欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      高中數(shù)學(xué)教學(xué)設(shè)計 (2000字)

      時間:2019-05-12 18:16:02下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《高中數(shù)學(xué)教學(xué)設(shè)計 (2000字)》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《高中數(shù)學(xué)教學(xué)設(shè)計 (2000字)》。

      第一篇:高中數(shù)學(xué)教學(xué)設(shè)計 (2000字)

      高中數(shù)學(xué)教學(xué)設(shè)計

      《等比數(shù)列的前n項和(第一課時)》

      淮口中學(xué) 沈友勝

      等比數(shù)列的前n項和

      (第一課時)

      一. 教材分析。

      (1)教材的地位與作用:《等比數(shù)列的前n項和》選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書·數(shù)學(xué)(5)》(人教a版)第二章第5節(jié)第一課時,是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。

      (2)從知識的體系來看:“等比數(shù)列的前n項和”是“等差數(shù)列及其前n項和”與“等比數(shù)列”內(nèi)容的延續(xù)、不僅加深對函數(shù)思想的理解,也為以后學(xué)數(shù)列的求和,數(shù)學(xué)歸納法等做好鋪墊。

      二.學(xué)情分析。

      (1)學(xué)生的已有的知識結(jié)構(gòu):掌握了等差數(shù)列的概念,等差數(shù)列的通項公式和求和公式與方法,等比數(shù)列的概念與通項公式。

      (2)教學(xué)對象:高二理科班的學(xué)生,學(xué)習(xí)興趣比較濃,表現(xiàn)欲較強, 邏輯思維能力也初步形成,具有一定的分析問題和解決問題的能力,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因而片面、不夠嚴(yán)謹(jǐn)。

      (3)從學(xué)生的認(rèn)知角度來看:學(xué)生很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進(jìn)行類比,這是積極因素,應(yīng)因勢

      利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q = 1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。

      三.教學(xué)目標(biāo)。

      根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和本班學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

      (1)知識技能目標(biāo)————理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點,在此基礎(chǔ)上,并能初步應(yīng)用公式解決與之有關(guān)的問題。

      (2)過程與方法目標(biāo)————通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

      (3)情感,態(tài)度與價值觀————培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的精神,從探索中獲得成功的體驗,感受數(shù)學(xué)的奇異美、結(jié)構(gòu)的對稱美、形式的 簡潔美。

      四.重點,難點分析。

      教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用。

      教學(xué)難點:公式的推導(dǎo)方法及公式應(yīng)用中q與1的關(guān)系。

      五.教法與學(xué)法分析.培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)、學(xué)會探究是全面發(fā)展學(xué)生能力的重要前提,是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)、學(xué)會探究呢?建構(gòu)主義認(rèn)為:“知識不是被動吸收的,而是由認(rèn)知主體主動建構(gòu)的?!边@個觀點從教學(xué)的角度來理解就是:知識不是通過教師傳授得到的,而是學(xué)生在一定的情境中,運用已有的學(xué)習(xí)經(jīng)驗,并通過與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。因此,本節(jié)課采用了啟發(fā)式和探究式相結(jié)合的教學(xué)方法,讓老師的主導(dǎo)性和學(xué)生的主體性有機結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運用所得理論和方法去解決問題。一句話: 還課堂以生命力,還學(xué)生以活力。

      六.課堂設(shè)計

      (一)創(chuàng)設(shè)情境,提出問題。(時間設(shè)定:3分鐘)

      [利用投影展示] 在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚。為什么呢?

      [設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點]

      提出問題1:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?

      2363引導(dǎo)學(xué)生寫出麥??倲?shù)1?2?2?2???2

      (二)師生互動,探究問題[5分鐘]

      提出問題2:1+2+22+23+??+263究竟等于多少呢?

      有學(xué)生會說:用計算器來求(老師當(dāng)然肯定這種做法,但學(xué)生很快發(fā)現(xiàn)比較難求。)

      提出問題3:同學(xué)們,我們來分析一下這個和式有什么特征?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)

      提出問題4:如果我們把每一項都乘以2,就變成了它的后一項,那么我們?nèi)粼诖说仁絻蛇呁?,得到另一式:

      [[利用投影展示]

      ...s64?1?2?2?2???2.........(1)

      2s64?2?2?2?2???2234642363.......(2)

      比較(1)(2)兩式,你有什么發(fā)現(xiàn)?(學(xué)生經(jīng)過比較發(fā)現(xiàn):(1)、(2)兩式有許多相同的項)

      提出問題5

      :將兩式相減,相同的項就消去了,得到什么呢?。(學(xué)

      生會發(fā)現(xiàn):s

      ?2

      ?1

      [這五個問題的設(shè)計意圖:層層深入,剖析了錯位相減法中減的妙用,使學(xué)生容易接受為什么要錯位相減,經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,也讓學(xué)生感受到這種方法的神奇] 這時,老師向同學(xué)們介紹錯位相減法,并

      提出問題6:同學(xué)們反思一下我們錯位相減法求此題的過程,為什 么(1)式兩邊要同乘以2呢?

      [這個問題的設(shè)計意圖:讓學(xué)生對錯位相減法有一個深刻的認(rèn)識,也為探究等比數(shù)列求和公式的推導(dǎo)做好鋪墊]

      (三)類比聯(lián)想,解決問題。[時間設(shè)定:10分鐘] 提出問題7:設(shè)等比數(shù)列?a?的首項為a

      n

      ,公比為q,求它的前項和sn

      即 sn?a1?a2?a3???a

      n

      學(xué)生開展合作學(xué)習(xí),討論交流,老師巡視課

      堂,發(fā)現(xiàn)有典型解法的,叫同學(xué)板書在黑板上。

      [設(shè)計意圖:從特殊到一般,從模仿到創(chuàng)新,有利于學(xué)生的知識遷移和

      能力提高,讓學(xué)生在探索過程中,充分感受到成功的情感體驗]

      (四)分析比較,開拓思維。[時間設(shè)定:5分鐘]

      種方法:

      可能也有同學(xué)會想到由等比定理得

      sn?a1?a2?a3???an?a2a1

      ?a3a2

      ???

      anan?1

      ?q

      ?

      a2?a3???ana1?a2???an?1

      sn?a1sn?an

      ?q

      ?q

      ?(1?q)sn?a1?anq??

      【設(shè)計意圖:共享學(xué)習(xí)成果,開拓了思維,感受數(shù)學(xué)的奇異美】(五).歸納提煉,構(gòu)建新知。[時間設(shè)定:3分鐘]

      提出問題8:由(1-q)sn=a1-a1qn得sn=于1?等比數(shù)列中的公比能不能為1?q

      a1-a1q1-q

      n

      對不對?這里的q能不能等

      ?

      ?1時是什么數(shù)列?此時sn?

      【設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),增強思維的嚴(yán)謹(jǐn)性】

      提出問題9:等比數(shù)列的前n項和公式怎樣?

      n

      ?a1(1?q)?a1?anq

      ,q?1,q?1??

      1?q?sn??學(xué)生歸納出sn??1?q

      ??na1,q?1?na1,q?1?

      【設(shè)計意圖:向?qū)W生滲透分類討論數(shù)學(xué)思想,加深對公式特征的了解】

      (六)層層深入,掌握新知。[時間設(shè)定:15分鐘]

      基礎(chǔ)練習(xí)1已知?an?是等比數(shù)列,公比為q(1)若a1=

      23,q=

      ,則sn?

      (2).則a1?2,q?1,則sn?練習(xí)2 判斷是非

      (1).1-2+4-8+16-?+?-2??

      n

      n

      1?(1?2)1?(?2)

      n

      n

      (2).1?2?2?2???2?(3).a?a?a???a?

      1?(1?2)1?2

      a(1?a)1?a

      【設(shè)計意圖:通過兩道簡單題來剖析公式中的基本量.進(jìn)行正反兩方面的“短、淺、快” 練習(xí).通過總結(jié)、辨析和反思,強化公式的結(jié)構(gòu)特征.】

      例1 已知數(shù)列?an?是等比數(shù)列,完成下表

      【設(shè)計意圖:滲透方程思想.通過公式的正用和逆用進(jìn)一步提高學(xué)生運用知識的能力.掌握公式中”知三求二”的題型】 練習(xí)3:求等比數(shù)列1,1,11 變式

      1、等比數(shù)列11,11 變式

      2、等比數(shù)列***

      , ???前

      8項和;

      6364

      , ???前多少項的和是;

      , ???求第5項到第10項的和;

      23n

      ???a,?求前2n項中所有偶數(shù)項的和。變式

      3、等比數(shù)列a,a,a,(先由學(xué)生獨立求解,然后抽學(xué)生板演,教師巡視、指導(dǎo),講評學(xué)生

      完成情況,尋找學(xué)生中的閃光點,給予熱情表揚。)

      【設(shè)計意圖:變式訓(xùn)練,深化認(rèn)識,增加思維的梯度的同時,提高學(xué)生的模式識別能力,滲透轉(zhuǎn)化思想】.

      練習(xí)4 有一位大學(xué)生畢業(yè)后到一家私營企業(yè)去工作,試用期過后,老板對這位大學(xué)生很欣賞,有意留下他,就讓這位大學(xué)生提出待遇方面的要求,這位學(xué)生提出了兩種方案讓老板選擇,其一:工作一年,月薪五千元;其二:工作一年,第一個月的工資為20元,以后每個月的工資是上月工資的2倍,此時,老板不假思索就選擇了第二種方案,于是他們之間就訂了一個勞動待遇合同。請你分析一下,老板的選擇是否正確?

      【設(shè)計意圖:讓學(xué)生進(jìn)一步認(rèn)識到數(shù)學(xué)來源于生活并應(yīng)用于生活,生活中處處有數(shù)學(xué).】

      (七)總結(jié)歸納,加深理解。[時間設(shè)定:2分鐘]

      (1)等比數(shù)列的求和公式是什么?應(yīng)用時要注意什么?(2)用什么方法可以推導(dǎo)了等比數(shù)列的求和公式?

      【設(shè)計意圖:形成知識模塊,從知識的歸納延伸到思想方法的提煉,優(yōu)化學(xué)生的認(rèn)知結(jié)構(gòu)】

      (八)課后作業(yè),鞏固提高。[時間設(shè)定:1分鐘] 必做:(1)p66練習(xí)1

      研究性作業(yè):請上網(wǎng)查閱“芝諾悖論” 選做:求和:1?2?2?2

      ?3?2?4?2???n?2

      34n

      【設(shè)計意圖:為了使所有學(xué)生鞏固所學(xué)知識,布置了“必做題”;“選做題”又為學(xué)有余力者留有自由發(fā)展的空間,布置了“探究題”以利

      于學(xué)生開展研究性學(xué)習(xí),拓展學(xué)生的視野.】

      七、教學(xué)反思:

      本節(jié)課立足課本,著力挖掘,設(shè)計合理,層次分明。充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。在教學(xué)思想上既注重知識形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗求知的樂趣。

      2008.11.

      第二篇:2字網(wǎng)名

      2字網(wǎng)名大全

      絳紫。跌墮。信仰。靛藍(lán)。容顏。過往。溫媼。青衣。

      輕念??嵝?。墨綠。悲漠。

      明暗。弱水。風(fēng)聲。糜媚。

      黎開。瑟索。余空。麻里。

      色白。舊顏。花冢。蓑衣。

      吞花?;覡a。邪魅。暗色。安梓。曉夢。簡慕。撕裂。

      負(fù)荷。囙魂。綿綿。堇色。

      怨念。反諷。記得。淹沒。時光。滄瀾。艷遇。茶蘼。

      刺槐。戰(zhàn)徒。血腥。苦口。

      玩味。倉珥。矢車。薔薇。吞噬。當(dāng)綠。青奴???。

      未央。破棋。堇色。固執(zhí)。

      剜心?;ㄝ?。束縛。留井。

      曙光。刺痛。輪回。迷失。腐蝕。腐生。冷火。眷容。

      清澈。不如。亡靈。滲透。

      棲息。哭砂。逃避。橙黃?;脑?。冷語。茉莉。淺島。

      欲念。弄裳。眼瞳。逃離。

      咫尺。孽緣。病蛹。依存。

      京九。附庸。偏食。赤眸。

      薔薇。決絕。西詩。少年。

      情敘。貞愛。妃紅。寸年。寄居。死囚。交集。菖蒲。

      安暖。拯救。殘妝。麥小。

      男海。佝僂。寡情。眉黛。蒙蔽。蓬蒿。春曉。孤傲。

      笙歌。施舍。誘惑。憶白。

      青歌。素白。柔軟。錦葵。

      黑貓。呢喃。涼城。陰冷。妖娥。香菱。病蛹。絕戀。

      離心。悵施。繾綣。溫?zé)帷?/p>

      憶白。安然。碧蘭。裂帛。落脂。發(fā)酵。薄荷。鳶尾。

      生澀??娝?。鳶尾。隱忍。

      清瑟。亟合。迷途。睡漣。

      綠苔。幼嬰。誰霍。虛靈。

      海藍(lán)。瞳眸。煙火。別致。

      青檸。年蝕。凌亂。千尋。紅粉。星光。黎明。蜷縮。

      未樸。緬懷。呆木。抹煞。

      韻午。復(fù)古。念舊。殘花。抽搐。愚昧。挽留??湛?。

      車廂。落單。為止。消失。

      噬魂。淺億。往非。失魂。

      途路。暮年。眉睫。容顏。伯年。曲憶。揪思。不朽。

      薄年。沙漏。陷阱。囚牢。腐舊。淡淡。暖顏。買醉。

      買醉。掩飾。厭世。浮沉。

      耍瘋。征服。駐扎。停留。

      未央。末調(diào)。紅花。勾勒。

      落荒。高攀。情調(diào)。溫婉。

      安逸?;2桁?。輪回。殘喘。茍延。順民。瓔珞。

      離殤 歲月 馨香

      雨軒 落木 離殤 幻幻 幻想 癡情 和諧 渴求 或許 侵襲 睡椅 不然 系統(tǒng) 寧珂 夢醒

      堇年

      釋然

      花顏※

      夏夜

      淡然

      △甜心

      ﹎斷誸

      硪艸

      -孽緣-

      ふ葬薆

      淺_Smile

      昔年°

      舊城′

      淹沒 *櫻花。┼蕩羕 °豪爽﹌ 冷兮.試探 容顏╰ 情歌 素顏 靜謐 薄姬 憶白 留井 薔薇 梨落 瑾色 呢喃

      琴瑟 殘舞 素顏 靜謐 薄姬 憶白 留井 薔薇 梨落 瑾色 呢喃 琴瑟 殘舞 ︶ㄣ麻朩。\哎呦、々糾Jié 俄dē卋界 丟ㄋ尓ヽ ┼蕩羕 俄狠②、①←歔溈 ╰→攋蟲 目光°‖ 刺目°‖ 渲染°‖ 簡單°‖ 漠然°‖ 空洞°‖ 往昔°‖ 島嶼°‖ 痛楚°‖ 唯美°‖ 肆意°‖ ャ.涼生 ャ.憂傷 ャ.夏傷 ャ.淺唱 ャ.傻笑 ャ.獨白 ャ.飛蛾

      ャ.夙愿 ャ.素顏 ャ.淡雅 ャ.凄涼 _______北島 ゛余溫

      初見

      素顏ゝ

      兔zi

      漠然╰╮

      淺笑

      婲逝﹌

      ﹏藍(lán)瞳丶

      ▼淡妝り

      當(dāng)當(dāng)

      浮生

      驚夢

      荒妙 速戀 注緣 離故 倒戈 紙謝 失溫 囚禁 牢籠 漠然

      手札

      默然 驀然 念舊 未央 深邃 怪胎 不見

      清楚 訴說 堇年 詮釋

      潮音 奔赴 初見

      雅澤。

      游靈。

      肆意

      寡淡

      然而

      冒險

      未眠

      蔻丹

      如許

      背叛

      舊夢

      一線

      自愛

      恍惚

      黎鐵

      淡寫

      凌遲

      刺眼

      棟倍

      諾然

      斷續(xù)

      氧氣

      夢囈

      殘顏

      青絲

      嘴角

      未來

      瓷筒

      淡然

      初涼

      癡迷

      七年

      空港

      安億

      失退

      誣蔑

      怪胎

      敷衍

      刺目

      預(yù)見

      離落

      蕭兮

      躲藏

      安靜

      風(fēng)掠

      釋然

      漠然

      淚珠

      靜謐

      眉瘸

      嗜毒

      明花

      初見

      淚人

      怪珈

      陌路

      昔憶

      方向

      幻想

      余溫

      深邃

      蕭然

      依舊

      余溫

      夜眠

      怡然

      恣意

      荒蕪

      晨曦

      簡單

      時光

      開岸

      沒有

      溫瞳

      殘喘

      夏末

      蕾溪

      借口

      漠然

      魅力

      堇年

      霖婆

      陰霾

      棱角

      凌亂

      度半

      目光

      擒拿

      昔顏

      影像

      陡變

      落年

      忘記

      割腕

      改變

      堪陽

      訴說

      斷橋

      世界

      不見

      轉(zhuǎn)身

      歸隱

      遺失

      離一

      余輝

      錯誤

      糾結(jié)

      安德

      如若

      游靈

      島嶼

      心淡

      暗號

      偏執(zhí)

      奔赴

      紅塵

      魅眸

      意猶

      詮釋

      深夜

      黑絲

      往事

      尋覓

      埋葬

      臾涼

      纏綿

      一些

      執(zhí)念

      末世

      藍(lán)顏

      妖嬈

      未盡

      習(xí)慣

      黑魂

      畫窗

      癡男

      想念

      塵封

      差池

      景色

      昔情

      情歌

      代替

      似我閉眼

      溫習(xí)

      迷離

      沙漏

      放肆

      雅澤

      柔荑

      致借

      隨風(fēng)

      褐瞳

      半邊

      憂深

      微笑

      破色

      段情

      赤壁

      執(zhí)迷

      蝶變

      輾轉(zhuǎn)

      未末

      遷就

      潮音

      不愛

      昔夢

      煽情

      櫻花

      網(wǎng)名

      桃凌

      長色

      續(xù)寫

      獨醉

      從未

      血腥

      凄涼

      孤單

      沮喪

      牽絆

      猜疑

      冷瞳

      滄瀾

      玩味

      未央

      親愛

      刺心

      釋懷

      哼唱

      渲染

      距離

      沉世

      滄偕

      清楚

      回憶

      空罐

      默然

      特別

      趨勢

      時光

      倘若

      默然

      離癸

      花謝

      愫暮

      昔年

      掙脫

      亦難

      痛楚

      天空

      翱翔

      途往

      如此

      昔瞳

      敷詆

      潮流

      但是

      引魂

      最后

      黛眉

      苦口

      優(yōu)柔

      零落

      亡嶼

      缺心

      安然

      試探

      離開

      靜候

      第三篇:高中數(shù)學(xué)教學(xué)設(shè)計

      高中數(shù)學(xué)教學(xué)設(shè)計——函數(shù)的奇偶性

      函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對函數(shù)概念的深化.它把自變量取相反數(shù)時函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對稱,奇函數(shù)的圖像關(guān)于坐標(biāo)原點成中心對稱.這樣,就從數(shù)、形兩個角度對函數(shù)的奇偶性進(jìn)行了定量和定性的分析.教材首先通過對具體函數(shù)的圖像及函數(shù)值對應(yīng)表歸納和抽象,概括出了函數(shù)奇偶性的準(zhǔn)確定義.然后,為深化對概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實例.最后,為加強前后聯(lián)系,從各個角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的聯(lián)系.這節(jié)課的重點是函數(shù)奇偶性的定義,難點是根據(jù)定義判斷函數(shù)的奇偶性. 教學(xué)目標(biāo)

      1.通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象的概括能力.

