第一篇:《多邊形的內(nèi)角和》教學(xué)設(shè)計與說明
多邊形的內(nèi)角和
[教學(xué)內(nèi)容]蘇教版四年級下冊第96頁~97頁探究多邊形內(nèi)角和計算規(guī)律。[教材簡析]
這部分內(nèi)容是一次探索規(guī)律的活動,主要引導(dǎo)學(xué)生通過觀察、操作、歸納、類比等具體活動,發(fā)現(xiàn)多邊形內(nèi)角和的計算方法。多邊形內(nèi)角和是在學(xué)生認識了三角形內(nèi)角和等于180°,了解多邊形基本特征的基礎(chǔ)上教學(xué)的。通過活動,使學(xué)生經(jīng)歷由特殊到一般的學(xué)習(xí)過程,發(fā)現(xiàn)多邊形內(nèi)角和和邊數(shù)之間的關(guān)系,獲得計算多邊形內(nèi)角和的一般方法,積累數(shù)學(xué)活動經(jīng)驗,感悟一些基本的數(shù)學(xué)思想的方法,體會三角形內(nèi)角和以及相關(guān)數(shù)學(xué)方法的價值,使學(xué)生經(jīng)歷發(fā)現(xiàn)數(shù)學(xué)規(guī)律的過程,積累數(shù)學(xué)活動經(jīng)驗,感悟轉(zhuǎn)化的數(shù)學(xué)思想。
[教學(xué)目標] 1.使學(xué)生經(jīng)歷提出問題、自主探索、觀察分析、歸納概括等活動,了解多邊形與它最少能分成三角形個數(shù)之間的關(guān)系,掌握多邊形的內(nèi)角和與邊數(shù)之間的關(guān)系,掌握多邊形的內(nèi)角和的計算方法,能正確計算多邊形的內(nèi)角和。
2.使學(xué)生經(jīng)歷分一分、算一算、比較歸納等探索、發(fā)現(xiàn)規(guī)律的過程,加深感受探索數(shù)學(xué)規(guī)律的一般方法,積累相應(yīng)的數(shù)學(xué)活動經(jīng)驗,提高解決問題的能力,進一步體會轉(zhuǎn)化思想,培養(yǎng)觀察、比較、歸納和概括等的思維能力,進一步發(fā)展空間觀念。
3.使學(xué)生主動參與探索規(guī)律的活動過程,進一步產(chǎn)生對數(shù)學(xué)的好奇心,感受數(shù)學(xué)活動的挑戰(zhàn)性和趣味性,增強學(xué)好數(shù)學(xué)的自信心。[教學(xué)重點]探索多邊形內(nèi)角和的規(guī)律。[教學(xué)難點]獲得規(guī)律探究的一般方法。[教學(xué)過程]
一、創(chuàng)設(shè)情境,提出問題
提問:三角形的內(nèi)角和是多少度?(PPT出示:三角形)
引導(dǎo):我們知道了三角形的內(nèi)角和是180°,那四邊形、五邊形、六邊形等多邊形的內(nèi)角和各是多少度呢?(ppt出示教材中的圖形)其中有沒有什么規(guī)律呢?這就是我們要研究的問題——多邊形的內(nèi)角和(板書課題)。我們就從邊數(shù)較少的簡單的圖形開始研究不同邊數(shù)的多邊形內(nèi)角和。
[設(shè)計說明:先回顧三角形的內(nèi)角和再提出探討四邊形、五邊形、六邊形等多邊形的內(nèi)角和,使得新課導(dǎo)入親切自然,使學(xué)生明確學(xué)習(xí)任務(wù),激發(fā)孩子學(xué)習(xí)的興趣。]
二、嘗試交流,探索規(guī)律 1.嘗試解決,形成方法。
引導(dǎo):我們怎樣能知道這個四邊形的內(nèi)角和?自己先想一想,再和同桌交流自己的方法。
交流:你是怎樣求這個四邊形的內(nèi)角和的? 交流,明確:
(1)可以量出每個角的度數(shù),再求和。(2)把四個角撕下拼一拼,拼成了一個周角。(3)分成兩個三角形,算出內(nèi)角和是360°.提問:比較不同的方法,哪種比較簡便?這是什么方法?
指出:把四邊形分成兩個三角形,利用三角形的內(nèi)角和是180°算出四邊形的內(nèi)角和。這種方法叫轉(zhuǎn)化,這樣的方法合理、簡單、方便。
引導(dǎo):想一想,你有什么好辦法解決五邊形、六邊形內(nèi)角和的問題呢?
[設(shè)計說明:鼓勵學(xué)生獨立思考,嘗試用自已方法探索四邊形的內(nèi)角和,再通過小組合作交流,比較,選擇合適的就解決問題的方法,體驗最優(yōu)化的數(shù)學(xué)思想。] 2.應(yīng)用方法,繼續(xù)探究。
(1)引導(dǎo):我們可以把五邊形、六邊形分成三角形再計算內(nèi)角和。請你任意畫一個五邊形和一個六邊形,想想怎樣分成三角形計算它們內(nèi)角和比較簡便。學(xué)生獨立操作,教師行間巡視、指導(dǎo)。
交流:你是怎樣分的?
引導(dǎo)比較,發(fā)現(xiàn)要從一點出發(fā)依次連接不同點分成三角形,才能比較簡便計算內(nèi)角和。
(2)引導(dǎo):用這樣的方法分一分,算一算五邊形和六邊形的內(nèi)角和各是多少度?
學(xué)生探索、計算,教師巡視。
交流:五邊形和六邊形各分成幾個三角形?內(nèi)角和各是多少度?(板書算式)填寫課本第97頁表格。3.合作交流,自主探索。
我們已經(jīng)知道了四邊形、五邊形、六邊形的內(nèi)角和。你覺得還可以用哪些多邊形來研究?
