖突消解”。然后“執(zhí)行”選中的規(guī)則。這種執(zhí)行方式效率較低。

      (2)不能表示結(jié)構(gòu)性知識(shí)。由于產(chǎn)生式具有一致的格式,且產(chǎn)生式之間不能相互調(diào)用,因此產(chǎn)生式方法難以表示那種具有結(jié)構(gòu)關(guān)系或?qū)哟侮P(guān)系的知識(shí)。

      2.3產(chǎn)生式系統(tǒng)

      產(chǎn)生式系統(tǒng)是以產(chǎn)生式知識(shí)表示方法為基礎(chǔ)構(gòu)造的智能系統(tǒng),是人工智能中典型的系統(tǒng)結(jié)構(gòu),確定了目前大多數(shù)專家的基本工作模式。產(chǎn)生式系統(tǒng)一般由綜合數(shù)據(jù)庫(事實(shí)庫)、規(guī)則庫和控制系統(tǒng)三個(gè)部分組成。

      控制系統(tǒng)也被稱為推理機(jī)構(gòu),它由一組程序組成,用來控制整個(gè)產(chǎn)生式系統(tǒng)的運(yùn)行,決定推理線路,實(shí)現(xiàn)推理。其基本工作過程如下:

      Step1 按一定策略從規(guī)則庫中選擇規(guī)則與綜合數(shù)據(jù)庫中的已知事實(shí)進(jìn)行匹配。

      Step2 當(dāng)匹配成功的規(guī)則多于一條時(shí),推理機(jī)構(gòu)按照所確定的沖突消解策略從中選出一條規(guī)則去執(zhí)行。

      Step3 對(duì)于要執(zhí)行的規(guī)則,如果該規(guī)則的后件是一個(gè)或多個(gè)結(jié)論時(shí),把這些結(jié)論加入到事實(shí)庫中;當(dāng)其為一個(gè)或多個(gè)操作時(shí),執(zhí)行這些操作。

      Step4 達(dá)到推理目標(biāo)時(shí),停止系統(tǒng)運(yùn)行。

      由以上敘述可知,綜合數(shù)據(jù)庫、規(guī)則庫、控制系統(tǒng)分別對(duì)應(yīng)于事實(shí)性知識(shí)、過程性知識(shí)和控制性知識(shí)。而產(chǎn)生式系統(tǒng)的推理過程是一個(gè)反復(fù)從規(guī)則庫中選用合適規(guī)則并予以執(zhí)行的過程。

