欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思

      2022-11-04下載本文作者:會(huì)員上傳
      簡介:寫寫幫文庫小編為你整理了這篇《《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思》及擴(kuò)展資料,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思》。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思1

      《倍數(shù)和因數(shù)》是我們工作室四月份研究的一個(gè)課例,我們是先抽簽上二十分鐘的課堂教學(xué),再進(jìn)行研討,我們研究了每一部分的處理方法,同時(shí),為了讓我們的課堂更加連貫、自然,我們也研究了例題之間的過渡環(huán)節(jié),嘗試找到更加恰當(dāng)?shù)奶幚矸椒?。那次研究之后我們工作室的每一位成員都根據(jù)自己的想法修改了教案。前幾天我們工作室又在活動(dòng)中上了這節(jié)課,這次上課的是我,由于事先準(zhǔn)備的不夠充分課堂中發(fā)現(xiàn)了很多的問題,有上次研討過還需要改進(jìn)的問題,也有這次上課出現(xiàn)的新問題。課后工作室的成員給了我很多的很好的建議,我根據(jù)好的建議修改了我的教學(xué)設(shè)計(jì),下面我來具體的說一說。

      1、情境導(dǎo)入。本節(jié)課的內(nèi)容是《倍數(shù)和因數(shù)》為了讓學(xué)生更清楚地感受倍數(shù)和因數(shù)的依存關(guān)系,我課上用了大頭兒子和小頭爸爸的例子,也用了我是老師,他們是學(xué)生的例子。但這兩個(gè)例子對于本課的教學(xué)或許沒有太多的意義,好像不能讓學(xué)生明確感受出倍數(shù)的因數(shù)的依存關(guān)系,所以我們可以把這一部分的內(nèi)容去掉,直接進(jìn)入課堂,讓學(xué)生進(jìn)行操作活動(dòng)。

      2、倍數(shù)和因數(shù)的意義。本課是想通過用12個(gè)完全相同的正方形拼成長方形的活動(dòng)來讓學(xué)生在活動(dòng)中初步感知倍數(shù)和因數(shù)的關(guān)系,再用具體的例子向?qū)W生說明倍數(shù)和因數(shù)的含義。在課堂中我直接讓學(xué)生進(jìn)行操作,兩人小組活動(dòng),試著擺一擺,看看有沒有不同的擺法,在交流的時(shí)候讓學(xué)生說說自己的擺法,每排擺了幾個(gè),擺了幾排,怎樣用乘法算式表示,再讓學(xué)生有序地說一說,為后面找一個(gè)數(shù)的因數(shù)做好鋪墊。再有一道具體的算式舉例說明倍數(shù)和因數(shù)的含義,用我們過去學(xué)習(xí)的乘法算式中的乘數(shù)乘乘數(shù)等于積過渡到倍數(shù)和因數(shù),再讓學(xué)生說一說其他兩道乘法算式。說完后再給學(xué)生一個(gè)提醒,并讓學(xué)生再根據(jù)出示的算式說一說誰是誰的倍數(shù)和誰是誰的因數(shù),最后的時(shí)候讓學(xué)生自己寫一個(gè)算式,并說一說。

      3、找一個(gè)數(shù)的倍數(shù)。這應(yīng)該時(shí)本節(jié)課的重難點(diǎn)內(nèi)容,在教學(xué)中一定要讓學(xué)生說一說找倍數(shù)的方法,而我在上課的時(shí)候把這一個(gè)重要的部分一帶而過,可以看出來很大一部分學(xué)生是沒有掌握找倍數(shù)的方法的。所以我在思考這一難點(diǎn)該如何突破?是不是應(yīng)讓學(xué)生先獨(dú)立想一想辦法,多說一說,給學(xué)生足夠多的時(shí)間讓學(xué)生去說自己用來找倍數(shù)的方法,這樣多種方法出來以后,我們可以對方法進(jìn)行優(yōu)化,選擇快速簡單的找法。在教學(xué)的時(shí)候,同時(shí)注培養(yǎng)學(xué)生有序?qū)懗霰稊?shù),注意倍數(shù)書寫的格式等意識(shí),可以比較有序的找和無序的找,讓學(xué)生自己感受有序的好處,學(xué)生有了有序地找的基本方法后,在進(jìn)行練習(xí)的時(shí)候也會(huì)選擇剛才優(yōu)化過的好的方法進(jìn)行練習(xí)。

      4、找倍數(shù)的特征。在完成找一個(gè)數(shù)的倍數(shù)之后,我們可以直接出示3,2,5的倍數(shù)是哪些,讓學(xué)生觀察三個(gè)倍數(shù),再說一說自己的發(fā)現(xiàn),放手讓學(xué)生去找或許學(xué)生能夠很快的找出來,但如果給好具體的問題,可能會(huì)限制一些學(xué)生的思考。如果學(xué)生在觀察時(shí)沒有發(fā)現(xiàn)我們所想要總結(jié)的特征,可以對學(xué)生進(jìn)行適當(dāng)?shù)奶崾荆寣W(xué)生觀察一個(gè)數(shù)最小的倍數(shù),最大的倍數(shù)和倍數(shù)的個(gè)數(shù)等。先給學(xué)生足夠的時(shí)間讓學(xué)生自己去找,我們要相信他們藕能力做到。

      5、課堂常規(guī)的問題。在上課之前我應(yīng)先確定好小組的具體分配,以免學(xué)生在小組活動(dòng)中找不到合作的對象,如果上課之前具體的分好了,小組討論的效率會(huì)高很多。在上課時(shí),我要少說,把更多說的機(jī)會(huì)留給學(xué)生,讓學(xué)生去表達(dá)自己的想法,同時(shí)還要相信學(xué)生,不要怕學(xué)生不會(huì),而給出很多的條條框框,限制了學(xué)生的思維發(fā)展。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思2

      本節(jié)課的內(nèi)容是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識(shí)(包括整數(shù)的知識(shí)、整數(shù)的四則運(yùn)算及其應(yīng)用)的基礎(chǔ)上,進(jìn)一步認(rèn)識(shí)整數(shù)的性質(zhì)。本單元所涉及的因數(shù)和倍數(shù)都是初等數(shù)論的基礎(chǔ)知識(shí)。

      成功之處:

      1.理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進(jìn)行分類,同時(shí)思考其標(biāo)準(zhǔn)依據(jù)是什么。通過學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強(qiáng)調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個(gè)條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個(gè)條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

      2.厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。

      不足之處:

      1.練習(xí)設(shè)計(jì)容量少了一些,導(dǎo)致課堂有剩余時(shí)間。

      2. 對因數(shù)和倍數(shù)的含義還應(yīng)該進(jìn)行歸納總結(jié)上升到用字母來表示。

      再教設(shè)計(jì):

      1.根據(jù)課本的練習(xí)相應(yīng)的進(jìn)行補(bǔ)充。

      2.因數(shù)和倍數(shù)的含義用總結(jié)為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思3

      《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識(shí)點(diǎn)較多,內(nèi)容較為抽象,對于學(xué)生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運(yùn)用“先學(xué)后教”的模式,達(dá)到課堂的高效,在課堂中我做了以下的嘗試。

      一、領(lǐng)會(huì)意圖,做到用教材教。

      我覺得作為一名教師,重要的是領(lǐng)會(huì)教材的編寫意圖,靈活的運(yùn)用教材,讓每個(gè)細(xì)節(jié)都能發(fā)揮它應(yīng)有的作用。如教材是利用了一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架;3行飛機(jī),每行4架)引出了要研究的兩個(gè)乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。

      但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機(jī),你可以怎樣去排列?”學(xué)生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學(xué)生得到“2×6=12、3×4=12、1×12=12”三個(gè)算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個(gè)數(shù)的因數(shù)”的方法的滲透和引導(dǎo)??磥盱`活的運(yùn)用教材,深放領(lǐng)會(huì)意圖,才能使教學(xué)更為輕松、高效!

      二、模式運(yùn)用,做到靈活自然。

      模式是一種思想或是引子,面對不同的課型,我們應(yīng)該大膽嘗試,不斷的積累經(jīng)驗(yàn),使模式不再是僵化的,機(jī)械的。只要是能促進(jìn)學(xué)生能力形成的東西,我們不能因?yàn)橐\(yùn)用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來。

      如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設(shè)計(jì)已經(jīng)能夠體現(xiàn)學(xué)生自主探索知識(shí)的軌跡,那我們何不通過一句簡短的過渡語讓學(xué)生進(jìn)入到下面的學(xué)習(xí)中呢?而沒有必要非要設(shè)計(jì)出兩個(gè)“自學(xué)指導(dǎo)”讓學(xué)生按步就搬地往下走,而且讓學(xué)生對比著去感受一個(gè)數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學(xué)例1再學(xué)例2的方式更容易讓學(xué)生發(fā)現(xiàn)不同,得到方法,加深對知識(shí)的理解,同時(shí)也更加體現(xiàn)了學(xué)生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導(dǎo)更有效!

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思4

      《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。這一單元是本冊教材的重點(diǎn)和難點(diǎn),說它重要是因?yàn)樗鼘⑹堑谒膯卧幕A(chǔ),說它是因?yàn)楦拍钐唷驍?shù)、倍數(shù)、偶數(shù)、奇數(shù)、質(zhì)數(shù)、合數(shù)再加上2的、3的、5的、2和5、2、3和5的倍數(shù)的特征等,讓學(xué)生應(yīng)接不暇,要將這些抽象的知識(shí)教給學(xué)生,很難聯(lián)系生活實(shí)際,只有舉例說明,歸納總結(jié)、得出結(jié)論,有意識(shí)地培養(yǎng)學(xué)生的抽象概念能力。

      (1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。

      (2)“約數(shù)”一詞被“因數(shù)”所取代。

      (3)新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個(gè)除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實(shí)際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷2=6得出12能被2整除,進(jìn)而2是12的因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程。

      自認(rèn)為今天早上第二節(jié)課自己上得挺不錯(cuò),至少挺順。從出示乘法算式,如2*6=12,認(rèn)知誰是誰的因數(shù),誰是誰的倍數(shù),然后仿例說說3*4=12,誰是誰的因數(shù),誰是誰的倍數(shù),再找12的其他因數(shù)有哪些?學(xué)生自主舉例說說因數(shù)和倍數(shù)。提示注意點(diǎn):討論的是在整數(shù)的范圍內(nèi),不包括0。

      按理說因數(shù)和倍數(shù)的概念差不多了,會(huì)模仿說,會(huì)舉例。但當(dāng)我出示36和9,說說誰是誰的因數(shù)卻不會(huì)做。我卻愣了。這很難嗎?雖然教參中說因數(shù)和倍數(shù)是建立在整除的基礎(chǔ)上,但對于新教材卻不再提起整除這一概念。那我該怎么講呢?

