第一篇:小學抽屜原理
《數(shù)學廣角—抽屜原理》教學設計
【教學目標】
1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過猜測、驗證、觀察、分析等數(shù)學活動,建立數(shù)學模型,發(fā)現(xiàn)規(guī)律。滲透“建模”思想。
3、經(jīng)歷從具體到抽象的探究過程,提高學生有根據(jù)、有條理地進行思考和推理的能力。
4、通過“抽屜原理”的靈活應用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學文化及數(shù)學的魅力。
【教學重、難點】經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
【教學準備】
1、教學ppt課件
2、鉛筆120支(小棒代替),筆盒100個(杯子代替),每個小組3個杯子,5支小棒;撲克牌1副,凳子4把。
【教學流程】
一、問題引入。
師:在上課前,老師特別想和同學們做個游戲,誰愿來?老師準備了4把椅子,請5位同學上來。1.游戲要求:老師喊“準備”,你們5位同學圍著椅子走動,等老師喊“開始”后請你們5個都坐在椅子上,每個人都必須坐下。
2.師:“準備”,“開始”,他們都坐好了嗎?老師不用看就知道總有一把椅子上至少坐著兩名同學,是這樣的嗎?如果反復再做,還會是這樣的結果嗎?
(游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。)
3、引入:看來,不管怎么坐,總有一把椅子上至少坐兩個同學。你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。
4、明確學習目標與任務:
師:看到這個課題,你能想到這節(jié)課我們將要學習哪些知識嗎?(學生表達想法)課件出示學習目標與要求
1)、了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2)通過實驗操作、自主探究、小組合作發(fā)現(xiàn)抽屜原理。3)感受數(shù)學文化的魅力,提高對數(shù)學的興趣。
二、探究新知
(一)教學例1
為了研究這個原理,我們做一組實驗。
1、觀察猜測
課件出示例1:把4支鉛筆放進3個文具盒中,不管怎么放總有一個文具盒至少放進 ____支鉛筆。
猜一猜:不管怎么放,總有一個文具盒至少放進 ____支鉛筆。師:你會用實驗證明你的猜想嗎?
2、小組合作:
課件出示:把4支鉛筆放進3個文具中盒中,可以怎樣放? 有幾種不同的放法? 提出實驗要求:我們以小組為單位實際放放看,一人負責操作,其他人用筆將不同的放法記錄下來。(師巡視,了解情況,個別指導)
3、交流匯報
師:你們擺好了嗎?共有幾種擺法?(學生說)
學生匯報:小組代表匯報,老師利用電腦進行了模擬實驗演示,課件出示各種擺法:(4,0,0)(3,1,0)(2,2,0)(2,1,1),師:還有不同的放法嗎? 生:沒有了。
4、說結論:
師:觀察這四種分法,在每一種放法中,有幾支鉛筆放進了同一個文具盒?
生:答:第一種擺法有4支鉛筆放進同一個文具盒中;第二種擺法有3支鉛筆放進同一個文具盒中;第三種擺法有2支鉛筆放進同一個文具盒中;第四種擺法有2支鉛筆放進同一個文具盒中;
師:: 我們綜合這4種擺法,你們能發(fā)現(xiàn)什么規(guī)律?(學生說)師:誰能再說一遍?誰還想說?
引導學生說:不管怎么放,總有一個盒子里至少有2枝鉛筆。(課件出示)教師板書:老師把同學們的發(fā)現(xiàn)記錄下來,(板書): 鉛筆 文具盒 總有一個文具盒至少放進 4 3 2 5、教師重點強調(diào):“總有、至少”
師:老師為什么要強調(diào)“總有、至少”呢?“總有”是什么意思? 生:一定有,總會有(強調(diào)存在性)師:“至少”有2枝什么意思?
生:不少于兩只,可能是2枝,也可能是多于2枝?
師:就是不能少于2枝。(通過4種擺法讓學生充分體驗感受)
師小結:看來,不管怎么放,總有一個文具盒至少放進2枝鉛筆。這是我們通過實際操作,采用一一列舉的方法得到的結論。
6、教學平均分方法
A、老師提出質(zhì)疑:假如是6支鉛筆放進5個文具盒,或者是10支鉛筆放進9個文具盒,甚至是100支鉛筆放進99個文具盒,結果會怎么樣?你還會用一一列舉的方法去證明嗎?(學生思考)那有沒有一種既簡單又快捷的方法呢?
B 引導觀察:師:請同學們觀察這4種分法,哪種擺法最能體現(xiàn)“至少有2支鉛筆放進同一個文具盒”這個結論呢?(擺法4)
師:它是怎樣分的呢?我們再看一遍擺的過程。C 課件演示平均分的過程并引導學生思考:
1、它是怎樣分的?(平均分)
為什么只用平均分一種方法就能證明“總有1個文具盒至少放入2支鉛筆”?
2、你能用平均分的方法解釋剛才的結論嗎? 學生思考——組內(nèi)交流-----匯報.引導學生說:如果每個文具盒放進1支,最多放進3支.剩下的1支不管放在哪個文具盒里.總有1個文具盒至少放進2支鉛筆。(或那個文具盒就至少有2支筆)師:誰能再說一遍?誰還想說?(課件出示)
D 誰會用算術表示剛才平均分的過程?教師板書:4÷3=1??1
7、引導發(fā)現(xiàn)原理1:
剛才我們學習了一一列舉的方法,而且還學習了用平均分的方法證明了“把4支鉛筆放進3個文具盒中,總有一個文具盒至少放進2支鉛筆”這個結論。下面我們看到一組練習。①嘗試練習(課件)如果把6支鉛筆放到5個文具盒中,總有一個文具盒至少放進()支筆? 如果把10支鉛筆放到9個文具盒中,總有一個文具盒至少放進()支筆? 如果把100支鉛筆放到99個文具盒中,總有一個文具盒至少放進()支筆? 你會用算術解釋嗎?教師板書 ÷ 5 = 1?? 1 2 100 ÷ 99 = 1??1 2 ②課堂小結:通過剛才的學習你發(fā)現(xiàn)什么規(guī)律?(多指幾名學生回答)
引導學生歸納出:只要放的鉛筆數(shù)比文具盒的盒數(shù)多1,總有一個文具盒里至少放進2支鉛筆。
師:你同意他的說法嗎?誰還想說?