      2.理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡單函數(shù)的奇偶性.

      3.在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗數(shù)學(xué)既是抽象的又是具體的. 任務(wù)分析

      這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學(xué)生理解.在引入概念時始終結(jié)合具體函數(shù)的圖像,以增加直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對于概念可從代數(shù)特征與幾何特征兩個角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點對稱的非空數(shù)集;對于在有定義的奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想效果. 教學(xué)設(shè)計

      一、問題情景

      1.觀察如下兩圖,思考并討論以下問題:

      (1)這兩個函數(shù)圖像有什么共同特征?

      (2)相應(yīng)的兩個函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的? 可以看到兩個函數(shù)的圖像都關(guān)于y軸對稱.從函數(shù)值對應(yīng)表可以看到,當(dāng)自變量x取一對相反數(shù)時,相應(yīng)的兩個函數(shù)值相同.

      對于函數(shù)f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實上,對于R內(nèi)任意的一個x,都有f(-x)=(-x)2=x2=f(x).此時,稱函數(shù)y=x2為偶函數(shù).

      2.觀察函數(shù)f(x)=x和f(x)= 的圖像,并完成下面的兩個函數(shù)值對應(yīng)表,然后說出這兩個函數(shù)有什么共同特征.

      22可以看到兩個函數(shù)的圖像都關(guān)于原點對稱.函數(shù)圖像的這個特征,反映在解析式上就是:當(dāng)自變量x取一對相反數(shù)時,相應(yīng)的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f(x).此時,稱函數(shù)y=f(x)為奇函數(shù).

      二、建立模型

      由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義 1.奇、偶函數(shù)的定義

      如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫作奇函數(shù).如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫作偶函數(shù).

      2.提出問題,組織學(xué)生討論

      (1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?(f(x)不一定是偶函數(shù))

      (2)奇、偶函數(shù)的圖像有什么特征?

      (奇、偶函數(shù)的圖像分別關(guān)于原點、y軸對稱)(3)奇、偶函數(shù)的定義域有什么特征?(奇、偶函數(shù)的定義域關(guān)于原點對稱)

      三、解釋應(yīng)用 [例 題]

      1.判斷下列函數(shù)的奇偶性.

      注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1].

      2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時,f(x)=x(1+x),求f(x)的表達(dá)式.

      解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),而f(x)是奇函數(shù),∴f(-x)=-f(x).∴f(x)=x(1-x).

      (2)當(dāng)x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

      3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論.

      解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對稱,猜想f(x)在(0,+∞)上是增函數(shù),證明如下:

      任取x1>x2>0,則-x1<-x2<0.

      ∵f(x)在(-∞,0)上是減函數(shù),∴f(-x1)>f(-x2). 又f(x)是偶函數(shù),∴f(x1)>f(x2).

      ∴f(x)在(0,+∞)上是增函數(shù).

      思考:奇函數(shù)或偶函數(shù)在關(guān)于原點對稱的兩個區(qū)間上的單調(diào)性有何關(guān)系?

      [練習(xí)]

      1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何.

      2.f(x)=-x3|x|的大致圖像可能是()

      3.函數(shù)f(x)=ax2+bx+c,(a,b,c∈R),當(dāng)a,b,c滿足什么條件時,(1)函數(shù)f(x)是偶函數(shù).(2)函數(shù)f(x)是奇函數(shù). 4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

      四、拓展延伸

      1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個? 2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:(1)F(x)=f(x)·g(x)的奇偶性.(2)G(x)=|f(x)|+g(x)的奇偶性.

      3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).

      4.一個定義在R上的函數(shù),是否都可以表示為一個奇函數(shù)與一個偶函數(shù)的和的形式?

      第四篇:高中數(shù)學(xué)教學(xué)設(shè)計

      高中數(shù)學(xué)教學(xué)設(shè)計

      高中數(shù)學(xué)教學(xué)設(shè)計1

      一、指導(dǎo)思想與理論依據(jù)

      數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。

      二、教材分析

      三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實驗教科書(人教A版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時,教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角 與 、、終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.

      三、學(xué)情分析

      本節(jié)課的授課對象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.

      四、教學(xué)目標(biāo)

      (1).基礎(chǔ)知識目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式;

      (2).能力訓(xùn)練目標(biāo):能正確運用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡單的三角函數(shù)求值與化簡;

      (3).創(chuàng)新素質(zhì)目標(biāo):通過對公式的推導(dǎo)和運用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問題、解決問題的能力;

      (4).個性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀.

      五、教學(xué)重點和難點

      1.教學(xué)重點

      理解并掌握誘導(dǎo)公式.

      2.教學(xué)難點

      正確運用誘導(dǎo)公式,求三角函數(shù)值,化簡三角函數(shù)式.

      六、教法學(xué)法以及預(yù)期效果分析

      高中數(shù)學(xué)優(yōu)秀教案高中數(shù)學(xué)教學(xué)設(shè)計與教學(xué)反思

      “授人以魚不如授之以魚”, 作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想方法, 如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個方面做如下分析.

      1.教法

      數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動的教學(xué),而不僅僅是數(shù)學(xué)活動的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識,更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).

      在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時間”、“空間”, 由易到難,由特殊到一般,盡力營造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅.

      2.學(xué)法

      “現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識點,卻忽略了學(xué)生接受知識需要時間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生最大程度的消化知識,提高學(xué)習(xí)熱情是教者必須思考的問題.

      在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題、共同探討、解決問題 簡單應(yīng)用、重現(xiàn)探索過程、練習(xí)鞏固。讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學(xué)習(xí)轉(zhuǎn)化為主動的自主學(xué)習(xí).

      3.預(yù)期效果

      本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡單的化簡問題.

      七、教學(xué)流程設(shè)計

      (一)創(chuàng)設(shè)情景

      1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;

      2.復(fù)習(xí)任意角的三角函數(shù)定義;

      3.問題:由 ,你能否知道sin2100的值嗎?引如新課.

      設(shè)計意圖

      高中數(shù)學(xué)優(yōu)秀教案 高中數(shù)學(xué)教學(xué)設(shè)計與教學(xué)反思

      自信的鼓勵是增強學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡單易做的題加強了每個學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.

      (二)新知探究

      1. 讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;

      2.讓學(xué)生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點的坐標(biāo)有什么關(guān)系;

      3.Sin2100與sin300之間有什么關(guān)系.

      設(shè)計意圖

      由特殊問題的引入,使學(xué)生容易了解,實現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系做好鋪墊.

      (三)問題一般化

      探究一

      1.探究發(fā)現(xiàn)任意角 的終邊與 的終邊關(guān)于原點對稱;

      2.探究發(fā)現(xiàn)任意角 的終邊和 角的終邊與單位圓的交點坐標(biāo)關(guān)于原點對稱;

      3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.

      設(shè)計意圖

      首先應(yīng)用單位圓,并以對稱為載體,用聯(lián)系的觀點,把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結(jié)合,問題的設(shè)計提問從特殊到一般,從線對稱到點對稱到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導(dǎo)公式二.同時也為學(xué)生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習(xí)設(shè)計為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進(jìn)而敢于挑戰(zhàn),敢于前進(jìn)

      (四)練習(xí)

      利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.

      (1). ;(2). ;(3). .

      喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.

      (五)問題變形

      由sin3000= -sin600 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-3000),Sin150 0值,讓學(xué)生聯(lián)想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值. 學(xué)生自主探究

      高中數(shù)學(xué)教學(xué)設(shè)計2

      我先來介紹一下參加我們這次講座的幾位嘉賓,我身邊這位是蘇州五中的羅強校長,這邊這位是蘇州中學(xué)的劉華老師,那邊那位是大家熟悉的首都師范大學(xué)數(shù)學(xué)系博士生導(dǎo)師王尚志教授。歡迎大家來到我們研討的現(xiàn)場!

      老師們都知道,素質(zhì)教育要落實在課堂上,課堂是我們實行數(shù)學(xué)新課程的主戰(zhàn)場,做好教學(xué)設(shè)計是我們整個高中數(shù)學(xué)新課程推進(jìn)的一個關(guān)鍵點。那么,怎樣才能做好數(shù)學(xué)的教學(xué)設(shè)計呢?我們問過一些老師,大家感覺有些疑惑,比如說有的老師們認(rèn)為:教學(xué)設(shè)計是不是就是備備課,寫好一個教案、做一個課件,是不是這樣?我們想聽聽來自江蘇的老師怎么看這個問題?

      羅強:我來談?wù)勛约簩虒W(xué)設(shè)計理論的學(xué)習(xí)和實踐過程中的一些體會。以前我們在教學(xué)實踐中往往把教學(xué)設(shè)計變成一種簡單的教案設(shè)計,但實際上這只是一種經(jīng)驗型的教學(xué)設(shè)計,沒有上升為科學(xué)型的教學(xué)設(shè)計。其實,國際上對教學(xué)設(shè)計的研究已經(jīng)進(jìn)行多年,提出了許多思想、理論、案例,教學(xué)設(shè)計已經(jīng)成為一個獨立的研究領(lǐng)域。

      教學(xué)設(shè)計理論的發(fā)展基本上經(jīng)歷了兩個階段:第一個階段是突出以“教的傳遞策略”為中心來進(jìn)行教學(xué)設(shè)計的傳統(tǒng)教學(xué)設(shè)計理論,它更接近工程學(xué),遵循設(shè)計的規(guī)則和程序,強調(diào)目標(biāo)遞進(jìn)和按部就班的系統(tǒng)操作過程,其特點是注重目標(biāo)細(xì)化,注重分層要求,注重教學(xué)內(nèi)容各要素的協(xié)調(diào)。就好像我們要造一幢房子,先要把這幢房子的圖紙設(shè)計出來,然后再設(shè)計一個施工的藍(lán)圖,教學(xué)就是按照這樣的設(shè)計來進(jìn)行實施的一個過程。

      第二個階段是突出以“學(xué)的組織方式”為中心來進(jìn)行教學(xué)設(shè)計的現(xiàn)代教學(xué)設(shè)計理論,它的基礎(chǔ)是信息加工理論與建構(gòu)主義的學(xué)習(xí)理論,現(xiàn)代教學(xué)設(shè)計理論強調(diào)依據(jù)學(xué)習(xí)任務(wù)類型(如認(rèn)知、情感與心理動作等)來選擇教學(xué)策略,強調(diào)以問題為中心,營造一個能激活學(xué)生原有知識經(jīng)驗,有利于新知識建構(gòu)的學(xué)習(xí)環(huán)境。其特點是問題與環(huán)境,強調(diào)創(chuàng)設(shè)情境,提出問題,營造問題解決的環(huán)境,突出學(xué)生的自主學(xué)習(xí)和自主探究。

      按照新的教學(xué)設(shè)計的理論,我們應(yīng)該以學(xué)為中心來進(jìn)行教學(xué)設(shè)計,簡單的說就是——為學(xué)習(xí)而設(shè)計教學(xué)!打個比喻,就是說我們教師好比是導(dǎo)游,帶著學(xué)生去一個新的景點旅游,那么在這個過程中間,教學(xué)設(shè)計就是設(shè)計這么一個導(dǎo)游圖,讓學(xué)生在參觀各個景點的過程中,經(jīng)歷學(xué)習(xí)這些知識的一種過程。

      按照為學(xué)習(xí)而設(shè)計教學(xué)的理念,我覺得在教學(xué)設(shè)計時要考慮三條線索,這樣實際上也就構(gòu)成了教學(xué)設(shè)計的一種三維結(jié)構(gòu)。第一條線索就是一種數(shù)學(xué)知識線索。因為教師進(jìn)行的是學(xué)科教學(xué);第二個線索是學(xué)生的認(rèn)知線索。因為學(xué)習(xí)的主體是學(xué)生;第三個線索就是教師的教學(xué)組織線索,因為教學(xué)過程是通過教師的組織來實現(xiàn)的。比如第一條線索——數(shù)學(xué)知識,我覺得數(shù)學(xué)知識實際有三個形態(tài):一是自然形態(tài),它既存在于客觀世界中間,實際上也存在于學(xué)生的頭腦中間;二是學(xué)術(shù)形態(tài),它是作為數(shù)學(xué)學(xué)科的一種知識體系而存在。那么,我們的教學(xué)就是要在數(shù)學(xué)的自然形態(tài)和學(xué)術(shù)形態(tài)的中間架一座橋梁,這座橋梁就是數(shù)學(xué)的教育形態(tài)。因此,我覺得教學(xué)設(shè)計的本質(zhì)就是設(shè)計好數(shù)學(xué)的教育形態(tài),教學(xué)設(shè)計的過程實際上就是構(gòu)建數(shù)學(xué)教育形態(tài)的一個過程。

      通過對教學(xué)設(shè)計理論的學(xué)習(xí),并在實踐中反思和總結(jié),我的體會很深。有一位美國學(xué)者蘭達(dá)曾經(jīng)說過:教學(xué)設(shè)計是使天才能夠做到的事一般人也能去做。我想對教學(xué)設(shè)計理論的學(xué)習(xí)是一個大家都要努力的目標(biāo)。

      張思明:剛才羅強老師從理論上分析了什么是教學(xué)設(shè)計?教學(xué)設(shè)計應(yīng)該關(guān)注哪些問題?下面我們請劉華老師幫我們分析一下:在你們實驗區(qū)和老師接觸的實踐中,你感覺到老師們在教學(xué)設(shè)計中存在著哪些主要問題?