      只能講36可以寫成9*幾的形式,再看著乘法算式說誰是誰的因數(shù)。雖然學(xué)生有點(diǎn)明白了。但我說覺得有點(diǎn)繞。

      課后反思能否在認(rèn)知因數(shù)和倍數(shù)時(shí),再添個(gè)環(huán)節(jié)如:3*4=12還可以寫成除法算式,12/3=4

      12/4=3,我們也可以說12是3和4的倍數(shù),3和4是12的因數(shù)。從中你對因數(shù)和倍數(shù)有什么自己的理解,通過讓學(xué)生說,逐步體會(huì)到,誰是誰的因數(shù)中的這兩個(gè)數(shù)是成倍數(shù)關(guān)系的;且一般情況下這兩個(gè)數(shù)中大數(shù)是小數(shù)的倍數(shù),小數(shù)是大數(shù)的因數(shù);被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。如果能這樣深化一下,遇到剛才諸如此類的題目,學(xué)生的判斷方法可能更直接一些,只要這兩個(gè)數(shù)除一除商是整數(shù)的,那么小數(shù)是大數(shù)的因數(shù),大數(shù)就是小數(shù)的倍數(shù),可能不會(huì)這么淆。

      所以通過這堂課我體會(huì)到,教學(xué)不能光是按著教材來教,還是要通過自己的深加工,但是有時(shí)也只有在上過課以后從學(xué)生作業(yè)當(dāng)中,才會(huì)體會(huì)到自己在教學(xué)中的成功與失敗之處,也才會(huì)體會(huì)到什么地方是自己該深入挖掘的地方。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思5

      總的感覺是上好一堂課不容易。當(dāng)確定好內(nèi)容后,我和吳艷、顧志成三人各自備課,第二天放學(xué)后化了整整一個(gè)半小時(shí)討論教案,后又幾經(jīng)修改,但總感到時(shí)間來不及。倍數(shù)和因數(shù)是學(xué)生聞所未聞的兩個(gè)新概念,是純知識(shí)性的內(nèi)容,學(xué)起來比較枯燥。如何使學(xué)生通過四十分鐘愉快輕松的學(xué)習(xí)掌握這乏味的概念性內(nèi)容,如何開頭,各部分之間怎樣銜接,每一個(gè)知識(shí)點(diǎn)采取何種形式呈現(xiàn)、展開,重點(diǎn)如何突出,難點(diǎn)如何突破,那幾天這許多問題始終盤繞在腦海中,課上下來根據(jù)學(xué)生的參與情況,掌握程度可以說達(dá)到了教學(xué)目標(biāo)。我覺得整個(gè)課堂教學(xué)注意了以下幾點(diǎn):

      1、捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解概念間的關(guān)系。

      試上下來我感覺學(xué)生對倍數(shù)因數(shù)間的相互依存關(guān)系理解不到位,看著學(xué)生我突然想到可以利用學(xué)生喬雨雷、喬風(fēng)光兄弟間的關(guān)系呀,于是我把生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會(huì)從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。

      2、注意引導(dǎo)學(xué)生進(jìn)行有效的合作學(xué)習(xí)。

      動(dòng)手實(shí)踐、自主探索、合作交流是新課程倡導(dǎo)的學(xué)習(xí)方式,公開課不管上的什么內(nèi)容,不管有沒有必要往往都要叫學(xué)生討論,看起來熱熱鬧鬧,其實(shí)有多少學(xué)生真正參與了討論。往往是一組中的優(yōu)等生把答案說出,其他學(xué)生洗耳恭聽。當(dāng)3、2、5的倍數(shù)寫出來后,我問:“整體觀察這幾個(gè)數(shù)的倍數(shù),你認(rèn)為一個(gè)數(shù)的倍數(shù)有什么特點(diǎn)?”首先問題有討論的價(jià)值與必要性,其次當(dāng)問題提出后我先讓學(xué)生獨(dú)立思考,看到學(xué)生陸續(xù)舉手時(shí),再組織學(xué)生討論交流,完善自己的想法。(其實(shí)這是我一貫的做法,必須在每個(gè)學(xué)生獨(dú)立思考的基礎(chǔ)上進(jìn)行合作學(xué)習(xí)。)

      3、內(nèi)容環(huán)環(huán)相扣、過度自然流暢。

      從生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)因數(shù),從而揭示課題,引出誰是誰的倍數(shù),誰是誰的因數(shù),到找一個(gè)數(shù)的倍數(shù)或因數(shù),歸納找的方法。整個(gè)教學(xué)過程環(huán)環(huán)緊扣、一氣呵成,通達(dá)順暢。

      4、練習(xí)設(shè)計(jì)由易到難,由淺入深,既鞏固了新知,又發(fā)展了思維。

      “找朋友”游戲,答案不唯一,學(xué)生思考問題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。讓學(xué)生判斷自己的學(xué)號數(shù)是哪些數(shù)的倍數(shù),老師手里拿了2、3、5幾張數(shù)字卡片,老師出示卡片,如果學(xué)生的學(xué)號數(shù)是老師出示卡片的倍數(shù)就可以站起來。最后留下了學(xué)號是1、7、11、13、17、19、23、29、31、37、41、43、47的學(xué)生,讓學(xué)生想辦法如果他們也要站起來,老師出示的卡片上應(yīng)是幾?學(xué)生面對問題積極思考,享受了數(shù)學(xué)思維的快樂。

      疑問:一開始的擺12個(gè)小正方形拼成長方形,得出三個(gè)積是12的乘法算式,我想這里的操作可否省去?一方面用去時(shí)間較多,對教學(xué)內(nèi)容關(guān)系不大,如果說是培養(yǎng)操作能力也不是在這個(gè)時(shí)候。另一方面這堂課練習(xí)時(shí)間比較少,擠出的時(shí)間可用于練習(xí)。

      我想如果我們每堂課都能精心設(shè)計(jì)的話,對學(xué)生對我們教師都會(huì)有很大的提高。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思6

      復(fù)習(xí)課是教學(xué)過程中一種非常重要的課型,對夯實(shí)學(xué)生的基礎(chǔ)、培養(yǎng)和提高學(xué)生運(yùn)用知識(shí)、解決問題的能力起著舉足輕重的作用。復(fù)習(xí)課不是新授課的簡單重復(fù),在教學(xué)過程中起著與新授課同樣重要的作用,但是又與新授課有著本質(zhì)的區(qū)別和聯(lián)系。復(fù)習(xí)課更強(qiáng)調(diào)學(xué)生的自主學(xué)習(xí)、反饋矯正、展示交流等環(huán)節(jié),復(fù)習(xí)時(shí),要引導(dǎo)學(xué)生自己動(dòng)手整理知識(shí)結(jié)構(gòu),把知識(shí)系統(tǒng)化、條理化,從而把點(diǎn)狀分布的知識(shí)連接成線,如同把散亂的珍珠穿成了漂亮的珍珠鏈,拿起一顆,就能連起一串。如何上好復(fù)習(xí)課值得我們?nèi)パ芯亢吞接憽?/p>

      下面是我在復(fù)習(xí)四年級下冊第九單元《倍數(shù)與因數(shù)》時(shí),兩次不同的主要教學(xué)過程及本人對這兩次課的印象和反思。

      第一次教學(xué)是這樣的:我先請學(xué)生回憶這個(gè)單元學(xué)習(xí)了哪些內(nèi)容;接著讓全體學(xué)生背誦了倍數(shù)、因數(shù)、偶數(shù)、奇數(shù)、合數(shù)、素?cái)?shù)等概念和是2、3、5的倍數(shù)的特征;最后,出示了很多類型的習(xí)題,如找倍數(shù)與因數(shù)的,判斷素?cái)?shù)與合數(shù)的,根據(jù)2、3、5的倍數(shù)特征填數(shù)的……。

      整節(jié)課教師忙得不亦樂呼,幻燈片換了一張又一張,看起來似乎什么內(nèi)容都復(fù)習(xí)了;學(xué)生就像趕集一樣,做了這一題又忙哪一題,但收獲甚微。

      這次是蘇教版教材的第一輪使用,我這個(gè)從事多年人教版教學(xué)的老教師雖在新課改培訓(xùn)中加大了新課程理念的學(xué)習(xí),但因多年產(chǎn)生的教學(xué)習(xí)慣而很難有所真正的改變,是基于傳統(tǒng)的數(shù)學(xué)課堂教學(xué),認(rèn)為單元復(fù)習(xí)就是由教師帶領(lǐng)學(xué)生把知識(shí)點(diǎn)再全部掃描一下,多設(shè)計(jì)一些習(xí)題,讓學(xué)生反復(fù)操練,只有讓學(xué)生當(dāng)上了熟練工,才能應(yīng)付考試。而這種炒冷飯的復(fù)習(xí)課,忽視了重點(diǎn)、難點(diǎn),學(xué)生茫然地被教師牽著鼻子走,學(xué)習(xí)沒有了主動(dòng)性,教學(xué)效果當(dāng)然不樂觀。

      第二次教學(xué)時(shí),我在復(fù)習(xí)課前先讓學(xué)生反思自己本單元的哪些知識(shí)掌握得比較好、哪些知識(shí)還掌握得不好并整理成書面材料。在批閱了學(xué)生整理的書面材料后,發(fā)現(xiàn)比較集中的問題是:寫一個(gè)數(shù)的因數(shù)寫不全,判斷一個(gè)數(shù)是否同時(shí)是2、3、5的倍數(shù)時(shí)有困難,對于一些特殊的素?cái)?shù)、合數(shù)與奇數(shù)、偶數(shù)的特征掌握不好。因此,復(fù)習(xí)時(shí),我先請每個(gè)學(xué)生任意寫一個(gè)兩位數(shù),寫完后觀察這個(gè)數(shù)有什么特點(diǎn),并結(jié)合這一單元學(xué)到的概念說一說。然后出示了一道開放題:“誰能根據(jù)11、15、21、37、45、48、57、60、83、90這些數(shù)提與本單元的知識(shí)有關(guān)的問題?’學(xué)生思維活躍。有的提:“請判斷哪些是素?cái)?shù),哪些是合數(shù),哪些是奇數(shù),哪些是偶數(shù)?”有的提:“請寫出這些數(shù)中每個(gè)合數(shù)的全部因數(shù)?!庇械奶幔骸斑@10個(gè)數(shù)中,哪些數(shù)同時(shí)是2和3的倍數(shù)?哪些數(shù)同時(shí)有因數(shù)3和5?哪些數(shù)既是2的倍數(shù)又有因數(shù)5?哪些數(shù)同時(shí)是2、3、5的倍數(shù)?”每次學(xué)生提出問題后,教師都及時(shí)組織學(xué)生完成練習(xí)。接著,教師在黑板上寫下48□,讓學(xué)生繼續(xù)思考:要使48□既有因數(shù)2,又是3的倍數(shù),□里應(yīng)該填多少?有學(xué)生說0、2、4、6、8都可以。有學(xué)生馬上反駁說,2、4、8都不可以,只能填0或者6。教師追問原因,相機(jī)復(fù)習(xí)被3整除的數(shù)的特征,接著出示問題:”如果要使□48既是2的倍數(shù),又是3的倍數(shù),□里應(yīng)該填多少?”學(xué)生討論完后,教師再引導(dǎo)學(xué)生思考:“觀察、比較48□和□48,同樣要填一個(gè)數(shù)字,使它既是2的倍數(shù),又是3的倍數(shù),為什么答案不同?”有了前面的對比練習(xí),學(xué)生終于明白在口填數(shù)的訣竅所在:既要考慮整除的特征,又要觀察數(shù)字所處的位置。這時(shí),教師強(qiáng)調(diào)要靈活運(yùn)用所學(xué)的知識(shí)解決問題。最后,教師要求每個(gè)學(xué)生拿出錯(cuò)題集,先自己復(fù)習(xí),然后以同桌兩人為一組,出題考對方,教師巡視指導(dǎo)。