      參考文獻(xiàn): ? 劉峽壁《人工智能——方法與系統(tǒng)》 ? 蔡自興 蒙祖強(qiáng)《人工智能基礎(chǔ)》

      ? 孔月萍 周繼等《人工智能及其應(yīng)用》

      讀書的好處

      1、行萬里路,讀萬卷書。

      2、書山有路勤為徑,學(xué)海無涯苦作舟。

      3、讀書破萬卷,下筆如有神。

      4、我所學(xué)到的任何有價(jià)值的知識(shí)都是由自學(xué)中得來的?!_(dá)爾文

      5、少壯不努力,老大徒悲傷。

      6、黑發(fā)不知勤學(xué)早,白首方悔讀書遲?!佌媲?/p>

      7、寶劍鋒從磨礪出,梅花香自苦寒來。

      8、讀書要三到:心到、眼到、口到

      9、玉不琢、不成器,人不學(xué)、不知義。

      10、一日無書,百事荒廢?!悏?/p>

      11、書是人類進(jìn)步的階梯。

      12、一日不讀口生,一日不寫手生。

      13、我撲在書上,就像饑餓的人撲在面包上?!郀柣?/p>

      14、書到用時(shí)方恨少、事非經(jīng)過不知難。——陸游

      15、讀一本好書,就如同和一個(gè)高尚的人在交談——歌德

      16、讀一切好書,就是和許多高尚的人談話。——笛卡兒

      17、學(xué)習(xí)永遠(yuǎn)不晚?!郀柣?/p>

      18、少而好學(xué),如日出之陽;壯而好學(xué),如日中之光;志而好學(xué),如炳燭之光?!?jiǎng)⑾?/p>

      19、學(xué)而不思則惘,思而不學(xué)則殆。——孔子

      20、讀書給人以快樂、給人以光彩、給人以才干。——培根

      第五篇:人工智能導(dǎo)論-14520450722-馬航空解讀

      物理與電子工程學(xué)院

      《人工智能》 課程設(shè)計(jì)報(bào)告

      課題名稱 人工智能的日常應(yīng)用與研究 專 業(yè) 自動(dòng)化 班 級(jí) 14級(jí)7班 學(xué)生姓名 馬航空 學(xué) 號(hào) ***

      摘 要

      人工智能(Artificial Intelligence),英文縮寫為AI,是一門由計(jì)算機(jī)科學(xué)、控制論、信息論、語言學(xué)、神經(jīng)生理學(xué)、心理學(xué)、數(shù)學(xué)、哲學(xué)等多種學(xué)科相互滲透而發(fā)展的綜合性學(xué)科。21世紀(jì)是計(jì)算機(jī)科技飛速發(fā)展的時(shí)代,隨著科技的不斷發(fā)展,一些新型人工智能技術(shù)正在走進(jìn)人類的生活,在我們的日常生活和學(xué)習(xí)當(dāng)中也有許多地方得到應(yīng)用。本文就符號(hào)計(jì)算、模式識(shí)別、專家系統(tǒng)、機(jī)器翻譯等方面的應(yīng)用作簡單介紹,通過這篇文章使我們對(duì)身邊的人工智能應(yīng)用有一個(gè)感性的認(rèn)識(shí)。

      關(guān)鍵詞:人工智能(AI)應(yīng)用 計(jì)算機(jī)

      1引 言

      人工智能(ArtificialIntelligence),英文縮寫為AI,也稱機(jī)器智能?!叭斯ぶ悄堋币辉~最初是在1956年Dartmouth學(xué)會(huì)上提出的。它是計(jì)算機(jī)科學(xué)、控制論、信息論、神經(jīng)生理學(xué)、心理學(xué)、語言學(xué)等多種學(xué)科互相滲透而發(fā)展起來的一門綜合性學(xué)科。從計(jì)算機(jī)應(yīng)用系統(tǒng)的角度出發(fā),人工智能是研究如何制造智能機(jī)器或智能系統(tǒng),來模擬人類智能活動(dòng)的能力,以延伸人們智能的科學(xué)。人工智能的研究領(lǐng)域與日常生活應(yīng)用

      人工智能是近年來引起人們很大興趣的一個(gè)研究領(lǐng)域:它的研究目標(biāo)是用機(jī)器,通常為電子儀器、電腦等,盡可能地模擬人的精神活動(dòng),并且爭取在這些方面最終改善并超出人的能力;其研究領(lǐng)域及應(yīng)用范圍十分廣泛、例如,自動(dòng)定理證明、推理、模式識(shí)別、專家知識(shí)系統(tǒng)、智能機(jī)器人、學(xué)習(xí)、博彩、自然語言理解等等。本文主要介紹符號(hào)計(jì)算、模式識(shí)別、專家系統(tǒng)、機(jī)器翻譯四個(gè)方面的人工智能的日常生活應(yīng)用。

      2.1符號(hào)計(jì)算

      計(jì)算機(jī)最主要的用途之一就是科學(xué)計(jì)算,科學(xué)計(jì)算可分為兩類:一類是純數(shù)值的計(jì)算,例如求函數(shù)的值,方程的數(shù)值解,比如天氣預(yù)報(bào)、油藏模擬、航天等領(lǐng)域。另一類是符號(hào)計(jì)算,又稱代數(shù)運(yùn)算,這是一種智能化的計(jì)算,處理的是符號(hào)。符號(hào)可以代表整數(shù)、有理數(shù)、實(shí)數(shù)和復(fù)數(shù),也可以代表多項(xiàng)式,函數(shù),集合等。長

