第一篇:機(jī)器人及機(jī)器人傳感技術(shù)(畢業(yè)論文外文翻譯).
機(jī)器人和機(jī)器人傳感器 介紹
工業(yè)機(jī)器人以及它的運(yùn)行是本文的主題。工業(yè)機(jī)器人是應(yīng)用于制造環(huán)境下 以提高生產(chǎn)率的一種工具。它可用于承擔(dān)常規(guī)的、冗長(zhǎng)乏味的裝配線(xiàn)工作, 或執(zhí) 行那些對(duì)工人也許有危害的工作。例如, 在第一代工業(yè)機(jī)器人中, 曾有一臺(tái)被用 于更換核電廠(chǎng)的核燃料棒。從事這項(xiàng)工作的工人可能會(huì)暴露在有害量的放射線(xiàn) 下。工業(yè)機(jī)器人也能夠在裝配線(xiàn)上操作——安裝小型元件, 例如將電子元件安裝 在線(xiàn)路板上。為此, 工人可以從這種冗長(zhǎng)乏味任務(wù)的常規(guī)操作中解放出來(lái)。通過(guò) 編程的機(jī)器人還能去掉炸彈的雷管、為殘疾者服務(wù)以及在我們社會(huì)的眾多應(yīng)用中 發(fā)揮作用。
機(jī)器人可被看作將臂端執(zhí)行工具、傳感器以及 /或夾爪移動(dòng)到某個(gè)預(yù)定位 置的一臺(tái)機(jī)器。當(dāng)機(jī)器人到達(dá)該位置,它將執(zhí)行某個(gè)任務(wù)。該任務(wù)可能是焊接、密封、機(jī)械裝載、機(jī)械卸載,或許多裝配工作。除了編程以及打開(kāi)和關(guān)閉系統(tǒng)之 外,一般情況下,均不需要人們的參與就能完成這類(lèi)工作。
機(jī)器人專(zhuān)業(yè)術(shù)語(yǔ)
機(jī)器人是一臺(tái)可再編程的多功能機(jī)械手,它可通過(guò)可編程運(yùn)動(dòng)移動(dòng)零件、物料、工具或特殊裝置以執(zhí)行某種不同任務(wù)。由這項(xiàng)定義可導(dǎo)致下面段落中被闡 述的其他定義,它們?yōu)闄C(jī)器人系統(tǒng)提供了完整的寫(xiě)照。
預(yù)編程位置是機(jī)器人為了完成工作必須遵循和通過(guò)的途徑。在這些位置 的某點(diǎn),機(jī)器人會(huì)停下來(lái)并執(zhí)行某種操作,例如裝配零件,噴漆或焊接。這些預(yù) 編程位置被存儲(chǔ)在機(jī)器人的記憶裝置中供以后繼續(xù)操作時(shí)使用。此外, 當(dāng)工作的 要求發(fā)生變化時(shí), 不僅其他編程數(shù)據(jù)而且這些預(yù)編程位置均可作修改。因此, 正 由于這種編程的特點(diǎn), 一臺(tái)工業(yè)機(jī)器人與一臺(tái)可存儲(chǔ)數(shù)據(jù)、以及可回憶及編輯的 計(jì)算機(jī)十分相似。
機(jī)械手是機(jī)器人的手臂, 它允許機(jī)器人俯仰、伸縮和轉(zhuǎn)動(dòng)。這種動(dòng)作是由 機(jī)械手的軸所提供的, 機(jī)械手的軸又稱(chēng)為機(jī)器人的自由度。一臺(tái)機(jī)器人可以具有 3至 16根軸。在本人的后面部分,自由度這個(gè)術(shù)語(yǔ)總與一臺(tái)機(jī)器人軸的數(shù)目相
關(guān)聯(lián)。
工具及夾爪并非屬于機(jī)器人系統(tǒng)的本身, 它們是裝在機(jī)器人手臂端部的附 件。有了與機(jī)器人手臂端部相連接的這些附件,機(jī)器人就可以提起零件、點(diǎn)焊、噴漆、弧焊、鉆孔、去毛刺,還可以根據(jù)所提要求指向各種類(lèi)型的任務(wù)。
機(jī)器人系統(tǒng)還可以控制操作機(jī)器人的工作單元。機(jī)器人工作單元是一種總 體環(huán)境, 在該環(huán)境下機(jī)器人必須執(zhí)行賦予它的任務(wù)。該單元可包容控制器、機(jī)器 人的機(jī)械手、工作臺(tái)、安全裝置,或輸送機(jī)。機(jī)器人開(kāi)展工作所需要的所有設(shè)備 均被包括在這個(gè)工作單元中。此外, 來(lái)自外界裝置的信號(hào)能夠與機(jī)器人進(jìn)行交流, 這樣就可以告訴機(jī)器人什么時(shí)候它該裝配零件、撿起零件或?qū)⒘慵兜捷斔蜋C(jī)?;静考?/p>
機(jī)器人系統(tǒng)具有 3個(gè)基本部件:機(jī)械手、控制器及動(dòng)力源。在某些機(jī)器人 系統(tǒng)中可以看到第 4個(gè)部件,端部執(zhí)行件,有關(guān)這些部件將在下面小節(jié)描述。機(jī)械手
機(jī)械手承擔(dān)機(jī)器人系統(tǒng)的體力工作,它由兩部分組成:機(jī)械部分及被連接 的附屬物。機(jī)械手還有一個(gè)與附屬物相連的底座。
機(jī)械手的底座通常被固定在工作領(lǐng)域的地面。有時(shí), 底座也可以移動(dòng)。在 該情況下, 底座被安裝到導(dǎo)軌上, 這樣該機(jī)械手就可以從一處移動(dòng)到另一處。例 如,一臺(tái)機(jī)器人可以為幾臺(tái)機(jī)床工作,為每臺(tái)機(jī)床裝載和卸載。
正如前面所述,附屬物從機(jī)器人的底座伸出。該附屬物是機(jī)器人的手臂。它既可以是一個(gè)直線(xiàn)型的可動(dòng)臂,也可以是一個(gè)鉸接臂。鉸接臂也稱(chēng)關(guān)節(jié)臂。機(jī)器人機(jī)械手的附屬物可為機(jī)械手提供各種運(yùn)動(dòng)軸。這些軸與固定底座相 連接, 而該底座又被緊固到機(jī)架上。這個(gè)機(jī)架能確保該機(jī)械手被維持在某個(gè)位置 上。
在手臂的端部連接著一個(gè)手腕。該手腕由附加軸及手腕法蘭組成, 有了該 手腕法蘭,機(jī)器人用戶(hù)就可以根據(jù)不同的工作在手腕上安裝不同的工具。
機(jī)械手的軸允許機(jī)械手在一定區(qū)域內(nèi)執(zhí)行工作。如前所述, 該區(qū)域被稱(chēng)為 機(jī)器人的工作單元, 它的尺度與機(jī)械手的尺寸相對(duì)應(yīng)。當(dāng)機(jī)器人的物理尺寸增大
時(shí),工作單元的尺寸必然也隨之增加。