      課堂上不時(shí)有學(xué)生間的爭論,有學(xué)生舉手請教老師、有同學(xué)之間的互助,每個(gè)學(xué)生學(xué)的都很積極主動(dòng),全然沒有復(fù)習(xí)課的單調(diào)枯燥之感。

      這次的復(fù)習(xí)是基于學(xué)生對知識(shí)的理解水平,本著尊重學(xué)生的原則,以學(xué)生為主體,先學(xué)后教,抓住重點(diǎn)、難點(diǎn),設(shè)計(jì)有層次的習(xí)題,舉一反三,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,不求習(xí)題的多樣繁雜,但求激活每個(gè)學(xué)生的思維,引導(dǎo)學(xué)生在自學(xué)中學(xué)會(huì)發(fā)現(xiàn)、在傾聽中學(xué)會(huì)理解、在討論中學(xué)會(huì)思辨。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思7

      一、單元主題圖體驗(yàn)數(shù)學(xué)化過程。單元主題圖是教材中的一個(gè)重要內(nèi)容,它是選擇某一個(gè)主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識(shí)出發(fā)來組織教學(xué)的,首先讓學(xué)生獨(dú)立觀察主題圖,通過獨(dú)立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗(yàn)獲取知識(shí)的過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負(fù)數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個(gè)凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗(yàn)“數(shù)學(xué)化”的過程。

      二、數(shù)形結(jié)合實(shí)現(xiàn)有意義建構(gòu)。教材中對因數(shù)概念的認(rèn)識(shí),設(shè)計(jì)了“用小正方形拼長方形”的操作活動(dòng),引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進(jìn)行交流。在思考“哪幾種拼法”時(shí),借助“拼小正方形”的活動(dòng),使數(shù)與形有機(jī)地結(jié)合,防止學(xué)生進(jìn)行“機(jī)械地學(xué)習(xí)”;學(xué)生對因數(shù)和理解不僅是數(shù)字上的認(rèn)識(shí),而且能與操作活動(dòng)與圖形描述聯(lián)系起來,促進(jìn)了學(xué)生的有意義建構(gòu),這是一個(gè)“先形后數(shù)”的過程,是一個(gè)知識(shí)抽象的過程。

      三、探索活動(dòng)關(guān)注解決問題的策略。學(xué)生在探索活動(dòng)中,運(yùn)用做記號、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會(huì)觀察、分析、歸納、猜想、驗(yàn)證等過程,孩子們學(xué)會(huì)了思考,初步形成了解決問題的一些基本策略。

      四、困惑:

      1、第一次真正開始教北師大教材,最大的感覺是教學(xué)的空間真的擴(kuò)大了,課堂活躍了,但是同時(shí)給學(xué)生進(jìn)行課后輔導(dǎo)的時(shí)間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當(dāng)一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個(gè)一個(gè)單元只有一個(gè)練習(xí)一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。

      2、不太明白為什么一定要使用“因數(shù)”這個(gè)概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學(xué)生家長,就真的有學(xué)生家長投訴說“老師啊,你教錯(cuò)了,那不是因數(shù),是約數(shù)……”,讓人哭笑

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思8

      我執(zhí)教的四年級數(shù)學(xué)拓展平臺(tái)《因數(shù)和倍數(shù)》一節(jié),這一內(nèi)容,學(xué)生初次接觸。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先以貼畫為素材,讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩難度,效果較好。

      這節(jié)課另一個(gè)給我感觸最深的是:在引導(dǎo)學(xué)生找一個(gè)數(shù)的因數(shù)和倍數(shù)。我借助學(xué)生開課擺的12個(gè)小正方形,寫出的三個(gè)乘法算式。首先引導(dǎo)學(xué)生找12的因數(shù),我給學(xué)生充分的自主探究時(shí)間,讓學(xué)生經(jīng)歷知識(shí)的形成過程,自主構(gòu)建新知。出乎意料的是學(xué)生竟然用口訣,乘法和除法等等方法找出12的因數(shù),找到兩個(gè)因數(shù)非常接近,緊接著師生互動(dòng),交流討論出12的所有因數(shù)。學(xué)生在輕松愉快中掌握了找一個(gè)數(shù)的所有因數(shù)的方法。再找9的13的因數(shù),一環(huán)扣一環(huán),總結(jié)歸納再能不能找出這些數(shù)的因數(shù)了?學(xué)生說不能,從而引出因數(shù)的個(gè)數(shù)是有限的。及時(shí)運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的'因數(shù)是它本身。教師及時(shí)跟上個(gè)性化的語言評價(jià),激活學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己學(xué)習(xí)找一個(gè)數(shù)的倍數(shù)。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個(gè)數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點(diǎn)。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時(shí)放手,會(huì)看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思9

      我發(fā)現(xiàn)“倍數(shù)和因數(shù)”這一單元大部分學(xué)生基礎(chǔ)知識(shí)及基本概念掌握較好,倍數(shù)與因數(shù)的應(yīng)用相當(dāng)部分學(xué)生應(yīng)用也比較靈活。從學(xué)生的答卷情況來看存存在問題也不少,縱觀本單元的教學(xué),從中得到的反思:

      1、創(chuàng)設(shè)了學(xué)生熟悉的生活情境

      不論是新課的講授還是知識(shí)的實(shí)際應(yīng)用,都是從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),激發(fā)了學(xué)生主動(dòng)學(xué)習(xí)與參與的興趣,引導(dǎo)學(xué)生感悟到,生活中處處有數(shù)學(xué),數(shù)學(xué)中的倍數(shù)、因數(shù)就在身邊,從生活中學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)問題。

      2、采用了小組合作學(xué)習(xí)的模式

      在新課的教學(xué)中,讓學(xué)生通過觀察,發(fā)現(xiàn)現(xiàn)實(shí)生活中的數(shù)以及有關(guān)倍數(shù)、因數(shù)的特征及應(yīng)用以后,在學(xué)生獨(dú)立嘗試解決問題的基礎(chǔ)上進(jìn)行小組討論:如何合理將分類,2、3、5的倍數(shù)的特征,如何找因數(shù),找質(zhì)數(shù)等等,這些都有以小組討論作為探索新知的起點(diǎn),在小組合作學(xué)習(xí)中,給學(xué)生搭建自主的活動(dòng)空間和交流的平臺(tái)。

      3、充分體現(xiàn)了以學(xué)生為主體的指導(dǎo)思想

      在課堂上,努力營造輕松、愉快的學(xué)習(xí)環(huán)境,引導(dǎo)學(xué)生積極參與學(xué)習(xí)過程。重視讓每個(gè)學(xué)生都在小組內(nèi)發(fā)表自己的想法,每個(gè)知識(shí)點(diǎn)的建立、新知識(shí)的形成盡量讓學(xué)生從已有知中識(shí)討論、尋求,同時(shí)也傾聽同伴的觀點(diǎn),相互學(xué)習(xí)。體現(xiàn)以“以人發(fā)展為本”的新理念,尊重學(xué)生,信任學(xué)生,敢于放手讓學(xué)生自己去學(xué)習(xí)。整個(gè)教學(xué)過程學(xué)生從已有的知識(shí)經(jīng)驗(yàn)的實(shí)際狀態(tài)出發(fā),通過操作、討論、歸納,經(jīng)歷了知識(shí)的發(fā)現(xiàn)和探究過程,從中讓讓學(xué)生體驗(yàn)了解決問題的喜悅或失敗的情感。

      4、重視新知識(shí)的應(yīng)用

      每學(xué)習(xí)一個(gè)新的知識(shí)點(diǎn)及時(shí)讓學(xué)生運(yùn)用所學(xué)的知識(shí)解決實(shí)際問題,使學(xué)生感到數(shù)學(xué)就在生活中,并且運(yùn)用新知識(shí)靈活解決問題。

      5、不足之處

      (1)、在教學(xué)中還有一小部分學(xué)生未積極參與到學(xué)習(xí)中來,如何讓全體學(xué)生都參與到數(shù)學(xué)研究中來,仍有待于進(jìn)一步的加強(qiáng)。

      (2)、本單元的測驗(yàn)卷的應(yīng)用部分要求學(xué)生說明解題的理由的比較多,而學(xué)生也失分比較嚴(yán)重,說明學(xué)生在這方面知識(shí)較薄弱,今后的教學(xué)中要加強(qiáng)突破這一環(huán)節(jié)。

      (3)、也出現(xiàn)了很多教學(xué)的困惑.如在教學(xué)中明知一小部分學(xué)生在某些知識(shí)點(diǎn)存在缺陷,但很難抽時(shí)間彌補(bǔ)及跟進(jìn)。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思10

      不知不覺,我們又進(jìn)行了第二單元的學(xué)習(xí)。第二單元的內(nèi)容是《因數(shù)與倍數(shù)》,這部分內(nèi)容與老教材相比變化很大,我覺得第二、四單元是本冊教材中變化最大的單元,要引起足夠的重視。

      1、以往認(rèn)識(shí)因數(shù)和倍數(shù)是借助于整除現(xiàn)象,“X能被X整除,或X能整除X”,所以X是X的因數(shù),X是X的倍數(shù)。現(xiàn)在的教材完全不同了,2X3=6,所以2和3是6的因數(shù),6是2和3的倍數(shù),借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。