請同學(xué)們在方格紙中任意畫出一個多邊形,自己分一分、試一試。得出結(jié)果后,填寫在表格里。
學(xué)生自主探索,教師巡視、指導(dǎo)。交流分法和算法,教師依次板書填表。4.觀察發(fā)現(xiàn),歸納結(jié)論。
1.請大家觀察比較表格,比較多邊形的邊數(shù)和分成的三角形個數(shù),聯(lián)系計算多邊形內(nèi)角和的方法,看看你能不能有什么發(fā)現(xiàn),在小組里交流下。
交流,明確:
(1)分成三角形的個數(shù)比邊數(shù)少2。
(2)多邊形的內(nèi)角和等于分成三角形的個數(shù)乘180°。
引導(dǎo):你發(fā)現(xiàn)多邊形內(nèi)角和與邊數(shù)之間有什么規(guī)律?你能用一個式子表示多邊形內(nèi)角和的計算方法嗎?嘗試寫一寫。
交流:你是怎樣表示的?
小結(jié):多邊形的內(nèi)角和=(邊數(shù)-2)×180°
如果用字母n表示多邊形的邊數(shù),用字母A表示多邊形內(nèi)角和,這個十式子可以怎樣寫?(A=(n-2)×180°)
2.提問:你能很快說出十二邊形的內(nèi)角和嗎?二十邊形呢? 學(xué)生嘗試列式計算。
交流:你是怎樣想的?
三、回顧總結(jié),交流體會
1.談話:我們是怎樣探索和發(fā)現(xiàn)多邊形內(nèi)角和規(guī)律的?在探索過程中,你有那些體會?和同桌說一說。
交流,明確:
(1)多邊形的內(nèi)角和可以根據(jù)三角形的內(nèi)角和推算出來的。(2)從簡單的問題想起、有序思考,是探索規(guī)律的有效方法。(3)可以把新問題轉(zhuǎn)化成能夠解決的問題。
2.拓展延伸:一個多邊形的內(nèi)角和是1800°,它是幾邊形呢?
[設(shè)計說明:讓學(xué)生回顧探索和發(fā)現(xiàn)多邊形的內(nèi)角和規(guī)律的過程,使學(xué)生體會探索規(guī)律的一般方法,啟迪學(xué)生的數(shù)學(xué)思維,提高學(xué)生分析問題和解決問題的能力。]
四、板書設(shè)計
多邊形的內(nèi)角和
從簡單的問題想起、有序思考。把新問題轉(zhuǎn)化成能夠解決的問題。多邊形內(nèi)角和=(邊數(shù)-2)×180°
第二篇:多邊形內(nèi)角和教學(xué)設(shè)計
《多邊形內(nèi)角和》教學(xué)設(shè)計
一、教學(xué)目標
1、知識目標
(1)使學(xué)生了解多邊形的有關(guān)概念。
(2)使學(xué)生掌握多邊形內(nèi)角和公式,并學(xué)會運用公式進行簡單的計算。
2、能力目標
(1)通過對“多邊形內(nèi)角和公式”的探究,培養(yǎng)學(xué)生分析問題、解決問題的能力,同時讓學(xué)生充分領(lǐng)會數(shù)學(xué)轉(zhuǎn)化思想。
(2)通過變式練習(xí),培養(yǎng)學(xué)生動手、動腦的實踐能力。
3、情感與態(tài)度目標
通過公式的猜想、歸納、推斷一系列過程,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,培養(yǎng)學(xué)生對學(xué)習(xí)數(shù)學(xué)勇于創(chuàng)新的精神。
二、教材分析
為了更好地突出重點、突破難點,圓滿地完成教學(xué)任務(wù),取得較好的教學(xué)效果。根據(jù)教材和學(xué)生的特點,本節(jié)課我采用了“觀察、點撥、發(fā)現(xiàn)、猜想”等探究式教學(xué)方式,在創(chuàng)設(shè)問題,新課引入等教學(xué)環(huán)節(jié)中,我提出問題,質(zhì)疑,引導(dǎo)學(xué)生觀察,分析、思考等。啟發(fā)、點撥下發(fā)現(xiàn)問題的方法。這種教學(xué)方法目的在讓學(xué)生通過觀察、猜想、主動探討獲得新知識,同時培養(yǎng)學(xué)生分析、歸納、概括能力,培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)造精神。
三、教學(xué)重點和難點
重點:多邊形內(nèi)角和定理的理解和運用 難點:多邊形內(nèi)外角和的靈活運用
四、教學(xué)設(shè)計
(一)創(chuàng)設(shè)問題情境,引出新課。
1、復(fù)習(xí)提問,知識鞏固。⑴三角形內(nèi)角和等于多少度? ⑵四邊形內(nèi)角和定理以及推導(dǎo)方法。(3)從多邊形的一個頂點能引多少條對角線,這些對角線將多邊形分成了幾個三角形。
3、引入新課
上一節(jié)課學(xué)習(xí)了求四邊形內(nèi)角和的方法,怎樣求五邊形、六邊形……n邊形的內(nèi)角和呢?下面我們一起來討論這個問題(板書課題)。
(二)引導(dǎo)探索,研討新知
1、以動激趣,淺探求知。
一畫:畫三角形、四邊形、五邊形、六邊形(讓學(xué)生自己動手畫)。二量:量出五邊形、六邊形各內(nèi)角,并求出其和(讓學(xué)生自己求知)。三比較:比較四邊形、五邊形、六邊形分別是三角形內(nèi)角和的多少倍,并由此去探索他們之間的初步規(guī)律。
2、觀察聯(lián)想,啟迪思維。
(1)觀察引探:觀察比較以上結(jié)論后,啟發(fā)提問:“邊數(shù)少的多邊形可以通過量角來求和,如果邊數(shù)很多那又怎么辦?由上述結(jié)論可知,多邊形的內(nèi)角和是三角形內(nèi)角和的若干倍,那么這個倍數(shù)與多邊形的邊數(shù)有何關(guān)系?能否找出其規(guī)律?”(讓學(xué)生猜想,大膽嘗試)
(2)啟發(fā)聯(lián)想:我們已經(jīng)學(xué)過求四邊形內(nèi)角和的推導(dǎo)方法,它是以三角形為基礎(chǔ)求得的,即連結(jié)一條對角線,將四邊形分割為兩個三角形,其和為180°×2,那么五邊形、六邊形、……n邊形能否依此類推呢?