      劉華:我想解剖一個由職初教師,就是剛剛工作的青年教師所提供的一個教學(xué)案例。

      我先簡單介紹一下他的教學(xué)設(shè)計。這是高一函數(shù)單調(diào)性的一節(jié)起始課,在教學(xué)設(shè)計中,這個職初教師首先明確了這節(jié)課的三維目標(biāo),然后他提出了兩個生活中的情境,一個情境是生活中的氣溫圖;第二個情境是股票的價格走勢圖,然后引入新課。接著把函數(shù)單調(diào)性的概念介紹給學(xué)生,緊接著進(jìn)入了例題講解階段,最后是有兩個思考題。

      我覺得這個教學(xué)設(shè)計大致存在這樣四點比較普遍的問題:

      第一個問題就是這位教師在確定課程目標(biāo)的時候,比較機械地套用了新課程的理念,按照“知識技能,方法與過程,情感、態(tài)度、價值觀”這樣的三維目標(biāo)來敘述他的本節(jié)課目標(biāo)。在這些目標(biāo)中,知識與技能的目標(biāo)還是比較實在的,但“過程與方法”的目標(biāo)以及“情感、態(tài)度、價值觀”的目標(biāo)就比較空洞,流于形式。其實,這位老師對教學(xué)目標(biāo)并沒有做深入的分析,這樣的教學(xué)目標(biāo)只是一個標(biāo)簽而已,這是第一個問題。

      第二個問題是問題情境的設(shè)計。好的情境應(yīng)當(dāng)是兼顧生活化與數(shù)學(xué)化,股票的價格走勢圖這個情境離學(xué)生的生活太遠(yuǎn),其中還包含了許多股票方面的專門知識,對函數(shù)單調(diào)性這個數(shù)學(xué)概念的反映也不夠準(zhǔn)確,作為本課的情境,不太恰當(dāng)。

      第三個問題就是在情境到數(shù)學(xué)概念的產(chǎn)生過程中,應(yīng)當(dāng)讓學(xué)生充分體驗或參與數(shù)學(xué)化的探索過程,從而建構(gòu)起函數(shù)單調(diào)性這一概念。我們看到在這位教師的設(shè)計當(dāng)中,他忽略了學(xué)生活動,尤其是學(xué)生思維活動這樣一個環(huán)節(jié),而是直接把概念拋給了學(xué)生。我們認(rèn)為學(xué)生在數(shù)學(xué)學(xué)習(xí)中,“過程”相對來說比僅僅接受概念這個“結(jié)果”更為重要。

      最后一個問題就是我們發(fā)現(xiàn)有很多老師認(rèn)為數(shù)學(xué)教學(xué)設(shè)計主要就是習(xí)題的設(shè)計,這位教師本節(jié)課的例題、習(xí)題量非常多,而且對這些習(xí)題的要求他存在著一步到位的傾向,尤其是他最后拋出來的含字母的函數(shù)單調(diào)性的探索這個問題,我們覺得在新授課當(dāng)中這個習(xí)題的要求太高了。我覺得老師們在教學(xué)設(shè)計中主要存在這樣幾點問題。

      張思明:劉華老師談了一個單調(diào)性的案例,對一個新教師的案例做了一個分析,分析出了我們老師在教學(xué)設(shè)計中常常出現(xiàn)的一些問題。那么面對這樣一些問題,我們應(yīng)該怎么辦?我們就以這個案例為出發(fā)點,請羅強老師對函數(shù)單調(diào)性這個課題做了一個分析和再創(chuàng)造的工作,在這個工作中我們可以看到如何通過教師自己的再學(xué)習(xí)、再認(rèn)識,設(shè)計出一個更好、更適用于學(xué)生的教學(xué)設(shè)計。我們來看一下羅強老師的說課錄像。

      羅強老師的說課:各位老師大家好,我向大家匯報一下我對函數(shù)單調(diào)性的教學(xué)設(shè)計。

      首先談一下我對教學(xué)設(shè)計的認(rèn)識。我覺得教學(xué)設(shè)計的根本目的是創(chuàng)設(shè)一個有效的教學(xué)系統(tǒng),這樣的教學(xué)系統(tǒng)不是隨意出現(xiàn)的而是教師精心創(chuàng)設(shè)的,沒有有效的教學(xué)設(shè)計就不可能保證教學(xué)的效果和質(zhì)量。教學(xué)設(shè)計最根本的著力點是“為學(xué)習(xí)設(shè)計教學(xué)”,而不是“為教學(xué)設(shè)計學(xué)習(xí)”。

      教學(xué)設(shè)計的首要任務(wù)就是明確教學(xué)目標(biāo),實際上教學(xué)目標(biāo)是教學(xué)設(shè)計的靈魂和統(tǒng)帥,將指引后續(xù)教學(xué)設(shè)計的方向,決定后續(xù)教學(xué)設(shè)計的具體工作。在制定教學(xué)目標(biāo)的時候,我覺得要把握以下幾點:

      第一,把握教學(xué)要求,不求一步到位。函數(shù)單調(diào)性是高中階段刻劃函數(shù)變化的一個最基本的性質(zhì)。在高中數(shù)學(xué)課程中,對于函數(shù)單調(diào)性的研究分成兩個階段:第一個階段是用運算的性質(zhì)研究單調(diào)性,知道它的變化趨勢;第二階段用導(dǎo)數(shù)的性質(zhì)研究單調(diào)性,知道它的變化快慢。那么高一我們是處在第一個階段。第二,明確知識目標(biāo),落實隱性目標(biāo)。知識目標(biāo)往往就是教學(xué)的顯性目標(biāo),確定知識目標(biāo)的關(guān)鍵在于分清主次輕重,把握好教學(xué)要求。根據(jù)課程標(biāo)準(zhǔn)的要求,本節(jié)課的知識目標(biāo)定位在以下三個方面:一是理解函數(shù)單調(diào)性的概念;二是掌握判斷函數(shù)單調(diào)性的方法;三是會用定義證明一些簡單函數(shù)在某個區(qū)間上的單調(diào)性。另外這節(jié)課的隱性目標(biāo)我覺得也很重要,因為函數(shù)單調(diào)性的定義是對函數(shù)圖象特征的一種數(shù)學(xué)描述,它經(jīng)歷了由圖象直觀特征到自然語言描述再到數(shù)學(xué)符號的描述的進(jìn)化過程,反映了數(shù)學(xué)的理性思維和理性精神。對高一學(xué)生來講它是一個很有價值的數(shù)學(xué)教育載體和契機。因此這節(jié)課的隱性目標(biāo)應(yīng)該包括讓學(xué)生體驗數(shù)學(xué)知識的發(fā)生發(fā)展過程,學(xué)會數(shù)學(xué)概念符號化的建構(gòu)過程。根據(jù)剛才的分析,我把教學(xué)流程分成了三個階段:第一個階段是進(jìn)行函數(shù)單調(diào)性概念的數(shù)學(xué)化過程;第二個階段是從不同的角度幫助學(xué)生深入理解函數(shù)單調(diào)性的概念;第三個階段是讓學(xué)生學(xué)會判斷,并用函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性。

      第一階段的教學(xué)流程分成三個教學(xué)環(huán)節(jié)。第一,問題情境;第二,溫故知新;第三,建構(gòu)概念。具體如下:

      先是創(chuàng)設(shè)問題情境。由老師和學(xué)生一起舉出生活中描繪上升或者下降的變化規(guī)律的成語。老師可以啟發(fā)一下,先說一個“蒸蒸日上”,然后和學(xué)生一起舉出比如“每況愈下”,“波瀾起伏”這樣三種描繪不同變化的成語。然后請學(xué)生根據(jù)上述成語,給出一個函數(shù),并在平面直角坐標(biāo)系中繪制相應(yīng)的函數(shù)圖象。這樣設(shè)計的意圖是讓學(xué)生結(jié)合生活體驗用樸素的生活語言描繪變化規(guī)律,體會如何將文字語言轉(zhuǎn)化為圖形語言。

      接下來是溫故知新。在剛才學(xué)生繪制出的三個函數(shù)圖象的基礎(chǔ)上,我請學(xué)生觀察它們變化的趨勢。在剛才學(xué)生繪制的三個函數(shù)圖象的基礎(chǔ)上,再請學(xué)生用初中的語言來敘述什么叫圖象呈逐漸上升的趨勢,也就是“函數(shù)值隨著的增大而增大”。這樣設(shè)計的意圖是讓學(xué)生對照繪制的函數(shù)圖象,用自然語言描述函數(shù)的變化規(guī)律,重溫初中函數(shù)單調(diào)性的描述定義。

      張思明:剛才我們看到了時駿老師的說課,下面我們來聽一聽嘉賓對這個說課的分析。

      羅強:我還是要強調(diào)教學(xué)設(shè)計一定要注意為學(xué)習(xí)而設(shè)計教學(xué)。還是拿我剛才的這個比喻,就是教師帶學(xué)生去旅游。既然是帶學(xué)生去旅游,首先就要考慮我要帶學(xué)生到什么地方去?然后需要考慮我怎么才能夠帶學(xué)生到達(dá)這個地方?然后我要確定學(xué)生是不是真的到達(dá)了這個地方?還要注意的是,作為教學(xué)的一種延伸,我覺得還應(yīng)該讓學(xué)生有興趣、有能力繼續(xù)他自己的旅程。我覺得這是我們教學(xué)設(shè)計要做的主要工作。

      張思明:通過以上幾個案例,我想老師們對于如何做教學(xué)設(shè)計有了一個初步的認(rèn)識。怎樣做好教學(xué)設(shè)計呢?我們也想聽一聽在教育指導(dǎo)部門的老師的一些想法,我們特別采訪了江蘇省教研室的董林偉主任,我們來聽一聽董主任關(guān)于教學(xué)設(shè)計的思考和認(rèn)識。

      董主任:關(guān)于設(shè)計這兩個詞大家應(yīng)該都非常的熟悉。當(dāng)人們要從事一項有目的的活動的時候,事先都要有一些設(shè)想,要進(jìn)行一些規(guī)劃,要進(jìn)行一些設(shè)計。作為我們教學(xué)工作者來說,在開始我們的教學(xué)活動之前,我們的老師都必須做一項非常重要的工作,那就是教學(xué)設(shè)計。今天我要談的就是關(guān)于教學(xué)設(shè)計的話題。我想就三個方面來談?wù)勎业囊恍┗鞠敕?。第一,我想先談?wù)勈裁唇薪虒W(xué)設(shè)計?第二,談?wù)勎覀冊诮虒W(xué)設(shè)計過程中應(yīng)該來設(shè)計一些什么?第三,在設(shè)計的過程當(dāng)中我們要注意哪幾點?下面我想簡要的把這三個方面跟大家做一個交流。

      一、關(guān)于什么叫教學(xué)設(shè)計?

      所謂的教學(xué)設(shè)計就是用系統(tǒng)的方法對各種課程資源進(jìn)行有機的整合,對教學(xué)過程中相互聯(lián)系的各個部分作出整體安排的一種構(gòu)想。它是一種構(gòu)想,是一種整體的安排,是我們教師為將來進(jìn)行的教學(xué)勾畫的一些圖景,它反映了我們的教師對自己未來教學(xué)的一種認(rèn)識和期望。如果通俗一點來說,那么所謂的教學(xué)設(shè)計可以這樣來理解,就是:你要把學(xué)生帶到哪里去?你怎樣把學(xué)生帶到那里去?你這樣做能把學(xué)生帶到那里去嗎?

      二、在教學(xué)設(shè)計過程當(dāng)中我們應(yīng)該關(guān)注些什么,就是說設(shè)計一些什么?

      首先,我們必須明確我們的教學(xué)目標(biāo),教學(xué)目標(biāo)是我們教學(xué)根本的指向與核心的任務(wù),是教學(xué)設(shè)計的關(guān)鍵。教學(xué)的目標(biāo)是教學(xué)中師生所預(yù)期達(dá)到的一種教學(xué)效果和標(biāo)準(zhǔn),因此,明確教學(xué)目標(biāo)就是要明確你要把學(xué)生帶到哪里去。在確定教學(xué)目標(biāo)的時候,我們要關(guān)注以下的幾點:第一,整體性。就是要注意這部分內(nèi)容在整個高中階段數(shù)學(xué)教學(xué)中的聯(lián)系,以達(dá)到教學(xué)的一種連貫性,要正確處理好我們的近期的目標(biāo)跟遠(yuǎn)期目標(biāo)的相互關(guān)系。第二,在我們明確目標(biāo)的時候,要關(guān)注它的全面性。新課程對數(shù)學(xué)教學(xué)的目標(biāo)提出了新的一種要求,三維目標(biāo)在關(guān)注知識結(jié)果的同時,更注重對過程目標(biāo)的關(guān)注和對學(xué)習(xí)者——學(xué)生的關(guān)注,更關(guān)注學(xué)生獲取數(shù)學(xué)知識的過程以及在學(xué)習(xí)中的經(jīng)歷、感受和體驗。因此,教師在設(shè)計數(shù)學(xué)教學(xué)目標(biāo)時,應(yīng)特別注意關(guān)注新課程所提出的過程性目標(biāo)。第三,我們要關(guān)注目標(biāo)的現(xiàn)實性。確定教學(xué)目標(biāo)時,應(yīng)當(dāng)注意它與所授課任務(wù)的實質(zhì)性聯(lián)系,以避免目標(biāo)空洞、無法落實。我們在設(shè)計教學(xué)目標(biāo)時,常見的一種狀況是目標(biāo)過分的大,過分的空洞,那么在落實過程中,就難以達(dá)到預(yù)設(shè)的目標(biāo)。其次,我們在教學(xué)設(shè)計中要非常關(guān)注學(xué)生,要了解學(xué)生。我想,以下幾個方面,至少老師在教學(xué)設(shè)計過程中應(yīng)該心中有數(shù)。

      第一,在數(shù)學(xué)方面學(xué)生以前做過什么?他在數(shù)學(xué)活動或者是在數(shù)學(xué)實驗方面,曾經(jīng)做過什么?這里我們實際上要關(guān)注的是學(xué)生的活動經(jīng)驗。

      第二,不同的學(xué)生在思維方式上會有什么不同。實際上就是要在教學(xué)中關(guān)注我所授課的學(xué)生的特點,關(guān)注我班學(xué)生的構(gòu)成,班級當(dāng)中不同群體的學(xué)生在思維方面有些什么樣的不同。

      第三,要初步確定課堂的組織形式,就是說我這一堂課是整個班級一起學(xué)習(xí),還是將學(xué)生分成若干個組來活動,甚至于是一種個體性的活動,包括開展一些個體性的實驗活動,包括自主學(xué)習(xí)的一種活動方式。組織形式上還要關(guān)注這堂課需要利用什么模型?是否需要做適當(dāng)?shù)恼n件?或者準(zhǔn)備一些相關(guān)的硬件設(shè)施。這也是我們在確定課堂組織形式是所必須要關(guān)注的。

      第四,要勾勒教學(xué)的一種順序。這個順序當(dāng)中主要包括這樣幾點:

      第一點,應(yīng)當(dāng)怎樣提出主題,通俗一點講就是問題情境的創(chuàng)設(shè)。關(guān)于問題情境的創(chuàng)設(shè),我們在相關(guān)的專題中也都提到它的重要性和一些要求。我們在勾勒教學(xué)順序的時候,首先要關(guān)注的是怎樣提出主題,這個主題應(yīng)該是跟學(xué)生接近的,又要能夠引起他的興趣,又要圍繞著我們的教學(xué)主題的,而且能夠使得學(xué)生迅速的進(jìn)入學(xué)習(xí)活動中。

      第二點,就是要關(guān)注是否需要復(fù)習(xí)以前的相關(guān)知識。一堂課的教學(xué)它往往不是獨立的,而是有前后聯(lián)系的,因此需要考慮我在這堂課教學(xué)中是否需要復(fù)習(xí)相關(guān)的知識?

      第三點,當(dāng)學(xué)生對材料產(chǎn)生爭論的時候,你準(zhǔn)備提出怎樣的探索性問題。當(dāng)我們提出問題以后學(xué)生可能會產(chǎn)生什么樣的一種思考,可能會產(chǎn)生一種什么樣的爭論?我們要了解這些爭論的思維的背景,需要進(jìn)行正確的引導(dǎo),那么你就必須要設(shè)計好一些問題串,來引導(dǎo)學(xué)生圍繞主題展開探索。

      第四點,我們在設(shè)計教學(xué)程序的過程中要關(guān)注一下我們使用的材料,我們的課本提出了什么樣的觀點,使用什么樣課外的材料來幫助我們的教學(xué)。

      第五點,要根據(jù)學(xué)生對主題的掌握程度,準(zhǔn)備幾個可以供選擇的,課堂當(dāng)中要自主完成的練習(xí),或者是課后要完成家庭作業(yè)。這些是勾勒我們整個教學(xué)流程的一些關(guān)鍵程序。

      三、教學(xué)設(shè)計中我們應(yīng)該注意的方面。

      教學(xué)設(shè)計永遠(yuǎn)只是教學(xué)過程的一種預(yù)期,實際的教學(xué)活動則永遠(yuǎn)是一個謎。我們老師都有經(jīng)驗,同樣的一個課題,同一個老師的備課,他在不同班的授課過程中都會產(chǎn)生不同的教學(xué)流程、教學(xué)效果。因為我們所面對的學(xué)生是不同的,是在變化的,我們的教學(xué)生成是變化的,只有當(dāng)這堂課教學(xué)完成了,我們才能知道這堂課最后的結(jié)果。所以前面的教學(xué)設(shè)計只是一種預(yù)期,我們的教學(xué)設(shè)計就是要關(guān)注這樣的一種變化。

      因此,教學(xué)設(shè)計首先要注意它的整體性,就是說我們的教學(xué)設(shè)計不是一種片斷,是一種整體的設(shè)計,它不是寫在我們紙上的一種文本,而是我們教師對自己和學(xué)生所持的一種整體性的目標(biāo)。其次,要注意它的可變性,沒有一件事情是絲毫不差地按照計劃進(jìn)行的。學(xué)生的思維可能還停留在你認(rèn)為根本不重要的問題上,他們還會以你幾乎不能想象的方式來理解某些概念。當(dāng)活動過程受到影響時,你必須放棄你原來的教學(xué)計劃,運用你對學(xué)生已有的知識的了解和更宏觀的數(shù)學(xué)教學(xué)目標(biāo),去指導(dǎo)你的教學(xué)行動,也就是說要產(chǎn)生一些生成的問題。第三,要注意它創(chuàng)造性。我們的教師很大程度上會依賴于教材或教學(xué)參考書,以確保他們的數(shù)學(xué)教學(xué)內(nèi)容符合一個內(nèi)部連貫的發(fā)展框架。這種依賴有一定的好處,它能夠使得我們的教學(xué)設(shè)計能夠圍繞著我們課程的設(shè)計來進(jìn)行,但是同時也存在一些問題,就是說畢竟教材是我們課程的一種呈現(xiàn),跟教學(xué)的呈現(xiàn)還是有著本質(zhì)差別的。我們的教學(xué)設(shè)計應(yīng)該是一種流動的過程,應(yīng)該適合我們的學(xué)生,就像設(shè)計師設(shè)計的服裝要符合你所設(shè)計的群體的特點和要求,如果考慮到個體,就要符合他的氣質(zhì),符合他的整體形象。我們的教學(xué)設(shè)計也是這樣,我想每個人都應(yīng)該有個人設(shè)計的一種思考和魅力。

      剛才談到這幾點僅供我們老師做一種參考。

      張思明:各位老師,我們這一講把教學(xué)設(shè)計中存在的問題通過幾個案例給大家做了一個初步的展示。我想教學(xué)設(shè)計中的問題是一個教學(xué)實踐過程中產(chǎn)生的問題,我們每一個老師都有自己的設(shè)計理念,都有自己設(shè)計成功或者不如意甚至失敗的地方。我們希望研討是一個互動的過程,我們真誠的期待著老師們把您們在教學(xué)設(shè)計中遇到的問題和成功的經(jīng)驗寄給我們,我們一起來研討。那么這一講就到這里,謝謝老師們的參與!