      2、以往數(shù)學(xué)教材中,概念教學(xué)的量很大。數(shù)的整除,因數(shù)(老教材稱為約數(shù)),倍數(shù),2、5、3的倍數(shù)的特征(老教材稱為能被2、5、3整除的數(shù)的特征),質(zhì)數(shù),倒數(shù),分解質(zhì)因數(shù),最大公因數(shù)(以往的教材中稱為最大公約數(shù)),最小公倍數(shù)等內(nèi)容共同編排在后面,合為一個(gè)單元。而現(xiàn)在新教材本單元只安排了因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)合數(shù)。其它內(nèi)容安排在了第四單元《分?jǐn)?shù)的意義和性質(zhì)》,借助約分引出公約數(shù)、公倍數(shù)的學(xué)習(xí),改變了概念多而集中,抽象程度過高的現(xiàn)象。

      3、以往求最大公約數(shù),最小公倍數(shù)時(shí),采用的方法是唯一的、固定的,也就是有短除法分解質(zhì)因數(shù),而新教材中鼓勵(lì)方法多樣化,不把它作為正式的內(nèi)容教學(xué),而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學(xué)生的思維差異。

      可見,編者為體現(xiàn)新課標(biāo)精神對本部分內(nèi)容作了精心的調(diào)整,煞費(fèi)苦心,可是學(xué)完了本單元的第一部分和第二部分內(nèi)容,我對本單元的學(xué)習(xí)內(nèi)容有了小小的疑問。這一單元內(nèi)容分為因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù),我覺得第一部分內(nèi)容和第三部分內(nèi)容的關(guān)系很大,連續(xù)性強(qiáng)。知道了什么是因數(shù)和倍數(shù),也會(huì)找一個(gè)數(shù)的因數(shù)和倍數(shù)了,那么就應(yīng)該從找因數(shù)和個(gè)數(shù)問題上學(xué)習(xí)質(zhì)數(shù)和合數(shù)。教材對質(zhì)數(shù)和合數(shù)的學(xué)習(xí)內(nèi)容設(shè)計(jì)較好,開門見山讓學(xué)生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個(gè)數(shù)有什么規(guī)律,再引出質(zhì)數(shù)和合數(shù)的學(xué)習(xí)??蔀槭裁丛谥虚g突然加上了2、5、3的倍數(shù)的特征?這樣感覺前后內(nèi)容失去了聯(lián)系,不夠自然流暢。所以我覺得可以把二三部分內(nèi)容作為適當(dāng)?shù)恼{(diào)整,即因數(shù)和倍數(shù),質(zhì)數(shù)和合數(shù),2、5、3的倍數(shù)的特征會(huì)比較好一些。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思11

      這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,具體做到了以下幾點(diǎn):

      一、尊重教材,引導(dǎo)學(xué)生實(shí)現(xiàn)從形象向抽象的飛躍。

      教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進(jìn)而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的意義。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長期的消化理解的過程。

      這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,

      二、細(xì)化過程,讓學(xué)生在充分交流中感悟理解倍數(shù)和因數(shù)的意義。

      倍數(shù)和因數(shù)的意義是本單元的重要知識(shí),其他內(nèi)容的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會(huì)12也是4的倍數(shù),指名說后,再強(qiáng)化一下讓學(xué)生連起來說說誰是誰的倍數(shù)。接著教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時(shí)你又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強(qiáng)。這時(shí)再讓學(xué)生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達(dá)的是自然數(shù)之間的關(guān)系之后,接著練一練讓學(xué)生根據(jù)2×6=12先同桌互相說說哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說說有點(diǎn)特別的兩句。

      整個(gè)過程處理細(xì)致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時(shí)、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的意義。

      三、由點(diǎn)及面,巧架平臺(tái),讓學(xué)生在師生互動(dòng)中建立完整的數(shù)學(xué)模型。

      找一個(gè)數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準(zhǔn)備。探索找一個(gè)數(shù)的倍數(shù)或因數(shù)的方法時(shí),重點(diǎn)是幫助學(xué)生建立相應(yīng)的數(shù)學(xué)模型。

      探索求一個(gè)數(shù)因數(shù)的方法是本課的難點(diǎn),例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進(jìn),先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過自主探究找出24的所有因數(shù),接著組織學(xué)生比較、討論、優(yōu)化提升出找一個(gè)數(shù)的因數(shù)的方法。

      教學(xué)4的倍數(shù)時(shí),學(xué)生在4×4=16的鋪墊下,很容易找到一個(gè)或幾個(gè)4的倍數(shù),但是想要“一個(gè)不漏且有序的找全,并體會(huì)出4的倍數(shù)的個(gè)數(shù)是無限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認(rèn)知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點(diǎn)逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。

      這樣搭建了有效的平臺(tái)、形成了師生互動(dòng)生成的過程,學(xué)生經(jīng)歷了無序、不完整逐步由點(diǎn)及面向有序、完整的思維邁進(jìn),有效的建構(gòu)了數(shù)學(xué)模型。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思12

      一.?dāng)?shù)形結(jié)合減緩難度

      《因數(shù)和倍數(shù)》這一內(nèi)容,學(xué)生初次接觸。在導(dǎo)入中我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。讓學(xué)生把12個(gè)小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣,學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩難度,效果較好。

      二.自主探究,合作學(xué)習(xí)

      放手讓每個(gè)同學(xué)找出36的所有因數(shù),學(xué)生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個(gè)問題,去尋找36的所有因數(shù)。由于個(gè)人經(jīng)驗(yàn)和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個(gè)數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點(diǎn)。

      三.在游戲中體驗(yàn)學(xué)習(xí)的快樂

      在最后的環(huán)節(jié)中我設(shè)計(jì)了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個(gè)數(shù)找到共同的朋友。

      這堂課我還存在許多不足,我的教學(xué)理念很清楚,課堂上學(xué)生是主體教師只是合作者。但在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思13

      《因數(shù)和倍數(shù)》這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長期的消化理解的過程。

      同時(shí)這部分內(nèi)容是比較重要的,為五年級的最小公倍數(shù)和最大公因數(shù)的學(xué)習(xí)奠定了基礎(chǔ)。

      本節(jié)可充分發(fā)揮學(xué)生的主體性,讓每個(gè)學(xué)生都能參加到數(shù)學(xué)知識(shí)的學(xué)習(xí)中去,調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣和主動(dòng)性。本節(jié)課主要從以下幾個(gè)方面進(jìn)行教學(xué)的。

      一:動(dòng)手操作 探究方法.

      我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,變抽象為具體。

      二、倍數(shù)教學(xué),發(fā)現(xiàn)特點(diǎn)。

      利用乘法算式,讓學(xué)生找出3的倍數(shù),這里讓學(xué)生理解:(1)3的倍數(shù)應(yīng)該是3與一個(gè)數(shù)相乘的積。(2)找3的倍數(shù)是要有一定的順序,依次用1、2、3……與3相乘。有了找3倍數(shù)的方法,在上學(xué)生找出2和5的倍數(shù)。這樣即鞏固對例題的理解,同時(shí)也為接下來的討論倍數(shù)的特點(diǎn)奠定基礎(chǔ)。最后讓學(xué)生通過討論發(fā)現(xiàn):(1)一個(gè)數(shù)的倍數(shù)個(gè)數(shù)是無限的(要用省略號)。(2)一個(gè)數(shù)的最小倍數(shù)是本身,沒有最大的倍數(shù)。

      三、因數(shù)教學(xué),發(fā)現(xiàn)特點(diǎn)。

      找一個(gè)數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn)。找一個(gè)數(shù)的因數(shù)的方法和倍數(shù)相似,大部分學(xué)生都用乘法算式尋找一個(gè)數(shù)的因數(shù),這里教師可以通過幾到有序排列的除法算式啟發(fā)學(xué)生進(jìn)一步理解。強(qiáng)調(diào)有序(從小到大),不重復(fù)、不遺漏。隨后讓學(xué)生找出15、16的因數(shù)有那些。最后通過比較討論讓學(xué)生得出因數(shù)的特點(diǎn):(1)一個(gè)數(shù)因數(shù)的個(gè)數(shù)是有限的。(2)一個(gè)數(shù)最小的因數(shù)是1,最大的因數(shù)是本身。(讓學(xué)生明白所有的數(shù)都有因數(shù)1).

      四、練習(xí)反饋情況

      從學(xué)生的作業(yè)情況來看,大部分學(xué)生掌握的還是不錯(cuò)的,有部分基礎(chǔ)差的學(xué)生,有如下幾點(diǎn)錯(cuò)誤出現(xiàn):1、倍數(shù)沒有加省略號。2、分不清倍數(shù)和因數(shù),倍數(shù)也加省略號,因數(shù)也加省略號。3、因數(shù)有遺漏的情況。從以上情況來看,在今后的教學(xué)中要多關(guān)注基礎(chǔ)比較差的學(xué)生,注意補(bǔ)差工作;同時(shí)要注意教學(xué)中細(xì)節(jié)的處理。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思14

      《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個(gè)除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨(dú)存在,不是很好理解。我通過捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和孩子們玩了一個(gè)小游戲。用“我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。學(xué)生對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時(shí)就不會(huì)說錯(cuò)了。對于這節(jié)課的教學(xué),我特別注意下面幾個(gè)細(xì)節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。

      一是教材雖然不是從過去的整除定義出發(fā),而是通過一個(gè)乘法算式來引出因數(shù)和倍數(shù)的概念,但本質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時(shí)特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。

      二是要學(xué)生注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個(gè)乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別?!氨丁钡母拍畋取氨稊?shù)”要廣??梢哉f“15是3的5倍”,也可以說“1.5是0.3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復(fù)強(qiáng)調(diào),幫助孩子們認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,不會(huì)模糊了。

      《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思15

      《倍數(shù)和因數(shù)》是四下第九單元的內(nèi)容。教學(xué)時(shí),我首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作到直觀感知,讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成倍數(shù)與因數(shù)的意義,使學(xué)生初步建立了“倍數(shù)與因數(shù)”的概念。根據(jù)算式直接說明誰是誰的倍數(shù),誰是誰的因數(shù),學(xué)生很容易接受,再通過學(xué)生自己舉例和交流,進(jìn)一步加深對倍數(shù)和因數(shù)意義的理解。從學(xué)生的反應(yīng)和課堂氣氛來看,教學(xué)效果還是不錯(cuò)的。

      能不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的倍數(shù)和因數(shù),是本課的教學(xué)難點(diǎn)。教學(xué)時(shí),我先讓學(xué)生自己找3的倍數(shù),匯報(bào)交流后通過對比(一種是沒有順序,一種是有序的)得出如何有序地找一個(gè)數(shù)的倍數(shù)的方法。對于倍數(shù),學(xué)生在以前的學(xué)習(xí)中已有所接觸,所以學(xué)生很容易學(xué),用的時(shí)間也比較少。