③師:如果把文具盒看做抽屜,鉛筆看做被分配的物體,那剛才的規(guī)律還可以另外一種表達(課件出示):如果物體數(shù)比抽屜數(shù)大1,不管怎么放,總有一個抽屜至少放入2個物體。(學生讀一遍)
8、師:你能用抽屜原理解釋剛才的搶凳子游戲嗎?什么是被分物體?什么是抽屜?
(二)教學例2
如果物體數(shù)比抽屜數(shù)多
2、多
3、多4??又會出現(xiàn)什么結果呢?
1、出示例題(PPT):把5支鉛筆放進3個文具盒,不管怎么放總有1個文具盒里至少放多少支鉛筆?為什么?
2、學生猜想結論:
3、師:你們猜想的對嗎?我們看看電腦模擬實驗的過程,(電腦演示平均分的過程)師:你能解釋為什么嗎?
4、匯報(演示)并解釋發(fā)現(xiàn)的結論。
A解釋并匯報:如果每個文具盒放進1支,最多放進3支.剩下的2支不管放在哪個文具盒里.總有1個文具盒至少放進2支鉛筆。(或那個文具盒就至少有2支鉛筆)
B教師板書:老師把同學們的發(fā)現(xiàn)記錄下來,板書:5 3 2
5、算術怎樣列?5÷3=1———2
6、嘗試練習
1、如果7支鉛筆放進4個文具盒中,至少有()支鉛筆放進同一個文具盒中?
2、如果9支鉛筆放進4個文具盒中,會有什么結果? 3、15支呢?
4、你能用算術表示嗎?
7、學生做題匯報,教師板書 ÷ 4 = 1??3 2 9 ÷ 4 = 2 ??1 3 15 ÷ 4 = 3??3 4
8、總結規(guī)律,發(fā)現(xiàn)原理2 師:我們研究到這了,看看有什么規(guī)律? 學生匯報:
學情預設①:“商+余數(shù)”和“商+1”兩種情況:師:驗證一下,看看到底是商+1還是+余數(shù)?
學情預設②:意見統(tǒng)一為“商+1”:師:為什么不管余幾都是商+1呢?)
總結:課件出示:如果物體數(shù)比抽屜數(shù) 大一些,不管怎么放,總有一個抽屜至少放入(商+1)個物體。
(如果有學生提出沒有余數(shù)的情況,可以讓學生舉例子驗證,說明這個結論的前提是“有余數(shù)”)
三、鞏固運用解決問題
應用原理能不能解決一些實際問題?下面準備了一組闖關練習,如果闖關成功,那同學們就會得到一個神秘禮物哦!想不想試試?有信心嗎?
1、闖關1:7只鴿子飛回5 個鴿舍,至少有()只鴿子要飛進同一個鴿舍里。為什么?
2、神秘禮物:機器貓小叮當
3、闖關2:8只鴿子飛回3個鴿舍里,至少有()只鴿子要飛進同一個鴿舍里?為什么?
4神秘禮物:撲克牌游戲
一幅撲克,拿走大、小王后還有52張牌,請你任意抽出其中的5張牌,那么你可以發(fā)現(xiàn)什么?為什么? ①師與生配合做
教師洗牌學生抽其中的任意5張,教師猜其中至少有2張是同花色的。②學生試著解釋。5闖關3:智慧城堡
在我們班的任意13人中,總有至少()人的屬相相同,想一想,為什么?
1.學生猜想 2.學生試著說理
3.式子表示:13÷12 = 1??1 1+1 = 2(名)
6、神秘禮物:名言警句“聰明出于勤奮,天才在于積累”。
——華羅庚
7、闖關4:智慧城堡
1.會昌小學在“感恩教師,送祝?!被顒又校瑸槊课贿^生日教師訂了一份生日蛋糕。請問154名教師中至少有()名教師的生日是在同一個月份? 2.學生猜想 3.學生試著說理
4.式子表示154÷12=12??10 12+1=13(人)
8、神秘禮物:喜羊羊與灰太狼
9、闖關5思維拓展
如果要保證至少有2名教師生日是在同一天,那至少要有()名教師?
10、介紹數(shù)學知識:(課件出示“你知道嗎“)
四、課堂小結:通過今天的學習你有什么收獲?
五、作業(yè)訓練
要求學生完成練習冊練習。
六、板書設計: 抽屜原理
(物體數(shù))(抽屜數(shù))至少數(shù) 鉛筆 文具盒 總有一個文具盒至少放進(商+1)÷ 3 = 1?? 1 2 6 ÷ 5 = 1?? 1 2 100 ÷ 99 = 1??1 2 5 ÷ 3 = 1??2 2 7 ÷ 4 = 1??3 2 9 ÷ 4 = 2 ??1 3 15 ÷ 4 = 3??3 4
+余數(shù))(商 用式子表示為:
物體數(shù)÷抽屜數(shù)=商? ?余數(shù)
至少數(shù)=商+1(注意:不是商+余數(shù))
七、設計思路
數(shù)學課程標準指出,數(shù)學課堂教學是師生互動與發(fā)展的過程,學生是數(shù)學學習的主人,教師是課堂的組織者,引導者和合作者。本節(jié)課的教學注重為學生提供自主探索的空間,引導學生在觀察、猜測、操作、推理和交流等數(shù)學活動中初步了解“抽屜原理”,學會用“抽屜原理”解決簡單的實際問題。
1、經(jīng)歷“數(shù)學化”的過程。
“創(chuàng)設情境——建立模型——解釋應用”是新課程倡導的課堂教學模式,本節(jié)課運用這一模式,設計了豐富多彩的數(shù)學活動,讓學生經(jīng)歷“抽屜原理”的探究過程,從探究具體問題到類推得出一般結論,初步了解“抽屜原理”,再到實際生活中加以應用,找到實際問題和“抽屜原理”之間的聯(lián)系,靈活地解決實際問題。讓學生經(jīng)歷“數(shù)學化”的過程,學會思考數(shù)學問題的方法,培養(yǎng)學生的數(shù)學思維能力。
2、用具體的操作,將抽象變?yōu)橹庇^。
“總有一個文具盒中至少放進2支鉛筆”這句話對于學生而言,不僅說起來生澀拗口,而且抽象難以理解。怎樣讓學生理解這句話呢?我覺得要讓學生充分的操作,一在具體操作中理解“總有”和“至少”,二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現(xiàn)“總有一個文具盒中至少放進2支鉛筆”這種現(xiàn)象,讓學生理解這句話。
3、注重建模思想的滲透。
本節(jié)課的教學,有意識地培養(yǎng)學生的“模型”思想,讓學生理解“抽屜問題”的“一般化模型”。在學生自主探索的基礎上,教師引導學生對兩種方法進行比較,使學生逐步學會運用一般性的數(shù)學方法來思考問題;在學生解決了“4枝鉛筆放進3個文具盒”的問題后,繼續(xù)思考,類推,得出一般性的結論。這樣設計,提升了學生的思維,發(fā)展了學生的能力。
4、注重調(diào)動學生的積極性。
興趣是最好的老師,是調(diào)動學生積極探究知識的動力,學生感興趣就會很積極地參與到學習中來,反之他們則會不予理睬。對于“抽屜原理”的學習,學生以前并沒有接觸過,學生以前理解數(shù)學問題全都是由數(shù)量和數(shù)量關系組成,解決問題時基本上是用算術和幾何知識,極少用到推理的知識。所以,教學中激發(fā)學生學習的興趣猶為重要。本節(jié)課中,教師從學生已有的知識經(jīng)驗出發(fā),從簡單的物體入手,鼓勵學生大膽思考,積極交流、討論等,給學生創(chuàng)設了一個和諧的學習環(huán)境,使學生在輕松愉快中學習數(shù)學,并在數(shù)學學習中享受著快樂。