      期以來,人們一直盼望有一個(gè)可以進(jìn)行符號(hào)計(jì)算的計(jì)算機(jī)軟件系統(tǒng)。早在50年代末,人們就開始對(duì)此研究。進(jìn)入80年代后,隨著計(jì)算機(jī)的普及和人工智能的發(fā)展,相繼出現(xiàn)了多種功能齊全的計(jì)算機(jī)代數(shù)系統(tǒng)軟件,其中Mathematica和Maple是它們的代表,由于它們都是用C語言寫成的,所以可以在絕大多數(shù)計(jì)算機(jī)上使用。Mathematica是第一個(gè)將符號(hào)運(yùn)算,數(shù)值計(jì)算和圖形顯示很好地結(jié)合在一起的數(shù)學(xué)軟件,用戶能夠方便地用它進(jìn)行多種形式的數(shù)學(xué)處理。

      計(jì)算機(jī)代數(shù)系統(tǒng)的優(yōu)越性主要在于它能夠進(jìn)行大規(guī)模的代數(shù)運(yùn)算。通常我們用筆和紙進(jìn)行代數(shù)運(yùn)算只能處理符號(hào)較少的算式,當(dāng)算式的符號(hào)上升到百位數(shù)后,手工計(jì)算就很困難了,這時(shí)用計(jì)算機(jī)代數(shù)系統(tǒng)進(jìn)行運(yùn)算就可以做到準(zhǔn)確,快捷,有效?,F(xiàn)在符號(hào)計(jì)算軟件有一些共同的特點(diǎn)就是在可以進(jìn)行符號(hào)運(yùn)算、數(shù)值計(jì)算和圖形顯示等同時(shí),還具有高效的可編程功能。在操作界面上一般都支持交互式處理,人們通過鍵盤輸入命令,計(jì)算機(jī)處理后即顯示結(jié)果。并且人機(jī)界面友好,命令輸入方便靈活,很容易尋求幫助。

      盡管計(jì)算機(jī)代數(shù)系統(tǒng)在代替人繁瑣的符號(hào)運(yùn)算上有著無比的優(yōu)越性,但是,計(jì)算機(jī)畢竟是機(jī)器,它只能執(zhí)行人們給它的指令,有一定的局限性。首先,多數(shù)計(jì)算機(jī)代數(shù)系統(tǒng)對(duì)計(jì)算機(jī)硬件有較高的要求,在進(jìn)行符號(hào)運(yùn)算時(shí),通常需要很大的內(nèi)存和較長的計(jì)算時(shí)間,而精確的代數(shù)運(yùn)算以時(shí)間和空間為代價(jià)的。第二個(gè)問題是用計(jì)算機(jī)代數(shù)系統(tǒng)進(jìn)行數(shù)值計(jì)算,雖然計(jì)算精度可以到任意位,但由于計(jì)算機(jī)代數(shù)系統(tǒng)是用軟件本身浮點(diǎn)運(yùn)算代替硬件算術(shù)運(yùn)算,所以在速度要比用Fortran語言算同樣的問題慢百倍甚至千倍。另外,雖然計(jì)算機(jī)代數(shù)系統(tǒng)包含大量的數(shù)學(xué)知識(shí),但這僅僅是數(shù)學(xué)中的一小部分,目前仍有許多數(shù)學(xué)領(lǐng)域未能被計(jì)算機(jī)代數(shù)系統(tǒng)涉及。計(jì)算機(jī)代數(shù)系統(tǒng)仍在不斷地發(fā)展和完善之中。