      對于找一個(gè)數(shù)的因數(shù),學(xué)生最容易犯的錯(cuò)誤就是漏找,即找不全。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路。學(xué)生通過觀察,發(fā)現(xiàn)當(dāng)找到的兩個(gè)自然數(shù)非常接近時(shí),就不需要再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn)。

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思1

      一、單元主題圖體驗(yàn)數(shù)學(xué)化過程。單元主題圖是教材中的一個(gè)重要內(nèi)容,它是選擇某一個(gè)主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識(shí)出發(fā)來組織教學(xué)的,首先讓學(xué)生獨(dú)立觀察主題圖,通過獨(dú)立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗(yàn)獲取知識(shí)的過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負(fù)數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個(gè)凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗(yàn)“數(shù)學(xué)化”的過程。

      二、數(shù)形結(jié)合實(shí)現(xiàn)有意義建構(gòu)。教材中對因數(shù)概念的認(rèn)識(shí),設(shè)計(jì)了“用小正方形拼長方形”的操作活動(dòng),引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進(jìn)行交流。在思考“哪幾種拼法”時(shí),借助“拼小正方形”的活動(dòng),使數(shù)與形有機(jī)地結(jié)合,防止學(xué)生進(jìn)行“機(jī)械地學(xué)習(xí)”;學(xué)生對因數(shù)和理解不僅是數(shù)字上的認(rèn)識(shí),而且能與操作活動(dòng)與圖形描述聯(lián)系起來,促進(jìn)了學(xué)生的有意義建構(gòu),這是一個(gè)“先形后數(shù)”的過程,是一個(gè)知識(shí)抽象的過程。

      三、探索活動(dòng)關(guān)注解決問題的策略。學(xué)生在探索活動(dòng)中,運(yùn)用做記號、列表格、畫示意圖等解決問題的'策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會(huì)觀察、分析、歸納、猜想、驗(yàn)證等過程,孩子們學(xué)會(huì)了思考,初步形成了解決問題的一些基本策略。

      四、困惑:

      1、第一次真正開始教北師大教材,最大的感覺是教學(xué)的空間真的擴(kuò)大了,課堂活躍了,但是同時(shí)給學(xué)生進(jìn)行課后輔導(dǎo)的時(shí)間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當(dāng)一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個(gè)一個(gè)單元只有一個(gè)練習(xí)一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。

      2、不太明白為什么一定要使用“因數(shù)”這個(gè)概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學(xué)生家長,就真的有學(xué)生家長投訴說“老師啊,你教錯(cuò)了,那不是因數(shù),是約數(shù)……”,讓人哭笑

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思2

      這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。

      本單元內(nèi)容在編排上與老教材有較大的差異,比如在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個(gè)數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個(gè)數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時(shí),我先放手讓學(xué)生自己找,學(xué)生在獨(dú)立思考的過程中,自然而然的.會(huì)結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識(shí)的運(yùn)用意識(shí)),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個(gè)數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個(gè)學(xué)習(xí)活動(dòng)環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動(dòng)的空間,有了自由活動(dòng)的空間,才會(huì)有思維創(chuàng)造的火花,才能體現(xiàn)教育活動(dòng)的終極目標(biāo)。特別是用除法找因數(shù)的學(xué)生,正是因?yàn)樗麄円庾R(shí)到了因數(shù)與倍數(shù)之間的整除關(guān)系的本質(zhì),才會(huì)想到用除法來解決問題,我也不由得佩服這些孩子對知識(shí)的遷移能力。在這個(gè)環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導(dǎo)學(xué)生從因數(shù)的概念,用乘法來找因數(shù),而我考慮到本班孩子的學(xué)情(絕大多數(shù)學(xué)生能夠運(yùn)用所學(xué)知識(shí),找到求因數(shù)的方法),如教師一開始就引導(dǎo)學(xué)生:想幾和幾相乘,勢必會(huì)造成先入為主,妨礙學(xué)生創(chuàng)造性的思維活動(dòng)?用已有的經(jīng)驗(yàn)自主建構(gòu)新知是提高學(xué)生學(xué)習(xí)能力的有效途徑,讓學(xué)生獨(dú)立思考、自主探索、促思(促進(jìn)學(xué)生思維發(fā)展)、提能(提高學(xué)習(xí)能力)是我的教學(xué)策略主要內(nèi)容。至于這兩種方法孰重孰輕,的確難以定論。實(shí)際上,對于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢,如求54的因數(shù)有哪些?學(xué)生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學(xué)生的學(xué)習(xí)潛力是巨大的,教師是學(xué)生學(xué)習(xí)的引領(lǐng)者,因此教師的觀念和行為決定了學(xué)生的學(xué)習(xí)方式和結(jié)果,所以我認(rèn)為教師要專研教材,充分利用教材,根據(jù)學(xué)生的實(shí)際情況,創(chuàng)造性地使用教材,為學(xué)生能力的發(fā)展提供素材和創(chuàng)造條件,真正實(shí)現(xiàn)學(xué)生學(xué)習(xí)的主體地位。

      學(xué)生在找一個(gè)數(shù)的因數(shù)時(shí)最常犯的錯(cuò)誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點(diǎn)。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢必會(huì)感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個(gè)相鄰的自然數(shù)時(shí),他們自然就不會(huì)再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn),我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的。

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思3

      本節(jié)課的內(nèi)容是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識(shí)(包括整數(shù)的知識(shí)、整數(shù)的四則運(yùn)算及其應(yīng)用)的基礎(chǔ)上,進(jìn)一步認(rèn)識(shí)整數(shù)的性質(zhì)。本單元所涉及的因數(shù)和倍數(shù)都是初等數(shù)論的`基礎(chǔ)知識(shí)。

      成功之處:

      1.理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進(jìn)行分類,同時(shí)思考其標(biāo)準(zhǔn)依據(jù)是什么。通過學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強(qiáng)調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個(gè)條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個(gè)條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

      2.厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。

      不足之處:

      1.練習(xí)設(shè)計(jì)容量少了一些,導(dǎo)致課堂有剩余時(shí)間。

      2. 對因數(shù)和倍數(shù)的含義還應(yīng)該進(jìn)行歸納總結(jié)上升到用字母來表示。

      再教設(shè)計(jì):

      1.根據(jù)課本的練習(xí)相應(yīng)的進(jìn)行補(bǔ)充。

      2.因數(shù)和倍數(shù)的含義用總結(jié)為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思4

      一、動(dòng)手操作實(shí)踐,結(jié)合實(shí)例內(nèi)化,激發(fā)學(xué)生的興趣點(diǎn)燃學(xué)生的思維。

      在教學(xué)中我重點(diǎn)注意捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生很好地理解了概念及它們之間的關(guān)系。在剛開始我讓學(xué)生用準(zhǔn)備好的12個(gè)小正方形擺成長方形,然后讓學(xué)生用算式把擺法算出來,這樣學(xué)生在操作活動(dòng)中,初步感知了倍數(shù)的存在,從而引出倍數(shù)和因數(shù)的概念,并且為下面的練習(xí)如何找一個(gè)數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。同時(shí),由于這節(jié)課是概念課因此有不少內(nèi)容是由老師告知的,但這并不意味著學(xué)生完全被動(dòng)地接受。為此,我在出示三道乘法算式后又出示了相應(yīng)的除法算式,這樣,不僅讓學(xué)生溝通了乘法和除法的關(guān)系,也讓學(xué)生感悟到不管是乘法還是除法算式都可以找到倍數(shù)和因數(shù)。

      二、巧妙設(shè)計(jì)游戲,擴(kuò)大思維空間,培養(yǎng)學(xué)生的發(fā)散思維。

      我在教學(xué)中設(shè)計(jì)了找朋友游戲,由于答案不統(tǒng)一,學(xué)生思考問題的空間很大。首先,我讓學(xué)生用所學(xué)的知識(shí)介紹自己,然后學(xué)生通過數(shù)字卡片找自己的倍數(shù)和因數(shù)朋友。這樣,學(xué)生拿著卡片上臺(tái)找到自己的朋友,同時(shí)讓臺(tái)下的學(xué)生判斷自己的學(xué)號是不是這個(gè)數(shù)的'倍數(shù)或因數(shù)。通過這樣的活動(dòng),既培養(yǎng)了學(xué)生的發(fā)散思維能力,又使學(xué)生享受到數(shù)學(xué)學(xué)習(xí)的快樂。

      三、鼓勵(lì)自主探究,注重意義建構(gòu),促進(jìn)學(xué)生的知識(shí)內(nèi)化提高學(xué)生的思維能力。

      我在教學(xué)中較多地注意到學(xué)生的主體地位,盡量多地創(chuàng)造機(jī)會(huì),讓學(xué)生參與到教學(xué)活動(dòng)中來。在探討找一個(gè)數(shù)的倍數(shù)和因數(shù)的方法時(shí),就充分調(diào)動(dòng)了學(xué)生的探討熱情,積極投身到教學(xué)過程中來。很快就把找一個(gè)數(shù)的倍數(shù)或因數(shù)的方法總結(jié)出來了,較好地促使學(xué)生的智能內(nèi)化。

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思5

      《因數(shù)和倍數(shù)》這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長期的消化理解的過程。

      同時(shí)這部分內(nèi)容是比較重要的,為五年級的最小公倍數(shù)和最大公因數(shù)的學(xué)習(xí)奠定了基礎(chǔ)。

      本節(jié)可充分發(fā)揮學(xué)生的主體性,讓每個(gè)學(xué)生都能參加到數(shù)學(xué)知識(shí)的學(xué)習(xí)中去,調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣和主動(dòng)性。本節(jié)課主要從以下幾個(gè)方面進(jìn)行教學(xué)的。

      一、動(dòng)手操作 探究方法.