3、討論、交流、創(chuàng)新 探索方法
(一):
(1)啟發(fā)連線:依照四邊形求內(nèi)角和的方法,從任一角的頂點作對角線,將多邊形分割為若干個三角形。(先讓學(xué)生想,再啟發(fā)學(xué)生)
(2)自主探索、討論交流:讓學(xué)生自己去研討發(fā)現(xiàn)多邊形內(nèi)角和與各三角形內(nèi)角和之間的關(guān)系,三角形個數(shù)與多邊形邊數(shù)的關(guān)系。
三角形有(?-2)個三角形,內(nèi)角和是180°×(?-2);
四角形有(?-2)個三角形,內(nèi)角和是180°×(?-2); 五角形……
有(?-2)個三角形,內(nèi)角和是180°×(?-2);
n邊形 有(?-2)個三角形,內(nèi)角和是180°×(?-2);(4)揭示規(guī)律(由學(xué)生匯報)
a、三角形的個數(shù)與多邊形邊數(shù)有何關(guān)系?(比邊數(shù)少2)b、多邊形的內(nèi)角和與所有三角形的內(nèi)角和有何關(guān)系?(相等)(5)歸納結(jié)論(由學(xué)生概述)
n邊形內(nèi)角和等于(n-2)×180°[讓學(xué)生自主探索,尋找規(guī)律,發(fā)現(xiàn)知識] 探索方法
(二):
(1)變換分割:在多邊形內(nèi)任取一點O,順次邊各頂點。
(2)再次研討:讓學(xué)生去發(fā)現(xiàn)多邊形內(nèi)角和與三角形內(nèi)角和之間的關(guān)系。(多邊形的內(nèi)角和=所有三角形的內(nèi)角和-1周角)
(3)找規(guī)律,填空(讓一名學(xué)生上黑板填寫,其他學(xué)生各自完成)。
三角形有?個三角形,內(nèi)角和是180°×?-360°=180°×(?-2);
四角形有?個三角形,內(nèi)角和是180°×?-360°=180°×(?-2)
五角形……
有?個三角形,內(nèi)角和是180°×?-360°=180°×(?-2)
n邊形 有?個三角形,內(nèi)角和是180°×?-360°=180°×(?-2)(4)歸納結(jié)論(由學(xué)生得出)n邊形的內(nèi)角和是:180°×(n-2)探索方法
(三):(1)改變連線:以多邊形任一邊上的一點為起點,連結(jié)各頂點。(2)再次研討:讓學(xué)生去發(fā)現(xiàn)多邊形內(nèi)角和與三角形內(nèi)角和之間的關(guān)系。(多邊形的內(nèi)角和=所有三角形的內(nèi)角和-1平角)
(3)找規(guī)律,填空。(抽一名學(xué)生登臺填空,其他學(xué)生各自完成)
三角形的內(nèi)角和是180°×(?-2)
四角形有(?-1)個三角形,內(nèi)角和是:
180°×(?-1)-180°=180°×(?-2)
五角形有(?-1)個三角形,內(nèi)角和是:
180°×(?-1)-180°=180°×(?-2)……
n邊形 有?個三角形,內(nèi)角和是: 180°×(?-1)-180°=180°×(?-2)(4)揭示其特點(啟發(fā)學(xué)生去發(fā)現(xiàn))a、分割后三角形的個數(shù)有何變化?
b、求多邊形內(nèi)角和的方法有何不同?(探索方法1,是由多邊形內(nèi)角和等于各三角形內(nèi)角和求得;探索方法2,是由多邊形的內(nèi)角和=各三角形內(nèi)角和-1周角求得;探索方法3,是由多邊形的內(nèi)角和=各三角形內(nèi)角和-1平角求得)。(5)比較結(jié)論(由學(xué)生總結(jié))[進一步讓學(xué)生自主探索,培養(yǎng)學(xué)生一題多證的能力和興趣。
(6)課堂訓(xùn)練。
1、已知一個多邊形的內(nèi)角和等于1440°,求它的邊數(shù)。
2、在四邊形ABCD中,∠A=120度,∠B:∠C:∠D
= 3:4:5,求∠B=
,∠C =
,∠D =。
3、如果一個四邊形的一組對角互補,那么另一組對角的關(guān)系是。
4、一個多邊形的各內(nèi)角都等于120°,它是_____ 邊形。
(三)推導(dǎo)n邊形外角和定理
(1)引導(dǎo)學(xué)生找出各內(nèi)角與相鄰?fù)饨堑年P(guān)系。(互補)(2)找出多邊形外角和與內(nèi)角和之間的關(guān)系:
外角和=n個平角-多邊形內(nèi)角和=n×180°-(n-2)×180°=360°(3)推出結(jié)論:n邊形的外角和等于360°(由學(xué)生得出)。
(四)例題講解
例:已知一個多邊形,它的內(nèi)角和等于外角和的2倍,求這個多邊形的邊數(shù)。
(五)隨堂練習(xí)? ? ? ? ?(1)一個多邊形的內(nèi)角和為4320°,則它的邊數(shù)為______(2)五邊形的內(nèi)角和為_____,它的對角線共有_____條(3)一個多邊形的每一個外角都等于30°,則這個多邊形為____邊形(4)一個多邊形的每一個內(nèi)角都等于135°,則這個多邊形為_____邊形(5)如果一個多邊形的邊數(shù)增加一條,那么這個多邊形的內(nèi)角和增加________,外角和增加_______.