5、體現(xiàn)“學生為主體,教師為主導”的新教學理念。
教師不是學生學習的指揮者,而是學生學習活動的伙伴。教學中學生是學習的主體,教師只是與學生共同探索、共同研究,與學生一起解決問題、構建模型,讓學生在問題中 “學”和“悟”。
6、精選學生身邊感興趣的素材。
學生的智力活動與他對周圍事物的作用緊密聯(lián)系,即學生的理解來自他們作用于物體的活動。“抽屜問題”具有一定的思維性和抽象性,學生往往缺乏感性經(jīng)驗,只有通過實際操作獲得直接經(jīng)驗,才便于理解其方法,從而發(fā)現(xiàn)其規(guī)律。所以在教學中,教師應多挖掘一些生活素材,讓學生從生活經(jīng)驗中理解“抽屜問題”,學習“抽屜問題”,從而掌握“抽屜問題”,同時也讓學生深切的感受到數(shù)學就在自己身邊,自己學習的是有用的數(shù)學
第二篇:抽屜原理
抽屜原理
把5個蘋果放到4個抽屜中,必然有一個抽屜中至少有2個蘋果,這是抽屜原理的通俗解釋。一般地,我們將它表述為:
第一抽屜原理:把(mn+1)個物體放入n個抽屜,其中必有一個抽屜中至少有(m+1)個物體。
使用抽屜原理解題,關鍵是構造抽屜。一般說來,數(shù)的奇偶性、剩余類、數(shù)的分組、染色、線段與平面圖形的劃分等,都可作為構造抽屜的依據(jù)。
例1 從1,2,3,…,100這100個數(shù)中任意挑出51個數(shù)來,證明在這51個數(shù)中,一定:
(1)有2個數(shù)互質(zhì);
(2)有2個數(shù)的差為50;
(3)有8個數(shù),它們的最大公約數(shù)大于1。
證明:(1)將100個數(shù)分成50組:
{1,2},{3,4},…,{99,100}。
在選出的51個數(shù)中,必有2個數(shù)屬于同一組,這一組中的2個數(shù)是兩個相鄰的整數(shù),它們一定是互質(zhì)的。
(2)將100個數(shù)分成50組:
{1,51},{2,52},…,{50,100}。
在選出的51個數(shù)中,必有2個數(shù)屬于同一組,這一組的2個數(shù)的差為50。
(3)將100個數(shù)分成5組(一個數(shù)可以在不同的組內(nèi)):
第一組:2的倍數(shù),即{2,4,…,100};
第二組:3的倍數(shù),即{3,6,…,99};
第三組:5的倍數(shù),即{5,10,…,100};
第四組:7的倍數(shù),即{7,14,…,98};
第五組:1和大于7的質(zhì)數(shù)即{1,11,13,…,97}。
第五組中有22個數(shù),故選出的51個數(shù)至少有29個數(shù)在第一組到第四組中,根據(jù)抽屜原理,總有8個數(shù)在第一組到第四組的某一組中,這8個數(shù)的最大公約數(shù)大于1。
例2 求證:可以找到一個各位數(shù)字都是4的自然數(shù),它是1996的倍數(shù)。
證明:因1996÷4=499,故只需證明可以找到一個各位數(shù)字都是1的自然數(shù),它是499的倍數(shù)就可以了。
得到500個余數(shù)r1,r2,…,r500。由于余數(shù)只能取0,1,2,…,499這499個值,所以根據(jù)抽屜原理,必有2個余數(shù)是相同的,這2個數(shù)的差就是499的倍數(shù),這個差的前若干位是1,后若干位是0:11…100…0,又499和10是互質(zhì)的,故它的前若干位由1組成的自然數(shù)是499的倍數(shù),將它乘以4,就得到一個各位數(shù)字都是4的自然數(shù),它是1996的倍數(shù)。
例3 在一個禮堂中有99名學生,如果他們中的每個人都與其中的66人相識,那么可能出現(xiàn)這種情況:他們中的任何4人中都一定有2人不相識(假定相識是互相的)。
分析:注意到題中的說法“可能出現(xiàn)……”,說明題的結論并非是條件的必然結果,而僅僅是一種可能性,因此只需要設法構造出一種情況使之出現(xiàn)題目中所說的結論即可。
解:將禮堂中的99人記為a1,a2,…,a99,將99人分為3組:
(a1,a2,…,a33),(a34,a35,…,a66),(a67,a68,…,a99),將3組學生作為3個抽屜,分別記為A,B,C,并約定A中的學生所認識的66人只在B,C中,同時,B,C中的學生所認識的66人也只在A,C和A,B中。如果出現(xiàn)這種局面,那么題目中所說情況
/ 7
就可能出現(xiàn)。
因為禮堂中任意4人可看做4個蘋果,放入A,B,C三個抽屜中,必有2人在同一抽屜,即必有2人來自同一組,那么他們認識的人只在另2組中,因此他們兩人不相識。
例4 如右圖,分別標有數(shù)字1,2,…,8的滾珠兩組,放在內(nèi)外兩個圓環(huán)上,開始時相對的滾珠所標數(shù)字都不相同。當兩個圓環(huán)按不同方向轉(zhuǎn)動時,必有某一時刻,內(nèi)外兩環(huán)中至少有兩對數(shù)字相同的滾珠相對。
分析:此題中沒有直接提供我們用以構造抽屜和蘋果的數(shù)量關系,需要轉(zhuǎn)換一下看問題的角度。
解:內(nèi)外兩環(huán)對轉(zhuǎn)可看成一環(huán)靜止,只有一個環(huán)轉(zhuǎn)動。一個環(huán)轉(zhuǎn)動一周后,每個滾珠都會有一次與標有相同數(shù)字的滾珠相對的局面出現(xiàn),那么這種局面共要出現(xiàn)8次。將這8次局面看做蘋果,再需構造出少于8個抽屜。
注意到一環(huán)每轉(zhuǎn)動45°角就有一次滾珠相對的局面出現(xiàn),轉(zhuǎn)動一周共有8次滾珠相對的局面,而最初的8對滾珠所標數(shù)字都不相同,所以數(shù)字相同的滾珠相對的情況只出現(xiàn)在以后的7次轉(zhuǎn)動中,將7次轉(zhuǎn)動看做7個抽屜,8次相同數(shù)字滾珠相對的局面看做8個蘋果,則至少有2次數(shù)字相對的局面出現(xiàn)在同一次轉(zhuǎn)動中,即必有某一時刻,內(nèi)外兩環(huán)中至少有兩對數(shù)字相同的滾珠相對。
例5 有一個生產(chǎn)天平上用的鐵盤的車間,由于工藝上的原因,只能控制盤的重量在指定的20克到20.1克之間?,F(xiàn)在需要重量相差不超過0.005克的兩只鐵盤來裝配一架天平,問:最少要生產(chǎn)多少個盤子,才能保證一定能從中挑出符合要求的兩只盤子?