      高中數(shù)學(xué)教學(xué)設(shè)計3

      一、教學(xué)目標(biāo)

      1、在初中學(xué)過原命題、逆命題知識的基礎(chǔ)上,初步理解四種命題。

      2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。

      3、通過對四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力

      4、初步培養(yǎng)學(xué)生反證法的數(shù)學(xué)思維。

      二、教學(xué)分析

      重點:四種命題;難點:四種命題的關(guān)系

      1。本小節(jié)首先從初中數(shù)學(xué)的命題知識,給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識,進(jìn)一步講解反證法。

      2。教學(xué)時,要注意控制教學(xué)要求。本小節(jié)的內(nèi)容,只涉及比較簡單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,

      3.“若p則q”形式的命題,也是一種復(fù)合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學(xué)生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開語句。

      三、教學(xué)手段和方法(演示教學(xué)法和循序漸進(jìn)導(dǎo)入法)

      1。以故事形式入題

      2多媒體演示

      四、教學(xué)過程

      (一)引入:一個生活中有趣的與命題有關(guān)的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數(shù)學(xué)思想嗎?通過這節(jié)課的學(xué)習(xí)我們就能揭開它的廬山真面,學(xué)生的興奮點被緊緊抓住,躍躍欲試!

      設(shè)計意圖:創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)興趣

      (二)復(fù)習(xí)提問:

      1.命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?

      2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?

      3.原命題真,逆命題一定真嗎?

      “同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

      學(xué)生活動:

      口答:(l)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.

      設(shè)計意圖: 通過復(fù)習(xí)舊知識,打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).

      (三)新課講解:

      1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。

      2.把命題“同位角相等,兩直線平行”的條件與結(jié)論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。

      3.把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。

      (四)組織討論:

      讓學(xué)生歸納什么是否命題,什么是逆否命題。

      例1及例2

      (五)課堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

      學(xué)生活動:

      討論后回答

      這兩個逆否命題都真.

      原命題真,逆否命題也真

      引導(dǎo)學(xué)生討論原命題的真假與其他三種命題的真

      假有什么關(guān)系?舉例加以說明,同學(xué)們踴躍發(fā)言。

      (六)課堂小結(jié):

      1、一般地,用p和q分別表示原命題的條件和結(jié)論,用¬p和¬q分別表示p和q否定時,四種命題的形式就是:

      原命題若p則q;

      逆命題若q則p;(交換原命題的條件和結(jié)論)

      否命題,若¬p則¬q;(同時否定原命題的條件和結(jié)論)

      逆否命題若¬q則¬p。(交換原命題的'條件和結(jié)論,并且同時否定)

      2、四種命題的關(guān)系

      (1).原命題為真,它的逆命題不一定為真.

      (2).原命題為真,它的否命題不一定為真.

      (3).原命題為真,它的逆否命題一定為真

      (七)回扣引入

      分析引入中的笑話,先討論,后總結(jié):現(xiàn)在我們來分析一下主人說的四句話:

      第一句:“該來的沒來”

      其逆否命題是“不該來的來了”,甲認(rèn)為自己是不該來的,所以甲走了。

      第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認(rèn)為自己該走,所以乙也走了。

      第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認(rèn)為說的是自己,所以丙也走了。

      同學(xué)們,生活中處處是數(shù)學(xué),期待我們善于發(fā)現(xiàn)的眼睛

      五、作業(yè)

      1.設(shè)原命題是“若

      斷它們的真假. ,則 ”,寫出它的逆命題、否命題與逆否命題,并分別判

      2.設(shè)原命題是“當(dāng) 時,若 ,則 ”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.

      高中數(shù)學(xué)教學(xué)設(shè)計4

      一、教材分析

      本小節(jié)選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-數(shù)學(xué)必修(一)》(人教版)第二章基本初等函數(shù)(1)2.2.2對數(shù)函數(shù)及其性質(zhì)(第一課時),主要內(nèi)容是學(xué)習(xí)對數(shù)函數(shù)的定義、圖象、性質(zhì)及初步應(yīng)用。對數(shù)函數(shù)是繼指數(shù)函數(shù)之后的又一個重要初等函數(shù),無論從知識或思想方法的角度對數(shù)函數(shù)與指數(shù)函數(shù)都有許多類似之處。與指數(shù)函數(shù)相比,對數(shù)函數(shù)所涉及的知識更豐富、方法更靈活,能力要求也更高。學(xué)習(xí)對數(shù)函數(shù)是對指數(shù)函數(shù)知識和方法的鞏固、深化和提高,也為解決函數(shù)綜合問題及其在實際上的應(yīng)用奠定良好的基礎(chǔ)。雖然這個內(nèi)容十分熟悉,但新教材做了一定的改動,如何設(shè)計能夠符合新課標(biāo)理念,是人們十分關(guān)注的,正因如此,本人選擇這課題立求某些方面有所突破。

      二、學(xué)生學(xué)習(xí)情況分析

      剛從初中升入高一的學(xué)生,仍保留著初中生許多學(xué)習(xí)特點,能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,又以對數(shù)運算為基礎(chǔ),同時,初中函數(shù)教學(xué)要求降低,初中生運算能力有所下降,這雙重問題增加了對數(shù)函數(shù)教學(xué)的難度。教師必須認(rèn)識到這一點,教學(xué)中要控制要求的拔高,關(guān)注學(xué)習(xí)過程。

      三、設(shè)計理念

      本節(jié)課以建構(gòu)主義基本理論為指導(dǎo),以新課標(biāo)基本理念為依據(jù)進(jìn)行設(shè)計的,針對學(xué)生的學(xué)習(xí)背景,對數(shù)函數(shù)的教學(xué)首先要挖掘其知識背景貼近學(xué)生實際,其次,激發(fā)學(xué)生的學(xué)習(xí)熱情,把學(xué)習(xí)的主動權(quán)交給學(xué)生,為他們提供自主探究、合作交流的機會,確實改變學(xué)生的學(xué)習(xí)方式。

      四、教學(xué)目標(biāo)

      1.通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;

      2.能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性與特殊點;

      3.通過比較、對照的方法,引導(dǎo)學(xué)生結(jié)合圖象類比指數(shù)函數(shù),探索研究對數(shù)函數(shù)的性質(zhì),培養(yǎng)學(xué)生運用函數(shù)的觀點解決實際問題。

      五、教學(xué)重點與難點

      重點是掌握對數(shù)函數(shù)的圖象和性質(zhì),難點是底數(shù)對對數(shù)函數(shù)值變化的影響.

      六、教學(xué)過程設(shè)計

      教學(xué)流程:背景材料→引出課題→函數(shù)圖象→函數(shù)性質(zhì)→問題解決→歸納小結(jié)

      (一)熟悉背景、引入課題

      1.讓學(xué)生看材料:

      材料1(幻燈):馬王堆女尸千年不腐之謎:一九七二年,馬王堆考古發(fā)現(xiàn)震驚世界,專家發(fā)掘西漢辛追遺尸時,形體完整,全身潤澤,皮膚仍有彈性,關(guān)節(jié)還可以活動,骨質(zhì)比現(xiàn)在六十歲的正常人還好,是世界上發(fā)現(xiàn)的首例歷史悠久的濕尸。大家知道,世界發(fā)現(xiàn)的不腐之尸都是在干燥的環(huán)境風(fēng)干而成,譬如沙漠環(huán)境,這類干尸雖然肌膚未腐,是因為干燥不利細(xì)菌繁殖,但關(guān)節(jié)和一般人死后一樣,是僵硬的,而馬王堆辛追夫人卻是在濕潤的環(huán)境中保存二千多年,而且關(guān)節(jié)可以活動。人們最關(guān)注有兩個問題,第一:怎么鑒定尸體的年份?第二:是什么環(huán)境使尸體未腐?其中第一個問題與數(shù)學(xué)有關(guān)。

      圖4—1 (如圖4—1在長沙馬王堆“沉睡”近22的古長沙國丞相夫人辛追,日前奇跡般地“復(fù)活”了)那么,考古學(xué)家是怎么計算出古長沙國丞相夫人辛追“沉睡”近2200年?上面已經(jīng)知道考古學(xué)家是通過提取尸體的殘留物碳14的殘留量p,利用t?logp 57302估算尸體出土的年代,不難發(fā)現(xiàn):對每一個碳14的含量的取值,通過這個對應(yīng)關(guān)系,生物死亡年數(shù)t都有唯一的值與之對應(yīng),從而t是p的函數(shù);

      如圖4—2材料2(幻燈):某種細(xì)胞分裂時,由1個分裂成2個,2個分裂成4個??,如果要求這種細(xì)胞經(jīng)過多少次分裂,大約可以得到細(xì)胞1萬個,10萬個??,不難發(fā)現(xiàn):分裂次數(shù)y就是要得到的細(xì)胞個數(shù)x的函數(shù),即y?log2x;

      圖4—2 1.引導(dǎo)學(xué)生觀察這些函數(shù)的特征:含有對數(shù)符號,底數(shù)是常數(shù),真數(shù)是變量,從而得出對數(shù)函數(shù)的定義:函數(shù)y?logax(a?0,且a?1)叫做對數(shù)函數(shù),其中x是自變量,函數(shù)的定義域是(0,+∞).

      1對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別.如:注意:○ x2對數(shù)函數(shù)對底數(shù)的限制:(a?0,都不是對數(shù)函數(shù).○5y?2log2x,y?log5且a?1).

      3.根據(jù)對數(shù)函數(shù)定義填空;

      例1 (1)函數(shù)y=logax的定義域是___________ (其中a>0,a≠1) (2)函數(shù)y=loga(4-x)的定義域是___________ (其中a>0,a≠1)說明:本例主要考察對數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對概念的理

      解,所以把教材中的解答題改為填空題,節(jié)省時間,點到為止,以避免挖深、拓展、引入復(fù)合函數(shù)的概念。

      [設(shè)計意圖:新課標(biāo)強調(diào)“考慮到多數(shù)高中生的認(rèn)知特點,為了有助于他們對函數(shù)概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實際問題入手”。因此,新課引入不是按舊教材從反函數(shù)出發(fā),而是選擇從兩個材料引出對數(shù)函數(shù)的概念,讓學(xué)生熟悉它的知識背景,初步感受對數(shù)函數(shù)是刻畫現(xiàn)實世界的又一重要數(shù)學(xué)模型。這樣處理,對數(shù)函數(shù)顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點] 2

      (二)嘗試畫圖、形成感知1.確定探究問題

      教師:當(dāng)我們知道對數(shù)函數(shù)的定義之后,緊接著需要探討什么問題?學(xué)生1:對數(shù)函數(shù)的圖象和性質(zhì)

      教師:你能類比前面研究指數(shù)函數(shù)的思路,提出研究對數(shù)函數(shù)圖象和性質(zhì)的方

      法嗎?

      學(xué)生2:先畫圖象,再根據(jù)圖象得出性質(zhì)

      教師:畫對數(shù)函數(shù)的圖象是否象指數(shù)函數(shù)那樣也需要分類?學(xué)生3:按a?1和0?a?1分類討論

      教師:觀察圖象主要看哪幾個特征?

      學(xué)生4:從圖象的形狀、位置、升降、定點等角度去識圖

      教師:在明確了探究方向后,下面,按以下步驟共同探究對數(shù)函數(shù)的圖象:步驟一:(1)用描點法在同一坐標(biāo)系中畫出下列對數(shù)函數(shù)的圖象y?log2xy?log1x 2 (2)用描點法在同一坐標(biāo)系中畫出下列對數(shù)函數(shù)的圖象y?log3xy?log1x 3步驟二:觀察對數(shù)函數(shù)y?log2x、y?log3x與y?log1x、y?log1x的圖象特23征,看看它們有那些異同點。

      步驟三:利用計算器或計算機,選取底數(shù)a(a?0,且a?1)的若干個不同的值,

      在同一平面直角坐標(biāo)系中作出相應(yīng)對數(shù)函數(shù)的圖象。觀察圖象,它們有哪些共同特征?

      步驟四:規(guī)納出能體現(xiàn)對數(shù)函數(shù)的代表性圖象

      步驟五:作指數(shù)函數(shù)與對數(shù)函數(shù)圖象的比較2.學(xué)生探究成果

      (1)如圖4—3、4—4較為熟練地用描點法畫出下列對數(shù)函數(shù)y?log2x、y?log1x、y?log3x、y?log1x的圖象23圖4—3圖4—4 (2)如圖4—5學(xué)生選取底數(shù)a=1/4、1/5、1/6、1/10、4、5、6、10,并推薦幾位代表上臺演示‘幾何畫板’,得到相應(yīng)對數(shù)函數(shù)的圖象。由于學(xué)生自己動手,加上‘幾何畫板’的強大作圖功能,學(xué)生非常清楚地看到了底數(shù)a是如何影響函數(shù)y?logax(a?0,且a?1)圖象的變化。

      圖4—5 (3)有了這種畫圖感知的過程以及學(xué)習(xí)指數(shù)函數(shù)的經(jīng)驗,學(xué)生很明確y = loga x (a>1)、y = loga x (0(中部)

      高中數(shù)學(xué)教學(xué)設(shè)計5

      提出問題:

      新課程認(rèn)為知識不是單方面通過教師傳授得到的,而是學(xué)生在一定的情境中,運用已有的學(xué)習(xí)經(jīng)驗,并通過與他人(教師指導(dǎo)和同學(xué)的幫助)協(xié)作,主動建構(gòu)而獲得的。它強調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。通過多年教學(xué)實踐和對新課程的認(rèn)識,我認(rèn)為若遵循這個原則進(jìn)行數(shù)學(xué)課堂教學(xué),學(xué)生的學(xué)習(xí)將是一種高效的活動。

      教材中的地位:

      本節(jié)內(nèi)容是在指數(shù)范圍擴充到實數(shù)的基礎(chǔ)上引入指數(shù)函數(shù)的,而指數(shù)函數(shù)是高中研究的第一種具體函數(shù)。是在初中已經(jīng)初步探討了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù)的圖像和性質(zhì)的基礎(chǔ)上,在進(jìn)一步學(xué)習(xí)了函數(shù)的概念及有關(guān)性質(zhì)的前提下,去研究學(xué)習(xí)的。重點是指數(shù)函數(shù)的圖像及性質(zhì),難點在于弄清楚底數(shù)a對于函數(shù)變化的影響。這節(jié)課主要是學(xué)生利用描點法畫出函數(shù)的圖像,并描述出函數(shù)的圖像特征,從而指出函數(shù)的性質(zhì)。使學(xué)生從形到數(shù)的熟悉,體驗研究函數(shù)的過程與思路,實現(xiàn)意識的深化。

      設(shè)計背景:

      在新教材的教學(xué)中,我慢慢體會到新教材滲透的、螺旋式上升的基本理念,知識點的形成過程經(jīng)歷從具體的實例引入,形成概念,再次運用于實際問題或具體數(shù)學(xué)問題的過程,它的應(yīng)用性,實用性更明顯的體現(xiàn)出來。學(xué)數(shù)學(xué)重在培養(yǎng)學(xué)生的思維品質(zhì),經(jīng)過多年的數(shù)學(xué)學(xué)習(xí),學(xué)生還是害怕學(xué)數(shù)學(xué),尤其高中的數(shù)學(xué),它對于學(xué)生來說顯得很抽象。所以如果再讓讓學(xué)生感到數(shù)學(xué)離我們的生活太遠(yuǎn),那么將很難激發(fā)他們的學(xué)習(xí)愛好。所以在教學(xué)中我盡力抓住知識的本質(zhì),以實際問題引入新知識。另外,就本章來說,指數(shù)函數(shù)是學(xué)習(xí)函數(shù)概念及基本性質(zhì)之后研究的第一個重要的函數(shù),讓學(xué)生學(xué)會研究一個新的具體函數(shù)的方法比學(xué)會本身的知識更重要。在這個過程中,所有的知識都是生疏的,在大腦中沒有形成基本的框架結(jié)構(gòu),需要老師的引導(dǎo),使他們逐漸建立。數(shù)學(xué)中任何知識的形成都體現(xiàn)出它的思想與方法,因而授課中注重讓學(xué)生領(lǐng)悟其中的思想,運用其中的方法去學(xué)習(xí)新的知識,是非常重要的。

      教學(xué)目標(biāo):

      一、知識:

      理解指數(shù)函數(shù)的定義,能初步把握指數(shù)函數(shù)的圖像,性質(zhì)及其簡單應(yīng)用。

      二、過程與方法:

      由實例引入指數(shù)函數(shù)的概念,利用描點作圖的方法做出指數(shù)函數(shù)的圖像,(有條件的話借助計算機演示驗證指數(shù)函數(shù)圖像)由圖像研究指數(shù)函數(shù)的性質(zhì)。利用性質(zhì)解決實際問題。

      三、能力:

      1.通過指數(shù)函數(shù)的圖像和性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析和歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法。

      2.通過對指數(shù)函數(shù)的研究,使學(xué)生能把握函數(shù)研究的基本方法。

      教學(xué)過程:

      由實際問題引入:

      問題1:某種細(xì)胞分裂時,由1個分裂成2個,2個分裂成4個,?1個這樣的細(xì)胞分裂x次后,得到的細(xì)胞的個數(shù)y與x之間的關(guān)系是什么?