機(jī)械手的運(yùn)動(dòng)由驅(qū)動(dòng)器, 或驅(qū)動(dòng)系統(tǒng)所控制。驅(qū)動(dòng)器或驅(qū)動(dòng)系統(tǒng)允許各根 軸在工作單元內(nèi)運(yùn)動(dòng), 驅(qū)動(dòng)系統(tǒng)可利用電力的、液壓的或氣壓動(dòng)力。驅(qū)動(dòng)系統(tǒng)發(fā) 出的能量由各種機(jī)械驅(qū)動(dòng)裝置轉(zhuǎn)換成機(jī)械動(dòng)力。這些驅(qū)動(dòng)裝置通過(guò)機(jī)械聯(lián)動(dòng)機(jī)構(gòu) 接合在一起。這些聯(lián)動(dòng)機(jī)構(gòu)依次驅(qū)動(dòng)機(jī)器人的不同軸。機(jī)械聯(lián)動(dòng)機(jī)構(gòu)由鏈輪機(jī)構(gòu), 齒輪機(jī)構(gòu)及滾珠絲杠所組成。
控制器
機(jī)器人系統(tǒng)的控制器是運(yùn)行的心臟。控制器存儲(chǔ)著為以后回憶所用的預(yù)編 程信息,控制著外圍設(shè)備,它還與廠(chǎng)內(nèi)計(jì)算機(jī)進(jìn)行交流以使生產(chǎn)不斷更新??刂破饔糜诳刂茩C(jī)器人機(jī)械手運(yùn)動(dòng)以及工作單元中的外圍部件。工作人員 可以利用手遞示教盒將機(jī)械手的動(dòng)作編程進(jìn)入控制器。這種信息可被存儲(chǔ)在控制 器的記憶裝置中以便以后回憶使用??刂破鞔鎯?chǔ)著機(jī)器人系統(tǒng)的所有程序數(shù)據(jù)。它可以存儲(chǔ)幾種不同的程序,并且它們中任一程序均可被編輯。
也可要求控制器與工作單元中外圍設(shè)備進(jìn)行交流。例如, 控制器具有一根 輸入線(xiàn), 該輸入線(xiàn)可識(shí)別某項(xiàng)機(jī)械加工什么時(shí)候完成。當(dāng)該機(jī)械循環(huán)完成時(shí), 輸 入線(xiàn)被接通,它會(huì)吩咐控制器讓機(jī)械手到位以便機(jī)械手能夾起以加工完的零件。接著, 該機(jī)械手再撿起一根新的零件并將它安放到機(jī)床上, 然后, 控制器向該機(jī) 床發(fā)出信號(hào)讓它開(kāi)始運(yùn)轉(zhuǎn)。
控制器可由機(jī)械操縱的磁鼓構(gòu)成, 這些鼓按工作發(fā)生的先后次序操作。這 類(lèi)控制器用于非常簡(jiǎn)單的機(jī)器人系統(tǒng)。在大多數(shù)機(jī)器人系統(tǒng)中見(jiàn)到的控制器是很 復(fù)雜的裝置, 它們體現(xiàn)了現(xiàn)代化的電子科學(xué)。換言之, 它們由微信息處理器操縱。這些
微信息處理器不是 8位、16位就是 32位的信息處理器。這種功能使控制器 的運(yùn)行具有非常好的柔性。
控制器可通過(guò)通訊線(xiàn)路發(fā)出電子信號(hào), 發(fā)出能與機(jī)械手各軸線(xiàn)進(jìn)行溝通的 電信號(hào), 機(jī)器人機(jī)械手與控制器之間這種雙向交流可使系統(tǒng)的位置及運(yùn)行維持在 不斷修正及更新得狀態(tài)下,控制器還可以控制安裝在機(jī)器人手腕端部的任意工 具。
控制器還有與工廠(chǎng)中不同計(jì)算機(jī)開(kāi)展交流的任務(wù), 這個(gè)通訊網(wǎng)絡(luò)可使機(jī)器 人成為計(jì)算機(jī)輔助制造(CAM 系統(tǒng)的一部分。
根據(jù)上述基本定義, 機(jī)器人是一臺(tái)可再編程序的多功能機(jī)械手。所以, 控 制器必須包含某種形式的記憶存儲(chǔ)器, 以微信息處理器為基礎(chǔ)的系統(tǒng)常與固態(tài)記 憶裝置連同運(yùn)行。這些記憶裝置可以是磁泡、隨機(jī)存取記憶裝置、軟塑料磁盤(pán)或 磁帶。每種記憶存儲(chǔ)裝置均可存儲(chǔ)編程信息以便以后回憶使用。
動(dòng)力源
動(dòng)力源是向控制器及機(jī)械手供給動(dòng)力得裝置,有兩類(lèi)動(dòng)力供給機(jī)器人系 統(tǒng)。一類(lèi)動(dòng)力是供控制器運(yùn)行的交流點(diǎn)動(dòng)力, 另一類(lèi)被用于驅(qū)動(dòng)機(jī)械手各軸。例 如, 若機(jī)器人的機(jī)械手由液壓或氣壓裝置控制, 則控制信號(hào)被發(fā)送到這些裝置才 能使機(jī)器人運(yùn)動(dòng)。
每個(gè)機(jī)器人系統(tǒng)均需要?jiǎng)恿?lái)驅(qū)動(dòng)機(jī)械手,這種動(dòng)力既可由液壓動(dòng)力源、氣壓動(dòng)力源, 也可以由電力動(dòng)力源提供, 這些動(dòng)力源是機(jī)器人工作單元總的部件 及設(shè)備中的一部分。
當(dāng)液壓動(dòng)力源與及機(jī)器人機(jī)械手底座相連接, 液壓源產(chǎn)生液壓流體, 這些 流體輸送到機(jī)械手各控制元件,于是,使軸繞機(jī)器人底座旋轉(zhuǎn)。
壓力空氣被輸送到機(jī)械手, 使軸沿軌道作直線(xiàn)運(yùn)動(dòng), 也可將這種氣動(dòng)源連 接到鉆床, 它可為鉆頭的旋轉(zhuǎn)提供動(dòng)力。一般情況下, 可從工廠(chǎng)得供給站獲取氣 動(dòng)源并做調(diào)整,然后將它輸入機(jī)器人機(jī)械手的軸。
電動(dòng)機(jī)可以是交流式的, 也可以是直流式的。控制器發(fā)出的脈沖信號(hào)被發(fā) 送到機(jī)械手得電機(jī)。這些脈沖為電機(jī)提供必要的指令信息以使機(jī)械手在機(jī)器人底 座上旋轉(zhuǎn)。
用于機(jī)械手軸的三種動(dòng)力系統(tǒng)任一種均需要使用反饋監(jiān)督系統(tǒng), 這種系統(tǒng) 會(huì)不斷地將每個(gè)軸位置數(shù)據(jù)反饋給控制器。
每種機(jī)器人系統(tǒng)不僅需要?jiǎng)恿?lái)開(kāi)動(dòng)機(jī)械手的軸, 還需要?jiǎng)恿?lái)驅(qū)動(dòng)控制 器,這種動(dòng)力可由制造環(huán)境的動(dòng)力源提供。
端部執(zhí)行件
在大部分機(jī)器人應(yīng)用的場(chǎng)合見(jiàn)到的端部執(zhí)行件均是機(jī)械手手腕法蘭相連 接的一個(gè)裝置, 端部執(zhí)行件可應(yīng)用于生產(chǎn)領(lǐng)域中許多不同場(chǎng)合, 例如, 它可用于 撿起零件, 用于焊接, 或用于噴漆, 端部執(zhí)行件為機(jī)器人系統(tǒng)提供了機(jī)器人運(yùn)行 時(shí)必須的柔性。
通常所設(shè)計(jì)得端部執(zhí)行件可滿(mǎn)足機(jī)器人用戶(hù)的需要。這些部件可由機(jī)器人 制造商或機(jī)器人系統(tǒng)的物主制造。