第三篇:多邊形內(nèi)角和教學(xué)設(shè)計
《多邊形內(nèi)角和》教學(xué)設(shè)計
一、教材分析
本節(jié)課是人民教育出版社義務(wù)教育課程標準實驗教科書(六三學(xué)制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。
二、教學(xué)目標
1、知識目標:
(1)使學(xué)生了解多邊形的有關(guān)概念。
(2)使學(xué)生掌握多邊形內(nèi)角和公式,并學(xué)會運用公式進行簡單的計算。
2、能力目標
(1)通過對“多邊形內(nèi)角和公式”的探究,培養(yǎng)學(xué)生分析問題、解決問題的能力,同時讓學(xué)生充分領(lǐng)會數(shù)學(xué)轉(zhuǎn)化思想。
(2)通過變式練習(xí),培養(yǎng)學(xué)生動手、動腦的實踐能力。
3、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學(xué)活動充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。
三、教學(xué)重、難點
重點:探索多邊形內(nèi)角和。
難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法
五、教具、學(xué)具及輔助教學(xué)媒體
教具:多媒體課件
學(xué)具:三角板、量角器
教學(xué)媒體:大屏幕、實物投影
六、教學(xué)過程:
(一)創(chuàng)設(shè)情境,設(shè)疑激思
1、以疑導(dǎo)入,引發(fā)求知欲。先展示六螺帽,八角石英鐘、多邊形水果盤等多邊形實物。由此激發(fā)學(xué)生自己要設(shè)計,怎樣設(shè)計的求知欲。然后提出具體問題。
2、復(fù)習(xí)提問,知識鞏固。(1)三角形內(nèi)角和等于多少度?(2)四邊形內(nèi)角和定理以及推導(dǎo)方法。
3、引入新課
上一節(jié)課學(xué)習(xí)了求四邊形內(nèi)角和的方法,怎樣求五邊形、六邊形……n邊形的內(nèi)角和呢?下面我們一起來討論這個問題。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的? 活動二:探究五邊形、六邊形、十邊形的內(nèi)角和。學(xué)生先獨立思考每個問題再分組討論。
關(guān)注:(1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
(2)學(xué)生能否采用不同的方法。學(xué)生分組討論后進行交流(五邊形的內(nèi)角和)
方法1:把五邊形分成三個三角形,3個180o的和是540o。
方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結(jié)果得540o。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結(jié)果得540o。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結(jié)果得540o。
交流后,學(xué)生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內(nèi)角和之后,同學(xué)們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720o,十邊形內(nèi)角和是1440o。
(二)引深思考,培養(yǎng)創(chuàng)新
師:通過前面的討論,你能知道多邊形內(nèi)角和嗎? 活動三:探究任意多邊形的內(nèi)角和公式。
思考:(1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
(2)多邊形的邊數(shù)與內(nèi)角和的關(guān)系?
(3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
學(xué)生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180o的和,五邊形內(nèi)角和是3個180o的和,六邊形內(nèi)角和是4個180o的和,十邊形內(nèi)角和是8個180o的和。
發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180o。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
得出結(jié)論:多邊形內(nèi)角和公式:(n-2)·180。
(三)實際應(yīng)用,優(yōu)勢互補
1、口答:(1)六邊形內(nèi)角和()(2)九邊形內(nèi)角和()
2、搶答:(1)一個多邊形的內(nèi)角和等于1260o,它是幾邊形?
(2)已知一個多邊形的每個外角都等于72°,這個多邊形是幾邊形?(3)若多邊形的外角和等于內(nèi)角和的三分之二,則這個多邊形的邊數(shù)是多少?
3、討論回答:一個多邊形的內(nèi)角和比四邊形的內(nèi)角和多540o,并且這個多邊形的各個內(nèi)角都相等,這個多邊形每個內(nèi)角等于多少度?
(四)概括存儲
學(xué)生自己歸納總結(jié):
1、多邊形內(nèi)角和公式
2、運用轉(zhuǎn)化思想解決數(shù)學(xué)問題
3、用數(shù)形結(jié)合的思想解決問題
(五)作業(yè):練習(xí)冊第93頁1、3
七、教學(xué)反思:
上完這節(jié)課后,自我感覺良好,學(xué)生在課堂上也積極參與思考、大膽嘗試、主動探討、勇于創(chuàng)新。
1、教的轉(zhuǎn)變
本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗發(fā)現(xiàn)的樂趣。
2、學(xué)的轉(zhuǎn)變
學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變
整節(jié)課以“流暢、開放、合作”為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對話、討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學(xué)生在一個比較寬松的環(huán)境中自主選擇獲得成功的放向,判斷發(fā)現(xiàn)的價值。
4.不足:
(1)班級學(xué)習(xí)不是很好的學(xué)生在展示時還是不理想,聲音小,站姿也不行。
(2)粉筆字寫的不理想。特別是做學(xué)案或答題時字寫的很亂,并且一點也不規(guī)范。(3)沒有給學(xué)生整理出現(xiàn)問題的時間,因此效果不理想。
第四篇:多邊形內(nèi)角和教學(xué)設(shè)計
多邊形內(nèi)角和教學(xué)設(shè)計
教學(xué)目標: 知識與技能:
1、知識目標:了解多邊形內(nèi)角和公式。
2、能力目標:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學(xué)生體會從特殊到一般的認識問題的方法。通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。過程與方法:
運用多媒體演示,使學(xué)生通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。情感、態(tài)度與價值觀:
通過猜想、推理活動感受數(shù)學(xué)活動充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。教學(xué)過程
回顧舊知 1.什么是內(nèi)角? 2.三角形的內(nèi)角和是怎么求的? 3.三角形的內(nèi)角和是多少? 4.什么是外角? 5.三角形的外角和是怎么求的? 6.三角形的外角和是多少? 多媒體逐一展示問題
學(xué)生逐一閱讀并舉手回答問題 學(xué)習(xí)新課 一,探究部分
三角形的內(nèi)角和等于180°;正方形、長方形的內(nèi)角和等于360°。那么,任意一個四邊形的內(nèi)角和是否也等于360°呢?你能利用三角形內(nèi)角和定理證明四邊形的內(nèi)角和等于360°嗎? 多媒體展示問題,巡視指導(dǎo)
提示:要用三角形內(nèi)角和定理證明四邊形內(nèi)角和等于360°,只要能將四邊形分成幾個三角形即可。
二,拓展探究:
類比求四邊形內(nèi)角和的過程,你能推出其它各多邊形的內(nèi)角和嗎? 小結(jié):
多媒體展示表格 訓(xùn)視指導(dǎo) 三,教學(xué)例題 實踐與應(yīng)用:
例1 如果一個四邊形的一組對角互補,那么另一組對角有什么關(guān)系? n變形的內(nèi)角和的計算公式是什么
學(xué)生討論并總結(jié)多邊形內(nèi)角和公式:n邊形內(nèi)角和等于(n-2)·180。
多媒體展示例題
分析:如圖,因為一組對角互補,所以,不妨設(shè)∠A+∠C=180°那么∠B與∠D有什么關(guān)系?
