欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      八年級(jí)數(shù)學(xué)_勾股定理的逆定理說(shuō)課稿(精品教案)

      時(shí)間:2019-05-12 17:41:36下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《八年級(jí)數(shù)學(xué)_勾股定理的逆定理說(shuō)課稿(精品教案)》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《八年級(jí)數(shù)學(xué)_勾股定理的逆定理說(shuō)課稿(精品教案)》。

      第一篇:八年級(jí)數(shù)學(xué)_勾股定理的逆定理說(shuō)課稿(精品教案)

      勾股定理的逆定理說(shuō)課稿

      尊敬的各位評(píng)委,各位老師,大家好:

      我今天說(shuō)課的內(nèi)容是《勾股定理的逆定理》第一課時(shí)。下面我將從教材、目標(biāo)、重點(diǎn)難點(diǎn)、教法、教學(xué)流程等幾個(gè)方面向各位專(zhuān)家闡述我對(duì)本節(jié)課的教學(xué)設(shè)想。

      一、說(shuō)教材。

      這節(jié)內(nèi)容選自《人教版》義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)八年級(jí)下冊(cè)第十八章《勾股定理》中的第二節(jié)。勾股定理的逆定理是幾何中一個(gè)非常重要的定理,它是對(duì)直角三角形的再認(rèn)識(shí),也是判斷一個(gè)三角形是不是直角三角形的一種重要方法。還是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。八年級(jí)正是學(xué)生由實(shí)驗(yàn)幾何向推理幾何過(guò)渡的重要時(shí)期,通過(guò)對(duì)勾股定理逆定理的探究,培養(yǎng)學(xué)生的分析思維能力,發(fā)展推理能力。在教學(xué)中滲透類(lèi)比、轉(zhuǎn)化,從特殊到一般的思想方法。

      二、說(shuō)教學(xué)目標(biāo)。

      教學(xué)目標(biāo)支配著教學(xué)過(guò)程,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵??紤]到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實(shí)際情況,我制定了如下教學(xué)目標(biāo):

      1、知識(shí)與技能:探索并掌握直角三角形判別思想,會(huì)應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題。

      2、過(guò)程與方法:通過(guò)對(duì)勾股定理的逆定理的探索和證明,經(jīng)歷知識(shí)的發(fā)生,發(fā)展與形成的過(guò)程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。

      3、情感、態(tài)度、價(jià)值觀:培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識(shí)和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系。

      三、說(shuō)教學(xué)重點(diǎn)、難點(diǎn),關(guān)鍵。

      本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點(diǎn)及關(guān)鍵。

      重點(diǎn):理解并掌握勾股定理的逆定理,并會(huì)應(yīng)用。

      難點(diǎn):理解勾股定理的逆定理的推導(dǎo)。

      關(guān)鍵:動(dòng)手驗(yàn)證,體驗(yàn)勾股定理的逆定理。

      四、說(shuō)教法。

      在本節(jié)課中,我設(shè)計(jì)了以下幾種教法學(xué)法:

      情景教學(xué)法,啟發(fā)教學(xué)法,分層導(dǎo)學(xué)法。

      讓學(xué)生實(shí)踐活動(dòng),動(dòng)手操作,看自己畫(huà)的三角形是否為一個(gè)直角三角形。體會(huì)觀察,作出合理的推測(cè)。同時(shí)通過(guò)引入,讓學(xué)生了解古代都用這種方法來(lái)確定直角的。對(duì)學(xué)生進(jìn)行動(dòng)手能力培養(yǎng)的同時(shí),引導(dǎo)命題的形成過(guò)程,自然地得出勾股定理的逆定理。既鍛煉了學(xué)生的實(shí)踐、觀察能力,又滲透了人文和探究精神。

      五、說(shuō)教學(xué)流程。

      1、動(dòng)手實(shí)踐,檢測(cè)猜測(cè)。引導(dǎo)學(xué)生分別以 3cm,4cm,5cm , 2.5cm,6cm,6.5cm和

      4cm, 7.5 cm, 8.5 cm , 2cm, 5cm, 6cm為邊畫(huà)出兩個(gè)三角形,觀察猜測(cè)三角形的形狀。再引導(dǎo)啟發(fā)學(xué)生從這兩個(gè)活動(dòng)中歸納思考:如果三角形的三邊長(zhǎng)a、b、c滿2足 a

      2? b

      ?

      c 2,那么此三角形是什么三角形?在整個(gè)過(guò)程的活動(dòng)中,盡量給學(xué)生充足的時(shí)間和空間,以平等的身份參與到學(xué)生活動(dòng)中來(lái),幫助指導(dǎo)學(xué)生的實(shí)踐活動(dòng)。

      2、探索歸納,證明猜測(cè)。

      勾股定理逆定理的證明不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,構(gòu)造直角三角形就成為解決問(wèn)題的關(guān)鍵。如果此時(shí)直接將問(wèn)題拋給學(xué)生證明,學(xué)生定會(huì)覺(jué)

      得無(wú)從下手。我就采用分層導(dǎo)進(jìn)的方法,讓學(xué)生從具體的例子中感受總結(jié),再歸納到中抽象中來(lái)。于是我就設(shè)計(jì)了這樣的兩個(gè)步驟:

      先補(bǔ)充一道例題:三邊長(zhǎng)度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么聯(lián)系?你是怎么得到的?請(qǐng)簡(jiǎn)單說(shuō)明理由。