      分裂次數(shù)與細(xì)胞個數(shù)

      1,2;2,2×2=22;3,2×2×2=23;????;x,2×2×……×2=2x

      歸納:y=2x

      問題2:某種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過1年剩留的這種物質(zhì)是原來的84%,那么經(jīng)過x年后剩留量y與x的關(guān)系是什么?

      經(jīng)過1年,剩留量y=1×84%=;經(jīng)過2年,剩留量y=×=?經(jīng)過x年,剩留量y=

      尋找異同:

      你能從以上的兩個例子中得到的關(guān)系式里找到什么異同點嗎?

      共同點:變量x與y構(gòu)成函數(shù)關(guān)系式,是指數(shù)的形式,自變量在指數(shù)位置,底數(shù)是常數(shù);不同點:底數(shù)的取值不同。

      那么,今天我們來學(xué)習(xí)新的一個基本函數(shù):指數(shù)函數(shù)

      得到指數(shù)函數(shù)的定義:定義:形如y=ax(a>0且a≠1)的函數(shù)叫做指數(shù)函數(shù)。

      在以前我們學(xué)過的函數(shù)中,一次函數(shù)用形如y=kx+b(k≠0)的形式表示,反比例函數(shù)用形如y=k/x(k≠0)表示,二次函數(shù)y=ax2+bx+c(a≠0)表示。對于其一

      般形式上的系數(shù)都有相應(yīng)的限制。問:為什么指數(shù)函數(shù)對底數(shù)有這樣的要求呢?若a=0,當(dāng)x>0時,恒等于0,沒有研究價值;當(dāng)x≤0時,無意義。

      若a

      若a=1,則=1,是一個常量,也沒有研究的必要。

      所以有規(guī)定且a>0且a≠1。

      由定義,我們可以對指數(shù)函數(shù)有一初步熟悉。

      進(jìn)一步理解函數(shù)的定義:

      指數(shù)函數(shù)的定義域:在我們學(xué)過的指數(shù)運算中,指數(shù)可以是有理數(shù),當(dāng)指數(shù)是無理數(shù)時,也是一個確定的實數(shù),對于無理數(shù),學(xué)過的有理指數(shù)冪的性質(zhì)和運算法則都適用,所以指數(shù)函數(shù)的定義域為R。

      研究函數(shù)的途徑:由函數(shù)的圖像的性質(zhì),從形與數(shù)兩方面研究。

      學(xué)習(xí)函數(shù)的一個很重要的目標(biāo)就是應(yīng)用,那么首先要對函數(shù)作一研究,研究函數(shù)的圖像及性質(zhì),然后利用其圖像性質(zhì)去解決數(shù)學(xué)問題和實際問題。根據(jù)以往的經(jīng)驗,你會從那幾個角度考慮?(圖像的分布范圍,圖像的變化趨勢)圖像的分布情況與函數(shù)的定義域,值域有關(guān),函數(shù)的變化趨勢體現(xiàn)函數(shù)的單調(diào)性。引導(dǎo)學(xué)生從定義域,值域,單調(diào)性,奇偶性,與坐標(biāo)軸的交點情況著手開始。

      首先我們做出指數(shù)函數(shù)的圖像,我們研究一般性的事物,常用的方法是:由特殊到一般。

      我們以具體函數(shù)入手,讓學(xué)生以小組形式取不同底數(shù)的指數(shù)函數(shù)畫它們的圖像,將學(xué)生畫的函數(shù)圖像展示,(畫函數(shù)的圖像的步驟是:列表,描點,連線。)。最后,老師在黑板(電腦)上演示列表,描點,連線的過程,并且,畫出取不同的值時,函數(shù)的圖像。

      要求學(xué)生描述出指數(shù)函數(shù)圖像的特征,并試著描述出性質(zhì)。

      數(shù)學(xué)發(fā)展的歷史表明,每一個重要的數(shù)學(xué)概念的形成和發(fā)展,其中都有豐富的經(jīng)歷,新課程較好的體現(xiàn)了這點。對新課程背景下的學(xué)生而言,數(shù)學(xué)的知識應(yīng)該是一個數(shù)學(xué)化的過程,即通過對常識材料進(jìn)行細(xì)致的觀察、思考,借助于分析、比較、綜合、抽象、概括等思維活動,對常識材料進(jìn)行去粗取精、去偽存真的精加工。該案例正是從數(shù)學(xué)研究和數(shù)學(xué)實驗的過程中進(jìn)行設(shè)計。雖然學(xué)生的思維不一定真實的重演了人類對數(shù)學(xué)知識探索的全過程,但確確實實通過實驗、觀察、比較、分析、歸納、抽象、概括等思維活動,在探索中將數(shù)學(xué)數(shù)學(xué)化,從而才使學(xué)生對數(shù)學(xué)學(xué)習(xí)產(chǎn)生了樂趣,對數(shù)學(xué)的研究方法有了一定的了解。

      雖然學(xué)生要學(xué)的數(shù)學(xué)是歷史上前人已建構(gòu)好了的,但對他們而言,仍是全新的、未知的,需要用他們自己的學(xué)習(xí)活動來再現(xiàn)類似的過程。該案例正是從創(chuàng)設(shè)問題情景作為教學(xué)設(shè)計的重要的內(nèi)容之一。教師應(yīng)該把教學(xué)設(shè)計成學(xué)生動手操作、觀察猜想、揭示規(guī)律等一系列過程,側(cè)重于學(xué)生的探索、分析與思考,側(cè)重于過程的探究及在此過程中所形成的一般數(shù)學(xué)能力。

      教師的地位應(yīng)由主導(dǎo)者轉(zhuǎn)變?yōu)橐龑?dǎo)者,使教學(xué)活動真正成為學(xué)生的活動。在教學(xué)過程中,把學(xué)習(xí)的主動權(quán)交給學(xué)生,在時間和空間上保證學(xué)生在教師的指導(dǎo)下,學(xué)生能自己獨立自主的探究學(xué)習(xí)。使教學(xué)活動始終處于學(xué)生的“最近發(fā)展區(qū)”,使每一個學(xué)生通過自己的努力,在自己原有的基礎(chǔ)上都有所獲,都有提高??傊?,通過案例研究,不斷研究新教材、新理念,不斷調(diào)整教學(xué)策略優(yōu)化課堂教學(xué),培養(yǎng)學(xué)生探究學(xué)習(xí)與創(chuàng)新學(xué)習(xí)能力將是我們在數(shù)學(xué)教學(xué)中要繼續(xù)探究的課題。

      高中數(shù)學(xué)教學(xué)設(shè)計6

      函數(shù)的奇偶性

      函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對函數(shù)概念的深化.它把自變量取相反數(shù)時函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對稱,奇函數(shù)的圖像關(guān)于坐標(biāo)原點成中心對稱.這樣,就從數(shù)、形兩個角度對函數(shù)的奇偶性進(jìn)行了定量和定性的分析.教材首先通過對具體函數(shù)的圖像及函數(shù)值對應(yīng)表歸納和抽象,概括出了函數(shù)奇偶性的準(zhǔn)確定義.然后,為深化對概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實例.最后,為加強前后聯(lián)系,從各個角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的聯(lián)系.這節(jié)課的重點是函數(shù)奇偶性的定義,難點是根據(jù)定義判斷函數(shù)的奇偶性.

      教學(xué)目標(biāo):

      1.通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象的概括能力.

      2.理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡單函數(shù)的奇偶性.

      3.在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗數(shù)學(xué)既是抽象的又是具體的任務(wù)分析

      這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學(xué)生理解.在引入概念時始終結(jié)合具體函數(shù)的圖像,以增加直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對于概念可從代數(shù)特征與幾何特征兩個角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點對稱的非空數(shù)集;對于在有定義的奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想效果.

      一、問題情景

      1.觀察如下兩圖,思考并討論以下問題:

      (1)這兩個函數(shù)圖像有什么共同特征?

      (2)相應(yīng)的兩個函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的?可以看到兩個函數(shù)的圖像都關(guān)于y軸對稱.從函數(shù)值對應(yīng)表可以看到,當(dāng)自變量x取一對相反數(shù)時,相應(yīng)的兩個函數(shù)值相同.

      對于函數(shù)f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實上,對于R內(nèi)任意的一個x,都有f(-x)=(-x)2=x2=f(x).此時,稱函數(shù)y=x2為偶函數(shù).

      2.觀察函數(shù)f(x)=x和f(x)=的圖像,并完成下面的兩個函數(shù)值對應(yīng)表,然后說出這兩個函數(shù)有什么共同特征.

      22可以看到兩個函數(shù)的圖像都關(guān)于原點對稱.函數(shù)圖像的這個特征,反映在解析式上就是:當(dāng)自變量x取一對相反數(shù)時,相應(yīng)的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f(x).此時,稱函數(shù)y=f(x)為奇函數(shù).

      二、建立模型

      由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義

      1.奇、偶函數(shù)的定義

      如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫作奇函數(shù).如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫作偶函數(shù).

      2.提出問題,組織學(xué)生討論

      (1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎? (f(x)不一定是偶函數(shù))

      (2)奇、偶函數(shù)的圖像有什么特征?

      (奇、偶函數(shù)的圖像分別關(guān)于原點、y軸對稱) (3)奇、偶函數(shù)的定義域有什么特征? (奇、偶函數(shù)的定義域關(guān)于原點對稱)

      三、解釋應(yīng)用[例題]

      1.判斷下列函數(shù)的奇偶性.

      注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1].

      2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時,f(x)=x(1+x),求f(x)的表達(dá)式.

      解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),

      而f(x)是奇函數(shù),∴f(-x)=-f(x).∴f(x)=x(1-x).

      (2)當(dāng)x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

      3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論.

      解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對稱,猜想f(x)在(0,+∞)上是增函數(shù),證明如下:

      任取x1>x2>0,則-x1<-x2<0.

      ∵f(x)在(-∞,0)上是減函數(shù),∴f(-x1)>f(-x2).又f(x)是偶函數(shù),∴f(x1)>f(x2).

      ∴f(x)在(0,+∞)上是增函數(shù).

      思考:奇函數(shù)或偶函數(shù)在關(guān)于原點對稱的兩個區(qū)間上的單調(diào)性有何關(guān)系?

      [練習(xí)]

      1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何.

      2. f(x)=-x3|x|的大致圖像可能是

      3.函數(shù)f(x)=ax2+bx+c,(a,b,c∈R),當(dāng)a,b,c滿足什么條件時,(1)函數(shù)f(x)是偶函數(shù).(2)函數(shù)f(x)是奇函數(shù). 4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

      四、拓展延伸

      1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個? 2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

      3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).

      4.一個定義在R上的函數(shù),是否都可以表示為一個奇函數(shù)與一個偶函數(shù)的和的形式?

      高中數(shù)學(xué)教學(xué)設(shè)計7

      一、課程說明

      (一)教材分析:

      此次一對一家教所使用教材為北師大版高中數(shù)學(xué)必修5。輔導(dǎo)內(nèi)容為第一章第二節(jié)等差數(shù)列。前一節(jié)的內(nèi)容為數(shù)列,學(xué)生已初步了解到數(shù)列的概念,知道什么是首項,什么是通項等等。以及了解到什么是遞增數(shù)列,什么是遞減數(shù)列。通過第一節(jié)的學(xué)習(xí)的鋪墊,可以讓學(xué)生更自主的探究,學(xué)習(xí)等差數(shù)列。而我也是在這些基礎(chǔ)上為她講解第二節(jié)等差數(shù)列。

      (二) 學(xué)生分析:

      此次所帶學(xué)生是一名高二的學(xué)生。聰明但是不踏實,做題浮躁。基礎(chǔ)知識掌握不夠牢靠,知識的運用能力較差,分析能力較弱,解題思路不清。每次她遇到會的題,就快快的草率做完,總會有因馬虎而犯的錯誤。遇到稍不會的,總是很浮躁,不能冷靜下來慢慢思考。就由略不會變成不會。但她也是個虛心聽教的孩子,給她講課,她也會很認(rèn)真地聽講。

      (三) 教學(xué)目標(biāo):

      1、通過教與學(xué)的配合,讓她能夠懂得什么是等差數(shù)列,以及等差數(shù)列的通項公式。

      2、通過對公式的推導(dǎo),讓她加深對內(nèi)容的理解,以及學(xué)會自己對公式的推導(dǎo)。并且能夠靈活運用。

      3、在教學(xué)中讓她通過對公式的推導(dǎo)來明白推理的藝術(shù),并且培養(yǎng)她學(xué)習(xí),做題條理清晰,思路縝密的好習(xí)慣。

      4、讓她在學(xué)習(xí),做題中一步步抽絲剝繭,尋找解決問題的方法,培養(yǎng)她敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并培養(yǎng)她對克服困難和運用知識。耐心地解決問題。

      5、讓她在學(xué)習(xí)中發(fā)現(xiàn)數(shù)學(xué)的獨特的美,能夠愛上數(shù)學(xué)這門課。并且認(rèn)真對待,自主學(xué)習(xí)。

      (四)教學(xué)重點

      1讓學(xué)生正確掌握等差數(shù)列及其通項公式,以及其性質(zhì)。并能獨立的推導(dǎo)。

      2、能夠靈活運用公式并且能把相應(yīng)公式與題相結(jié)合。

      (五) 教學(xué)難點:

      1、讓學(xué)生掌握公式的推導(dǎo)及其意義。

      2如何把所學(xué)知識運用到相應(yīng)的題中。

      二、課前準(zhǔn)備

      (一) 教學(xué)器材

      對于一對一教教采用傳統(tǒng)講課。一張掛歷。

      (二) 教學(xué)方法

      通過對生活中的有規(guī)律數(shù)據(jù)的觀察來提出問題,讓學(xué)生結(jié)合前一節(jié)所學(xué),思考有什么規(guī)律。從生活中著手有利于激發(fā)學(xué)生的興趣愛好,并能更積極地學(xué)習(xí)。讓學(xué)生先獨立的思考,不僅能讓她對所學(xué)知識映像更為深刻,并且培養(yǎng)她的縝密思維。讓她回答后,我再幫助她糾正,并且讓她提出心中所慮。經(jīng)過我給她講完課后,讓她回答自己先前的疑慮。并且讓她自己總結(jié),得出結(jié)論。最后讓她勤加練習(xí)。以一種“提出問題—探究問題—學(xué)習(xí)知識—解答問題—得出結(jié)論—強加訓(xùn)練”的模式方法展開教學(xué)。

      (三) 課時安排

      課時大致分為五部分:

      1、聯(lián)系實際提出相關(guān)問題,進(jìn)行思考。

      2以我教她學(xué)的模式講授相關(guān)章節(jié)知識。

      3、讓學(xué)生練習(xí)相關(guān)習(xí)題,從所學(xué)知識中找其相應(yīng)解題方案。

      4學(xué)生對知識總結(jié)概括,我再對其進(jìn)行補充說明。 5布置作業(yè),讓她課后多做練習(xí)。

      三、課程設(shè)計

      (一)提出問題

      【引入】

      根據(jù)我們的掛歷上,一個月的日期數(shù)。通過觀察每一行日期和每一列日期它們有什么規(guī)律?

      思考 1 2 3 13579......246810......66666......

      這些每一行有什么規(guī)律?

      (二) 分析問題并講解

      1、通過觀察每一個數(shù)與前一個數(shù)相差為同一個常數(shù)。再結(jié)合前一節(jié)所學(xué)數(shù)列的定義總結(jié)出“每一項與前一項的差為同一個常數(shù),我們稱這樣的數(shù)列為等差數(shù)列?!辈⑶业贸觥斑@個常數(shù)為等差數(shù)列的公差?!?/p>

      2、設(shè)首項為 a1 ,公差為d。由思考題 1 2 3可觀察出什么?由學(xué)生通過她的發(fā)現(xiàn)來推導(dǎo)總結(jié)出

      ana1n1dnda1d

      3、通過分析通項公式的特點,做下題(學(xué)生自己分析,思考來做。) 例:已知在等差數(shù)列{an}中,a520a20xx,試求出數(shù)列的通項公式?

      通過學(xué)生做題再分析總結(jié),用詳細(xì)的語言講解總結(jié)等差數(shù)列的性質(zhì)

      4、由以上公式,性質(zhì),讓學(xué)生總結(jié)。

      講解等差數(shù)列的定義。并且掌握數(shù)列的遞增,遞減與公差d的關(guān)系。

      5總結(jié),串講當(dāng)日所學(xué)

      給出題目:12349899100 讓她求其和Sn,并思考如何快速計算?