      2.2 模式識(shí)別

      模式識(shí)別就是通過計(jì)算機(jī)用數(shù)學(xué)技術(shù)方法來研究模式的自動(dòng)處理和判讀。這里,我們把環(huán)境與客體統(tǒng)稱為“模式”,隨著計(jì)算機(jī)技術(shù)的發(fā)展,人類有可能研究復(fù)雜的信息處理過程。用計(jì)算機(jī)實(shí)現(xiàn)模式(文字、聲音、人物、物體等)的自動(dòng)識(shí)別,是開發(fā)智能機(jī)器的一個(gè)最關(guān)鍵的突破口,也為人類認(rèn)識(shí)自身智能提供線索。信息處理過程的一個(gè)重要形式是生命體對(duì)環(huán)境及客體的識(shí)別。對(duì)人類來說,特別重要的是對(duì)光學(xué)信息(通過視覺器官來獲得)和聲學(xué)信息(通過聽覺器官來獲得)的識(shí)別。這是模式識(shí)別的兩個(gè)重要方面。計(jì)算機(jī)識(shí)別的顯著特點(diǎn)是速度快、準(zhǔn)確性和效率高。識(shí)別過程與人類的學(xué)習(xí)過程相似。以“漢字識(shí)別”為例:首先將漢字圖象進(jìn)行處理,抽取主要表達(dá)特征并將其特征與漢字的代碼存在計(jì)算機(jī)中。就象把老師教我們這個(gè)字叫什么、如何寫的知識(shí)記憶在大腦中。這一過程叫做“訓(xùn)練”。識(shí)別過程就是將輸入的漢字圖像經(jīng)處理后與計(jì)算機(jī)中所保存的全部漢字進(jìn)行比較,找出最相近的字作為識(shí)別結(jié)果,這一過程叫做“匹配”。

      語音識(shí)別就是讓計(jì)算機(jī)能聽懂人說的話,一個(gè)重要的例子就是七國語言(英、日、意、韓、法、德、中)口語自動(dòng)翻譯系統(tǒng)。其中,中文部分的實(shí)驗(yàn)平臺(tái)設(shè)立在中國科學(xué)院自動(dòng)化所的模式識(shí)別國家重點(diǎn)實(shí)驗(yàn)室,這是口語翻譯研究跨入世界領(lǐng)先水平的標(biāo)志。該系統(tǒng)實(shí)現(xiàn)后,人們出國預(yù)定旅館、購買機(jī)票、在餐館對(duì)話和兌換外幣時(shí),只要利用電話網(wǎng)絡(luò)和國際互聯(lián)網(wǎng),就可用手機(jī)、電話等與“老外”通話。

      指紋是人體的一個(gè)重要特征,具有唯一性。北京大學(xué)有關(guān)專家對(duì)數(shù)字圖像的離散幾何性質(zhì)進(jìn)行了深入研究,建立了從指紋灰度圖像精確計(jì)算紋線局部方向、進(jìn)而提取指紋特征信息的理論與算法,隨后研究成功了適于民用身份鑒定的全自動(dòng)指紋鑒定系統(tǒng),以及適于公安刑事偵破的指紋鑒定系統(tǒng)。從而開創(chuàng)了我國指紋自動(dòng)識(shí)別系統(tǒng)應(yīng)用的先河。北大指紋自動(dòng)識(shí)別系統(tǒng)的推出,使我國公安干警從指紋查對(duì)的繁重人工處理中解放出來。

      這里介紹一個(gè)綜合應(yīng)用的例子,一汽集團(tuán)公司與國防科技大學(xué)最近合作研制成功“紅旗轎車自主駕駛系統(tǒng)”(即無人駕駛系統(tǒng)),它標(biāo)志著我國研制高速智能汽車的能力已達(dá)到當(dāng)今世界先進(jìn)水平。汽車自主駕駛技術(shù)是集模式識(shí)別、智能控制、計(jì)算機(jī)學(xué)和汽車操縱動(dòng)力學(xué)等多門學(xué)科于一體的綜合性技術(shù),代表著一個(gè)國家控制技術(shù)的水平。紅旗車自主駕駛系統(tǒng)采用計(jì)算機(jī)視覺導(dǎo)航方式,并采用仿人控制,實(shí)現(xiàn)了對(duì)紅旗車的操縱控制。首先,攝像機(jī)將車前方的道路和車輛行駛情況輸入到圖像處理和圖像識(shí)別系統(tǒng)。該系統(tǒng)識(shí)別出道路狀況、前方車輛的相對(duì)距離和相對(duì)車速。接著,路徑規(guī)劃系統(tǒng)根據(jù)這些信息規(guī)劃出一條合適路徑,即決定如何開車。然后,路徑跟蹤系統(tǒng)根據(jù)需跟蹤的路徑,結(jié)合車輛行駛狀態(tài)參數(shù)和車輛駕駛動(dòng)力學(xué)約束,形成控制命令,控制方向盤和油門開啟機(jī)構(gòu)產(chǎn)生相應(yīng)動(dòng)作,使汽車按照規(guī)劃好的路徑前進(jìn),即按自主駕駛系統(tǒng)的規(guī)劃路徑前進(jìn)。