      然后再更改上面的例題,變?yōu)椤鰽BC三邊長(zhǎng)為a、b、c,滿足

      b 2 ?

      c 2,與以a 2 ?a、b為直角邊的直角三角形之間有什么聯(lián)系呢?你們又是如何想的?試說(shuō)明理由。通過(guò)推理證明得出勾股定理的逆定理。

      在這個(gè)過(guò)程中,要努力引導(dǎo)學(xué)生聯(lián)想到“全等”,進(jìn)而設(shè)法構(gòu)造直角三角形,讓學(xué)生在不斷的嘗試、探究的過(guò)程中,總結(jié)出勾股定理的逆定理。有效地突破本節(jié)的難點(diǎn)。同時(shí)提出原命題與逆命題及其關(guān)系。培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣對(duì)學(xué)生的可持續(xù)發(fā)展是非常重要的,歸納出定理后,與學(xué)生一起分析定理的題設(shè)與結(jié)論,并與勾股定理進(jìn)行對(duì)比,明白兩定理是互逆定理。

      3、嘗試運(yùn)用,熟悉定理。

      課本中的例題是讓學(xué)生進(jìn)一步熟練掌握勾股定理的逆定理及其運(yùn)用的步驟。

      4、分層訓(xùn)練,能力升級(jí)。有針對(duì)性有層次性地布置練習(xí),及時(shí)反饋教學(xué)效果,查缺被漏,并對(duì)有困難的學(xué)生給予指導(dǎo)。

      5、總結(jié)內(nèi)容,強(qiáng)化認(rèn)識(shí)。使學(xué)生再次感悟勾股定理的逆定理,體會(huì)定理的互逆性,加深對(duì)“數(shù)形結(jié)合”的理解,更深刻地理解數(shù)學(xué)思想方法在解題中的地位和作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

      6、布置作業(yè)。有代表性地布置不同層次的作業(yè),尊重學(xué)生的個(gè)體差異,滿足多樣化學(xué)習(xí)的需要。

      結(jié)束語(yǔ):我的說(shuō)課完了,非常感謝各位領(lǐng)導(dǎo)和專(zhuān)家給了我這次學(xué)習(xí)、聆聽(tīng)、參與、鍛煉的機(jī)會(huì)。謝謝大家!

      第二篇:勾股定理逆定理說(shuō)課稿

      勾股定理的逆定理說(shuō)課稿

      一、教材分析

      (一)、本節(jié)課在教材中的地位作用

      “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

      (二)、教學(xué)目標(biāo)

      1、知識(shí)技能:1理解并會(huì)證明勾股定理的逆定理;

      2會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形;

      3知道什么叫勾股數(shù),記住一些覺(jué)見(jiàn)的勾股數(shù).2、過(guò)程與方法:通過(guò)對(duì)勾股定理的逆定理的探索和證明,經(jīng)歷知識(shí)的發(fā)生,發(fā)展與形成的過(guò)程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。

      3、情感、態(tài)度價(jià)值觀 培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識(shí)和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。

      (三)、學(xué)情分析:

      盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見(jiàn)到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)。教學(xué)重點(diǎn):勾股定理逆定理的應(yīng)用 教學(xué)難點(diǎn):勾股定理逆定理的證明

      二、教學(xué)過(guò)程

      本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過(guò)巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。

      (一)復(fù)習(xí)回顧

      復(fù)習(xí)回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。

      (二)創(chuàng)設(shè)問(wèn)題情境

      一開(kāi)課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問(wèn)題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么???。這個(gè)問(wèn)題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來(lái),創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識(shí)來(lái)源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

      (三)學(xué)生在教師的指導(dǎo)下嘗試解決問(wèn)題,總結(jié)規(guī)律(包括難點(diǎn)突破)

      因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說(shuō)選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開(kāi)始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手畫(huà)圖在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺(jué)上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

      這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見(jiàn)到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手畫(huà)出了一個(gè)兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過(guò)操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

      接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然、無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過(guò)程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。

      在同學(xué)們完成證明之后,同時(shí)讓學(xué)生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對(duì)照課本把證明過(guò)程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書(shū)的作用,養(yǎng)成學(xué)生看書(shū)的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

      (四)組織變式訓(xùn)練

      本著由淺入深的原則,安排了兩個(gè)例題。(演示)第一題比較簡(jiǎn)單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,不僅判斷是否為直接三角形,還繞了一個(gè)彎,指出哪一個(gè)角是直角。這樣既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。例題講解后安排了三個(gè)練習(xí),循序漸進(jìn),由淺入深。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。讓學(xué)生知道勾股逆定理的用途,激發(fā)學(xué)生的學(xué)習(xí)興趣。我還采用講、說(shuō)、練結(jié)合的方法,教師通過(guò)觀察、提問(wèn)、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過(guò)程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來(lái)。

      (五)歸納小結(jié),納入知識(shí)體系

      本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過(guò)自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問(wèn)題的方法是培養(yǎng)我們發(fā)現(xiàn)問(wèn)題認(rèn)識(shí)問(wèn)題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。

      (六)作業(yè)布置

      由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對(duì)訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。

      三、說(shuō)教法學(xué)法與教學(xué)手段

      為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對(duì)所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。

      此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過(guò)聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過(guò)動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。