端部執(zhí)行件事機(jī)器人系統(tǒng)中唯一可將一種工作變成另一種工作的部件, 例 如, 即日起可與噴水割機(jī)相連, 它在汽車(chē)生產(chǎn)線(xiàn)上被用于切割板邊。也可要求機(jī) 器人將零件安放到磁盤(pán)中, 在這簡(jiǎn)單的過(guò)程中, 改變了機(jī)器人端部執(zhí)行件, 該機(jī) 器人就可以用于其它應(yīng)用場(chǎng)合, 端部執(zhí)行件得變更以及機(jī)器人的再編程序可使該 系統(tǒng)具有很高的柔性。
機(jī)器人傳感器
盡管機(jī)器人有巨大的能力,但很多時(shí)候卻比不過(guò)沒(méi)有經(jīng)過(guò)一點(diǎn)訓(xùn)練的工 人。例如, 工人們能夠發(fā)現(xiàn)零件掉在地上或發(fā)現(xiàn)進(jìn)料機(jī)上沒(méi)有零件, 但沒(méi)有了傳 感器, 機(jī)器人就得不到這些信息, 及時(shí)使用最尖端的傳感器, 機(jī)器人也比不上一 個(gè)經(jīng)驗(yàn)豐富的
工人, 因此, 一個(gè)好的機(jī)器人系統(tǒng)的設(shè)計(jì)需要使用許多傳感器與機(jī) 器人控制器相接,使其盡可能接近操作工人得感知能力。
機(jī)器人技術(shù)最經(jīng)常使用的傳感器分為接觸式的與非接觸式的。接觸式傳感 器可以進(jìn)一步分為觸覺(jué)傳感器、力和扭矩傳感器。觸覺(jué)或接觸傳感器可以測(cè)出受 動(dòng)器端與其他物體間的實(shí)際接觸, 微型開(kāi)關(guān)就是一個(gè)簡(jiǎn)單的觸覺(jué)傳感器, 當(dāng)機(jī)器 人得受動(dòng)氣端與其他物體接觸時(shí), 傳感器是機(jī)器人停止工作, 避免物體間的碰撞, 告訴機(jī)器人已到達(dá)目標(biāo);或者在檢測(cè)時(shí)用來(lái)測(cè)量物體尺寸。力和扭矩傳感器位于 機(jī)器人得抓手與手腕的最后一個(gè)關(guān)節(jié)之間, 或者放在機(jī)械手得承載部件上, 測(cè)量 反力與力矩。力和扭矩傳感器有壓電傳感器和裝在柔性部件上的應(yīng)變儀等。非接觸傳感器包括接近傳感器、視覺(jué)傳感器、聲敏元件及范圍探測(cè)器等。接近傳感器和標(biāo)示傳感器附近的物體。例如, 可以用渦流傳感器精確地保持與鋼 板之間的固定的距離。最簡(jiǎn)單的機(jī)器人接近傳感器包括一個(gè)發(fā)光二極管發(fā)射機(jī)和
一個(gè)光敏二極管接收器, 接收反射面移近時(shí)的反射光線(xiàn), 這種傳感器的主要缺點(diǎn) 是移近物對(duì)光線(xiàn)的反射率會(huì)影響接收信號(hào)。其他得接近傳感器使用的是與電容和 電感相關(guān)的原理。
視覺(jué)傳感系統(tǒng)十分復(fù)雜, 基于電視攝像或激光掃描的工作原理。攝像信號(hào) 經(jīng)過(guò)硬件預(yù)處理, 以 30幀至 60幀每秒的速度輸入計(jì)算機(jī)。計(jì)算機(jī)分析數(shù)據(jù)并提 取所需的信息,例如,物體是否存在以及物體的特征、位置、操作方向,或者檢 測(cè)元件的組裝及產(chǎn)品是否完成。
聲敏元件用來(lái)感應(yīng)并解釋聲波, 從基本的聲波探測(cè)到人們連續(xù)講話(huà)的逐字 識(shí)別, 各種聲敏元件的復(fù)雜程序不等, 除了人機(jī)語(yǔ)音交流外, 機(jī)器人還可以使用 聲敏元件控制弧焊, 聽(tīng)到碰撞或倒塌的聲音時(shí)阻止機(jī)器人的運(yùn)動(dòng), 預(yù)測(cè)將要發(fā)生 的機(jī)械破損及檢測(cè)物體內(nèi)部缺陷。
還有一種非接觸系統(tǒng)使用投影儀和成像設(shè)備獲取物體的表面形狀信息或 距離信息。
傳感器有靜態(tài)探測(cè)與閉環(huán)探測(cè)兩種使用方法。當(dāng)機(jī)器人系統(tǒng)的探測(cè)和操作 動(dòng)作交替進(jìn)行時(shí), 通常就要使用傳感器, 也就是說(shuō)探測(cè)時(shí)機(jī)器人不操作, 操作時(shí) 與傳感器無(wú)關(guān), 這種方法被稱(chēng)為靜態(tài)探測(cè), 使用這種方法, 視覺(jué)傳感器先尋找被 捕捉物體的位置與方向,然后機(jī)器人徑直朝那個(gè)地點(diǎn)移動(dòng)。
相反, 閉式探測(cè)的機(jī)器人在操作運(yùn)動(dòng)中, 始終受傳感器的控制, 多數(shù)視覺(jué)傳感器 都采用閉環(huán)模式, 它們隨時(shí)監(jiān)測(cè)機(jī)器人的實(shí)際位置與理想位置間的偏差, 并驅(qū)動(dòng) 機(jī)器人修正這一偏差。在閉環(huán)探測(cè)中,即使物體在運(yùn)動(dòng),例如在傳送帶上,機(jī)器 人也能抓住它并把它送到預(yù)定位置。
Robots and robot sensor Introduction Industrial robot and its operation is the subject of this article.Industrial robots are used in manufacturing environment as a tool to increase productivity.It can be used to undertake routine, tedious assembly line work, or the implementation of those workers may be hazardous work.For example, in the first generation of industrial robots, there were a nuclear power plant is for the replacement of fuel rods.Workers engaged in this work may be exposed to harmful amounts of radiation in the next.Industrial robots can operate in the assembly line-to install small-scale components, such as electronic components mounted on circuit board.To this end, workers from the tedious task of this