解:把20~20.1克之間的盤子依重量分成20組:
第1組:從20.000克到20.005克;
第2組:從20.005克到20.010克;
……
第20組:從20.095克到20.100克。
這樣,只要有21個盤子,就一定可以從中找到兩個盤子屬于同一組,這2個盤子就符合要求。
例6 在圓周上放著100個籌碼,其中有41個紅的和59個藍的。那么總可以找到兩個紅籌碼,在它們之間剛好放有19個籌碼,為什么?
分析:此題需要研究“紅籌碼”的放置情況,因而涉及到“蘋果”的具體放置方法,由此我們可以在構造抽屜時,使每個抽屜中的相鄰“蘋果”之間有19個籌碼。
解:依順時針方向?qū)⒒I碼依次編上號碼:1,2,…,100。然后依照以下規(guī)律將100個籌碼分為20組:
(1,21,41,61,81);
(2,22,42,62,82);
……
(20,40,60,80,100)。
將41個紅籌碼看做蘋果,放入以上20個抽屜中,因為41=2×20+1,所以至少有一個抽屜中有2+1=3(個)蘋果,也就是說必有一組5個籌碼中有3個紅色籌碼,而每組的5個籌碼在圓周上可看做兩兩等距,且每2個相鄰籌碼之間都有19個籌碼,那么3個紅色籌碼中必有2個相鄰(這將在下一個內(nèi)容——第二抽屜原理中說明),即有2個紅色籌碼之間有19個籌碼。
下面我們來考慮另外一種情況:若把5個蘋果放到6個抽屜中,則必然有一個抽屜空著。這種情況一般可以表述為:
/ 7
第二抽屜原理:把(mn-1)個物體放入n個抽屜,其中必有一個抽屜中至多有(m-1)個物體。
例7 在例6中留有一個疑問,現(xiàn)改述如下:在圓周上放有5個籌碼,其中有3個是同色的,那么這3個同色的籌碼必有2個相鄰。
分析:將這個問題加以轉(zhuǎn)化:
如右圖,將同色的3個籌碼A,B,C置于圓周上,看是否能用另外2個籌碼將其隔開。
解:如圖,將同色的3個籌碼放置在圓周上,將每2個籌碼之間的間隔看做抽屜,將其余2個籌碼看做蘋果,將2個蘋果放入3個抽屜中,則必有1個抽屜中沒有蘋果,即有2個同色籌碼之間沒有其它籌碼,那么這2個籌碼必相鄰。
例8 甲、乙二人為一個正方形的12條棱涂紅和綠2種顏色。首先,甲任選3條棱并把它們涂上紅色;然后,乙任選另外3條棱并涂上綠色;接著甲將剩下的6條棱都涂上紅色。問:甲是否一定能將某一面的4條棱全部涂上紅色?
解:不能。
如右圖將12條棱分成四組:
第一組:{A1B1,B2B3,A3A4},第二組:{A2B2,B3B4,A4A1},第三組:{A3B3,B4B1,A1A2},第四組:{A4B4,B1B2,A2A3}。
無論甲第一次將哪3條棱涂紅,由抽屜原理知四組中必有一組的3條棱全未涂紅,而乙只要將這組中的3條棱涂綠,甲就無法將某一面的4條棱全部涂紅了。
下面我們討論抽屜原理的一個變形——平均值原理。
我們知道n個數(shù)a1,a2,…,an的和與n的商是a1,a2,…,an這n個數(shù)的平均值。平均值原理:如果n個數(shù)的平均值為a,那么其中至少有一個數(shù)不大于a,也至少有一個不小于a。
例9 圓周上有2000個點,在其上任意地標上0,1,2,…,1999(每一點只標一個數(shù),不同的點標上不同的數(shù))。求證:必然存在一點,與它緊相鄰的兩個點和這點上所標的三個數(shù)之和不小于2999。
解:設圓周上各點的值依次是a1,a2,…,a2000,則其和
a1+a2+…+a2000=0+1+2+…+1999=1999000。
下面考慮一切相鄰三數(shù)組之和:
(a1+a2+a3)+(a2+a3+a4)+…+(a1998+a1999+a2000)+(a1999+a2000+a1)+(a2000+a1+a2)
=3(a1+a2+…+a2000)
=3×1999000。
這2000組和中必至少有一組和大于或等于
但因每一個和都是整數(shù),故有一組相鄰三數(shù)之和不小于2999,亦即存在一個點,與它緊相鄰的兩點和這點上所標的三數(shù)之和不小于2999。
例10 一家旅館有90個房間,住有100名旅客,如果每次都恰有90名旅客同時回來,那么至少要準備多少把鑰匙分給這100名旅客,才能使得每次客人回來時,每個客人都能用自己分到的鑰匙打開一個房門住進去,并且避免發(fā)生兩人同時住進一個房間?