      總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭(zhēng)最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭(zhēng)把教師教的過(guò)程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過(guò)程;力爭(zhēng)使學(xué)生在獲得知識(shí)的過(guò)程中得到能力的培養(yǎng)。

      第三篇:勾股定理逆定理說(shuō)課稿

      勾股定理逆定理說(shuō)課稿

      此說(shuō)課稿是我參加第八批哈爾濱市骨干教師考核的說(shuō)課稿,敬請(qǐng)個(gè)位老師指正。

      各位評(píng)委老師你們好!我是來(lái)自阿城市雙豐一中的數(shù)學(xué)教師李明,我今天說(shuō)課的題目是《勾股定理的逆定理》,選自《人教版》八年級(jí)下冊(cè),為了更好地發(fā)揮教材“藍(lán)本”作用,更好地堅(jiān)持以學(xué)生發(fā)展為本的理念,就本節(jié)課,我將從以下幾個(gè)方面做相關(guān)的教學(xué)解說(shuō)。

      一、知識(shí)背景

      在知識(shí)體系上,學(xué)生已經(jīng)學(xué)習(xí)了勾股定理,經(jīng)歷了勾股定理的探究的過(guò)程,積累了相關(guān)的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),這就具備了勾股定理逆定理的探究條件,通過(guò)勾股定理逆定理的探究,對(duì)培養(yǎng)學(xué)生的分析思維能力,發(fā)展推理能力大有裨益,其中蘊(yùn)涵著類(lèi)比、轉(zhuǎn)化,從特殊到一般的思想方法,對(duì)學(xué)生的可持續(xù)發(fā)展更有不可低估的作用,我所簡(jiǎn)述的是第一課時(shí)的內(nèi)容。

      二、教學(xué)目標(biāo)

      教學(xué)目標(biāo)既是教學(xué)的出發(fā)點(diǎn),也是歸宿,或者說(shuō):它是教學(xué)的靈魂,支配著教學(xué)過(guò)程,并規(guī)定著教與學(xué)的方向,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵。我認(rèn)為一個(gè)好的教學(xué)目標(biāo)應(yīng)具備三個(gè)基本要素;行為主體、行為動(dòng)詞、表現(xiàn)程度。具體的說(shuō)行為主體必須是學(xué)生而不是教師。第二、目標(biāo)的制定主要是為了后續(xù)評(píng)價(jià)行為,因此行為動(dòng)詞盡可能要清晰可把握而不能含糊其詞,否則無(wú)法確定教學(xué)的正確方向,教學(xué)過(guò)程的可操作性不強(qiáng)。第三、表現(xiàn)程度是用以評(píng)價(jià)學(xué)生的學(xué)習(xí)表現(xiàn)或?qū)W習(xí)效果所達(dá)到的程度,基于以上理念參考《數(shù)學(xué)課程標(biāo)準(zhǔn)》制定教學(xué)目標(biāo):

      1、知識(shí)與技能:理解勾股定理逆定理的證明方法,掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。

      2、數(shù)學(xué)思考:通過(guò)勾股定理的逆定理的探索,經(jīng)歷知識(shí)發(fā)生、發(fā)展形成的過(guò)程,體會(huì)數(shù)形結(jié)合的思想方法。

      3、解決問(wèn)題:體會(huì)數(shù)形結(jié)合方法在問(wèn)題解決中的作用,并能利用勾股定理的逆定理解決相關(guān)問(wèn)題。

      4、情感態(tài)度:通過(guò)一系列的探究性問(wèn)題,滲透與人交流合作的意識(shí),感受定理與逆定理之間和諧及辯證統(tǒng)一的關(guān)系。

      三、教學(xué)重點(diǎn),難點(diǎn)

      重點(diǎn):探索勾股定理逆定理和運(yùn)用。

      難點(diǎn):勾股定理的逆定理的證明

      《數(shù)學(xué)課程標(biāo)準(zhǔn)》中提出:要讓學(xué)生經(jīng)歷知識(shí)發(fā)生發(fā)展的全過(guò)程。依據(jù)此理念,我將重點(diǎn)確定為:探索勾股定理的逆定理和運(yùn)用。探索勾股定理的逆定理關(guān)鍵在于轉(zhuǎn)化三角形為全等,如何根據(jù)需要構(gòu)造全等三角形,這需要學(xué)生思維有極強(qiáng)的跳躍性,對(duì)學(xué)生是一個(gè)挑戰(zhàn),要有極強(qiáng)的創(chuàng)新精神,所以將本節(jié)課難點(diǎn)確定為:勾股定理的逆定理的證明

      四、教學(xué)理念

      本節(jié)課以數(shù)學(xué)活動(dòng)為載體,組織教學(xué),以學(xué)生實(shí)踐活動(dòng)為主體,溝通活動(dòng)單元、數(shù)學(xué)思想、思維方式,使不同的學(xué)生在數(shù)學(xué)活動(dòng)中均得到發(fā)展,探究活動(dòng)應(yīng)圍繞四個(gè)單元活動(dòng)展開(kāi):活動(dòng)1:情景設(shè)疑,引出課題。活動(dòng)2:實(shí)踐操作、大膽猜想?;顒?dòng)3:推理驗(yàn)證,深入剖析。活動(dòng)4:反思應(yīng)用,創(chuàng)新升華。