      我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,變抽象為具體。

      二、倍數(shù)教學(xué),發(fā)現(xiàn)特點(diǎn)。

      利用乘法算式,讓學(xué)生找出3的倍數(shù),這里讓學(xué)生理解:

      (1)3的倍數(shù)應(yīng)該是3與一個(gè)數(shù)相乘的積。

      (2)找3的倍數(shù)是要有一定的順序,依次用1、2、3……與3相乘。有了找3倍數(shù)的方法,在上學(xué)生找出2和5的倍數(shù)。這樣即鞏固對例題的理解,同時(shí)也為接下來的討論倍數(shù)的特點(diǎn)奠定基礎(chǔ)。最后讓學(xué)生通過討論發(fā)現(xiàn):

      (1)一個(gè)數(shù)的倍數(shù)個(gè)數(shù)是無限的(要用省略號)。

      (2)一個(gè)數(shù)的最小倍數(shù)是本身,沒有最大的倍數(shù)。

      三、因數(shù)教學(xué),發(fā)現(xiàn)特點(diǎn)。

      找一個(gè)數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn)。找一個(gè)數(shù)的因數(shù)的方法和倍數(shù)相似,大部分學(xué)生都用乘法算式尋找一個(gè)數(shù)的.因數(shù),這里教師可以通過幾到有序排列的除法算式啟發(fā)學(xué)生進(jìn)一步理解。強(qiáng)調(diào)有序(從小到大),不重復(fù)、不遺漏。隨后讓學(xué)生找出15、16的因數(shù)有那些。最后通過比較討論讓學(xué)生得出因數(shù)的特點(diǎn):

      (1)一個(gè)數(shù)因數(shù)的個(gè)數(shù)是有限的。

      (2)一個(gè)數(shù)最小的因數(shù)是1,最大的因數(shù)是本身。(讓學(xué)生明白所有的數(shù)都有因數(shù)1).

      四、練習(xí)反饋情況

      從學(xué)生的作業(yè)情況來看,大部分學(xué)生掌握的還是不錯(cuò)的,有部分基礎(chǔ)差的學(xué)生,有如下幾點(diǎn)錯(cuò)誤出現(xiàn):

      1、倍數(shù)沒有加省略號。

      2、分不清倍數(shù)和因數(shù),倍數(shù)也加省略號,因數(shù)也加省略號。

      3、因數(shù)有遺漏的情況。從以上情況來看,在今后的教學(xué)中要多關(guān)注基礎(chǔ)比較差的學(xué)生,注意補(bǔ)差工作;同時(shí)要注意教學(xué)中細(xì)節(jié)的處理。

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思6

      本單元的重點(diǎn)是讓學(xué)生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,以及它們之間的聯(lián)系和區(qū)別。還要掌握2、5、3的倍數(shù)的特征。這一單元的內(nèi)容與原來教材比較有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識(shí)整除的情況下直接

      本單元的重點(diǎn)是讓學(xué)生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,以及它們之間的聯(lián)系和區(qū)別。還要掌握2、5、3的倍數(shù)的特征。這一單元的內(nèi)容與原來教材比較有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識(shí)整除的情況下直接認(rèn)識(shí)倍數(shù)和因數(shù)的'。從學(xué)生學(xué)習(xí)的情況來看,這一改變并沒有對學(xué)生造成任何影響。

      本單元的內(nèi)容較為抽象,很難結(jié)合生活實(shí)例或具體情境來進(jìn)行教學(xué),學(xué)生理解起來有一定的難度。在教學(xué)過程中,本人就忽視了概念的本質(zhì),而是讓學(xué)生死記硬背相關(guān)概念或結(jié)論,學(xué)生無法理清各概念間的前后承接關(guān)系,達(dá)不到融會(huì)貫通的程度,所以教學(xué)效果也不怎么理想。要解決教學(xué)中出現(xiàn)的問題,經(jīng)過反思,我認(rèn)為要做好兩點(diǎn):

      (1)加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。本單元中因數(shù)和倍數(shù)是最基本的兩個(gè)概念,理解了因數(shù)和倍數(shù)的含義,對于一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的、倍數(shù)的個(gè)數(shù)是無限的等結(jié)論自然也就掌握了,對于后面的公因數(shù)、公倍數(shù)等概念的理解也是水到渠成。要引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)去掌握這些知識(shí),而不是機(jī)械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。

      (2)由于本單元知識(shí)特有的抽象性,教學(xué)時(shí)要注意培養(yǎng)學(xué)生的抽象思維能力。雖然我們強(qiáng)調(diào)從生活的角度引出數(shù)學(xué)知識(shí),但本單元不太容易與具體情境結(jié)合起來,如質(zhì)數(shù)、合數(shù)等概念,很難從生活實(shí)際中引入。而學(xué)生到了五年級,抽象能力已經(jīng)有了進(jìn)一步發(fā)展,有意識(shí)地培養(yǎng)他們的抽象概括能力也是很有必要的,如讓學(xué)生通過幾個(gè)特殊的例子,自行總結(jié)出任何一個(gè)數(shù)的倍數(shù)個(gè)數(shù)都是無限的,逐步形成從特殊到一般的歸納推理能力,等等。

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思7

      本單元注意以下七個(gè)方面的教學(xué),可以促進(jìn)學(xué)生鞏固基礎(chǔ)知識(shí),促進(jìn)學(xué)生發(fā)展基本思維能力。

      1.加強(qiáng)概念間相互關(guān)系的梳理

      (1)注意因數(shù)與倍數(shù)的相互依存的關(guān)系

      (2)質(zhì)數(shù)、合數(shù)與因數(shù)的關(guān)系

      (3)2的倍數(shù)與偶數(shù)、奇數(shù)的關(guān)系

      (4)與大數(shù)的讀寫相關(guān)聯(lián)

      如:一個(gè)七位數(shù),最高位是最小的奇數(shù),萬位是最小的質(zhì)數(shù),千位是最小的合數(shù),

      最低位是最大的一位合數(shù),其余各位都是最小的偶數(shù)。

      這個(gè)數(shù)作( ),讀作( )。

      (5)2、3、5的倍數(shù)與乘法口訣緊密聯(lián)系。

      2.要用“活”教材

      (1)教學(xué)中要用好教材,用活教材,教學(xué)實(shí)踐證明,從單數(shù)與雙數(shù)入手探究奇數(shù)與偶數(shù);從乘法口訣入手,探究2的倍數(shù),探究5的倍數(shù),探究3的倍數(shù),比教材安排的教學(xué)內(nèi)容進(jìn)行教學(xué),學(xué)生更容易掌握知識(shí)。

      (2)注意培養(yǎng)學(xué)生的抽象思維能力(本單元知識(shí)特點(diǎn)的抽象性)

      要用歸納推理:就是從個(gè)別性知識(shí)推出一般性結(jié)論

      (1)偶數(shù)、奇數(shù)

      (2)5的倍數(shù):5、10、15、20、25、30——個(gè)位是0或5的數(shù)是5的倍數(shù)

      2的倍數(shù):2、4、6、8、10、12、14、16、18、20……

      3的倍數(shù):

      (3)質(zhì)數(shù)、合數(shù):寫出1——20各數(shù)的`因數(shù)進(jìn)行歸納推理

      3.教給學(xué)生學(xué)習(xí)的方法

      列舉法:

      如:18因數(shù)6的倍數(shù):

      又如:P16一個(gè)數(shù)既是42的因數(shù),又是7的倍數(shù),這個(gè)數(shù)可能是( )

      4.教給學(xué)生養(yǎng)成“有序?qū)W習(xí)”的良好學(xué)習(xí)習(xí)慣

      5.注意知識(shí)的聯(lián)系,與用字母表示數(shù)的結(jié)合。如:

      數(shù)A最小的因數(shù)是,最大的因數(shù)是()

      數(shù)B最小的倍數(shù)是(),()最大的倍數(shù)

      6.注意概念的判斷

      (1)所有自然數(shù).不是奇數(shù),就是偶數(shù)()

      (2)所有自然數(shù)不是質(zhì)數(shù),就是合數(shù)()

      (3)所有奇數(shù)都是質(zhì)數(shù)()

      (4)所有偶數(shù)都是合數(shù)()

      7.注意發(fā)散思維的培養(yǎng)

      31□是5的倍數(shù),這個(gè)數(shù)可能是( )

      75□0是3的倍數(shù),這個(gè)有( )種情況,它們是( )

      2□6□是25的倍數(shù),也有因數(shù)3,這個(gè)有( )種情況,它們是( )

      8.在學(xué)習(xí)方法上盡可能讓學(xué)生利用“學(xué)案”進(jìn)行課前探究,課中探究,從探究中學(xué)習(xí)和掌握知識(shí)。如質(zhì)數(shù)與合數(shù)

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思8

      《倍數(shù)和因數(shù)》這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識(shí)整除的情況下直接認(rèn)識(shí)倍數(shù)和因數(shù)的。數(shù)學(xué)中的起始概念一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長期的消化理解的過程。

      這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的.探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。

      比如在認(rèn)識(shí)因數(shù)、倍數(shù)時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去整除的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)整除一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個(gè)數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個(gè)數(shù)的因數(shù),難度并不算大,因此教學(xué)例題找出18的因數(shù)時(shí),我先放手讓學(xué)生自己找,學(xué)生在獨(dú)立思考的過程中,自然而然的會(huì)結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識(shí)的運(yùn)用意識(shí)),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個(gè)數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個(gè)學(xué)習(xí)活動(dòng)環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動(dòng)的空間,有了自由活動(dòng)的空間,才會(huì)有思維創(chuàng)造的火花,才能體現(xiàn)教育活動(dòng)的終極目標(biāo)。

      新課標(biāo)實(shí)施的過程是一個(gè)不斷學(xué)習(xí)、探究、研究和提高的過程,在這個(gè)過程中,需要我們認(rèn)真反思、獨(dú)立思考、交流探討,學(xué)習(xí)研究,與學(xué)生平等對話,在實(shí)踐和探索中不斷前進(jìn)。

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思9

      《公倍數(shù)和公因數(shù)》的教學(xué)已接近尾聲,但練習(xí)反饋,部分學(xué)生求兩個(gè)數(shù)的最大公因數(shù)和最小公倍數(shù)錯(cuò)誤百出,細(xì)細(xì)思量,用課本上列舉的方法,真的很難一下子準(zhǔn)確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學(xué)生寫80,25和50的最大公因數(shù)有學(xué)生寫5。而且去問問學(xué)生找兩個(gè)數(shù)公倍數(shù)和最小公倍數(shù),或者兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說煩,很煩,太麻煩了。

      在了解了學(xué)生的感受以后,我又重新通過練習(xí)概括出了一些特殊情況:

      (1)兩個(gè)數(shù)是倍數(shù)關(guān)系的,這兩個(gè)數(shù)的最小公倍數(shù)是其中較大的一個(gè)數(shù),最大公因數(shù)是其中較小的一個(gè)數(shù);

      (2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(互質(zhì)數(shù)這個(gè)概念學(xué)生沒有學(xué)到):

      ①兩個(gè)不同的素?cái)?shù);

      ②兩個(gè)連續(xù)的自然數(shù);

      ③1和任何自然數(shù)。

      另外,我又結(jié)合教材后面的你知道嗎?,指導(dǎo)了一下用短除法求兩個(gè)數(shù)的.最小公倍數(shù)和最大公因數(shù)的方法。在完成練習(xí)時(shí),讓學(xué)生根據(jù)情況,用自己喜歡的方法來求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學(xué)生結(jié)合題目中兩個(gè)數(shù)的特點(diǎn),自主選擇方法的空間,學(xué)生比較喜歡。

      想來想去,還是真得很懷念舊教材上的短除法。

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思10

      《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識(shí)點(diǎn)較多,內(nèi)容較為抽象,對于學(xué)生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運(yùn)用“先學(xué)后教”的模式,達(dá)到課堂的高效,在課堂中我做了以下的嘗試。

      一、領(lǐng)會(huì)意圖,做到用教材教。

      我覺得作為一名教師,重要的是領(lǐng)會(huì)教材的編寫意圖,靈活的運(yùn)用教材,讓每個(gè)細(xì)節(jié)都能發(fā)揮它應(yīng)有的作用。如教材是利用了一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架;3行飛機(jī),每行4架)引出了要研究的兩個(gè)乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的.因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。

      但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機(jī),你可以怎樣去排列?”學(xué)生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學(xué)生得到“2×6=12、3×4=12、1×12=12”三個(gè)算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個(gè)數(shù)的因數(shù)”的方法的滲透和引導(dǎo)。看來靈活的運(yùn)用教材,深放領(lǐng)會(huì)意圖,才能使教學(xué)更為輕松、高效!