等學(xué)生嘗試做完后師引導(dǎo)做題
解:由多邊形內(nèi)角和公式可求四邊形內(nèi)角和為: ∠A+∠B+∠C+∠D=(4-2)×180°=360° 所以
∠B+∠D=360°-(∠A+∠C)=360°-180° =180°
這就是說,如果四邊形的一組對角互補,那么另一組對角也互補。學(xué)生審題并且討論 根據(jù)老師的提示嘗試做題 學(xué)生口述解題過程 作業(yè): 完成課后作業(yè),配套練習(xí),日常留心多做練習(xí)題。
第五篇:《多邊形的內(nèi)角和》教學(xué)設(shè)計
《多邊形的內(nèi)角和》教學(xué)設(shè)計
作為一名老師,就有可能用到教學(xué)設(shè)計,借助教學(xué)設(shè)計可使學(xué)生在單位時間內(nèi)能夠?qū)W到更多的知識。那么問題來了,教學(xué)設(shè)計應(yīng)該怎么寫?以下是小編為大家收集的《多邊形的內(nèi)角和》教學(xué)設(shè)計,希望對大家有所幫助。
《多邊形的內(nèi)角和》教學(xué)設(shè)計1
教學(xué)過程
(一)創(chuàng)設(shè)問題情境,引出新課。
1、以疑導(dǎo)入,引發(fā)求知欲。先展示六螺帽,八角石英鐘、多邊形水果盤等多邊形實物。由此激發(fā)學(xué)生自己要設(shè)計,怎樣設(shè)計的求知欲。然后提出具體問題。
引題:我們學(xué)校要準備建造一個各邊長為5米,各內(nèi)角都相等的十二邊形花壇。問各角是多少度?
2、復(fù)習(xí)提問,知識鞏固。
⑴三角形內(nèi)角和等于多少度?
⑵四邊形內(nèi)角和定理以及推導(dǎo)方法。
3、引入新課
上一節(jié)課學(xué)習(xí)了求四邊形內(nèi)角和的方法,怎樣求五邊形、六邊形……n邊形的內(nèi)角和呢?下面我們一起來討論這個問題(板書課題)。
(二)引導(dǎo)探索,研討新知
1、以動激趣,淺探求知。
一畫:畫三角形、四邊形、五邊形、六邊形(讓學(xué)生自己動手畫)。
二量:量出五邊形、六邊形各內(nèi)角,并求出其和(讓學(xué)生自己求知)。
三比較:比較四邊形、五邊形、六邊形分別是三角形內(nèi)角和的多少倍,并由此去探索他們之間的初步規(guī)律。
2、觀察聯(lián)想,啟迪思維。
(三)回顧小結(jié),驗收成效
1、已知邊數(shù)如何求內(nèi)角和;
2、已知內(nèi)角和如何求邊數(shù);
3、n邊形的內(nèi)角和與外角和成一定的比例關(guān)系,求其n邊形的邊數(shù)。
(四)課后作業(yè)(教材P91習(xí)題7.3第8、9題)
《多邊形的內(nèi)角和》教學(xué)設(shè)計2
尊敬的各位領(lǐng)導(dǎo):
老師大家好!