解:如果鑰匙數(shù)小于990,那么90個房間中至少有一個房間的鑰匙數(shù)少房間就打不開,因此90個人就無法按題述的條件住下來。
/ 7
另一方面,990把鑰匙已經(jīng)足夠了,這只要將90把不同的鑰匙分給90個人,而其余的10名旅客,每人各90把鑰匙(每個房間一把),那么任何90名旅客返回時,都能按要求住進房間。
最后,我們要指出,解決某些較復雜的問題時,往往要多次反復地運用抽屜原理,請看下面兩道例題。
例11 設有4×28的方格棋盤,將每一格涂上紅、藍、黃三種顏色中的任意一種。試證明:無論怎樣涂法,至少存在一個四角同色的長方形。
證明:我們先考察第一行中28個小方格涂色情況,用三種顏色涂28個小方格,由抽屜原理知,至少有10個小方格是同色的,不妨設其為紅色,還可設這10個小方格就在第一行的前10列。
下面考察第二、三、四行中前面10個小方格可能出現(xiàn)的涂色情況。這有兩種可能:
(1)這三行中,至少有一行,其前面10個小方格中,至少有2個小方格是涂有紅色的,那么這2個小方格和第一行中與其對應的2個小方格,便是一個長方形的四個角,這個長方形就是一個四角同是紅色的長方形。
(2)這三行中每一行前面的10格中,都至多有一個紅色的小方格,不妨設它們分別出現(xiàn)在前三列中,那么其余的3×7個小方格便只能涂上黃、藍兩種顏色了。
我們先考慮這個3×7的長方形的第一行。根據(jù)抽屜原理,至少有4個小方格是涂上同一顏色的,不妨設其為藍色,且在第1至4列。
再考慮第二行的前四列,這時也有兩種可能:
(1)這4格中,至少有2格被涂上藍色,那么這2個涂上藍色的小方格和第一行中與其對應的2個小方格便是一個長方形的四個角,這個長方形四角同是藍色。
(2)這4格中,至多有1格被涂上藍色,那么,至少有3格被涂上黃色。不妨設這3個小方格就在第二行的前面3格。
下面繼續(xù)考慮第三行前面3格的情況。用藍、黃兩色涂3個小方格,由抽屜原理知,至少有2個方格是同色的,無論是同為藍色或是同為黃色,都可以得到一個四角同色的長方形。
總之,對于各種可能的情況,都能找到一個四角同色的長方形。
例12 試卷上共有4道選擇題,每題有3個可供選擇的答案。一群學生參加考試,結果是對于其中任何3人,都有一道題目的答案互不相同。問:參加考試的學生最多有多少人?
解:設每題的三個選擇分別為a,b,c。
(1)若參加考試的學生有10人,則由第二抽屜原理知,第一題答案分別為a,b,c的三組學生中,必有一組不超過3人。去掉這組學生,在余下的學生中,定有7人對第一題的答案只有兩種。對于這7人關于第二題應用第二抽屜原理知,其中必可選出5人,他們關于第二題的答案只有兩種可能。對于這5人關于第三題應用第二抽屜原理知,可以選出4人,他們關于第三題的答案只有兩種可能。最后,對于這4人關于第四題應用第二抽屜原理知,必可選出3人,他們關于第四題的答案也只有兩種。于是,對于這3人來說,沒有一道題目的答案是互不相同的,這不符合題目的要求??梢?,所求的最多人數(shù)不超過9人。
另一方面,若9個人的答案如下表所示,則每3人都至少有一個問題的答案互不相同。
所以,所求的最多人數(shù)為9人。練習13
1.六(1)班有49名學生。數(shù)學王老師了解到在期中考試中該班英文成績除3人外均在86分以上后就說:“我可以斷定,本班同學至少有4人成績相同?!闭垎柾趵蠋熣f得對嗎?為什么?
2.現(xiàn)有64只乒乓球,18個乒乓球盒,每個盒子里最多可以放6只乒乓球,至少有幾個
/ 7
乒乓球盒子里的乒乓球數(shù)目相同?
3.某校初二年級學生身高的厘米數(shù)都為整數(shù),且都不大于160厘米,不小于150厘米。問:在至少多少個初二學生中一定能有4個人身高相同?
4.從1,2,…,100這100個數(shù)中任意選出51個數(shù),證明在這51個數(shù)中,一定:
(1)有兩個數(shù)的和為101;
(2)有一個數(shù)是另一個數(shù)的倍數(shù);
(3)有一個數(shù)或若干個數(shù)的和是51的倍數(shù)。
5.在3×7的方格表中,有11個白格,證明
(1)若僅含一個白格的列只有3列,則在其余的4列中每列都恰有兩個白格;
(2)只有一個白格的列只有3列。
6.某個委員會開了40次會議,每次會議有10人出席。已知任何兩個委員不會同時開兩次或更多的會議。問:這個委員會的人數(shù)能夠多于60人嗎?為什么?
7.一個車間有一條生產(chǎn)流水線,由5臺機器組成,只有每臺機器都開動時,這條流水線才能工作??偣灿?個工人在這條流水線上工作。在每一個工作日內(nèi),這些工人中只有5名到場。為了保證生產(chǎn),要對這8名工人進行培訓,每人學一種機器的操作方法稱為一輪。問:最少要進行多少輪培訓,才能使任意5個工人上班而流水線總能工作?