      2.3 專家系統(tǒng)

      專家系統(tǒng)是一種模擬人類專家解決領(lǐng)域問題的計(jì)算機(jī)程序系統(tǒng)。專家系統(tǒng)內(nèi)部含有大量的某個(gè)領(lǐng)域的專家水平的知識(shí)與經(jīng)驗(yàn),能夠運(yùn)用人類專家的知識(shí)和解決問題的方法進(jìn)行推理和判斷,模擬人類專家的決策過程,來解決該領(lǐng)域的復(fù)雜問題。專家系統(tǒng)是人工智能應(yīng)用研究最活躍和最廣泛的應(yīng)用領(lǐng)域之一,涉及到社會(huì)各個(gè)方面,各種專家系統(tǒng)已遍布各個(gè)專業(yè)領(lǐng)域,取得很大的成功。根據(jù)專家系統(tǒng)處理的問題的類型,把專家系統(tǒng)分為解釋型、診斷型、調(diào)試型、維修型、教育型、預(yù)測(cè)型、規(guī)劃型、設(shè)計(jì)型和控制型等10種類型。具體應(yīng)用就很多了,例如血液凝結(jié)疾病診斷系統(tǒng)、電話電纜維護(hù)專家系統(tǒng)、花布圖案設(shè)計(jì)和花布印染專家系統(tǒng)等等。

      圖1 專家系統(tǒng)的構(gòu)成

      為了實(shí)現(xiàn)專家系統(tǒng),必須要存儲(chǔ)有該專門領(lǐng)域中經(jīng)過事先總結(jié)、分析并按某種模式表示的專家知識(shí)(組成知識(shí)庫),以及擁有類似于領(lǐng)域?qū)<医鉀Q實(shí)際問題的推理機(jī)制(構(gòu)成推理機(jī))。系統(tǒng)能對(duì)輸入信息進(jìn)行處理,并運(yùn)用知識(shí)進(jìn)行推理,做出決策和判斷,其解決問題的水平達(dá)到或接近專家的水平,因此能起到專家或?qū)?/p>

      家助手的作用。目前,專家系統(tǒng)主要采用基于規(guī)則的知識(shí)表示和推理技術(shù)。由于領(lǐng)域的知識(shí)更多是不精確或不確定的,因此,不確定的知識(shí)表示與知識(shí)推理是專家系統(tǒng)開發(fā)與研究的重要課題。此外,專家系統(tǒng)開發(fā)工具的研制發(fā)展也很迅速,這對(duì)擴(kuò)大專家系統(tǒng)的應(yīng)用范圍,加快專家系統(tǒng)的開發(fā)過程,將起到積極地促進(jìn)作用。隨著計(jì)算機(jī)科學(xué)技術(shù)整體水平的提高,分布式專家系統(tǒng)、協(xié)同式專家系統(tǒng)等新一代專家系統(tǒng)的研究也發(fā)展很快。在新一代專家系統(tǒng)中,不但采用基于規(guī)則的推理方法,而且采用了諸如人工神經(jīng)網(wǎng)絡(luò)的方法與技術(shù)。