routine operation freed.The robot can be programmed to remove the bomb detonators for the disabled in our community services and play a role in many applications.Robot arm can be seen as the end of the implementation of tools, sensors, and / or jaws to move to a predetermined position of a machine.When the robot reaches the position, it will perform a task.The task may be welded, sealed, mechanical loading, mechanical unloading, or many assembly work.In addition to programming, and open
and close the system, the general, not require the participation of people will be able to complete such work.Robotics Glossary Robot is a reprogrammable multifunctional manipulator that can be programmable motion moving parts, materials, tools or special devices to perform a different task.By the following paragraphs of this definition may lead to other definitions were described, which provides a complete system for the robot itself.Location is pre-programmed robot must follow in order to complete the work and the way through.A point in these locations, the robot will stop and perform some operations, such as assembling parts, painting or welding.These pre-programmed robot position is stored in the memory device to continue operation for later use.In addition, when job requirements change, the only other programming data and these can be modified pre-programmed locations.Therefore, precisely because of the characteristics of this program, an industrial robot and one can store data, and can recall and edit the computer is very similar.Robot is a robot arm, which allows the robot pitch, stretching and rotating.This action is provided by the robot axis, mechanical axis, also known as robot hand of freedom.A robot can have 3-16 axis.In my later, the term degrees of freedom and a total number of robot axes associated.Tools and not within the robot gripper itself, which is mounted on the robot arm end attachment.With the end of the robot arm connected to these attachments, the robot can lift parts, spot welding, painting, welding, drilling, deburring, the request can also point to various types of tasks.Robot system can also control the operation of the robot's work unit.Robotic work cell is a general environment in the environment, the robot must perform the tasks entrusted to it.The unit can accommodate the controller, the robot manipulator, working platforms, safety devices, or conveyor.Robot to carry out all the equipment needed for the work are included in this unit of work.In addition, the signal from the external device to communicate with the robot, so that you can tell the robot when it is part of the assembly, pick up the parts or the parts to the unloading conveyor.Basic components Robotic system has three basic components: the robot, controller and power source.In some robot system can be seen in the first four components, end of the implementation of parts, these parts will be described in the following