8.有9名數(shù)學家,每人至多能講3種語言,每3人中至少有2人能通話。求證:在這9名中至少有3名用同一種語言通話。
練習13
1.對。解:因為49-3=3×(100-86+1)+1,即46=3×15+1,也就是說,把從100分至86分的15個分數(shù)當做抽屜,49-3=46(人)的成績當做物體,根據(jù)第二抽屜原理,至少有4人的分數(shù)在同一抽屜中,即成績相同。
2.4個。解:18個乒乓球盒,每個盒子里至多可以放6只乒乓球。為使相同乒乓球個數(shù)的盒子盡可能少,可以這樣放:先把盒子分成6份,每份有18÷6=3(只),分別在每一份的3個盒子中放入1只、2只、3只、4只、5只、6只乒乓球,即3個盒子中放了1只乒乓球,3個盒中放了2只乒乓球……3個盒子中放了6只乒乓球。這樣,18個盒子中共放了乒乓球
(1+2+3+4+5+6)×3=63(只)。
把以上6種不同的放法當做抽屜,這樣剩下64-63=1(只)乒乓球不管放入哪一個抽屜里的任何一個盒子里(除已放滿6只乒乓球的抽屜外),都將使該盒子中的乒乓球數(shù)增加1只,這時與比該抽屜每盒乒乓數(shù)多1的抽屜中的3個盒子里的乒乓球數(shù)相等。例如剩下的1只乒乓球放進原來有2只乒乓球的一個盒子里,該盒乒乓球就成了3只,再加上原來裝有3只乒乓球的3個盒子,這樣就有4個盒子里裝有3個乒乓球。所以至少有4個乒乓球盒里的乒乓球數(shù)目相同。
3.34個。
解:把初二學生的身高厘米數(shù)作為抽屜,共有抽屜
160-150+1=11(個)。
根據(jù)抽屜原理,要保證有4個人身高相同,至少要有初二學生
3×11+1=34(個)。
4.證:(1)將100個數(shù)分成50組:
/ 7
{1,100},{2,99},…,{50,51}。
在選出的51個數(shù)中,必有兩數(shù)屬于同一組,這一組的兩數(shù)之和為101。
(2)將100個數(shù)分成10組:
{1,2,4,8,16,32,64}, {3,6,12,24,48,96},{5,10,20,40,80}, {7,14,28,56},{9,18,36,72}, {11,22,44,88},{13,26,52}, {15,30,60},…, {49,98}, {其余數(shù)}。
其中第10組中有41個數(shù)。在選出的51個數(shù)中,第10組的41個數(shù)全部選中,還有10個數(shù)從前9組中選,必有兩數(shù)屬于同一組,這一組中的任意兩個數(shù),一個是另一個的倍數(shù)。
(3)將選出的51個數(shù)排成一列:
a1,a2,a3,…,a51。
考慮下面的51個和:
a1,a1+a2,a1+a2+a3,…,a1+a2+a3+…+a51。
若這51個和中有一個是51的倍數(shù),則結論顯然成立;若這51個和中沒有一個是51的倍數(shù),則將它們除以51,余數(shù)只能是1,2,…,50中的一個,故必然有兩個的余數(shù)是相同的,這兩個和的差是51的倍數(shù),而這個差顯然是這51個數(shù)(a1,a2,a3,…,a51)中的一個數(shù)或若干個數(shù)的和。
5.證:(1)在其余4列中如有一列含有3個白格,則剩下的5個白格要放入3列中,將3列表格看做3個抽屜,5個白格看做5個蘋果,根據(jù)第二抽屜原理,5(=2×3-1)個蘋果放入3個抽屜,則必有1個抽屜至多只有(2-1)個蘋果,即必有1列只含1個白格,也就是說除了原來3列只含一個白格外還有1列含1個白格,這與題設只有1個白格的列只有3列矛盾。所以不會有1列有3個白格,當然也不能再有1列只有1個白格。推知其余4列每列恰好有2個白格。
(2)假設只含1個白格的列有2列,那么剩下的9個白格要放入5列中,而9=2×5-1,由第二抽屜原理知,必有1列至多只有2-1=1(個)白格,與假設只有2列每列只1個白格矛盾。所以只有1個白格的列至少有3列。
6.能。
解:開會的“人次”有 40×10=400(人次)。設委員人數(shù)為N,將“人次”看做蘋果,以委員人數(shù)作為抽屜。
若N≤60,則由抽屜原理知至少有一個委員開了7次(或更多次)會。但由已知條件知沒有一個人與這位委員同開過兩次(或更多次)的會,故他所參加的每一次會的另外9個人是不相同的,從而至少有7×9=63(個)委員,這與N≤60的假定矛盾。所以,N應大于60。
7.20輪。
解:如果培訓的總輪數(shù)少于20,那么在每一臺機器上可進行工作的工人果這3個工人某一天都沒有到車間來,那么這臺機器就不能開動,整個流水線就不能工作。故培訓的總輪數(shù)不能少于20。
另一方面,只要進行20輪培訓就夠了。對3名工人進行全能性培訓,訓練他們會開每一臺機器;而對其余5名工人,每人只培訓一輪,讓他們每人能開動一臺機器。這個方案實施后,不論哪5名工人上班,流水線總能工作。
8.證:以平面上9個點A1,A2,…,A9表示9個數(shù)學家,如果兩人能通話,就把表示他們的兩點聯(lián)線,并涂上一種顏色(不同的語言涂上不同顏色)。此時有兩種情況:
(1)9點中有任意2點都有聯(lián)線,并涂了相應的顏色。于是從某一點A1出發(fā),分別與
/ 7
A2,A3,…,A9聯(lián)線,又據(jù)題意,每人至多能講3種語言,因此A1A2,A1A3,…,A1A9中至多只能涂3種不同的顏色,由抽屜原理知,這8條線段中至少有2條同色的線段。不妨設A1A2與A1A3是同色線段,因此A1,A2,A3這3點表示的3名數(shù)學家可用同一種語言通話。
(2)9點中至少有2點不聯(lián)線,不妨設是A1與A2不聯(lián)線。由于每3人中至少有兩人能通話,因此從A1與A2出發(fā)至少有7條聯(lián)線。再由抽屜原理知,其中必有4條聯(lián)線從A1或A2 出發(fā)。不妨設從A1出發(fā),又因A1至多能講3種語言,所以這4條聯(lián)線中,至少有2條聯(lián)線是同色的。若A1A3與A1A4同色,則A1,A3,A4這3點表示的3名數(shù)學家可用同一種語言通話。
/ 7
第三篇:抽屜原理
《抽屜原理》教學設計
教材分析:現(xiàn)行小學教材人教版在十一冊編入這一原理,旨在于讓學生初步了解“抽屜原理”(也就是初步接觸第一原理),會用“抽屜原理”解決實際有關“存在”問題;通過猜測、驗證、觀察、分析等數(shù)學活動,讓孩子建立數(shù)學模型,發(fā)現(xiàn)規(guī)律;使孩子經(jīng)歷從具體到抽象的探究過程,提高學生有根據(jù)、有條理地進行思考和推理的能力;通過“抽屜原理”的靈活應用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學文化及數(shù)學的魅力。
學情分析:使孩子經(jīng)歷從具體到抽象的探究過程,提高學生有根據(jù)、有條理地進行思考和推理的能力;通過“抽屜原理”的靈活應用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學文化及數(shù)學的魅力。教學目標:
1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2、通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3、通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
教學重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學過程
一、游戲引入
3個人坐兩個座位,3人都要坐下,一定有一個座位上至少坐了2個人。
這其中蘊含了有趣的數(shù)學原理,這節(jié)課我們一起學習研究。
二、新知探究
1、把4枝鉛筆放進3個文具盒里,不管怎么放,總有一個文具盒里至少放進()枝鉛筆先猜一猜,再動手放一放,看看有哪些不同方法。用自己的方法記錄(4,0,0)(3,1,0)(2,2,0)(2,1,1)你有什么發(fā)現(xiàn)?