      2.4 機(jī)器翻譯

      機(jī)器翻譯是利用計(jì)算機(jī)把一種自然語言轉(zhuǎn)變成另一種自然語言的過程,用以完成這一過程的軟件系統(tǒng)叫做機(jī)器翻譯系統(tǒng)。幾十年來,國內(nèi)外許多專家、學(xué)者為機(jī)器翻譯的研究付出了大量的心血和汗水。雖然至今還沒有一個(gè)實(shí)用、全面、高質(zhì)量的自動(dòng)翻譯系統(tǒng)出現(xiàn),不過也取得了很大的進(jìn)展,特別是作為人們的輔助翻譯工具,機(jī)器翻譯已經(jīng)得到大多數(shù)人的認(rèn)可。但是機(jī)器翻譯存在一定的弊端如:一句一句處理,上下文缺乏聯(lián)系;對(duì)源語言的分析只是求解句法關(guān)系,完全不是意義上的理解;缺乏領(lǐng)域知識(shí),從計(jì)算機(jī)到醫(yī)學(xué),從化工到法律都通用,就換專業(yè)詞典;譯文轉(zhuǎn)換是基于源語言的句法結(jié)構(gòu)的,受源語言的句法結(jié)構(gòu)的束縛;翻譯只是句法結(jié)構(gòu)的和詞匯的機(jī)械對(duì)應(yīng)等等。

      在目前的情況下,計(jì)算機(jī)輔助翻譯應(yīng)該是一個(gè)比較好的實(shí)際選擇??梢园逊g過程中機(jī)械、重復(fù)、瑣碎的工作交給計(jì)算機(jī)來完成。這樣,翻譯者只需將精力集中在創(chuàng)造性的思考上,有利于工作效率的提高。機(jī)器翻譯研究歸根結(jié)底是一個(gè)知識(shí)處理問題,它涉及到有關(guān)語言內(nèi)的知識(shí)、語言間的知識(shí)、以及語言外的世界知識(shí),其中包括常識(shí)和相關(guān)領(lǐng)域的專門知識(shí)。隨著因特網(wǎng)的普及與發(fā)展,機(jī)器翻譯的應(yīng)用前景十分廣闊。作為人類探索自己智能和操作知識(shí)的機(jī)制的窗口,機(jī)器翻譯的研究與應(yīng)用將更加誘人。國際上有關(guān)專家分析認(rèn)為機(jī)器翻譯要想達(dá)到類似人工翻譯一樣的流暢程度,至少還要經(jīng)歷15年時(shí)間的持續(xù)研究,但在人類對(duì)語言研究還沒有清楚“人腦是如何進(jìn)行語言的模糊識(shí)別和判斷”的情況下,機(jī)器翻譯要想達(dá)到100%的準(zhǔn)確率是不可能的。除此之外,在我們生活的許多地方都能找到人工智能的影子,例如許多家用電器里都有智能芯片,汽車、飛機(jī)的導(dǎo)航系統(tǒng),電動(dòng)游戲里的人工程序,以及某些特制的能夠幫助人的電子產(chǎn)品等。總之,人工智能在許多方面取得了新的進(jìn)展,尤其隨著網(wǎng)絡(luò)的普及和發(fā)展,對(duì)人工智能的需求變得越來越迫切,也給人工智能的研究提供了新的廣泛的發(fā)展舞臺(tái)。

      3人工智能的發(fā)展前景

      3.1人工智能的發(fā)展趨勢(shì)

      技術(shù)的發(fā)展總是超乎人們的想象,要準(zhǔn)確地預(yù)測(cè)人工智能的未來是不可能的。但是,從目前的一些前瞻性研究可以看出未來人工智能可能會(huì)向以下幾個(gè)方面發(fā)展:模糊處理、并行化、神經(jīng)網(wǎng)絡(luò)和機(jī)器情感。3.2 人工智能的發(fā)展?jié)摿薮?/p>