sections.Manipulator Robot bear robot system manual work, which consists of two parts: the mechanical parts and is connected to appendages.There is also a robot appendage connected to the base.The base of the robot work area is usually fixed in the ground.Sometimes, the base can be moved.In that case, the base is installed to the rail so that the robot can move from one place to another.For example, a robot can work for a few machine tools, loading and unloading for each machine.As mentioned earlier, the appendage extending from the base of the robot.The attachment is a robot arm.It can be a linear movable arm, it can be a hinged arm.Articulated arm, also known as articulated arm.Adjunct manipulator can provide a variety of sports-axis robot.The shaft is connected with the fixed base, which base has been tightened to the rack.This rack can ensure that the robot is in a position to maintain.Ends of the arm connected to a wrist.The axis of the wrist and wrist flange by additional components, with the flange of the wrist, the robot according to the different users can work in different tools installed on the wrist.Axis allows the robot manipulator in a certain area implementation.As mentioned earlier, the region known as the robot work unit, and its scale and size of the corresponding robot.When the robot's physical size increases, the size of the unit of work must also increase.Mechanical hand movements by the driver, or drive system control.Drive or shaft drive system allows the movement in the work unit, drive system using electric, hydraulic or pneumatic power.Drive the energy emitted from a variety of mechanical drive into mechanical power.These drives are joined together by a mechanical linkage.The linkage in turn drive the various robot axes.Mechanical linkage from the sprocket body, composed of gears and ball screws.Controller Robot controller is running in the heart.After the memory controller stores used for the pre-programmed information, control peripherals, to communicate it with the factory computer to make the production of constantly updated.Controller used to control the manipulator motion and the outer parts of the work unit.Staff can use the box to teach hand-delivery actions programmed into the robot controller.This information can be stored in the controller's memory for later recall using the device.Robot controller stores all program data.It can store several different programs, and they can be in any program to be edited.May also request the work unit controller and peripheral devices to communicate.For example, the controller has an input line, the input line can be identified when a mechanical process to complete.When the mechanical cycle is complete, the input line is connected, it will place orders for the controller to the robot manipulator to pick up the processing of finished parts.Then, the robot then picked up a new part and it is placed into the machine, then, the