不管怎么放總有一個文具盒里至少放進2枝鉛筆??傆惺鞘裁匆馑迹恐辽偈鞘裁匆馑?/p>
2、思考
有沒有一種方法不用擺放就可以知道至少數(shù)是多少呢?
1、3人坐2個位子,總有一個座位上至少坐了2個人2、4枝鉛筆放進3個文具盒中,總有一個文具盒中至少放了2枝鉛筆5枝鉛筆放進4個文具盒中,6枝鉛筆放進5個文具盒中。99支鉛筆放進98個文具盒中。是否都有一個文具盒中
至少放進2枝鉛筆呢? 這是為什么?可以用算式表達嗎?
4、如果是5枝鉛筆放到3個文具盒里,總有一個文具盒至少放進幾枝鉛筆?把7枝筆放進2個文具盒里呢? 8枝筆放進2個文具盒呢? 9枝筆放進3個文具盒呢?至少數(shù)=上+余數(shù)嗎?
三、小試牛刀 1、7只鴿子飛回5個鴿舍,至少有幾只鴿子要飛進同一個鴿舍里?
2、從撲克牌中取出兩張王牌,在剩下的52張中任意抽出5張,至少有幾張是同花色的?
四、數(shù)學小知識
數(shù)學小知識:抽屜原理的由來最先發(fā)現(xiàn)這些規(guī)律的人是誰呢?最先是由19世紀的德國數(shù)學家狄里克雷運用于解決數(shù)學問題的,后人們?yōu)榱思o念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個規(guī)律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鴿巢原理”,還把它叫做
“抽屜原理”。
五、智慧城堡
1、把13只小兔子關在5個籠子里,至少有多少只兔子要關在同一個籠子里?
2、咱們班共59人,至少有幾人是同一屬相?
3、張叔叔參加飛鏢比賽,投了5鏢,鏢鏢都中,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?
4、六年級四個班的學生去春游,自由活時有6個同學在一起,可以肯定。為什么?
六、小結
這節(jié)課你有什么收獲?
七、作業(yè):課后練習
第四篇:抽屜原理
抽屜原理
【知識要點】
抽屜原理又稱鴿巢原理,它是組合數(shù)學的一個基本原理,最先是由德國數(shù)學家狹利克雷明確地提出來的,因此,也稱為狹利克雷原理。
把3個蘋果放進2個抽屜里,一定有一個抽屜里放了2個或2個以上的蘋果。這個人人皆知的常識就是抽屜原理在日常生活中的體現(xiàn)。用它可以解決一些相當復雜甚至無從下手的問題。
原理1:把n+1個元素分成n類,不管怎么分,則一定有一類中有2個或2個以上的元素。
原理2:把m個元素任意放入n(n<m)個集合,則一定有一個集合呈至少要有k個元素。
其中 k= 商(當n能整除m時)
商+1(當n不能整除m時)
原理3:把無窮多個元素放入有限個集合里,則一定有一個集合里含有無窮多個元素?!窘忸}步驟】
第一步:分析題意。分清什么是“東西”,什么是“抽屜”,也就是什么作“東西”,什么可作“抽屜”。
第二步:制造抽屜。這個是關鍵的一步,這一步就是如何設計抽屜。根據(jù)題目條件和結論,結合有關的數(shù)學知識,抓住最基本的數(shù)量關系,設計和確定解決問題所需的抽屜及其個數(shù),為使用抽屜鋪平道路。
第三步:運用抽屜原理。觀察題設條件,結合第二步,恰當應用各個原則或綜合運用幾個原則,以求問題之解決。【例題講解】
例
1、教室里有5名學生正在做作業(yè),今天只有數(shù)學、英語、語文、地理四科作業(yè)
求證:這5名學生中,至少有兩個人在做同一科作業(yè)。證明:將5名學生看作5個蘋果 將數(shù)學、英語、語文、地理作業(yè)各看成一個抽屜,共4個抽屜 由抽屜原理1,一定存在一個抽屜,在這個抽屜里至少有2個蘋果。即至少有兩名學生在做同一科的作業(yè)。
例
2、木箱里裝有紅色球3個、黃色球5個、藍色球7個,若蒙眼去摸,為保證取出的球中有兩個球的顏色相同,則最少要取出多少個球? 解:把3種顏色看作3個抽屜
若要符合題意,則小球的數(shù)目必須大于3 大于3的最小數(shù)字是4 故至少取出4個小球才能符合要求 答:最少要取出4個球。
例
3、班上有50名學生,將書分給大家,至少要拿多少本,才能保證至少有一個學生能得到兩本或兩本以上的書。
解:把50名學生看作50個抽屜,把書看成蘋果 根據(jù)原理1,書的數(shù)目要比學生的人數(shù)多 即書至少需要50+1=51本 答:最少需要51本。
例
4、在一條長100米的小路一旁植樹101棵,不管怎樣種,總有兩棵樹的距離不超過1米。
解:把這條小路分成每段1米長,共100段
每段看作是一個抽屜,共100個抽屜,把101棵樹看作是101個蘋果 于是101個蘋果放入100個抽屜中,至少有一個抽屜中有兩個蘋果 即至少有一段有兩棵或兩棵以上的樹
例5、11名學生到老師家借書,老師是書房中有A、B、C、D四類書,每名學生最多可借兩本不同類的書,最少借一本 試證明:必有兩個學生所借的書的類型相同
證明:若學生只借一本書,則不同的類型有A、B、C、D四種
若學生借兩本不同類型的書,則不同的類型有AB、AC、AD、BC、BD、CD六種 共有10種類型
把這10種類型看作10個“抽屜” 把11個學生看作11個“蘋果”
如果誰借哪種類型的書,就進入哪個抽屜
由抽屜原理,至少有兩個學生,他們所借的書的類型相同
例
6、有50名運動員進行某個項目的單循環(huán)賽,如果沒有平局,也沒有全勝 試證明:一定有兩個運動員積分相同 證明:設每勝一局得一分
由于沒有平局,也沒有全勝,則得分情況只有1、2、3……49,只有49種可能 以這49種可能得分的情況為49個抽屜 現(xiàn)有50名運動員得分 則一定有兩名運動員得分相同
例
7、體育用品倉庫里有許多足球、排球和籃球,某班50名同學來倉庫拿球,規(guī)定每個人至少拿1個球,至多拿2個球,問至少有幾名同學所拿的球種類是一致的?