      (三) 布置作業(yè)

      1、總結(jié)當(dāng)日所學(xué)。 2做練習(xí)冊上章節(jié)習(xí)題。

      3、根據(jù)當(dāng)日所學(xué)以及課上所講求 的思考題,找出快速運算方法,并引導(dǎo)預(yù)習(xí)等差數(shù)列前n項和。

      四、設(shè)計理念

      以一種最簡便,易懂的方式讓學(xué)生來學(xué)習(xí),一切以讓學(xué)生正確掌握知識,并能正確運用為理念。并能充分調(diào)動學(xué)生和家教老師的積極性為理念來設(shè)計。

      五、教學(xué)設(shè)計反思

      本節(jié)課教程內(nèi)容較難,是下一節(jié)等差數(shù)列前n項和的鋪墊。此節(jié)課學(xué)習(xí)通過聯(lián)系實際,把數(shù)學(xué)融入到生活中,從生活中探究學(xué)習(xí)數(shù)學(xué)。并提出問題,分析問題。把主動權(quán)交給學(xué)生,由她先獨立思考總結(jié),再由我給她正確講解總結(jié),然后再讓她做相應(yīng)練習(xí)題,課后再認(rèn)真總結(jié)。這樣可以加強她學(xué)習(xí)的主動性,更有利于她對知識的消化,吸收。這種方法同時可以培養(yǎng)學(xué)生的思維能力,讓她從自主學(xué)習(xí)中探索適合自己的學(xué)習(xí)方法,培養(yǎng)她獨立思考的能力。讓她更深刻的了解知識內(nèi)涵,鞏固所學(xué)。使她能靈活運用所學(xué)。

      高中數(shù)學(xué)教學(xué)設(shè)計8

      一、學(xué)習(xí)目標(biāo)與任務(wù)

      1、學(xué)習(xí)目標(biāo)描述

      知識目標(biāo)

      (A)理解和掌握圓錐曲線的第一定義和第二定義,并能應(yīng)用第一定義和第二定義來解題。

      (B)了解圓錐曲線與現(xiàn)實生活中的聯(lián)系,并能初步利用圓錐曲線的知識進(jìn)行知識延伸和知識創(chuàng)新。

      能力目標(biāo)

      (A)通過學(xué)生的操作和協(xié)作探討,培養(yǎng)學(xué)生的實踐能力和分析問題、解決問題的能力。

      (B)通過知識的再現(xiàn)培養(yǎng)學(xué)生的創(chuàng)新能力和創(chuàng)新意識。

      (C)專題網(wǎng)站中提供各層次的例題和習(xí)題,解決各層次學(xué)生的學(xué)習(xí)過程中的各種的需要,從而培養(yǎng)學(xué)生應(yīng)用知識的能力。

      德育目標(biāo)

      讓學(xué)生體會知識產(chǎn)生的全過程,培養(yǎng)學(xué)生運動變化的辯證唯物主義思想。

      2、學(xué)習(xí)內(nèi)容與學(xué)習(xí)任務(wù)說明

      本節(jié)課的內(nèi)容是圓錐曲線的第一定義和圓錐曲線的統(tǒng)一定義,以及利用圓錐曲線的定義來解決軌跡問題和最值問題。

      學(xué)習(xí)重點:圓錐曲線的第一定義和統(tǒng)一定義。

      學(xué)習(xí)難點:圓錐曲線第一定義和統(tǒng)一定義的應(yīng)用。

      明確本課的重點和難點,以學(xué)習(xí)任務(wù)驅(qū)動為方式,以圓錐曲線定義和定義應(yīng)用為中心,主動操作實驗、大膽分析問題和解決問題。

      抓住本節(jié)課的重點和難點,采取的基于學(xué)科專題網(wǎng)站下的三者結(jié)合的教學(xué)模式,突出重點、突破難點。

      充分利用《圓錐曲線》專題網(wǎng)站內(nèi)的內(nèi)容,在著重學(xué)習(xí)內(nèi)容的基礎(chǔ)上,內(nèi)延外拓,培養(yǎng)學(xué)生的創(chuàng)新精神和克服困難的信心。

      二、學(xué)習(xí)者特征分析

      (說明學(xué)生的學(xué)習(xí)特點、學(xué)習(xí)習(xí)慣、學(xué)習(xí)交往特點等)

      l本課的學(xué)習(xí)對象為高二下學(xué)期學(xué)生,他們經(jīng)過近兩年的高中學(xué)習(xí),已經(jīng)有一定的學(xué)習(xí)基礎(chǔ)和分析問題、解決問題的能力,基本的計算機操作較為熟練。

      高二年下學(xué)期學(xué)生由于高考的壓力,他們保持著傳統(tǒng)教學(xué)的學(xué)習(xí)習(xí)慣,在

      l課堂上的主體作用的體現(xiàn)不是太充分,但是如果他們還是樂于嘗試、勇于探索的。

      高二年的學(xué)生在學(xué)習(xí)交往上“個別化學(xué)習(xí)”和“協(xié)作討論學(xué)習(xí)”并存,也就是說學(xué)生是具有一定的群體性小組交流能力與協(xié)同討論學(xué)習(xí)能力的,還是能完成上課時教師布置的協(xié)作學(xué)習(xí)任務(wù)的。

      三、學(xué)習(xí)環(huán)境選擇與學(xué)習(xí)資源設(shè)計

      1.學(xué)習(xí)環(huán)境選擇(打√)

      (1)Web教室(√)(2)局域網(wǎng)(3)城域網(wǎng)(4)校園網(wǎng)(√)(5)Internet(√)

      (6)其它

      2、學(xué)習(xí)資源類型(打√)

      (1)課件(網(wǎng)絡(luò)課件)(√)(2)工具(3)專題學(xué)習(xí)網(wǎng)站(√)(4)多媒體資源庫

      (5)案例庫(6)題庫(7)網(wǎng)絡(luò)課程(8)其它

      3、學(xué)習(xí)資源內(nèi)容簡要說明

      (說明名稱、網(wǎng)址、主要內(nèi)容等)

      《圓錐曲線專題網(wǎng)站》:從自然與科技、定義與應(yīng)用、性質(zhì)與實踐和創(chuàng)新與未來四個方面圍繞圓錐曲線進(jìn)行探討與研究。(IP:192.168.3.134)

      用Flash5、幾何畫板和Authorware6制作可操作且具有交互性的網(wǎng)絡(luò)課件放在專題網(wǎng)站里。

      四、學(xué)習(xí)情境創(chuàng)設(shè)

      1、學(xué)習(xí)情境類型(打√)

      (1)真實性情境(√)(2)問題性情境(√)

      (3)虛擬性情境(√)(4)其它

      2、學(xué)習(xí)情境設(shè)計

      真實性情境:用Flash5制作的一系列教學(xué)軟件。用幾何畫板制作的《圓錐曲線的統(tǒng)一定義》的教學(xué)軟件。

      問題性情境:圓錐曲線的截取方法、圓錐曲線的各種定義、典型例題。

      虛擬性情境:Authorware6制作的《圓錐曲線的截取》,模擬曲線截取。

      五、學(xué)習(xí)活動的組織

      1、自主學(xué)習(xí)設(shè)計(打√并填寫相關(guān)內(nèi)容)

      (1)拋錨式

      (2)支架式(√)相應(yīng)內(nèi)容:圓錐曲線的第一定義和統(tǒng)一定義。

      使用資源:數(shù)學(xué)教材、專題網(wǎng)站及專題網(wǎng)站下的多媒體教學(xué)軟件。

      學(xué)生活動:分析、操作、協(xié)作討論、總結(jié)、提交結(jié)論。

      教師活動:問題的提出。學(xué)習(xí)資源獲取路徑的指導(dǎo)。問題解答和咨詢。

      (3)隨機進(jìn)入式(√)相應(yīng)內(nèi)容:圓錐曲線定義的典型應(yīng)用。

      使用資源:軌跡問題、最值問題、其它問題三種典型例題以及各個題目的動畫演示和答案。

      學(xué)生活動:根據(jù)自身情況選題、分析題目、協(xié)作討論、解答題目。

      教師活動:講解例題,總結(jié)點評學(xué)生做題過程中的問題。

      (4)其它

      2、協(xié)作學(xué)習(xí)設(shè)計(打√并填寫相關(guān)內(nèi)容)

      (1)競爭

      (2)伙伴(√)

      相應(yīng)內(nèi)容:圓錐曲線的第一定義和統(tǒng)一定義

      使用資源:數(shù)學(xué)教材、專題網(wǎng)站及專題網(wǎng)站下的多媒體教學(xué)軟件。

      分組情況:每組三人

      學(xué)生活動:學(xué)生之間對圓錐曲線的定義展開討論,從而達(dá)到對定義的理解和掌握。

      教師活動:問題的提出。學(xué)習(xí)資源獲取路徑的指導(dǎo)。問題解答和咨詢。

      (3)協(xié)同(√)

      相應(yīng)內(nèi)容:圓錐曲線定義的典型應(yīng)用。

      使用資源:軌跡問題、最值問題、其它問題三種典型例題以及各個題目的動畫演示和答案。

      分組情況:每組三人。

      學(xué)生活動:通過協(xié)作討論區(qū),同學(xué)之間互相配合、互相幫助、各種觀點互相補充。

      教師活動:總結(jié)點評學(xué)生做題過程中的問題。

      (4)辯論

      (5)角色扮演

      (6)其它

      4、教學(xué)結(jié)構(gòu)流程的設(shè)計

      六、學(xué)習(xí)評價設(shè)計

      1、測試形式與工具(打√)

      (1)堂上提問(√)(2)書面練習(xí)(3)達(dá)標(biāo)測試(4)學(xué)生自主網(wǎng)上測試(√)(5)合作完成作品(6)其它

      2、測試內(nèi)容

      教師堂上提問:圓錐曲線的定義、學(xué)生提交的結(jié)論的完整性、學(xué)生協(xié)作討論時的疑問、例題講解過程中問題,課堂總結(jié)。

      學(xué)生自主網(wǎng)上測試:解決軌跡問題、最值問題、其它問題三種典型題目。

      (附)圓錐曲線專題網(wǎng)站設(shè)計分析

      (1)設(shè)計思路

      (A)給學(xué)生操作與實踐的機會:在每一環(huán)節(jié)中建設(shè)一個可供學(xué)生操作的實驗平臺。

      (B)突出教學(xué)中“主導(dǎo)和主體”的作用:在每一環(huán)節(jié)中建設(shè)一個可供師生交流的平臺。

      (C)突出知識的再創(chuàng)新過程和知識的延伸:如圓錐曲線的作法和知識的創(chuàng)新與應(yīng)用。

      (D)強調(diào)教學(xué)軟件的交互性:如在題目中給出提示的動畫過程和解答過程。

      (E)突出和各學(xué)科的聯(lián)系:如斜拋運動和行星運動等等。

      (F)強調(diào)分層次的教學(xué):

      如在知識應(yīng)用中的配置不同層次的例題和練習(xí):

      (2)網(wǎng)站導(dǎo)航圖

      高中數(shù)學(xué)教學(xué)設(shè)計9

      一、教學(xué)內(nèi)容分析:

      本節(jié)教材選自人教a版數(shù)學(xué)必修②第二章第一節(jié)課,本節(jié)內(nèi)容在立幾學(xué)習(xí)中起著承上啟下的作用,具有重要的意義與地位。本節(jié)課是在前面已學(xué)空間點、線、面位置關(guān)系的基礎(chǔ)作為學(xué)習(xí)的出發(fā)點,結(jié)合有關(guān)的實物模型,通過直觀感知、操作確認(rèn)(合情推理,不要求證明)歸納出直線與平面平行的判定定理。本節(jié)課的學(xué)習(xí)對培養(yǎng)學(xué)生空間感與邏輯推理能力起到重要作用,特別是對線線平行、面面平行的判定的學(xué)習(xí)作用重大。

      二、學(xué)生學(xué)習(xí)情況分析:

      任教的學(xué)生在年段屬中上程度,學(xué)生學(xué)習(xí)興趣較高,但學(xué)習(xí)立幾所具備的語言表達(dá)及空間感與空間想象能力相對不足,學(xué)習(xí)方面有一定困難。

      三、設(shè)計思想

      本節(jié)課的設(shè)計遵循從具體到抽象的原則,適當(dāng)運用多媒體輔助教學(xué)手段,借助實物模型,通過直觀感知,操作確認(rèn),合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機結(jié)合,讓學(xué)生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數(shù)學(xué)的概念,領(lǐng)會數(shù)學(xué)的思想方法,養(yǎng)成積極主動、勇于探索、自主學(xué)習(xí)的學(xué)習(xí)方式,發(fā)展學(xué)生的空間觀念和空間想象力,提高學(xué)生的數(shù)學(xué)邏輯思維能力。

      四、教學(xué)目標(biāo)

      通過直觀感知——觀察——操作確認(rèn)的認(rèn)識方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準(zhǔn)確使用數(shù)學(xué)符號語言、文字語言表述判定定理。培養(yǎng)學(xué)生觀察、探究、發(fā)現(xiàn)的能力和空間想象能力、邏輯思維能力。讓學(xué)生在觀察、探究、發(fā)現(xiàn)中學(xué)習(xí),在自主合作、交流中學(xué)習(xí),體驗學(xué)習(xí)的樂趣,增強自信心,樹立積極的學(xué)習(xí)態(tài)度,提高學(xué)習(xí)的自我效能感。

      五、教學(xué)重點與難點

      重點是判定定理的引入與理解,難點是判定定理的應(yīng)用及立幾空間感、空間觀念的形成與邏輯思維能力的培養(yǎng)。

      六、教學(xué)過程設(shè)計

      (一)知識準(zhǔn)備、新課引入

      提問1:根據(jù)公共點的情況,空間中直線a和平面?有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示) a??

      提問2:根據(jù)直線與平面平行的定義(沒有公共點)來判定直線與平面平行你認(rèn)為方便嗎?談?wù)勀愕目捶ǎ⒅赋鍪欠裼袆e的判定途徑。

      [設(shè)計意圖:通過提問,學(xué)生復(fù)習(xí)并歸納空間直線與平面位置關(guān)系引入本節(jié)課題,并為探尋直線與平面平行判定定理作好準(zhǔn)備。]

      (二)判定定理的探求過程

      1、直觀感知

      提問:根據(jù)同學(xué)們?nèi)粘I畹挠^察,你們能感知到并舉出直線與平面平行的具體事例嗎?

      生1:例舉日光燈與天花板,樹立的電線桿與墻面。

      生2:門轉(zhuǎn)動到離開門框的任何位置時,門的邊緣線始終與門框所在的平面平行(由學(xué)生到教室門前作演示),然后教師用多媒體動畫演示。

      [學(xué)情預(yù)設(shè):此處的預(yù)設(shè)與生成應(yīng)當(dāng)是很自然的,但老師要預(yù)見到可能出現(xiàn)的情況如電線桿與墻面可能共面的情形及門要離開門框的位置等情形。]

      2、動手實踐

      教師取出預(yù)先準(zhǔn)備好的直角梯形泡沫板演示:當(dāng)把互相平行的一邊放在講臺桌面上并轉(zhuǎn)動,觀察另一邊與桌面的位置給人以平行的感覺,而當(dāng)把直角腰放在桌面上并轉(zhuǎn)動,觀察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會感覺到老師(視為線)與四周墻面平行,如老師向前或后傾斜則感覺老師(視為線)與左、右墻面平行,如老師向左、右傾斜,則感覺老師(視為線)與前、后墻面平行(老師也可用事先準(zhǔn)備的木條放在講臺桌上作上述情形的演示)。

      [設(shè)計意圖:設(shè)置這樣動手實踐的情境,是為了讓學(xué)生更清楚地看到線面平行與否的關(guān)鍵因素是什么,使學(xué)生學(xué)在情境中,思在情理中,感悟在內(nèi)心中,學(xué)自己身邊的數(shù)學(xué),領(lǐng)悟空間觀念與空間圖形性質(zhì)。]

      3、探究思考

      (1)上述演示的直線與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過觀察感知發(fā)現(xiàn)直線與平面平行,關(guān)鍵是三個要素:①平面外一條線②我們把直線與平面相交或平行的位置關(guān)系統(tǒng)稱為直線在平面外,用符號表示為平面內(nèi)一條直線③這兩條直線平行

      (2)如果平面外的直線a與平面?內(nèi)的一條直線b平行,那么直線a與平面?平行嗎?

      4、歸納確認(rèn):(多媒體幻燈片演示)

      直線和平面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線和這個平面平行。

      簡單概括:(內(nèi)外)線線平行?線面平行a符號表示:ba||? a||b??

      溫馨提示:

      作用:判定或證明線面平行。

      關(guān)鍵:在平面內(nèi)找(或作)出一條直線與面外的直線平行。

      思想:空間問題轉(zhuǎn)化為平面問題

      (三)定理運用,問題探究(多媒體幻燈片演示)

      1、想一想:

      (1)判斷下列命題的真假?說明理由:

      ①如果一條直線不在平面內(nèi),則這條直線就與平面平行

      ②過直線外一點可以作無數(shù)個平面與這條直線平行( )

      ③一直線上有二個點到平面的距離相等,則這條直線與平面平行( )

      (2)若直線a與平面?內(nèi)無數(shù)條直線平行,則a與?的位置關(guān)系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [學(xué)情預(yù)設(shè):設(shè)計這組問題目的是強調(diào)定理中三個條件的重要性,同時預(yù)設(shè)(1)中的③學(xué)生可能認(rèn)為正確的,這樣就無法達(dá)到老師的預(yù)設(shè)與生成的目的,這時教師要引導(dǎo)學(xué)生思考,讓學(xué)生想象的空間更廣闊些。此外教師可用預(yù)先準(zhǔn)備好的羊毛針與泡沫板進(jìn)行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學(xué)生空間想象力強,能按老師的要求生成正確的結(jié)果則就由個別學(xué)生進(jìn)行演示。]

      2、作一作:

      設(shè)a、b是二異面直線,則過a、b外一點p且與a、b都平行的平面存在嗎?若存在請畫出平面,不存在說明理由?