controller send a signal to the machine to get it started operation.Mechanical manipulation of the drum controller can be constituted, the work place by order of the drum operation.The controller for a very simple robot system.Seen in most of the robot system controller is a very complex device, which reflects the modern electronic science.In other words, they are manipulated by the micro-information processor.These micro-information processors instead of 8 bits, 16 bits of information that is 32-bit processors.This feature allows the controller to run with very good flexibility.Controller can send electronic signals through the communication line to issue with the mechanical hand signals to communicate with the axis of the robot manipulator and controller, this two-way communication between the location and operation makes the system constantly revised and updated to maintain the state may The controller can also control the robot wrist in the end installed any tools.There are different controller computers and factory to carry out the task of communication, the communication network will enable the robot to become computer-aided manufacturing(CAM part of the system.According to the basic definition, the robot is a multi-function can be re-programmed robot.Therefore, the controller must include some form of memory storage, to micro-processor-based information systems are often associated with solid-state
memory device with the operation.These memory devices can be magnetic bubbles, random access memory device, soft plastic disk or tape.Each memory storage device programming information can be stored for later recall using the.Power source Source of power to the controller and the robot was powered device, there are two types of robot power supply system.Controller for a class of power is power to run the exchange point, and the other is used to drive the robot axes.For example, if the robot manipulator controlled by a hydraulic or pneumatic device, the control signal is sent to these devices to make the robot movement.Each robot systems require power to drive the robot, this source of power either by hydraulic power, pneumatic power source, power source can also be provided by electricity, the power source is a unit of work the robot parts and equipment in the total part.When the hydraulic power source with and connected to the base manipulator, hydraulic pressure source to produce the hydraulic fluid, the fluid transport of the control components to the robot, so the robot base rotated around the axis.Pressure air is fed to the robot, the axis along the track in a straight line, the source can also be connected to such a pneumatic drill, it can provide power for the drill rotation.Under normal circumstances, can be obtained from the factory air supply station for the source and make adjustments, and then enter it in the axis manipulator.AC motor type can also be a DC-style.Controller sends