解:根據(jù)規(guī)定,同學拿球的配組方式共有以下9種:
{足}{排}{藍}{足足}{排排}{藍藍}{足排}{足藍}{排藍} 以這9種配組方式制造9個抽屜 將這50個同學看作蘋果
50÷9=5.……5
由抽屜原理2:k=商+1可得,至少有6人,他們所拿的球類是完全一致的
第五篇:抽屜原理
抽屜原理
一、起源
抽屜原理最先是由19 世紀的德國數(shù)學家迪里赫萊(Dirichlet)運用于解決數(shù)學問題的,所以又稱“迪里赫萊原理”,也有稱“鴿巢原理”的.這個原理可以簡單地敘述為“把10個蘋果,任意分放在9 個抽屜里,則至少有一個抽屜里含有兩個或兩個以上的蘋果”.這個道理是非常明顯的,但應用它卻可以解決許多有趣的問題,并且常常得到一些令人驚異的結果.抽屜原理是國際國內(nèi)各級各類數(shù)學競賽中的重要內(nèi)容,本講就來學習它的有關知識及其應用.二、抽屜原理的基本形式
定理1,如果把n+1 個元素分成n 個集合,那么不管怎么分,都存在一個集合,其中至少有兩個元素.證明:(用反證法)若不存在至少有兩個元素的集合,則每個集合至多1 個元素,從而n 個集合至多有n 個元素,此與共有n+1 個元素矛盾,故命題成立.在定理1 的敘述中,可以把“元素”改為“物件”,把“集合”改成“抽屜”,抽屜原理正是由此得名.同樣,可以把“元素”改成“鴿子”,把“分成n 個集合”改成“飛進n 個鴿籠中”.“鴿籠原理”由此得名.解答抽屜原理的關鍵:
假設有3 個蘋果放入2 個抽屜中,則必然有一個抽屜中有2 個蘋果,她的一般模型可以表述為:
第一抽屜原理:把(mn+1)個物體放入n 個抽屜中,其中必有一個抽屜中至少有(m+1)個物體。
若把3 個蘋果放入4 個抽屜中,則必然有一個抽屜空著,她的一般模型可以表述為:
第二抽屜原理:把(mn-1)個物體放入n 個抽屜中,其中必有一個抽屜中至多有(m—1)個物體。
抽屜原理一
把4 只蘋果放到3 個抽屜里去,共有4 種放法,不論如何放,必有一個抽屜里至少放進兩個蘋果。
同樣,把5 只蘋果放到4 個抽屜里去,必有一個抽屜里至少放進兩個蘋果。
更進一步,我們能夠得出這樣的結論:把n+1 只蘋果放到n 個抽屜里去,那么必定有一個抽屜里至少放進兩個蘋果。這個結論,通常被稱為抽屜原理。
利用抽屜原理,可以說明(證明)許多有趣的現(xiàn)象或結論。不過,抽屜原理不是拿來就能用的,關鍵是要應用所 學的數(shù)學知識去尋找“抽屜”,制造“抽屜”,弄清應當把什么看作“抽屜”,把什么看作“蘋果”。
抽屜原理二
這里我們講抽屜原理的另一種情況。先看一個例子:如果將13 只鴿子放進6 只鴿籠里,那么至少有一只籠子要放3 只或更多的鴿子。道理很簡單。如果每只鴿籠里只放2 只鴿子,6 只鴿籠共放12 只鴿子。剩下的一只鴿子無論放入哪 只鴿籠里,總有一只鴿籠放了3 只鴿子。這個例子所體現(xiàn)的數(shù)學思想,就是下面的抽屜原理2。
抽屜原理2:將多于m×n 件的物品任意放到n 個抽屜中,那么至少有一個抽屜中的物品的件數(shù)不少于m+1。
說明這一原理是不難的。假定這n 個抽屜中,每一個抽屜內(nèi)的物品都不到(m+1)件,即每個抽屜里的物品都不多于m 件,這樣,n 個抽屜中可放物品的總數(shù)就不會超過m×n 件。這與多于m×n 件物品的假設相矛盾。這說明一開始的假定不能成立。所以至少有一個抽屜中物品的件數(shù)不少于m+1。從最不利原則也可以說明抽屜原理2。為了使抽屜中的物品不少于(m+1)件,最不利的情況就是n 個抽屜中每 個都放入m 件物品,共放入(m×n)件物品,此時再放入1 件物品,無論放入哪個抽屜,都至少有一個抽屜不少于(m +1)件物品。這就說明了抽屜原理2。
不難看出,當m=1 時,抽屜原理2 就轉(zhuǎn)化為抽屜原理1。即抽屜原理2 是抽屜原理1 的推廣。我們很容易理解這樣一個事實:把3 只蘋果放到兩個抽屜中,肯定有一個抽屜中有2 只或2 只以上的蘋果。用數(shù)學語言表達這一事實,就是:將n+1 個元素放入n 個集合內(nèi),則一定有一個集合內(nèi)有兩個或兩個以上的元素(n 為正整數(shù))。
這就是抽屜原理,也稱為“鴿籠(巢)”原理。這一原理最先是由德國數(shù)學家狄里克雷明確提出來的,因此,稱之為狄 里克雷原理。
抽屜原理還有另外的常用形式:
抽屜原理2:把m 個元素任意放入n(n < m)個集合里,則一定有一個集合里至少有k 個元素,其中:
抽屜原理3:把無窮多個元素放入有限個集合里,則一定有一個集合里含有無窮多個元素。
抽屜原理又叫重疊原則,抽屜原則有如下幾種情形。
抽屜原則①:把n+1 件東西任意放入n 只抽屜里,那么至少有一個抽屜里有兩件東西。
抽屜原則②:把m 件東西放入n 個抽屜里,那么至少有一個抽屜里至少有[m/n]件東西。
抽屜原則③:如果有無窮件東西,把它們放在有限多個抽屜里,那么至少有一個抽屜里含無窮件東西。利用抽屜原則解題時,其關鍵是如何利用題中已知條件構造出與題設密切相關的“抽屜”。