      在教學(xué)活動(dòng)單元設(shè)計(jì)中,強(qiáng)調(diào)教學(xué)方法的多樣性以及與教學(xué)模式、活動(dòng)單

      元的融合,我主要采用以下幾種教法。1.分層導(dǎo)學(xué)法,2.情景教學(xué)法。3.啟發(fā)教學(xué)法?;顒?dòng)中給學(xué)生提供多種器官共用的機(jī)會(huì),突出數(shù)學(xué)中活動(dòng)和活動(dòng)中數(shù)學(xué)。學(xué)生主要采用小組合作的學(xué)習(xí)方式,讓他們遵循問(wèn)題情景----觀察猜想----探究驗(yàn)證----解釋?xiě)?yīng)用的主線進(jìn)行學(xué)習(xí)。關(guān)注他們?cè)诨顒?dòng)中的體驗(yàn)感受,即掌握必須的知識(shí)與技能,又獲得方法和能力,更在活動(dòng)中不斷成長(zhǎng),體現(xiàn)新課程發(fā)展的三維目標(biāo)要求。

      五、教學(xué)流程

      (一)創(chuàng)設(shè)問(wèn)題情境,引入新課:

      在這一環(huán)節(jié)中,我設(shè)計(jì)了這樣一個(gè)情境,多媒體動(dòng)畫(huà)展示,米老鼠來(lái)到了數(shù)學(xué)王國(guó)里的三角形城堡,要求只利用一根繩子,構(gòu)造一個(gè)直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預(yù)測(cè)大多數(shù)同學(xué)會(huì)無(wú)從下手,這樣引出課題。只有學(xué)習(xí)了勾股定理的逆定理后,大家都能幫助米老鼠進(jìn)入城堡,我認(rèn)為:“大疑而大進(jìn)”這樣做,充分調(diào)動(dòng)學(xué)習(xí)內(nèi)容,激發(fā)求知欲望,動(dòng)漫演示,又有了很強(qiáng)的趣味性,做到課之初,趣已生,疑已質(zhì)。

      (二)實(shí)踐猜想

      本環(huán)節(jié)要圍繞以下幾個(gè)活動(dòng)展開(kāi):

      1、算一算:求以線段a ,b為直角邊的直角三角形的斜邊c長(zhǎng)。

      1a=3

      b=4 2a=5

      b=12 3a=2.5

      b=6 4a=6

      b=8

      2、猜一猜,以下列線段長(zhǎng)為三邊的三角形形狀

      13cm 4cm 5cm

      25cm 12cm 13cm

      32.5cm 6cm 6.5cm 46cm 8cm 10cm

      3、擺一擺利用方便筷來(lái)操作問(wèn)題2,利用量角器來(lái)度量,驗(yàn)證問(wèn)題2的發(fā)現(xiàn)。

      4、用恰當(dāng)?shù)恼Z(yǔ)言敘述你的結(jié)論

      在算一算中學(xué)生復(fù)習(xí)了勾股定理,猜一猜和擺一擺中學(xué)生小組合作動(dòng)手實(shí)踐,在問(wèn)題1的基礎(chǔ)上做出合理的推測(cè)和猜想,這樣分層遞進(jìn)找到了學(xué)生思維的最近發(fā)展區(qū),面向不同層次的每一名學(xué)生,每一名學(xué)生都有參與數(shù)學(xué)活動(dòng)的機(jī)會(huì),最后運(yùn)用恰當(dāng)?shù)恼Z(yǔ)言表述,得到了勾股定理的逆定理。在整個(gè)過(guò)程的活動(dòng)中,教師給學(xué)生充分的時(shí)間和空間,教師以平等的身份參與小組活動(dòng)中,傾聽(tīng)意見(jiàn),幫助指導(dǎo)學(xué)生的實(shí)踐活動(dòng)。學(xué)生的擺一擺的過(guò)程利用實(shí)物投影儀展示,在活動(dòng)中教師關(guān)注;1)學(xué)生的參與意識(shí)與動(dòng)手能力。2)是否清楚三角形三邊長(zhǎng)度的平方關(guān)系是因,直角三角形是果。既先有數(shù),后有形。3)數(shù)形結(jié)合的思想方法及歸納能力。

      (三)推理證明

      八年級(jí)正是學(xué)生由實(shí)驗(yàn)幾何向推理幾何過(guò)渡的重要時(shí)期,多數(shù)學(xué)生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,而構(gòu)造直角三角形就成為解決問(wèn)題的關(guān)鍵,直接拋給學(xué)生證明,無(wú)疑會(huì)石沉大海,所以,我采用分層導(dǎo)進(jìn)的方法,以求一石激起千層浪。

      1.三邊長(zhǎng)度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?請(qǐng)簡(jiǎn)要說(shuō)明理由?

      2.△ABC三邊長(zhǎng)a,b,c滿足a2+b2=c2

      與a,b為直角三角形之間有何關(guān)系?試說(shuō)明理由?