由我為大家介紹我們工作坊團隊成員共同設(shè)計的《多邊形的內(nèi)角和》一課。我將從教材思考、學(xué)生調(diào)研、教學(xué)目標完善、教學(xué)過程設(shè)計等方面進行匯報。
(一)教材思考:
《多邊形的內(nèi)角和》是冀教版小學(xué)數(shù)學(xué)四年級下冊第九單元探索樂園的第1課時,本單元要求是“在問題探索中,促進數(shù)學(xué)思維發(fā)展”。實現(xiàn)“不同的人在數(shù)學(xué)上得到不同的發(fā)展”是《數(shù)學(xué)課程標準》的基本理念,“發(fā)展合情推理和演繹推理能力”“清晰地表達自己的想法”“學(xué)會獨立思考、體會數(shù)學(xué)的基本思想和思維方式”是課程標準關(guān)于數(shù)學(xué)思考方面的具體要求。
教材安排了兩個例題,一是探究多邊形邊數(shù)與分割的三角形個數(shù)的規(guī)律,二在分割三角形的基礎(chǔ)上探索多邊形內(nèi)角和。為了促進學(xué)生思考的連續(xù)性與有序性,我們將教材中的兩個例題進行有機結(jié)合,在充分研究四邊形五邊形內(nèi)角和方法的基礎(chǔ)上提出如何得出任意多邊形內(nèi)角和問題,為發(fā)展學(xué)生的數(shù)學(xué)思維提供素材、創(chuàng)造探索的空間,讓學(xué)生充分體會“畫線段—分割三角形—求內(nèi)角和”這樣一個連續(xù)推理歸納得出規(guī)律的活動。
(二)學(xué)生調(diào)研及分析:
學(xué)生在本冊第四單元認識了三角形、知道三角形內(nèi)角和等于180度,會用字母表示數(shù)、字母表示數(shù)量關(guān)系的基礎(chǔ)上進行學(xué)習(xí)的。我們團隊的成員對所在學(xué)校四年級同學(xué)進行了調(diào)研,發(fā)現(xiàn)他們對于數(shù)學(xué)問題具有“猜想”的意識,但是缺乏理性的思考。他們愿意自己動手嘗試探索研究問題,但是對于探索之后有序思考、歸納總結(jié)認識還不夠全面。
有了以上分析,我們在尊重教材的基礎(chǔ)上,確定了本節(jié)課教學(xué)目標,并對“過程與方法”目標進行了完善補充。
知識與技能:探索并了解多邊形的邊數(shù)與分割成的三角形個數(shù),以及內(nèi)角和之間隱含的規(guī)律;能運用多邊形的內(nèi)角和知識解決相關(guān)問題。
過程與方法:學(xué)生經(jīng)歷探索的全過程,積累探索和發(fā)現(xiàn)數(shù)學(xué)規(guī)律的經(jīng)驗,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,體會從特殊到一般的認識問題的方法,發(fā)展理性思考。
情感態(tài)度與價值觀:讓學(xué)生在參與活動的過程中獲得探索規(guī)律解決問題的成功體驗,產(chǎn)生對數(shù)學(xué)的好奇心,培養(yǎng)歸納概括和推理能力
教學(xué)重點:經(jīng)歷由具體的圖形發(fā)現(xiàn)規(guī)律的過程,獲得初步的數(shù)學(xué)建模活動經(jīng)驗,產(chǎn)生對數(shù)學(xué)的好奇心,培養(yǎng)推理能力
教學(xué)難點:字母表達式的總結(jié)
教學(xué)準備:教師準備三角形、四邊形、五邊形、六邊形圖片,裁紙刀,課件。
學(xué)生學(xué)具準備四邊形、五邊形等多邊形圖片模型,三角板。
教學(xué)過程共分為四個環(huán)節(jié)。
教學(xué)過程:
一、創(chuàng)設(shè)情境,回顧三角形知識---注重知識的“生長點”
同學(xué)們請看這是什么圖形?你了解它嗎?你能向大家介紹三角形哪些知識?(這樣設(shè)計意圖是注尊重學(xué)生已有知識經(jīng)驗,體會數(shù)學(xué)知識的內(nèi)在聯(lián)系,重點認識三角形內(nèi)角的含義及三角形內(nèi)角和是180度的特點)
我們知道了三角形內(nèi)角和是180度,那么四邊形,五邊形的內(nèi)角和是多少度呢?這節(jié)課我們就一起來研究。
二、自主合作,探究新知—注重“數(shù)學(xué)算法的優(yōu)化”共設(shè)計了三個探究活動。
1、四邊形內(nèi)角和
(1)有同學(xué)愿意猜想四邊形內(nèi)角和嗎?猜想也要有根據(jù),你能說說你的根據(jù)嗎?(引導(dǎo)學(xué)生體會理性思考)
有沒有同學(xué)一看到四邊形就馬上想到360度呢?你是根據(jù)哪個圖形直接想到的?(讓學(xué)生借助已有的長方形、正方形知識進行理性推理,打通新舊知識之間聯(lián)系)
我們通過計算長方形、正方形的內(nèi)角和是360度,是不是能說明所有四邊形內(nèi)角和都是360度?(引導(dǎo)學(xué)生體會這是一種“假設(shè)”因為它是特殊圖形中做的成“猜想”)
我們需要研究怎樣的圖形才能發(fā)現(xiàn)它們一般的特征和規(guī)律?(任意四邊形)
(2)小組活動,利用學(xué)具中的任意四邊形想辦法計算內(nèi)角和。師巡視(注意學(xué)生不同的方法)
(3)學(xué)生匯報??赡苡杏嬎惴ǎ龑?dǎo)學(xué)生起名字“量角求和法”
撕角法,起名字“拼角求和法”。
切割法1,起名字“一分為二求和法”(學(xué)生演示這種方法時,教師幫忙切割,強調(diào)弄清楚四個內(nèi)角怎樣變成六個角,分成了幾個三角形,一是畫了一條線段,二是分成了二個三角形)
切割法2,起名字“一分為四求和法”180x4=720度,討論這種方法的問題,怎樣用這種方法計算四邊形內(nèi)角和是360度
歸納總結(jié):四邊形內(nèi)角和是360度。(通過不同的個性方法,驗證四邊形內(nèi)角和,進一步認識內(nèi)角含義,感受不同算法的好處)
2、五邊形內(nèi)角和
今天的研究我們就停在這里嗎?根據(jù)經(jīng)驗,我們要向什么挑戰(zhàn)?(五邊形)你能猜想它是多少度嗎?請你選擇一種方法,證實你的猜想。
總結(jié):看來數(shù)學(xué)的方法有很多,但是有的方法有局限性,有的方法只適合三角形和四邊形,量角有誤差,拼角法有的會超過360度,而第三種看起來最簡便。我們稱之為“優(yōu)化法”
列出算式:180x3=540度(學(xué)生不僅在計算度數(shù)上有了經(jīng)驗,而且在計算方法上也有了經(jīng)驗)
利用這種最優(yōu)的方法,同桌同學(xué)互相說一說,四邊形和五邊形各畫了幾條線段,分割成幾個三角形,怎樣求內(nèi)角和?(設(shè)計意圖是讓學(xué)生對探究過程進行歸納整理,為進一步有序的研究其他圖形指明研究方向。)
現(xiàn)在我們就來看一看其他圖形是不是也有這樣的規(guī)律?