      二、模式運(yùn)用,做到靈活自然。

      模式是一種思想或是引子,面對不同的課型,我們應(yīng)該大膽嘗試,不斷的積累經(jīng)驗(yàn),使模式不再是僵化的,機(jī)械的。只要是能促進(jìn)學(xué)生能力形成的東西,我們不能因?yàn)橐\(yùn)用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來。

      如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設(shè)計(jì)已經(jīng)能夠體現(xiàn)學(xué)生自主探索知識(shí)的軌跡,那我們何不通過一句簡短的過渡語讓學(xué)生進(jìn)入到下面的學(xué)習(xí)中呢?而沒有必要非要設(shè)計(jì)出兩個(gè)“自學(xué)指導(dǎo)”讓學(xué)生按步就搬地往下走,而且讓學(xué)生對比著去感受一個(gè)數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學(xué)例1再學(xué)例2的方式更容易讓學(xué)生發(fā)現(xiàn)不同,得到方法,加深對知識(shí)的理解,同時(shí)也更加體現(xiàn)了學(xué)生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導(dǎo)更有效!

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思11

      在上學(xué)期的白紙備課活動(dòng)中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這個(gè)內(nèi)容是我沒有教過的,在看到教學(xué)內(nèi)容時(shí),我心里不禁在打鼓,我能找準(zhǔn)教學(xué)重難點(diǎn)嗎?能突破重難點(diǎn)嗎?一連串問題涌了上來,最后我還是讓自己冷靜下來,靜下心來認(rèn)真分析教材,盡自己最大的努力梳理出教學(xué)重難點(diǎn),創(chuàng)設(shè)情境、設(shè)計(jì)游戲來突出重點(diǎn)、突破難點(diǎn)。在設(shè)計(jì)完教學(xué)過程后,我也與同組的老師交流了活動(dòng)體會(huì)。原來在老教材中沒有因數(shù)這個(gè)概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因?yàn)槲沂堑谝淮谓虒W(xué)這個(gè)內(nèi)容,很自然的就沒有被以往教材的教學(xué)定式所束縛,嘗到了新教材的甜頭。現(xiàn)在剛好又教了這個(gè)內(nèi)容,仔細(xì)參考了教學(xué)用書我才真正領(lǐng)悟到了新教材的新穎所在。

      新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個(gè)除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實(shí)際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個(gè)簡單的`實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式26=12,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷2=6得出12能被2整除,進(jìn)而2是12的因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程。在這兒,用一個(gè)乘法算式26=12可以同時(shí)說明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)。”

      這樣的設(shè)計(jì)既減輕了學(xué)生的學(xué)習(xí)負(fù)擔(dān)又讓學(xué)生在學(xué)習(xí)時(shí)盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,在實(shí)際教學(xué)中我就是這樣處理的,學(xué)生樂學(xué),思路清晰。

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思12

      《倍數(shù)和因數(shù)》是我們工作室四月份研究的一個(gè)課例,我們是先抽簽上二十分鐘的課堂教學(xué),再進(jìn)行研討,我們研究了每一部分的處理方法,同時(shí),為了讓我們的課堂更加連貫、自然,我們也研究了例題之間的過渡環(huán)節(jié),嘗試找到更加恰當(dāng)?shù)奶幚矸椒āD谴窝芯恐笪覀児ぷ魇业拿恳晃怀蓡T都根據(jù)自己的想法修改了教案。前幾天我們工作室又在活動(dòng)中上了這節(jié)課,這次上課的是我,由于事先準(zhǔn)備的不夠充分課堂中發(fā)現(xiàn)了很多的問題,有上次研討過還需要改進(jìn)的問題,也有這次上課出現(xiàn)的新問題。課后工作室的成員給了我很多的很好的建議,我根據(jù)好的建議修改了我的教學(xué)設(shè)計(jì),下面我來具體的說一說。

      1、情境導(dǎo)入。本節(jié)課的內(nèi)容是《倍數(shù)和因數(shù)》為了讓學(xué)生更清楚地感受倍數(shù)和因數(shù)的依存關(guān)系,我課上用了大頭兒子和小頭爸爸的例子,也用了我是老師,他們是學(xué)生的例子。但這兩個(gè)例子對于本課的教學(xué)或許沒有太多的意義,好像不能讓學(xué)生明確感受出倍數(shù)的因數(shù)的依存關(guān)系,所以我們可以把這一部分的內(nèi)容去掉,直接進(jìn)入課堂,讓學(xué)生進(jìn)行操作活動(dòng)。

      2、倍數(shù)和因數(shù)的意義。本課是想通過用12個(gè)完全相同的.正方形拼成長方形的活動(dòng)來讓學(xué)生在活動(dòng)中初步感知倍數(shù)和因數(shù)的關(guān)系,再用具體的例子向?qū)W生說明倍數(shù)和因數(shù)的含義。在課堂中我直接讓學(xué)生進(jìn)行操作,兩人小組活動(dòng),試著擺一擺,看看有沒有不同的擺法,在交流的時(shí)候讓學(xué)生說說自己的擺法,每排擺了幾個(gè),擺了幾排,怎樣用乘法算式表示,再讓學(xué)生有序地說一說,為后面找一個(gè)數(shù)的因數(shù)做好鋪墊。再有一道具體的算式舉例說明倍數(shù)和因數(shù)的含義,用我們過去學(xué)習(xí)的乘法算式中的乘數(shù)乘乘數(shù)等于積過渡到倍數(shù)和因數(shù),再讓學(xué)生說一說其他兩道乘法算式。說完后再給學(xué)生一個(gè)提醒,并讓學(xué)生再根據(jù)出示的算式說一說誰是誰的倍數(shù)和誰是誰的因數(shù),最后的時(shí)候讓學(xué)生自己寫一個(gè)算式,并說一說。

      3、找一個(gè)數(shù)的倍數(shù)。這應(yīng)該時(shí)本節(jié)課的重難點(diǎn)內(nèi)容,在教學(xué)中一定要讓學(xué)生說一說找倍數(shù)的方法,而我在上課的時(shí)候把這一個(gè)重要的部分一帶而過,可以看出來很大一部分學(xué)生是沒有掌握找倍數(shù)的方法的。所以我在思考這一難點(diǎn)該如何突破?是不是應(yīng)讓學(xué)生先獨(dú)立想一想辦法,多說一說,給學(xué)生足夠多的時(shí)間讓學(xué)生去說自己用來找倍數(shù)的方法,這樣多種方法出來以后,我們可以對方法進(jìn)行優(yōu)化,選擇快速簡單的找法。在教學(xué)的時(shí)候,同時(shí)注培養(yǎng)學(xué)生有序?qū)懗霰稊?shù),注意倍數(shù)書寫的格式等意識(shí),可以比較有序的找和無序的找,讓學(xué)生自己感受有序的好處,學(xué)生有了有序地找的基本方法后,在進(jìn)行練習(xí)的時(shí)候也會(huì)選擇剛才優(yōu)化過的好的方法進(jìn)行練習(xí)。

      4、找倍數(shù)的特征。在完成找一個(gè)數(shù)的倍數(shù)之后,我們可以直接出示3,2,5的倍數(shù)是哪些,讓學(xué)生觀察三個(gè)倍數(shù),再說一說自己的發(fā)現(xiàn),放手讓學(xué)生去找或許學(xué)生能夠很快的找出來,但如果給好具體的問題,可能會(huì)限制一些學(xué)生的思考。如果學(xué)生在觀察時(shí)沒有發(fā)現(xiàn)我們所想要總結(jié)的特征,可以對學(xué)生進(jìn)行適當(dāng)?shù)奶崾荆寣W(xué)生觀察一個(gè)數(shù)最小的倍數(shù),最大的倍數(shù)和倍數(shù)的個(gè)數(shù)等。先給學(xué)生足夠的時(shí)間讓學(xué)生自己去找,我們要相信他們藕能力做到。

      5、課堂常規(guī)的問題。在上課之前我應(yīng)先確定好小組的具體分配,以免學(xué)生在小組活動(dòng)中找不到合作的對象,如果上課之前具體的分好了,小組討論的效率會(huì)高很多。在上課時(shí),我要少說,把更多說的機(jī)會(huì)留給學(xué)生,讓學(xué)生去表達(dá)自己的想法,同時(shí)還要相信學(xué)生,不要怕學(xué)生不會(huì),而給出很多的條條框框,限制了學(xué)生的思維發(fā)展。

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思13

      我發(fā)現(xiàn)“倍數(shù)和因數(shù)”這一單元大部分學(xué)生基礎(chǔ)知識(shí)及基本概念掌握較好,倍數(shù)與因數(shù)的應(yīng)用相當(dāng)部分學(xué)生應(yīng)用也比較靈活。從學(xué)生的答卷情況來看存存在問題也不少,縱觀本單元的教學(xué),從中得到的反思:

      1、創(chuàng)設(shè)了學(xué)生熟悉的生活情境

      不論是新課的講授還是知識(shí)的實(shí)際應(yīng)用,都是從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),激發(fā)了學(xué)生主動(dòng)學(xué)習(xí)與參與的興趣,引導(dǎo)學(xué)生感悟到,生活中處處有數(shù)學(xué),數(shù)學(xué)中的倍數(shù)、因數(shù)就在身邊,從生活中學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)問題。