out pulses of the signal was sent to the robot motors.These pulses provide the necessary instructions for the motor information to enable the robot in the robot base rotation.The three-axis robot for power systems either require the use of feedback control systems, this system will continue to position data for each axis of feedback to the controller.Each robot system not only need power to start the robot axis, also need power to drive the controller, this dynamic manufacturing environment, the power source can provide.Implementation of end pieces In most applications where the robot to see implementation of end pieces are connected to the robot wrist flange of a device, end pieces can be used in the production areas of the
implementation of many different occasions, for example, it can be used to pick up parts, used for welding, or for painting, the implementation of parts for the robot end system provides the flexibility of the robot must run.Usually designed to meet the end of the implementation of pieces of the robot users.These components can robot manufacturer or owner of manufacturing robot system.The implementation of the system end the only thing the robot can be a work into another working parts, for example, are available from the cutting machine is connected with the water, which is used in the automotive production line cutting edge.May also request the robot placed the parts to disk, in this simple process, change the end of the implementation of parts of the robot, the robot can be used for other applications, the implementation of end pieces may change, and then the robot programmed allows the system to have high flexibility.Robot Sensor Although the robot has great ability, but often than not with a little practice, but the workers.For example, workers can find parts that fall to the ground or no parts feeder, but not the sensor, the robot will not get this information in a timely manner using the most sophisticated sensors, the robot is smaller than an experienced worker Therefore, a good robot system design requires many sensor and robot controller using the phase, it was as close as possible operative awareness.The most frequently used robotics sensors into contact with the non-contact.Contact sensors can be further divided into tactile sensors, force and torque sensors.Tactile or contact sensors can be measured by the drive-side and the actual contact between other objects, micro-switch is a simple tactile sensor, the robot may be angry when the client contact with other objects, the sensor is the robot to stop work and avoid objects between collisions, tell the robot has reached the goal;or when used to measure the size of objects detected.Force and torque sensors in the robot gripper and wrist was the last joint, or between the parts on the robot to carry a measured reaction force and torque.Force and torque sensors are mounted on the flexible piezoelectric sensors and strain gauges on the parts.Non-contact sensors include proximity sensors, vision sensors, sound detectors, sensitive components and scope.Proximity sensors and labeling of objects near the