3、六邊形、七邊形內(nèi)角和
小組合作,自己完成探究過程,填寫表格。
學(xué)生匯報,總結(jié)畫出的線段數(shù)和三角形個數(shù)之間聯(lián)系。
三、歸納總結(jié),形成規(guī)律---注重字母表達式的推理
通過大家的研究,找到了規(guī)律,請問10邊形,能畫幾條線段,分成幾個三角形?
90邊形?100邊形?n邊形呢?(老師說我們研究三角形的個數(shù),怎么去找邊數(shù)的呢?學(xué)生說分割出的三角形的個數(shù)跟邊數(shù)有關(guān)。那一千邊形形,n邊形呢?n-2得到的是什么?得到分成的三角形的個數(shù)。)
四、課堂總結(jié),拓展延伸---注重數(shù)學(xué)思想方法的形成
師:今天你學(xué)到了什么?在今天的研究中哪些知識或研究的過程給你留下了深刻的印象?師:今天我們所研究的多邊形都是凸多邊形,還有一種多邊形,它們叫做凹多邊形,你能不能運用今天的研究方法,探究凹多邊形的內(nèi)角和嗎?老師期待你在課后的研究成果。(設(shè)計意圖是不僅讓學(xué)生對本節(jié)課知識進行總結(jié),也對數(shù)學(xué)的思想方法進行回顧,鼓勵學(xué)生利用這些思想方法向類似數(shù)學(xué)問題挑戰(zhàn),以達到學(xué)以致用的目的。)
以上是我們對這節(jié)課的粗淺設(shè)計,懇請大家給予批評指正,謝謝!
《多邊形的內(nèi)角和》教學(xué)設(shè)計3
[教學(xué)目標]
知識與技能:
1.會用多邊形公式進行計算。
2.理解多邊形外角和公式。
過程與方法:
經(jīng)歷探究多邊形內(nèi)角和計算方法的過程,培養(yǎng)學(xué)生的合作交流意識力.
情感態(tài)度與價值觀:
讓學(xué)生在觀察、合作、討論、交流中感受數(shù)學(xué)轉(zhuǎn)化思想和實際應(yīng)用價值,同時培養(yǎng)學(xué)生善于發(fā)現(xiàn)、積極思考、合作學(xué)習(xí)、勇于創(chuàng)新的學(xué)習(xí)態(tài)度。
[教學(xué)重點、難點與關(guān)鍵]
教學(xué)重點:多邊形的內(nèi)角和.的應(yīng)用.
教學(xué)難點:探索多邊形的內(nèi)角和與外角和公式過程.
教學(xué)關(guān)鍵:應(yīng)用化歸的數(shù)學(xué)方法,把多邊形問題轉(zhuǎn)化為三角形問題來解決.
[教學(xué)方法]
本節(jié)課采用“探究與互動”的教學(xué)方式,并配以真的情境來引題。
[教學(xué)過程:]
(一)探索多邊形的內(nèi)角和
活動1:判斷下列圖形,從多邊形上任取一點c,作對角線,判斷分成三角形的個數(shù)。
活動2:①從多邊形的一個頂點出發(fā),可以引多少條對角線?他們將多邊形分成多少個三角形?②總結(jié)多邊形內(nèi)角和,你會得到什么樣的結(jié)論?
多邊形邊數(shù)分成三角形的個數(shù)圖形
內(nèi)角和計算規(guī)律
三角形31180°(3-2)·180°
四邊形4
五邊形5
六邊形6
七邊形7
。。。。。。
n邊形n
活動3:把一個五邊形分成幾個三角形,還有其他的分法嗎?
總結(jié)多邊形的內(nèi)角和公式
一般的,從n邊形的一個頂點出發(fā)可以引____條對角線,他們將n邊形分為____個三角形,n邊形的內(nèi)角和等于180×______。
鞏固練習(xí):看誰求得又快又準!(搶答)
例1:已知四邊形ABCD,∠A+∠C=180°,求∠B+∠D=?
(點評:四邊形的一組對角互補,另一組對角也互補。)
(二)探索多邊形的外角和
活動4:例2如圖,在五邊形的每個頂點處各取一個外角,這些外角的和叫做五邊形的外角和.五邊形的外角和等于多少?
分析:(1)任何一個外角同于他相鄰的內(nèi)角有什系?
(2)五邊形的五個外角加上與他們相鄰的內(nèi)角所得總和是多少?
(3)上述總和與五邊形的內(nèi)角和、外角和有什么關(guān)系?
解:五邊形的外角和=______________-五邊形的內(nèi)角和
活動5:探究如果將例2中五邊形換成n邊(n≥3),可以得到同樣的結(jié)果嗎?
也可以理解為:從多邊形的一個頂點A點出發(fā),沿多邊形的各邊走過各點之后回到點A.最后再轉(zhuǎn)回出發(fā)時的方向。由于在這個運動過程中身體共轉(zhuǎn)動了一周,也就是說所轉(zhuǎn)的各個角的和等于一個______角。所以多邊形的外角和等于_________。
結(jié)論:多邊形的外角和=___________。
練習(xí)1:如果一個多邊形的每一個外角等于30°,則這個多邊形的邊數(shù)是_____。
練習(xí)2:正五邊形的每一個外角等于________,每一個內(nèi)角等于_______。
練習(xí)3.已知一個多邊形,它的內(nèi)角和等于外角和,它是幾邊形?
(三)小結(jié):本節(jié)課你有哪些收獲?