      為了較好完成教師的誘導(dǎo),教師要給學(xué)生獨(dú)立思考的時(shí)間,要給學(xué)生在組

      內(nèi)交流個(gè)別意見(jiàn)的時(shí)間,教師要深入小組指導(dǎo)與幫助,并利用實(shí)物投影儀展示小組成果,取得階段性成果再探究問(wèn)題2.這樣由特殊到一般,凸顯了構(gòu)造直角三角形這一解決問(wèn)題的關(guān)鍵,讓他們?cè)诓粩嗟奶骄窟^(guò)程中,親自體驗(yàn)參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點(diǎn)。培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣對(duì)學(xué)生的可持續(xù)發(fā)展是非常重要的,歸納完定理后,與學(xué)生一起分析定理的題設(shè)與結(jié)論,得出解題中的書(shū)寫(xiě)格式。

      (四)引例解析:通過(guò)引例的解決,鞏固定理,這是個(gè)開(kāi)命題,能更好地體現(xiàn)不同的解題策略。教師介紹古埃及和我國(guó)古代大禹治水都是利用這種方法確定直角的。讓學(xué)生感受勾股定理豐富的文化內(nèi)涵,體會(huì)人文精神,激發(fā)學(xué)好數(shù)學(xué)為國(guó)爭(zhēng)光的思想。

      (五)分層訓(xùn)練,能力升級(jí),以闖關(guān)的形式進(jìn)行,深化學(xué)習(xí)內(nèi)容遵循鞏固和發(fā)展相結(jié)合的原則,兼顧不同層次的學(xué)生,滿足多樣化學(xué)習(xí)的需要。最后歸納反思。啟發(fā)學(xué)生交流知識(shí),能力情感的收獲與體驗(yàn)。在有針對(duì)性、有層次布置作業(yè)。

      六、設(shè)計(jì)說(shuō)明

      本節(jié)課立足于創(chuàng)新和學(xué)生的可持續(xù)發(fā)展,把教學(xué)內(nèi)容分解為一系列富有探究性的問(wèn)題。讓學(xué)生在解決問(wèn)題的過(guò)程總共經(jīng)歷知識(shí)的發(fā)生、發(fā)展和形成的過(guò)程,把知識(shí)的發(fā)現(xiàn)權(quán)交給學(xué)生,讓他們?cè)讷@得知識(shí)的過(guò)程中體會(huì)與人合作的重要,體驗(yàn)成功的喜悅,真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人,教師只是參與者、合作者、引導(dǎo)者。

      第四篇:勾股定理的逆定理說(shuō)課稿

      《勾股定理的逆定理》說(shuō)課稿

      中壩鎮(zhèn)中學(xué)王永成尊敬的各位評(píng)委,各位老師,大家好:

      我今天說(shuō)課的內(nèi)容是《勾股定理的逆定理》第一課時(shí)。下面我將從教材、教學(xué)目標(biāo)、教學(xué)重點(diǎn)難點(diǎn)、教法、教學(xué)過(guò)程等幾個(gè)方面闡述我對(duì)本節(jié)課的教學(xué)設(shè)想。

      一、教材分析

      主要說(shuō)明本節(jié)課在教材中的地位作用

      這節(jié)內(nèi)容選自《人教版》義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)八年級(jí)下冊(cè)第十八章《勾股定理》中的第二節(jié)。勾股定理的逆定理是在勾股定理之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

      二、教學(xué)目標(biāo)分析

      教學(xué)目標(biāo)支配著教學(xué)過(guò)程,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵。根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。

      1、知識(shí)與技能目標(biāo)

      理解并能證明勾股定理的逆定理;掌握勾股定理的逆定理,并能利用它來(lái)判定一個(gè)三角形是不是直角三角形。

      2、過(guò)程與方法目標(biāo)

      在探索的過(guò)程中使學(xué)生體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想

      3、情感態(tài)度與價(jià)值觀目標(biāo)

      結(jié)合勾股定理的有關(guān)歷史資料,激發(fā)學(xué)生學(xué)習(xí)的興趣;通過(guò)一系列的探究活動(dòng),培養(yǎng)學(xué)生與他人交流合作的團(tuán)隊(duì)精神及創(chuàng)新意識(shí)。

      三、學(xué)情分析及教學(xué)重點(diǎn)、難點(diǎn)的確定

      盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性

      還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見(jiàn)到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu),我確立的教學(xué)重點(diǎn)是勾股定理的逆定理及其應(yīng)用,教學(xué)難點(diǎn)是勾股定理的逆定理的證明,而如何構(gòu)造三角形就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。

      教學(xué)重點(diǎn):勾股定理的逆定理及其應(yīng)用

      教學(xué)難點(diǎn):勾股定理的逆定理的證明

      教學(xué)關(guān)鍵:如何構(gòu)造三角形

      四、教法、學(xué)法分析

      為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對(duì)所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。

      此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過(guò)聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過(guò)動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。

      總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭(zhēng)最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭(zhēng)把教師教的過(guò)程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過(guò)程;力爭(zhēng)使學(xué)生在獲得知識(shí)的過(guò)程中得到能力的培養(yǎng)。

      五、教學(xué)過(guò)程

      本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過(guò)巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之

      間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。

      (一)、復(fù)習(xí)回顧

      復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。

      (二)、創(chuàng)設(shè)問(wèn)題情境

      一開(kāi)課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問(wèn)題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?……。這個(gè)問(wèn)題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來(lái),創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識(shí)來(lái)源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

      (三)、學(xué)生在教師的指導(dǎo)下嘗試解決問(wèn)題,總結(jié)規(guī)律(包括難點(diǎn)突破)

      因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說(shuō)選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開(kāi)始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手操作在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺(jué)上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