      人工智能作為一個(gè)整體的研究才剛剛開始, 離我們的目標(biāo)還很遙遠(yuǎn)。但人工智能在某些方面將會(huì)有圈套的突破。

      (1)自動(dòng)推理人工智能最經(jīng)典的研究分支, 其基本理論是人工智能其它分支的共同基礎(chǔ)。一直以來自動(dòng)推理都是人工智能研究的最熱門內(nèi)容之一, 其中知識(shí)系統(tǒng)的動(dòng)態(tài)演化特征及可行性推理的研究是最新的熱點(diǎn), 很有可能取得大的突破。(2)機(jī)器學(xué)習(xí)的研究取得長足的發(fā)展。許多新的學(xué)習(xí)方法相繼問世并獲得了成功的應(yīng)用,如增強(qiáng)學(xué)習(xí)算法、reinforcement learning 等。也應(yīng)看到, 現(xiàn)有的方法處理在線學(xué)習(xí)方面尚不夠有效, 尋求一種新的方法,以解決移動(dòng)機(jī)器人、自主agent、智能信息存取等研究中的在線學(xué)習(xí)問題是研究人員共同關(guān)心的問題, 相信不久會(huì)在這引起方面取得突破。

      (3)自然語言處理是A I 技術(shù)應(yīng)用于實(shí)際領(lǐng)域的典型范例, 經(jīng)過A I 研究人員的艱苦努力,這一領(lǐng)域已獲得了大量令人注目的理論與應(yīng)用成果。許多產(chǎn)品已經(jīng)進(jìn)入了眾的智能信息檢索技術(shù)在Internet 技術(shù)的影響下,近年來迅猛發(fā)展, 已經(jīng)成為了A I 的一個(gè)獨(dú)立研究分支。由于信息獲取與精化技術(shù)已成為當(dāng)代計(jì)算機(jī)科學(xué)與技術(shù)研究中迫切需要研究的課題,將A I 技術(shù)應(yīng)用于這一領(lǐng)域的研究是人工智能走向應(yīng)用的契機(jī)與突破口。從近年的人工智能發(fā)展來看,這方面的研究已取得了可喜的進(jìn)展。

      4結(jié)束語

      人工智能一直處于計(jì)算機(jī)技術(shù)的前沿,人工智能研究的理論和發(fā)現(xiàn)在很大程度上將決定計(jì)算機(jī)技術(shù)的發(fā)展方向。今天,已經(jīng)有很多人工智能研究的成果進(jìn)入人們的日常生活。將來,人工智能技術(shù)的發(fā)展將會(huì)給人們的生活、工作和教育等帶來更大的影響。

      參考文獻(xiàn)

      [1]吳康迪1智能體技術(shù)—人工智能的新飛躍[J]1科學(xué)對(duì)社會(huì)的影響,2000 ,(1)[2]王文杰.人工智能原理與應(yīng)用[M].北京:人民郵電出版社,2004 [3]王萬良.人工智能及其應(yīng)用[M].北京:高等教育出版社,2005 [4]蔡自興.人工智能基礎(chǔ)[M].北京:清華大學(xué)出版社,1996 [5]張仰森.人工智能原理與應(yīng)用[M].北京:高等教育出版社,2004 [6]李陶深.人工智能[M].重慶:重慶大學(xué)出版社,2002 [7]林堯瑞,馬少平.人工智能導(dǎo)論[M].北京:清華大學(xué)出版社,2001 [8]M·明斯基.Technology Review.1983,(6)[9]孫珩著.淺談人工智能的發(fā)展趨勢(shì)[ J ].IT 與網(wǎng)絡(luò), 2002,(6)