      先由學(xué)生討論交流,教師提問,然后教師總結(jié),并用準(zhǔn)備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動畫過程。

      [設(shè)計意圖:這是一道動手操作的問題,不僅是為了拓展加深對定理的認(rèn)識,更重要的是培養(yǎng)學(xué)生空間感與思維的嚴(yán)謹(jǐn)性。]

      3、證一證:

      例1(見課本60頁例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點,求證:ef ||平面bcd。

      變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點,連結(jié)ef、fg、gh、he、ac、bd請分別找出圖中滿足線面平行位置關(guān)系的所有情況。(共6組線面平行)變式二:在變式一的圖中如作pq?ef,使p點在線段ae上、q點在線段fc上,連結(jié)ph、qg,并繼續(xù)探究圖中所具有的線面平行位置關(guān)系?(在變式一的基礎(chǔ)上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。

      [設(shè)計意圖:設(shè)計二個變式訓(xùn)練,目的是通過問題探究、討論,思辨,及時鞏固定理,運用定理,培養(yǎng)學(xué)生的識圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點,求證:ef ||平面bdd1b1分析:根據(jù)判定定理必須在平

      面bdd1b1內(nèi)找(作)一條線與ef平行,聯(lián)想到中點問題找中點解決的方法,可以取bd或b1d1中點而證之。

      思路一:取bd中點g連d1g、eg,可證d1gef為平行四邊形。

      思路二:取d1b1中點h連hb、hf,可證hfeb為平行四邊形。

      [知識鏈接:根據(jù)空間問題平面化的思想,因此把找空間平行直線問題轉(zhuǎn)化為找平行四邊形或三角形中位線問題,這樣就自然想到了找中點。平行問題找中點解決是個好途徑好方法。這種思想方法是解決立幾論證平行問題,培養(yǎng)邏輯思維能力的重要思想方法]

      4、練一練:

      練習(xí)1:見課本6頁練習(xí)1、2

      練習(xí)2:將兩個全等的正方形abcd和abef拼在一起,設(shè)m、n分別為ac、bf中點,求證:mn ||平面bce。

      變式:若將練習(xí)2中m、n改為ac、bf分點且am = fn,試問結(jié)論仍成立嗎?試證之。

      [設(shè)計意圖:設(shè)計這組練習(xí),目的是為了鞏固與深化定理的運用,特別是通過練習(xí)2及其變式的訓(xùn)練,讓學(xué)生能在復(fù)雜的圖形中去識圖,去尋找分析問題、解決問題的途徑與方法,以達(dá)到逐步培養(yǎng)空間感與邏輯思維能力。]

      (四)總結(jié)

      先由學(xué)生口頭總結(jié),然后教師歸納總結(jié)(由多媒體幻燈片展示):

      1、線面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線與這個平面平行。

      2、定理的符號表示:ba||? a||b??簡述:(內(nèi)外)線線平行則線面平行

      3、定理運用的關(guān)鍵是找(作)面內(nèi)的線與面外的線平行,途徑有:取中點利用平行四邊形或三角形中位線性質(zhì)等。

      七、教學(xué)反思

      本節(jié)“直線與平面平行的判定”是學(xué)生學(xué)習(xí)空間位置關(guān)系的判定與性質(zhì)的第一節(jié)課,也是學(xué)生開始學(xué)習(xí)立幾演澤推理論述的思維方式方法,因此本節(jié)課學(xué)習(xí)對發(fā)展學(xué)生的空間觀念和邏輯思維能力是非常重要的。

      本節(jié)課的設(shè)計遵循“直觀感知——操作確認(rèn)——思辯論證”的認(rèn)識過程,注重引導(dǎo)學(xué)生通過觀察、操作交流、討論、有條理的思考和推理等活動,從多角度認(rèn)識直線和平面平行的判定方法,讓學(xué)生通過自主探索、合作交流,進(jìn)一步認(rèn)識和掌握空間圖形的性質(zhì),積累數(shù)學(xué)活動的經(jīng)驗,發(fā)展合情推理、發(fā)展空間觀念與推理能力。

      本節(jié)課的設(shè)計注重訓(xùn)練學(xué)生準(zhǔn)確表達(dá)數(shù)學(xué)符號語言、文字語言及圖形語言,加強各種語言的互譯。比如上課開始時的復(fù)習(xí)引入,讓學(xué)生用三種語言的表達(dá),動手實踐、定理探求過程以及定理描述也注重三種語言的表達(dá),對例題的講解與分析也注意指導(dǎo)學(xué)生三種語言的表達(dá)。

      本節(jié)課對定理的探求與認(rèn)識過程的設(shè)計始終貫徹直觀在先,感知在先,學(xué)自己身邊的數(shù)學(xué),感知生活中包涵的數(shù)學(xué)現(xiàn)象與數(shù)學(xué)原理,體驗數(shù)學(xué)即生活的道理,比如讓學(xué)生舉生活中能感知線面平行的例子,學(xué)生會舉出日光燈與天花板,電線桿與墻面,轉(zhuǎn)動的門等等,同時老師的舉例也很貼進(jìn)生活,如老師直立時與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導(dǎo)學(xué)生從中抽象概括出定理。

      高中數(shù)學(xué)教學(xué)設(shè)計10

      教學(xué)準(zhǔn)備

      教學(xué)目標(biāo)

      掌握三角函數(shù)模型應(yīng)用基本步驟:

      (1)根據(jù)圖象建立解析式;

      (2)根據(jù)解析式作出圖象;

      (3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。

      教學(xué)重難點

      利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。

      教學(xué)過程

      一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題

      3、一根為Lcm的線,一端固定,另一端懸掛一個小球,組成一個單擺,小球擺動時,離開平衡位置的位移s(單位:cm)與時間t(單位:s)的函數(shù)關(guān)系是

      (1)求小球擺動的周期和頻率;(2)已知g=24500px/s2,要使小球擺動的周期恰好是1秒,線的長度l應(yīng)當(dāng)是多少?

      (1)選用一個函數(shù)來近似描述這個港口的水深與時間的函數(shù)關(guān)系,并給出整點時的水深的近似數(shù)值

      (精確到0.001)。

      (2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規(guī)定至少要有1.5米的安全間隙(船底與洋底的距離),該船何時能進(jìn)入港口?在港口能呆多久?

      (3)若某船的吃水深度為4米,安全間隙為1.5米,該船在2:00開始卸貨,吃水深度以每小時0.3

      米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

      本題的解答中,給出貨船的進(jìn)、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。

      練習(xí):教材P65面3題

      三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:

      (1)根據(jù)圖象建立解析式;

      (2)根據(jù)解析式作出圖象;

      (3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。

      2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。

      四、作業(yè)《習(xí)案》作業(yè)十四及十五。

      高中數(shù)學(xué)教學(xué)設(shè)計11

      函數(shù)的奇偶性是函數(shù)的重要性質(zhì),是對函數(shù)概念的深化。它把自變量取相反數(shù)時函數(shù)值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關(guān)于y軸對稱,奇函數(shù)的圖像關(guān)于坐標(biāo)原點成中心對稱。這樣,就從數(shù)、形兩個角度對函數(shù)的奇偶性進(jìn)行了定量和定性的分析。

      教材首先通過對具體函數(shù)的圖像及函數(shù)值對應(yīng)表歸納和抽象,概括出了函數(shù)奇偶性的準(zhǔn)確定義。然后,為深化對概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實例。最后,為加強前后聯(lián)系,從各個角度研究函數(shù)的性質(zhì),講清了奇偶性和單調(diào)性的聯(lián)系。這節(jié)課的重點是函數(shù)奇偶性的定義,難點是根據(jù)定義判斷函數(shù)的奇偶性。

      教學(xué)目標(biāo)

      1、通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象的概括能力。

      2、理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡單函數(shù)的奇偶性。

      3、在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗數(shù)學(xué)既是抽象的又是具體的。

      任務(wù)分析

      這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù) ,k≠0,二次函數(shù)y=ax,a≠0,故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,以便于學(xué)生理解。在引入概念時始終結(jié)合具體函數(shù)的圖像,以增加直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時為闡述奇、偶函數(shù)的幾何特征埋下了伏筆。

      對于概念可從代數(shù)特征與幾何特征兩個角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點對稱的非空數(shù)集;對于在有定義的奇函數(shù)y=fx,一定有f0=0既是奇函數(shù),又是偶函數(shù)的函數(shù)有fx=0,x∈R在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù)。關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想效果。

      教學(xué)設(shè)計

      一、問題情景

      1、觀察如下兩圖,思考并討論以下問題:

      (1)這兩個函數(shù)圖像有什么共同特征?

      (2)相應(yīng)的兩個函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的?

      可以看到兩個函數(shù)的圖像都關(guān)于y軸對稱。

      從函數(shù)值對應(yīng)表可以看到,當(dāng)自變量x取一對相反數(shù)時,相應(yīng)的兩個函數(shù)值相同。

      對于函數(shù)fx=x,有f3=9=f3,f2=4=f2,f1=1=f1。事實上,對于R內(nèi)任意的一個x,都有fx=x2=x2=fx。此時,稱函數(shù)y=x2為偶函數(shù)。

      2、觀察函數(shù)fx=x和fx= 的圖像,并完成下面的兩個函數(shù)值對應(yīng)表,然后說出這兩個函數(shù)有什么共同特征。

      可以看到兩個函數(shù)的圖像都關(guān)于原點對稱。函數(shù)圖像的這個特征,反映在解析式上就是:當(dāng)自變量x取一對相反數(shù)時,相應(yīng)的函數(shù)值fx也是一對相反數(shù),即對任一x∈R都有fx=fx。此時,稱函數(shù)y=fx為奇函數(shù)。

      二、建立模型

      由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義

      1奇、偶函數(shù)的定義

      如果對于函數(shù)fx的定義域內(nèi)任意一個x,都有fx=fx,那么函數(shù)fx就叫作奇函數(shù)。如果對于函數(shù)fx的定義域內(nèi)任意一個x,都有fx=fx,那么函數(shù)fx就叫作偶函數(shù)。

      2、提出問題,組織學(xué)生討論

      (1)如果定義在R上的函數(shù)fx滿足f2=f2,那么fx是偶函數(shù)嗎? fx不一定是偶函數(shù)

      (2)奇、偶函數(shù)的圖像有什么特征?

      (奇、偶函數(shù)的圖像分別關(guān)于原點、y軸對稱)

      3奇、偶函數(shù)的定義域有什么特征? (奇、偶函數(shù)的定義域關(guān)于原點對稱)

      三、解釋應(yīng)用

      [例 題]

      1、判斷下列函數(shù)的奇偶性。

      注:①規(guī)范解題格式;

      ②對于5要注意定義域x∈1,1]。

      2、已知:定義在R上的函數(shù)fx是奇函數(shù),當(dāng)x>0時,fx=x1+x,求fx的表達(dá)式。

      解:1任取x<0,則x>0,∴fx=x1x,

      而fx是奇函數(shù),∴fx=fx。∴fx=x1x。

      (2)當(dāng)x=0時,f0=f0,∴f0=f0,故f0=0

      3、已知:函數(shù)f(x是偶函數(shù),且在∞,0上是減函數(shù),判斷fx在0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結(jié)論。

      解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對稱,猜想f(x在0,+∞)上是增函數(shù),

      證明如下:

      任取x1>x2>0,則x1

      ∵fx在∞,0上是減函數(shù),∴fx1>fx2。 又fx是偶函數(shù),∴fx1>fx2。

      ∴f(x在0,+∞)上是增函數(shù)。

      思考:奇函數(shù)或偶函數(shù)在關(guān)于原點對稱的兩個區(qū)間上的單調(diào)性有何關(guān)系?

      [練習(xí)]

      1、已知:函數(shù)fx是奇函數(shù),在[a,b]上是增函數(shù)b>a>0,問fx在[b,a]上的單調(diào)性如何。

      2fx=x3|x|的大致圖像可能是

      3、函數(shù)fx=ax2+bx+c,a,b,c∈R,當(dāng)a,b,c滿足什么條件時,1函數(shù)fx是偶函數(shù)。2函數(shù)fx是奇函數(shù)。 4設(shè)fx,gx分別是R上的奇函數(shù)和偶函數(shù),并且fx+gx=xx+1,求fx,gx的解析式。

      四、拓展延伸

      1、有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個? 2設(shè)fx,gx分別是R上的奇函數(shù),偶函數(shù),試研究: 1Fx=fx·gx的奇偶性。 2Gx=|fx|+gx的奇偶性。

      3、已知a∈R,fx=a ,試確定a的值,使fx是奇函數(shù)。

      4、一個定義在R上的函數(shù),是否都可以表示為一個奇函數(shù)與一個偶函數(shù)的和的形式?

      高中數(shù)學(xué)教學(xué)設(shè)計12

      教學(xué)目標(biāo):

      1、了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系。

      2、會求一些簡單函數(shù)的反函數(shù)。

      3、在嘗試、探索求反函數(shù)的過程中,深化對概念的認(rèn)識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識。

      4、進(jìn)一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力。

      教學(xué)重點:

      求反函數(shù)的方法。

      教學(xué)難點:

      反函數(shù)的概念。

      教學(xué)過程:

      一、創(chuàng)設(shè)情境,引入新課

      1、復(fù)習(xí)提問

      ①函數(shù)的概念

      ②y=f(x)中各變量的意義

      2、同學(xué)們在物理課學(xué)過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù)。在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容。

      3、板書課題

      由實際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo)。這樣既可以撥去“反函數(shù)”這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性。

      二、實例分析,組織探究

      1、問題組一:

      (用投影給出函數(shù)與;與的圖象)

      (1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱。是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)

      (2)由,已知y能否求x?

      (3)是否是一個函數(shù)?它與有何關(guān)系?

      (4)與有何聯(lián)系?

      2、問題組二:

      (1)函數(shù)y=2x1(x是自變量)與函數(shù)x=2y1(y是自變量)是否是同一函數(shù)?

      (2)函數(shù)(x是自變量)與函數(shù)x=2y1(y是自變量)是否是同一函數(shù)?

      (3)函數(shù)()的定義域與函數(shù)()的值域有什么關(guān)系?

      3、滲透反函數(shù)的概念。

      (教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

      從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點,有利于培養(yǎng)學(xué)生抽象、概括的能力。

      通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在“最近發(fā)展區(qū)”設(shè)計問題,使學(xué)生對反函數(shù)有一個直觀的粗略印象,為進(jìn)一步抽象反函數(shù)的概念奠定基礎(chǔ)。

      三、師生互動,歸納定義

      1、(根據(jù)上述實例,教師與學(xué)生共同歸納出反函數(shù)的定義)

      函數(shù)y=f(x)(x∈A)中,設(shè)它的值域為C。我們根據(jù)這個函數(shù)中x,y的關(guān)系,用y把x表示出來,得到x=j(y)。如果對于y在C中的任何一個值,通過x=j(y),x在A中都有的值和它對應(yīng),那么,x=j(y)就表示y是自變量,x是自變量y的函數(shù)。這樣的函數(shù)x=j(y)(y∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù)。記作:??紤]到“用x表示自變量,y表示函數(shù)”的習(xí)慣,將中的x與y對調(diào)寫成。

      2、引導(dǎo)分析:

      1)反函數(shù)也是函數(shù);

      2)對應(yīng)法則為互逆運算;

      3)定義中的“如果”意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

      4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

      5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

      6)要理解好符號f;

      7)交換變量x、y的原因。

      3、兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系

      (原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

      4、函數(shù)與其反函數(shù)的關(guān)系

      函數(shù)y=f(x)

      函數(shù)

      定義域

      A

      C

      值域

      C

      A

      四、應(yīng)用解題,總結(jié)步驟

      1、(投影例題)

      【例1】求下列函數(shù)的反函數(shù)

      (1)y=3x—1(2)y=x1

      【例2】求函數(shù)的反函數(shù)。

      (教師板書例題過程后,由學(xué)生總結(jié)求反函數(shù)步驟。)

      2、總結(jié)求函數(shù)反函數(shù)的步驟:

      1°由y=f(x)反解出x=f(y)。

      2°把x=f(y)中x與y互換得。

      3°寫出反函數(shù)的定義域。

      (簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】

      (1)有沒有反函數(shù)?

      (2)的反函數(shù)是________。

      (3)(x<0)的反函數(shù)是__________。

      在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對性地體會定義的特點,進(jìn)而對定義有更深刻的認(rèn)識,與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會反函數(shù)。在剖析定義的過程中,讓學(xué)生體會函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對數(shù)學(xué)的符號語言有更好的把握。

      通過動畫演示,表格對照,使學(xué)生對反函數(shù)定義從感性認(rèn)識上升到理性認(rèn)識,從而消化理解。

      通過對具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力。

      題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進(jìn)。并體現(xiàn)了對定義的反思理解。學(xué)生思考練習(xí),師生共同分析糾正。

      五、鞏固強化,評價反饋

      1、已知函數(shù)y=f(x)存在反函數(shù),求它的反函數(shù)y=f(x)

      (1)y=—2x3(xR)(2)y=—(xR,且x)

      (3)y=(xR,且x)

      2、已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值。

      五、反思小結(jié),再度設(shè)疑

      本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟。互為反函數(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究。

      (讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會,教師適時點撥)

      進(jìn)一步強化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學(xué)生對知識的掌握情況,評價學(xué)生對學(xué)習(xí)目標(biāo)的落實程度。具體實踐中可采取同學(xué)板演、分組競賽等多種形式調(diào)動學(xué)生的積極性?!皢栴}是數(shù)學(xué)的心臟”學(xué)生帶著問題走進(jìn)課堂又帶著新的問題走出課堂。

      六、作業(yè)

      習(xí)題2.4第1題,第2題

      進(jìn)一步鞏固所學(xué)的知識。

      高中數(shù)學(xué)教學(xué)設(shè)計13

      學(xué)習(xí)目標(biāo)

      明確排列與組合的聯(lián)系與區(qū)別,能判斷一個問題是排列問題還是組合問題;能運用所學(xué)的排列組合知識,正確地解決的實際問題.