      這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見(jiàn)到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所作三角形兩條較小邊相等的直角三角形,通過(guò)操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

      接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然、無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過(guò)程,這樣學(xué)生

      不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。

      (四)、遷移應(yīng)用,熟悉定理

      例題是課本74頁(yè)的例1,是讓學(xué)生進(jìn)一步熟練掌握勾股定理的逆定理及其運(yùn)用的步驟

      (五)、隨堂練習(xí)

      本著由淺入深的原則,安排了四個(gè)題目。前三個(gè)題目比較簡(jiǎn)單,是讓學(xué)生進(jìn)一步鞏固并掌握勾股定理的逆定理及其運(yùn)用的步驟,盡量讓學(xué)生口答,讓所有的學(xué)生都能完成。第四個(gè)題實(shí)際上是對(duì)問(wèn)題情境的進(jìn)一步解答既可以解決本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。通過(guò)練習(xí)發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。

      (六)、歸納小結(jié),納入知識(shí)體系

      談?wù)勥@節(jié)課你的收獲吧

      本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面。這種形式的小結(jié),激發(fā)了學(xué)生的主動(dòng)參與意識(shí),調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功體驗(yàn)的機(jī)會(huì),并為程度不同的學(xué)生提供了充分展示自己的機(jī)會(huì),尊重學(xué)生的個(gè)體差異,滿足學(xué)生多極化學(xué)習(xí)的需要.

      (七)、作業(yè)布置

      本節(jié)課布置的作業(yè)是課本76頁(yè)習(xí)題18.2第1題,是最基本的思維訓(xùn)練項(xiàng)目題,有助于學(xué)生鞏固課堂所學(xué)知識(shí),有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。

      六、教學(xué)反思

      (一)本節(jié)課的成功之處:

      1、本節(jié)課以活動(dòng)為主線,通過(guò)從估算到實(shí)驗(yàn)活動(dòng)結(jié)果的產(chǎn)生讓學(xué)生總結(jié)過(guò)程,最后回到解決實(shí)際問(wèn)題,思路清晰,脈絡(luò)明了。

      2、體現(xiàn)了“數(shù)學(xué)源于生活,寓于生活,用于生活”的教育思想;突出了“特征讓學(xué)生觀察,思路讓學(xué)生探索,方法讓學(xué)生思考,意義讓學(xué)生概括,結(jié)論讓學(xué)生驗(yàn)證,難點(diǎn)讓學(xué)生突破,以學(xué)生為主體”的教學(xué)思路。

      3、在本節(jié)教學(xué)活動(dòng)過(guò)程中,我盡量以學(xué)生身份和學(xué)生一起探討問(wèn)題。用一切可能的方式,激勵(lì)回答問(wèn)題的學(xué)生,激發(fā)學(xué)生的求知欲,使師生在和諧的教學(xué)環(huán)境中零距離的接觸。

      (二)本節(jié)課的不足之處及改進(jìn)方法:

      1、本節(jié)課我用多媒體課件進(jìn)行教學(xué)增大了教學(xué)密度,而缺少了板書(shū)示范,不利于學(xué)生養(yǎng)成良好的書(shū)寫(xiě)習(xí)慣,在以后的教學(xué)中我應(yīng)加強(qiáng)。

      2、在重難點(diǎn)的突破上還應(yīng)加一些遞進(jìn)的習(xí)題,降低題的難度,使優(yōu)生學(xué)好,中等生也能跟上。這是我在以后教學(xué)中要注意的。

      3、還是不敢放手,總是牽著學(xué)生走。學(xué)生配合不夠積極,積極回答問(wèn)題的學(xué)生少,學(xué)生的積極性沒(méi)有充分調(diào)動(dòng)起來(lái);對(duì)中下學(xué)生關(guān)注的太少;教師說(shuō)的多,學(xué)生沒(méi)有充分的時(shí)間討論交流;課堂教學(xué)內(nèi)容稍多,在規(guī)定時(shí)間內(nèi)沒(méi)有很好地完成教學(xué)任務(wù)。

      第五篇:八年級(jí)數(shù)學(xué)下冊(cè)《勾股定理逆定理》教學(xué)反思

      我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾(短直角邊)等于三,股(長(zhǎng)直角邊)等于四,那么弦等于五。即“勾

      三、股

      四、弦五”。它被記載于我國(guó)古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中,在這本書(shū)的另一處,還記載了勾股定理的一般形式。中國(guó)古代的幾何學(xué)家研究幾何是為了實(shí)用,是唯用是尚的。在講完《勾股定理逆定理》這節(jié)課后,我的反思如下:

      本節(jié)課的教學(xué)目標(biāo)是:在掌握了勾股定理的基礎(chǔ)上,讓學(xué)生如何從三邊的關(guān)系來(lái)判定一個(gè)三角形是否為直角三角形.即:勾股定理的逆定理。

      勾股定理的逆定理的教學(xué)設(shè)計(jì)說(shuō)明:本教案的教學(xué)設(shè)計(jì)是圍繞勾股定理的逆定理的證明與應(yīng)用來(lái)展開(kāi),結(jié)合新課標(biāo)的要求,根據(jù)我班學(xué)生的認(rèn)知結(jié)構(gòu)與教材地位為了達(dá)到本節(jié)課的教學(xué)目標(biāo),我做了以下設(shè)計(jì)(也是成功之處):