      讀書的好處

      1、行萬里路,讀萬卷書。

      2、書山有路勤為徑,學(xué)海無涯苦作舟。

      3、讀書破萬卷,下筆如有神。

      4、我所學(xué)到的任何有價(jià)值的知識(shí)都是由自學(xué)中得來的。——達(dá)爾文

      5、少壯不努力,老大徒悲傷。

      6、黑發(fā)不知勤學(xué)早,白首方悔讀書遲?!佌媲?/p>

      7、寶劍鋒從磨礪出,梅花香自苦寒來。

      8、讀書要三到:心到、眼到、口到

      9、玉不琢、不成器,人不學(xué)、不知義。

      10、一日無書,百事荒廢?!悏?/p>

      11、書是人類進(jìn)步的階梯。

      12、一日不讀口生,一日不寫手生。

      13、我撲在書上,就像饑餓的人撲在面包上?!郀柣?/p>

      14、書到用時(shí)方恨少、事非經(jīng)過不知難?!懹?/p>

      15、讀一本好書,就如同和一個(gè)高尚的人在交談——歌德

      16、讀一切好書,就是和許多高尚的人談話。——笛卡兒

      17、學(xué)習(xí)永遠(yuǎn)不晚。——高爾基

      18、少而好學(xué),如日出之陽;壯而好學(xué),如日中之光;志而好學(xué),如炳燭之光?!?jiǎng)⑾?/p>

      19、學(xué)而不思則惘,思而不學(xué)則殆。——孔子

      20、讀書給人以快樂、給人以光彩、給人以才干?!喔?/p>

      下載人工智能導(dǎo)論論文解讀word格式文檔
      下載人工智能導(dǎo)論論文解讀.doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        《人工智能導(dǎo)論》學(xué)習(xí)心得體會(huì)

        《人工智能導(dǎo)論》學(xué)習(xí)心得大學(xué)第一次接觸《人工智能導(dǎo)論》這門課,通過老師的講解,我對(duì)人工智能有了一些簡單的感性認(rèn)識(shí),我覺得人工智能是一門具有挑戰(zhàn)性的科學(xué),想要學(xué)好這門課......

        人工智能發(fā)展史解讀(★)

        人工智能學(xué)科誕生于20世紀(jì)50年代中期,當(dāng)時(shí)由于計(jì)算機(jī)的產(chǎn)生與發(fā)展,人們開始了具有真正意義的人工智能的研究。(雖然計(jì)算機(jī)為AI提供了必要的技術(shù)基礎(chǔ),但直到50年代早期人們才注......

        人工智能論文

        人工智能論文摘要:本文主要講述了《人工智能及其應(yīng)用》的主要知識(shí)內(nèi)容!總結(jié)與本書知識(shí)單元相關(guān)的主要內(nèi)容、理論基礎(chǔ)、代表性成果及方法。并以書中知識(shí)為基礎(chǔ),查閱資料,淺談人工......

        人工智能課程設(shè)計(jì)(五子棋)解讀

        《人工智能導(dǎo)論》課程報(bào)告 課題名稱: 五子棋 姓名: X X 學(xué)號(hào):114304xxxx 課題負(fù)責(zé)人名(學(xué)號(hào)): X X114304xxxx 同組成員名單(學(xué)號(hào)、角色): x x1143041325 XXX1143041036 指導(dǎo)教師:......

        人工智能大作業(yè)解讀(大全5篇)

        實(shí)現(xiàn)遺傳算法的0-1背包問題求解 目錄 摘要.........................................................................................................2 一.問題描述.........

        人工智能與電子商務(wù)解讀

        人工智能與電子商務(wù) 2013年6月16日 人工智能在電子商務(wù)中的應(yīng)用 摘要:人工智能技術(shù)和電子商務(wù)的飛速發(fā)展推動(dòng)了全球科技經(jīng)濟(jì)領(lǐng)域的進(jìn)步,基于人工智能技術(shù)的電子商務(wù)更趨向完......

        人工智能之我見論文

        人工智能之我見論文 隨著人工智能技術(shù)的日新月異,人類社會(huì)生活廣泛而深刻的受到其影響,快來看看人工智能之我見論文吧! 人工智能之我見論文:人工智能技術(shù)對(duì)民法的影響摘要:隨著人......

        關(guān)于人工智能的論文

        人工智能(Artificial Intelligence, AI)是20世紀(jì)50年代中期興起的一門新興邊緣科學(xué),它既是計(jì)算機(jī)科學(xué)的一個(gè)分支,又是計(jì)算機(jī)科學(xué)、控制論、信息論、語言學(xué)、神經(jīng)生理學(xué)、心理......