(四)作業(yè):
課本P84:習(xí)題7.3的2、6題
附知識拓展—平面鑲嵌
(五)隨堂練習(xí)(練一練)
1、n邊形的內(nèi)角和等于__________,九邊形的內(nèi)角和等于___________。
2、一個多邊形當邊數(shù)增加1時,它的內(nèi)角和增加。
3、已知多邊形的每個內(nèi)角都等于150°,求這個多邊形的邊數(shù)?
4、一個多邊形從一個頂點可引對角線3條,這個多邊形內(nèi)角和等于()
A:360°B:540°C:720°D:900°
5.已知一個多邊形,它的內(nèi)角和等于外角和的2倍,求這個多邊形的邊數(shù)?
《多邊形的內(nèi)角和》教學(xué)設(shè)計4
學(xué)情分析:
學(xué)生已經(jīng)學(xué)過三角形的內(nèi)角和定理的知識基礎(chǔ),并且具備一定的化歸思想,但是推理能力和表達能力還稍稍有點欠缺。針對這種情況,我會引導(dǎo)學(xué)生利用分類、數(shù)形結(jié)合的思想,加強對數(shù)學(xué)知識的`應(yīng)用,發(fā)展學(xué)生合情合理的推理能力和語言表達能力。
教學(xué)目標:
1.知識與技能:運用三角形內(nèi)角和定理來推證多邊形內(nèi)角和公式,掌握多邊形的內(nèi)角和的計算公式。
2.過程與方法:經(jīng)理探究多邊形內(nèi)角和計算方法的過程,培養(yǎng)學(xué)生的合作交流的意識。
3.情感態(tài)度與價值觀:感受數(shù)學(xué)化歸的思想和實際應(yīng)用的價值,同時培養(yǎng)學(xué)生善于發(fā)現(xiàn),積極探究,合作創(chuàng)新的學(xué)習(xí)態(tài)度。
教學(xué)重點:
多邊形的內(nèi)角和公式。
教學(xué)難點:
探索多邊形的內(nèi)角和定理的推導(dǎo)
教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課
1、請看:我身后的建筑物是什么?─水立方。我看到水立方時發(fā)現(xiàn)它的膜結(jié)構(gòu)的結(jié)合處都是多邊形,你們想知道這些多邊形的內(nèi)角和嗎?(多媒體展示)
這節(jié)課咱們一起來探究《多邊形的內(nèi)角和》。
二、合作交流,探究新知
1、多邊形的內(nèi)角和
問:要求內(nèi)角和你聯(lián)想到什么圖形的內(nèi)角和?(示三角形的內(nèi)角和定理)。如果兩個三角形能夠拼成四邊形,你能求出四邊形的內(nèi)角和是多少度呢?
預(yù)設(shè)回答:三角形的內(nèi)角和360°。四邊形的內(nèi)角和360°
知道四邊形的內(nèi)角和為360°,現(xiàn)在你能利用三角形的內(nèi)角和定理證明嗎?自主學(xué)習(xí)教材第34頁“動腦筋”
【教學(xué)說明】“解放學(xué)生的手,解放學(xué)生的大腦”,鼓勵學(xué)生積極參與合作交流,尋找多種圖形形式,深入全面轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決.
2、是否所有的多邊形的內(nèi)角和都可以“轉(zhuǎn)化”為兩個三角形的內(nèi)角和來求得呢?如何“轉(zhuǎn)化”?
預(yù)設(shè)回答:能,可以引對角線,將多邊形分成幾個三角形。
讓學(xué)生合作交流討論,展示探究成果。教材第35頁“探究”
示圖,取多邊形上任意一個頂點,連接除相鄰的兩點,則多邊形的內(nèi)角和可轉(zhuǎn)化為三角形內(nèi)角和之間的關(guān)系,
多邊形邊數(shù)可分成三角形的個數(shù)多邊形的內(nèi)角和56 7┅┅┅┅n邊形n
n邊形有幾個內(nèi)角?是否可以“轉(zhuǎn)化”為多個三角形的角來求得呢?如何“轉(zhuǎn)化”?
預(yù)設(shè)回答:有n個內(nèi)角,可以轉(zhuǎn)化多個三角形來求,n邊形可以引n-3條對角線,即有n-2個三角形。所有n邊形的內(nèi)角和等于(n-2)x180°
【教學(xué)說明】通過五邊形、六邊形、七邊形、八邊形等特殊多邊形內(nèi)角和的探索,讓學(xué)生從特殊到一般歸納總結(jié)出多邊形內(nèi)角和公式,體會數(shù)形間的聯(lián)系,感受從特殊到一般的數(shù)學(xué)推理過程和數(shù)學(xué)思考方法.
例:教材第36頁例1
【教學(xué)說明】讓學(xué)生利用多邊形的內(nèi)角和公式求一個多邊形的內(nèi)角和或它的邊數(shù),加深知識的理解與運用.
三、課堂演練
1、若從一個多邊形的一個頂點出發(fā),最多可以引10條對角線,則它是()
A.十三邊形B.十二邊形
C.十一邊形D.十邊形
2、十二邊形的內(nèi)角和為,已知一個多邊形的內(nèi)角和是1260°,則這個多邊形的邊數(shù)是。
【教學(xué)說明】由學(xué)生自主完成,教師及時了解學(xué)生的學(xué)習(xí)效果,讓學(xué)生經(jīng)歷運用知識解決問題的過程.對需要幫助的學(xué)生及時點撥并加以強化.在完成上述題目后,讓學(xué)生完成練習(xí)冊中本課時的對應(yīng)訓(xùn)練部分.
四、課時小結(jié)
1、這節(jié)課你有什么新的收獲?
五、布置作業(yè):
教材第36頁練習(xí)1、2題。
六、板書設(shè)計多邊形的內(nèi)角和n邊形內(nèi)角和等于(n-2)×180°。
多邊形的內(nèi)角和是180的倍數(shù);
邊數(shù)越多,內(nèi)角和就越大;
每增加一條邊,內(nèi)角和就增加180度。