      學(xué)習(xí)過程

      一、學(xué)前準(zhǔn)備

      復(fù)習(xí):

      1.(課本P28A13)填空:

      (1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是 ;

      (2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是 ;

      (3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是 ;

      (4)集合A有個 元素,集合B有 個元素,從兩個集合中各取1個元素,不同方法的種數(shù)是 ;

      二、新課導(dǎo)學(xué)

      ◆探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處)

      問題1:判斷下列問題哪個是排列問題,哪個是組合問題:

      (1)從4個風(fēng)景點中選出2個安排游覽,有多少種不同的方法?

      (2)從4個風(fēng)景點中選出2個,并確定這2個風(fēng)景點的游覽順序,有多少種不同的方法?

      ◆應(yīng)用示例

      例1.從10個不同的文藝節(jié)目中選6個編成一個節(jié)目單,如果某女演員的獨唱節(jié)目一定不能排在第二個節(jié)目的位置上,則共有多少種不同的排法?

      例2.7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù).

      (1) 甲站在中間;

      (2)甲、乙必須相鄰;

      (3)甲在乙的左邊(但不一定相鄰);

      (4)甲、乙必須相鄰,且丙不能站在排頭和排尾;

      (5)甲、乙、丙相鄰;

      (6)甲、乙不相鄰;

      (7)甲、乙、丙兩兩不相鄰。

      ◆反饋練習(xí)

      1. (課本P40A4)某學(xué)生邀請10位同學(xué)中的6位參加一項活動,其中兩位同學(xué)要么都請,要么都不請,共有多少種邀請方法?

      2.5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列

      3.馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種.

      當(dāng)堂檢測

      1.某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目.如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( )

      A.42 B.30 C.20 D.12

      2.(課本P40A7)書架上有4本不同的數(shù)學(xué)書,5本不同的物理書,3本不同的化學(xué)書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?

      課后作業(yè)

      1.(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的數(shù),問:(1)能夠組成多少個六位奇數(shù)?(2)能夠組成多少個大于45的正整數(shù)?

      2.(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?

      高中數(shù)學(xué)教學(xué)設(shè)計14

      教學(xué)準(zhǔn)備

      教學(xué)目標(biāo)

      解三角形及應(yīng)用舉例

      教學(xué)重難點

      解三角形及應(yīng)用舉例

      教學(xué)過程

      一.基礎(chǔ)知識精講

      掌握三角形有關(guān)的定理

      利用正弦定理,可以解決以下兩類問題:

      (1)已知兩角和任一邊,求其他兩邊和一角;

      (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問題:

      (1)已知三邊,求三角;

      (2)已知兩邊和它們的夾角,求第三邊和其他兩角。

      掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題.

      二.問題討論

      思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.

      思維點撥::三角形中的三角變換,應(yīng)靈活運用正、余弦定理.在求值時,要利用三角函數(shù)的有關(guān)性質(zhì).

      例6:在某海濱城市附近海面有一臺風(fēng),據(jù)檢測,當(dāng)前臺風(fēng)中心位于城市O(如圖)的東偏南方向300 km的海面P處,并以20 km / h的速度向西偏北的方向移動,臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km,并以10 km / h的速度不斷增加,問幾小時后該城市開始受到臺風(fēng)的侵襲。

      一. 小結(jié):

      1.利用正弦定理,可以解決以下兩類問題:

      (1)已知兩角和任一邊,求其他兩邊和一角;

      (2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);

      2.利用余弦定理,可以解決以下兩類問題:

      (1)已知三邊,求三角;

      (2)已知兩邊和它們的夾角,求第三邊和其他兩角。

      3.邊角互化是解三角形問題常用的手段.

      三.作業(yè):P80闖關(guān)訓(xùn)練

      高中數(shù)學(xué)教學(xué)設(shè)計15

      教學(xué)目標(biāo):

      ①掌握對數(shù)函數(shù)的性質(zhì)。

      ②應(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值域及單調(diào)性。

      ③注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。

      教學(xué)重點與難點:

      對數(shù)函數(shù)的性質(zhì)的應(yīng)用。

      教學(xué)過程設(shè)計:

      ⒈復(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。

      ⒉開始正課

      1比較數(shù)的大小

      例1比較下列各組數(shù)的大小。

      ⑴loga5.1 ,loga5.9 (a>0,a≠1)

      ⑵log0.50.6 ,logЛ0.5 ,lnЛ

      師:請同學(xué)們觀察一下⑴中這兩個對數(shù)有何特征?

      生:這兩個對數(shù)底相等。

      師:那么對于兩個底相等的對數(shù)如何比大小?

      生:可構(gòu)造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。

      師:對,請敘述一下這道題的解題過程。

      生:對數(shù)函數(shù)的單調(diào)性取決于底的大?。寒?dāng)0調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時,函數(shù)y=logax單調(diào)遞增,所以loga5.1

      板書:

      解:Ⅰ)當(dāng)0

      ∵5.1<5.9 loga5.1=“”>loga5.9

      Ⅱ)當(dāng)a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù)

      ∵5.1<5.9 ∴l(xiāng)oga5.1

      師:請同學(xué)們觀察一下⑵中這三個對數(shù)有何特征?

      生:這三個對數(shù)底、真數(shù)都不相等。

      師:那么對于這三個對數(shù)如何比大小?

      生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

      log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

      板書:略。

      師:比較對數(shù)值的大小常用方法:

      ①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函數(shù)的單調(diào)性比大小;

      ②借用“中間量”間接比大??;

      ③利用對數(shù)函數(shù)圖象的位置關(guān)系來比大小。

      2函數(shù)的定義域,值域及單調(diào)性。

      第五篇:高中數(shù)學(xué)教學(xué)設(shè)計(范文)

      新課改下高中數(shù)學(xué)教學(xué)設(shè)計

      張星,薛永紅

      教學(xué)設(shè)計的優(yōu)劣對于提高教學(xué)質(zhì)量,培養(yǎng)學(xué)生思維,調(diào)動學(xué)生的積極性有著十分重要的意義。在實施高中數(shù)學(xué)新課改的今天,怎樣完成一個優(yōu)秀的教學(xué)設(shè)計呢?我們認(rèn)為應(yīng)該從以下幾個方面著手:

      一、教學(xué)設(shè)計應(yīng)有利于讓學(xué)生學(xué)會學(xué)習(xí),發(fā)揮學(xué)生的主體作用

      傳統(tǒng)的課堂設(shè)計,常常是“教師問,學(xué)生答,教師寫,學(xué)生記,教師考,學(xué)生背?!痹谶@樣教學(xué)下,學(xué)生機械被動地學(xué)習(xí),不能主動對話、溝通、交流。久而久之,他們學(xué)習(xí)數(shù)學(xué)的興趣會逐漸褪去。新課程標(biāo)準(zhǔn)要求教師必需轉(zhuǎn)變角色,尊重學(xué)生的主體性,以新的理念指導(dǎo)設(shè)計教學(xué)。在教學(xué)過程中,要根據(jù)不同學(xué)習(xí)內(nèi)容,使學(xué)習(xí)成為在教師指導(dǎo)下自動的、建構(gòu)過程。教師是教學(xué)過程的組織者和引導(dǎo)者,教師在設(shè)計教學(xué)目標(biāo),組織教學(xué)活動等方面,應(yīng)面向全體學(xué)生,突出學(xué)生的主體性,充分發(fā)揮學(xué)生的主觀能動性,讓學(xué)生自主參與探究問題。

      二、教學(xué)設(shè)計應(yīng)注重初高中知識的銜接問題

      初高中數(shù)學(xué)存在巨大差異,高中無論是知識的深度、難度和廣度,還是能力的要求,都有一次大飛躍。由于大部分學(xué)生不適應(yīng)這樣的變化,又沒有為此做好充分的準(zhǔn)備,仍然按照初中的思維模式和學(xué)習(xí)方法來學(xué)習(xí)高中數(shù)學(xué)知識,不能適應(yīng)高中的數(shù)學(xué)教學(xué),于是在學(xué)習(xí)能力有差異的情況下而出現(xiàn)了成績分化,學(xué)習(xí)情緒急降。作為教師應(yīng)特別關(guān)注此時的銜接,要充分了解學(xué)生在初中階段學(xué)了哪些內(nèi)容?要求到什么程度?哪些內(nèi)容在高中階段還要繼續(xù)學(xué)習(xí)等等,注意初高中數(shù)學(xué)學(xué)習(xí)方式的銜接,重視培養(yǎng)學(xué)生正確對待困難和挫折的良好心理素質(zhì),適應(yīng)性能力,重視知識形成過程的教學(xué),激發(fā)學(xué)生主動的學(xué)習(xí)動機,加強學(xué)法指導(dǎo),引導(dǎo)學(xué)生閱讀、歸納、總結(jié),提高學(xué)生的自學(xué)能力,善于思考、勇于鉆研的意識。

      三、教學(xué)設(shè)計應(yīng)考慮到學(xué)生當(dāng)前的知識水平

      我校學(xué)生,大部分是居于中等及以下的學(xué)生,基礎(chǔ)知識、基本技能、基本數(shù)學(xué)思想方法差,思維能力、運算能力較低,空間想象能力以及實踐和創(chuàng)新意識能力更無須談?wù)f。因此數(shù)學(xué)學(xué)習(xí)還處在比較被動的狀態(tài),存在問題較多,主要表現(xiàn)在:

      1、學(xué)習(xí)懶散,不肯動腦;

      2、不訂計劃,慣性運轉(zhuǎn);

      3、忽視預(yù)習(xí),坐等上課,寄希望老師講解整個解題過程,依賴性較強,缺乏學(xué)習(xí)的積極性和主動性;

      4、不會聽課,如像個速記員,邊聽邊記,筆記是記了一大本,但問題也有一大堆;有的則一字不記,只顧聽講;有的學(xué)生只當(dāng)聽老師講故事時來精神等等;

      5、死記硬背,機械模仿,教師講的聽得懂,例題看得懂,就是書上的作業(yè)做不起;

      6、不懂不問,一知半解;

      7、不重基礎(chǔ)知識,基本方法,基本技能,而對那些偏、難、怪題感興趣,好高騖遠(yuǎn),影響基礎(chǔ)學(xué)習(xí);

      8、不重總結(jié),輕視復(fù)習(xí)。因此教師需多花時間了解學(xué)生具體情況、學(xué)習(xí)狀態(tài),對學(xué)生數(shù)學(xué)學(xué)習(xí)方法進(jìn)行指導(dǎo),力求做到轉(zhuǎn)變思想與傳授方法結(jié)合,課上與課下結(jié)合,學(xué)法與教法結(jié)合,統(tǒng)一指導(dǎo)與個別指導(dǎo)結(jié)合,促進(jìn)學(xué)生掌握正確的學(xué)習(xí)方法。只有憑借著良好的學(xué)習(xí)方法,才能達(dá)到“事半功倍”的學(xué)習(xí)效果。

      四、教學(xué)設(shè)計中教師應(yīng)以科學(xué)的眼光審視教材

      高中數(shù)學(xué)新課程是具有厚實的數(shù)學(xué)專業(yè)和教育教學(xué)理論與實踐水平的專家群體,經(jīng)過深思熟慮、系統(tǒng)地分析教學(xué)的情況和學(xué)生的實際來編寫的。很多內(nèi)容編排很好,我們應(yīng)該尊重教材,但我們不應(yīng)迷信教材,認(rèn)請教材的思路與意圖,理解教材中所蘊藏的知識、技能、情感與價值等層面上的內(nèi)涵,同時也應(yīng)該用批判的眼光去審視它,不迷信教材,在此基礎(chǔ)上,要挖掘和超越教材,做到既忠實教材,又不拘泥于教材,結(jié)合本校、本班學(xué)生的實際情況,創(chuàng)新出最適合自己所教學(xué)生的題目,啟發(fā)、誘導(dǎo)學(xué)生進(jìn)行深入的體驗和感悟,真正做到“走進(jìn)教材,又走出教材?!?/p>

      五、教學(xué)設(shè)計應(yīng)注重新課的導(dǎo)入與新知識的形成過程

      教師在授課過程中,應(yīng)適時、適度地引出新課題,創(chuàng)設(shè)出最佳的教學(xué)氣氛,引起學(xué)生對本課題的興趣。

      常用的課題導(dǎo)入的幾種類型有 1.創(chuàng)設(shè)生產(chǎn)生活化情境導(dǎo)入課題 2.講故事引入課題。

      3.設(shè)置懸念,以疑激趣引入課題

      4.在舊知識的基礎(chǔ)上發(fā)展成新知識再引入課題 5.由習(xí)題、試題引出來的研究性課題 6.通過類比發(fā)現(xiàn)新知識引入課題

      六、教學(xué)設(shè)計應(yīng)注重從學(xué)生的角度進(jìn)行教學(xué)反思

      教學(xué)行為的本質(zhì)在于使學(xué)生受益,教得好是為了促進(jìn)學(xué)得好。在講習(xí)題時,當(dāng)我們向?qū)W生介紹一些精巧奇妙的解法時,特別是一些奇思妙解時,學(xué)生表面上聽懂了,但當(dāng)他自己解題時卻茫然失措。我們教師在備課時把要講的問題設(shè)計的十分精巧,連板書都設(shè)計好了,表面上看天衣無縫,其實,任何人都會遭遇失敗,教師把自己思維過程中失敗的部分隱瞞了,最有意義,最有啟發(fā)的東西抽掉了,學(xué)生除了贊嘆我們教師的高超的解題能力以外,又有什么收獲呢?所以貝爾納說“構(gòu)成我們學(xué)習(xí)上最大障礙的是已知的東西,而不是未知的東西” 大數(shù)學(xué)家希爾伯特的老師富士在講課時就常把自己置于困境中,并再現(xiàn)自己從中走出來的過程,讓學(xué)生看到老師的真實思維過程是怎樣的。人的能力只有在逆境中才能得到最好的鍛煉。經(jīng)常去問問學(xué)生,對數(shù)學(xué)學(xué)習(xí)的感受,借助學(xué)生的眼睛看一看自己的教學(xué)行為,是促進(jìn)教學(xué)的必要手段。

      下載高中數(shù)學(xué)教學(xué)設(shè)計 (2000字)word格式文檔
      下載高中數(shù)學(xué)教學(xué)設(shè)計 (2000字).doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        高中數(shù)學(xué)教學(xué)設(shè)計

        高中數(shù)學(xué)教學(xué)設(shè)計 高中數(shù)學(xué)教學(xué)設(shè)計1 教學(xué)目標(biāo)(1)理解四種命題的概念;(2)理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式;(3)理解一個命題的真假與其他三個命題真假間的關(guān)系......

        高中數(shù)學(xué)教學(xué)設(shè)計(5篇)

        2011年陜西師范大學(xué)家教資格考試 教學(xué)設(shè)計 題目:《等差數(shù)列》教學(xué)設(shè)計 考生姓名:趙春麗 設(shè)計科目:數(shù)學(xué) 學(xué) 號: 41005211 專業(yè)班級:數(shù)學(xué)四班 高中數(shù)學(xué)教學(xué)設(shè)計 學(xué)科:數(shù)學(xué) 年級:高......

        高中數(shù)學(xué)教學(xué)設(shè)計反思(匯編)

        通過參加高中數(shù)學(xué)新課程的研修,您個人在教學(xué)研究上有什么考慮,打算做哪些方面的研究,從何處入手,預(yù)期的成果是什么? 新僑中學(xué)張家裕通過參加這次高中數(shù)學(xué)新課程的研修,我深有感觸,......

        高中數(shù)學(xué)排列組合教學(xué)設(shè)計

        高中數(shù)學(xué)《排列組合》教學(xué)設(shè)計 【教學(xué)目標(biāo)】 1.知識目標(biāo) (1)能夠熟練判斷所研究問題是否是排列或組合問題; (2)進(jìn)一步熟悉排列數(shù)、組合數(shù)公式的計算技能; (3)熟練應(yīng)用排列組合問題常......

        高中數(shù)學(xué)教學(xué)設(shè)計示例

        教學(xué)設(shè)計示例 加法原理和乘法原理 教學(xué)目標(biāo) 正確理解和掌握加法原理和乘法原理,并能準(zhǔn)確地應(yīng)用它們分析和解決一些簡單的問題,從而發(fā)展學(xué)生的思維能力,培養(yǎng)學(xué)生分析問題和解決......

        高中數(shù)學(xué)教學(xué)設(shè)計獲獎

        篇一:高中數(shù)學(xué)教學(xué)設(shè)計大賽獲獎作品匯編 對數(shù)函數(shù)及其性質(zhì)(1)一、 教材分析 本小節(jié)選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-數(shù)學(xué)必修(一)》(人教版)第二章基本初等函數(shù)(1)2.2.2對數(shù)函數(shù)......

        高中數(shù)學(xué)分層教學(xué)設(shè)計(大全)

        【中學(xué)數(shù)學(xué)教案】 高中數(shù)學(xué)分層教學(xué)教學(xué)設(shè)計 一 意義與價值 現(xiàn)代課程理論的觀點——教學(xué)設(shè)計是應(yīng)用系統(tǒng)方法對各種課程資源進(jìn)行有機整合,對教學(xué)過程中相互聯(lián)系的各部分作出科......

        高中數(shù)學(xué)教學(xué)設(shè)計大賽

        高中數(shù)學(xué)教學(xué)設(shè)計大賽 獲獎作品匯編 (上 部) 第 1 頁 共 75 頁 目 錄 1、集合與函數(shù)概念實習(xí)作業(yè)?????????????? 2、指數(shù)函數(shù)的圖象及其性質(zhì)????????......