      一、創(chuàng)設(shè)情境,提出猜想達(dá)到直觀性的教學(xué)要求。讓幾個(gè)學(xué)生要全班同學(xué)前面做一個(gè)“數(shù)學(xué)實(shí)驗(yàn)”,三條分別為:3,4,5的三角形是一個(gè)直角三角形。第二步驟是讓學(xué)生畫(huà)已知三邊的一定長(zhǎng)度的三角形,判斷是不是直角三角形,并分析三邊滿足什么關(guān)系條件,同時(shí),引導(dǎo)學(xué)生從特殊到一般提出猜想。

      二、將教學(xué)內(nèi)容精簡(jiǎn)化.考慮到我所教班級(jí)的學(xué)生認(rèn)識(shí)水平,做了如下教學(xué)設(shè)計(jì):⑴將教學(xué)目標(biāo)定為讓學(xué)生掌握勾股定理的逆定理.以及逆定理的應(yīng)用,而對(duì)于本課中逆定理的證明.以及其探究都放在一下節(jié)課再進(jìn)行講解.⑵對(duì)于本課中所出現(xiàn)了的逆定理的定義,及其真假性的判斷也簡(jiǎn)單化.本節(jié)課也不詳細(xì)講.本節(jié)課的的重點(diǎn)放在掌握勾股定理的逆定理,及其應(yīng)用.從課堂效果來(lái)看,這樣的教學(xué)設(shè)計(jì)是合理的,學(xué)生較好的掌握了勾股定理的逆定理,所以取得了良好的課堂效果。

      三、應(yīng)用訓(xùn)練,鞏固新知為了鞏固新知,靈活運(yùn)用所學(xué)知識(shí)解決相應(yīng)問(wèn)題,提高學(xué)生的分析解題能力,基于對(duì)我班的學(xué)情分析,為了讓學(xué)生都能動(dòng)起手做,學(xué)案的設(shè)計(jì)上做了很多腳手架,目的就是讓學(xué)生能夠按照腳手架的步驟一步步完成,最終也形成了解題的“操作性”。此外,腳手架的設(shè)置對(duì)我們的中下水平的學(xué)生是很多幫助的.從課堂上看,他們也能在腳手架的幫助下,完成一定的題目中,而如果沒(méi)有的話,這部分學(xué)生對(duì)一些基本的題都會(huì)束手無(wú)策.四、實(shí)行分層教學(xué),讓不同水平的學(xué)生在同一課堂都能學(xué)好,為此,我設(shè)計(jì)了三個(gè)層次的問(wèn)題,以達(dá)到分層教學(xué)目標(biāo):第一層次是讓學(xué)生直接運(yùn)用定理判斷三角形是否是直角三角形,掌握定理基本運(yùn)用;第二層次是強(qiáng)調(diào)已知三角形三邊長(zhǎng)或三邊關(guān)系,就有意識(shí)的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應(yīng)用,又為下一個(gè)層次做好了鋪墊;第三層次是靈活運(yùn)用勾股定理與逆定理解決圖形面積的計(jì)算問(wèn)題.根據(jù)學(xué)生原有的認(rèn)知結(jié)構(gòu),讓學(xué)生更好地體會(huì)分割的思想.設(shè)計(jì)的題型前后呼應(yīng),使知識(shí)有序推進(jìn),有助于學(xué)生的理解和掌握;讓學(xué)生通過(guò)合作、交流、反思、感悟的過(guò)程,激發(fā)學(xué)生探究新知的興趣,感受探索、合作的樂(lè)趣,并從中獲得成功的體驗(yàn).真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人.。將目標(biāo)分層后,我設(shè)計(jì)的學(xué)案里的題目也是相應(yīng)的進(jìn)行了分層設(shè)計(jì),滿足不同層次的學(xué)生的做題要求,達(dá)到鞏固課堂知識(shí)的目的。最后,布置作業(yè),也是分層布置的,分為三層,對(duì)應(yīng)不同的學(xué)生,讓他們的作業(yè)都在他們的能力范圍。

      誠(chéng)然,這節(jié)課也存在許多不足。只有分析好不足是教學(xué)課后的重要環(huán)節(jié),只有分析明白了自己的不足才能在今后的課堂里避免犯同樣的錯(cuò)誤,讓課堂更加的完美起來(lái)。是我們新老師快速成長(zhǎng)的途徑,第一、新課導(dǎo)入部分:存在如下值得改進(jìn)的地方:①?gòu)?fù)習(xí)舊知部分,復(fù)習(xí)勾股定理的內(nèi)容應(yīng)用了填空的形式,這個(gè)形式不是最佳的.因?yàn)閷W(xué)生書(shū)寫(xiě)勾股定理耗時(shí),既使書(shū)寫(xiě)出來(lái),復(fù)習(xí)效果也不太好。最佳的應(yīng)該是以簡(jiǎn)單的題目形式來(lái)復(fù)習(xí)勾股定理.這樣快而有效;②如何從復(fù)習(xí)勾股定理中巧妙的切入本課的主題,過(guò)渡語(yǔ)的設(shè)置,應(yīng)該將過(guò)渡語(yǔ)言簡(jiǎn)單明了,可設(shè)計(jì)成:怎么從邊的關(guān)系來(lái)叛斷一個(gè)三角形是直角三角形呢?這就是本節(jié)課要學(xué)習(xí)的內(nèi)容.③導(dǎo)入部分的課時(shí)分配估計(jì)不足,顯得冗長(zhǎng),也一定程度上造成后面的教學(xué)時(shí)間緊張。應(yīng)該對(duì)導(dǎo)入部分的時(shí)效再進(jìn)行分析簡(jiǎn)化。第三、多媒體輔助教學(xué)方面存在不足。本節(jié)課我沒(méi)有利用多媒體輔助教學(xué),如學(xué)習(xí)目標(biāo)的發(fā)展、習(xí)題訓(xùn)練內(nèi)容的展示、學(xué)生活動(dòng)的要求、作業(yè)布置等,這些內(nèi)容都是為教學(xué)服務(wù)的。如果用多媒體課件的展示,可以增大了教學(xué)密度,使學(xué)生的雙基訓(xùn)練得到了加強(qiáng),使傳統(tǒng)的課堂走向了開(kāi)放,使學(xué)生真正感受到學(xué)習(xí)方式在發(fā)生變化。也在一定程度上讓課堂更生動(dòng),更具有直觀性,更加吸引學(xué)生的注意力,提高課堂效果。在以后的教學(xué)中我應(yīng)加強(qiáng)。