      2、采用了小組合作學(xué)習(xí)的模式

      在新課的教學(xué)中,讓學(xué)生通過觀察,發(fā)現(xiàn)現(xiàn)實(shí)生活中的數(shù)以及有關(guān)倍數(shù)、因數(shù)的特征及應(yīng)用以后,在學(xué)生獨(dú)立嘗試解決問題的基礎(chǔ)上進(jìn)行小組討論:如何合理將分類,2、3、5的倍數(shù)的特征,如何找因數(shù),找質(zhì)數(shù)等等,這些都有以小組討論作為探索新知的起點(diǎn),在小組合作學(xué)習(xí)中,給學(xué)生搭建自主的活動(dòng)空間和交流的平臺(tái)。

      3、充分體現(xiàn)了以學(xué)生為主體的指導(dǎo)思想

      在課堂上,努力營造輕松、愉快的學(xué)習(xí)環(huán)境,引導(dǎo)學(xué)生積極參與學(xué)習(xí)過程。重視讓每個(gè)學(xué)生都在小組內(nèi)發(fā)表自己的想法,每個(gè)知識(shí)點(diǎn)的建立、新知識(shí)的形成盡量讓學(xué)生從已有知中識(shí)討論、尋求,同時(shí)也傾聽同伴的觀點(diǎn),相互學(xué)習(xí)。體現(xiàn)以“以人發(fā)展為本”的新理念,尊重學(xué)生,信任學(xué)生,敢于放手讓學(xué)生自己去學(xué)習(xí)。整個(gè)教學(xué)過程學(xué)生從已有的知識(shí)經(jīng)驗(yàn)的實(shí)際狀態(tài)出發(fā),通過操作、討論、歸納,經(jīng)歷了知識(shí)的發(fā)現(xiàn)和探究過程,從中讓讓學(xué)生體驗(yàn)了解決問題的喜悅或失敗的'情感。

      4、重視新知識(shí)的應(yīng)用

      每學(xué)習(xí)一個(gè)新的知識(shí)點(diǎn)及時(shí)讓學(xué)生運(yùn)用所學(xué)的知識(shí)解決實(shí)際問題,使學(xué)生感到數(shù)學(xué)就在生活中,并且運(yùn)用新知識(shí)靈活解決問題。

      5、不足之處

      (1)、在教學(xué)中還有一小部分學(xué)生未積極參與到學(xué)習(xí)中來,如何讓全體學(xué)生都參與到數(shù)學(xué)研究中來,仍有待于進(jìn)一步的加強(qiáng)。

      (2)、本單元的測驗(yàn)卷的應(yīng)用部分要求學(xué)生說明解題的理由的比較多,而學(xué)生也失分比較嚴(yán)重,說明學(xué)生在這方面知識(shí)較薄弱,今后的教學(xué)中要加強(qiáng)突破這一環(huán)節(jié)。

      (3)、也出現(xiàn)了很多教學(xué)的困惑.如在教學(xué)中明知一小部分學(xué)生在某些知識(shí)點(diǎn)存在缺陷,但很難抽時(shí)間彌補(bǔ)及跟進(jìn)。

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思14

      《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。

      (1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。

      (2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認(rèn)真研讀教材,通過學(xué)習(xí)了解到以下信息:簽于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識(shí)基礎(chǔ),對整除的.含義已經(jīng)有了比較清楚的認(rèn)識(shí),不出現(xiàn)整除的定義并不會(huì)對學(xué)生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。

      雖然學(xué)生已接觸過整除與有余數(shù)的除法,但我班學(xué)生對“整除”與“除盡”的內(nèi)涵與外延并不清晰。因此在教學(xué)時(shí),補(bǔ)充了兩道判斷題請學(xué)生辨析:

      11÷2=5……1。問:11是2的倍數(shù)嗎?為什么?因?yàn)?×0.8=4,所以5和0.8是4的因數(shù),4是5和0.8的倍數(shù),對嗎?為什么?

      特別是第2小題極具價(jià)值。價(jià)值不僅體現(xiàn)在它幫助學(xué)生通過辨析明確了在研究因數(shù)和倍數(shù)時(shí),我們所說的數(shù)都是指整數(shù)(一般不包括0),及時(shí)彌補(bǔ)了未進(jìn)行整除概念教學(xué)的知識(shí)缺陷,還通過此題對“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進(jìn)行了對比。

      因數(shù)倍數(shù)數(shù)學(xué)教學(xué)反思15

      這段時(shí)間我參加省領(lǐng)雁工程數(shù)學(xué)骨干班學(xué)習(xí)活動(dòng)掛職鍛煉活動(dòng)。今天是上課實(shí)踐,我執(zhí)教了《因數(shù)和倍數(shù)》在完成教學(xué)后總的來說自己還是比較滿意的,但是在與指導(dǎo)師進(jìn)行交流和自己對本課進(jìn)行了反思后,發(fā)覺自己有幾個(gè)地方處理得不到位,可以進(jìn)行改進(jìn):

      1、課前我認(rèn)為此課的知識(shí)點(diǎn)較多,因此認(rèn)識(shí)倍數(shù)和因數(shù)、找因數(shù)作為本課的主要知識(shí)點(diǎn),找倍數(shù)則不放進(jìn)去,而是放到下一課。但是根據(jù)課堂教學(xué)的情況來看,完全可以把找倍數(shù)這個(gè)知識(shí)點(diǎn)放進(jìn)去,因?yàn)檎冶稊?shù)這個(gè)知識(shí)點(diǎn)不難只要5、6分鐘處理,而且缺少了這一塊內(nèi)容課堂感覺不太完整。因此第二次試教時(shí)我將把這個(gè)環(huán)節(jié)放進(jìn)去。

      2、課堂引入環(huán)節(jié),我采用了純數(shù)學(xué)的引入方式,但是這樣的引入不夠好,其實(shí)可以采用張齊華老師曾經(jīng)使用過的圖形結(jié)合的引入:用12個(gè)小正方形搭實(shí)心長方形,這樣的引入不僅可以圖形結(jié)合地引入因數(shù)倍數(shù),而且可以比較自然地讓學(xué)生感知限制因數(shù)倍數(shù)研究范圍為非0自然數(shù)這個(gè)知識(shí)點(diǎn)。下次上課我將用張老師的引入方式引入,學(xué)習(xí)比較好的課例中的好的環(huán)節(jié)。

      3、在課堂中有一個(gè)環(huán)節(jié)我讓學(xué)生同桌互相寫乘法算式說因數(shù)倍數(shù)關(guān)系,有一個(gè)學(xué)生寫了1×1=1,我只是簡單地反饋這個(gè)算式比較簡單好說,其實(shí)這是一個(gè)比較特殊的'算式,因?yàn)?很特殊,他的因數(shù)和倍數(shù)都只有一個(gè),就是他本身。我應(yīng)該要抓住學(xué)生的這個(gè)生成,進(jìn)行引導(dǎo)讓他們觀察這些數(shù)的因數(shù)個(gè)數(shù),從而為以后教學(xué)質(zhì)數(shù)和合數(shù)進(jìn)行潛在滲透。

      4、在這節(jié)課中我例題與例題之間比較離散,練習(xí)不緊密,導(dǎo)致教學(xué)時(shí)例題與例題之間跳躍性比較強(qiáng),聽起來比較散,不集中,主線不分明。因此我在下一個(gè)例題設(shè)計(jì)時(shí)把這些知識(shí)點(diǎn)整合整合在一個(gè)材料中,增強(qiáng)連續(xù)性。

      總的來說,今天教學(xué)后我感覺本課還有很多課挖掘的地方,我在下一節(jié)課中將針對這些地方進(jìn)行改進(jìn),使課堂效率更高

      下載《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思word格式文檔
      下載《因數(shù)與倍數(shù)》數(shù)學(xué)教學(xué)反思.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        倍數(shù)與因數(shù)教學(xué)反思

        《倍數(shù)與因數(shù)》教學(xué)反思 “倍數(shù)和因數(shù)”是整數(shù)學(xué)習(xí)中的重要概念,也是分?jǐn)?shù)學(xué)習(xí)中的重要基礎(chǔ)知識(shí)。教材利用整數(shù)乘法認(rèn)識(shí)倍數(shù)與因數(shù)。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比......

        因數(shù)與倍數(shù)教學(xué)反思

        《因數(shù)與倍數(shù)》教學(xué)反思 在教學(xué)《因數(shù)與倍數(shù)》中,有兩點(diǎn)體會(huì): 一、培養(yǎng)孩子數(shù)學(xué)閱讀能力。 90的所有因數(shù)中:(1)是2的倍數(shù)的數(shù)有哪些?(2)是5的倍數(shù)的數(shù)有哪些?(3)既是2的倍數(shù)又是5的倍數(shù)......

        《因數(shù)與倍數(shù)》教學(xué)反思

        《因數(shù)與倍數(shù)》教學(xué)反思 《因數(shù)與倍數(shù)》教學(xué)反思1 《倍數(shù)和因數(shù)》是四下第九單元的內(nèi)容。教學(xué)時(shí),我首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘......

        因數(shù)與倍數(shù)教學(xué)反思

        《因數(shù)與倍數(shù)》單元教學(xué)反思 本單元涉及到的因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)以及第四單元中出現(xiàn)的最大公因數(shù)、最小公倍數(shù)都屬于初等數(shù)論的基本內(nèi)容。是學(xué)生通過四年多數(shù)學(xué)學(xué)習(xí),已經(jīng)......

        因數(shù)與倍數(shù)教學(xué)反思

        因數(shù)與倍數(shù)教學(xué)反思 因數(shù)與倍數(shù)教學(xué)反思1 教學(xué)目標(biāo):1、使學(xué)生結(jié)合整數(shù)乘、除法運(yùn)算初步認(rèn)識(shí)倍數(shù)和因數(shù)的含義,探索求一個(gè)數(shù)的倍數(shù)和因數(shù)的方法,能在1~100的自然數(shù)中找出10以內(nèi)......

        因數(shù)與倍數(shù)教學(xué)反思

        在上學(xué)期的白紙備課活動(dòng)中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這個(gè)內(nèi)容是我沒有教過的,在看到教學(xué)內(nèi)容時(shí),我心里不禁在打鼓,我能找準(zhǔn)教學(xué)重難點(diǎn)嗎?能突破重難點(diǎn)嗎?一連串......

        《倍數(shù)與因數(shù)》的教學(xué)反思

        《倍數(shù)與因數(shù)》的教學(xué)反思 《倍數(shù)與因數(shù)》是北師大版五年級數(shù)學(xué)上冊第四單元《倍數(shù)與因數(shù)》起始課。倍數(shù)與因數(shù)是學(xué)生學(xué)習(xí)最大公因數(shù)、最小公倍數(shù)及分?jǐn)?shù)約分的基礎(chǔ)。課前設(shè)......

        因數(shù)與倍數(shù)的教學(xué)反思

        因數(shù)與倍數(shù)的教學(xué)反思 因數(shù)和倍數(shù)是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察......