      第四,教師專(zhuān)業(yè)素養(yǎng)方面的不足。⒈對(duì)本節(jié)課的教學(xué)內(nèi)容把握上有所欠缺,沒(méi)有充分參考<<廣州市義務(wù)教育階段學(xué)科學(xué)業(yè)質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)&&里的教學(xué)要點(diǎn),考點(diǎn),讓自己的授課以它為準(zhǔn).讓課堂符合它的要求.⒉講課的語(yǔ)速過(guò)快,應(yīng)該減速,因?yàn)閭€(gè)人的原因習(xí)慣的原因,語(yǔ)速可能存在過(guò)快,讓學(xué)生很難跟的上來(lái),從而影響學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)效果。

      在備每一節(jié)課中,對(duì)于課堂的每一個(gè)細(xì)節(jié),第一刻鐘,第一個(gè)教學(xué)設(shè)計(jì)的思考都無(wú)不直接影響著你的這一節(jié)課,影響著你的課堂效果。靜心思考,反思整個(gè)過(guò)程是一種全新的收獲,也是全新的開(kāi)始,讓自己能夠重新起步,向前。

      下載八年級(jí)數(shù)學(xué)_勾股定理的逆定理說(shuō)課稿(精品教案)word格式文檔
      下載八年級(jí)數(shù)學(xué)_勾股定理的逆定理說(shuō)課稿(精品教案).doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶(hù)自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        17.2 勾股定理的逆定理說(shuō)課稿[范文大全]

        17.2 勾股定理的逆定理說(shuō)課稿 大家好: 我是XXXXXX老師,今天我交流的課題是勾股定理的逆定, 一、教材分析 : (一)、說(shuō)本節(jié)課在教材中的地位作用 “勾股定理的逆定理”一節(jié),是在......

        勾股定理的逆定理說(shuō)課稿(合集5篇)

        《勾股定理的逆定理》說(shuō)課稿 一、教材分析 : 本節(jié)課在教材中的地位作用 “勾股定理的逆定理”一節(jié),在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)......

        18.2勾股定理的逆定理說(shuō)課稿

        18.2勾股定理的逆定理說(shuō)課稿 一、教材分析 :(一)、本節(jié)課在教材中的地位作用 “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面......

        勾股定理逆定理教案(5篇材料)

        17.2 勾股定理的逆定理教案 威縣二中 田利功 教學(xué)目標(biāo)一、知識(shí)與技能: 1.掌握直角三角形的判別條件. 2.熟記一些勾股數(shù). 3.掌握勾股定理的逆定理的探究方法.二、過(guò)程與方法: 1.用三......

        人教版八年級(jí)數(shù)學(xué)下冊(cè)《勾股定理逆定理》教學(xué)反思

        人教版八年級(jí)數(shù)學(xué)下冊(cè)《勾股定理逆定理》教學(xué)反思 我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾(短直角邊)等于三,股(......

        八年級(jí)數(shù)學(xué)下冊(cè):17.2勾股定理逆定理(1)習(xí)題

        八年級(jí)數(shù)學(xué)課題:17.2勾股定理逆定理(1)1、在下列長(zhǎng)度的各組線段中,能組成直角三角形的是A.5,6,7B.1,4,9C.5,12,13D.5,11,122、若一個(gè)三角形三邊長(zhǎng)的平方分別為:32,42,x2,則此三角形是直角三角形......

        人教版八年級(jí)數(shù)學(xué) 勾股定理說(shuō)課稿

        《勾股定理》的說(shuō)課稿 尊敬的各位評(píng)委、各位教師: 你們好!今天我說(shuō)課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級(jí)下冊(cè)初中數(shù)學(xué)第十八章第一節(jié)的第一課時(shí)。 下面......

        初中數(shù)學(xué)教師資格面試—《勾股定理逆定理》教案

        課題:勾股定理的逆定理 課型:新授課 課時(shí)安排:1課時(shí) 教學(xué)目的: 一、知識(shí)與技能目標(biāo) 通過(guò)對(duì)一些典型題目的思考、練習(xí),能正確、熟練的進(jìn)行勾股定理有關(guān)計(jì)算,深入對(duì)勾股定理的理解。......