sensor.For example, eddy current sensor can be used to accurately maintain a fixed distance between the plates.The most simple robot proximity sensors including a light-emitting diode and a photodiode receiver transmitter, receiver reflector closer to the reflection of light, the main disadvantage of this sensor is closer to the object reflectance of light will affect the received signal.The other was close to the sensor using a capacitance and inductance associated with the principle.Visual sensing system is very complex, based on the TV camera or laser scanner works.Video signal through the hardware pretreatment to 30-60 per second input into the computer.Computer analysis of the data and extract the required information, for example, the existence of objects and object features, location, operating direction, or components of the assembly and product testing is complete.Sound sensitive devices used to sense and interpret sound waves, sound waves detected from the basic people recognize continuous speech, word for word, all kinds of sound ranging from sensitive components of the complex procedures, in addition to human-computer voice communication, the robot can also use the sound sensitive devices control of arc welding, I heard the sound of collision or collapse of the movement to stop the robot to predict the mechanical damage will occur and the detection of objects within the defects.There is also a non-contact systems for projector and imaging the surface of the object shape information or distance information.Static detection and closed-loop sensor probe used in two ways.When the detection and operation of the robot system moves alternately, it is usually necessary to use sensors that detect when the robot is not operating, the operation has nothing to do with the sensors, this method is called static detection, using this method, visual Find the sensor captured the first position and orientation of objects, and then the robot moves straight to the site.In contrast, closed manipulation and motion detection robot, always under the control of sensors, vision sensors are used the majority of closed-loop mode, which monitor the robot's actual position at any time and the deviation between the ideal position, and drive the robot fix this error.In the closed-loop detection, even if the object
in motion, for example, the conveyor belt, the robot can grasp it and send it to the desired location.
第二篇:機(jī)器人外文翻譯
沈陽(yáng)航空工業(yè)學(xué)院學(xué)士學(xué)位論文
機(jī) 器 人
工業(yè)機(jī)器人是在生產(chǎn)環(huán)境中以提高生產(chǎn)效率的工具,它能做常規(guī)乏味的裝配線(xiàn)工作,或能做那些對(duì)于工人來(lái)說(shuō)是危險(xiǎn)的工作,例如,第一代工業(yè)機(jī)器人是用來(lái)在 核電站中更換核燃料棒,如果人去做這項(xiàng)工作,將會(huì)遭受有害的放射線(xiàn)的輻射。工業(yè)機(jī)器人亦能工作在裝配線(xiàn)上將小元件裝配到一起,如將電子元件安放在電路印制板,這樣,工人就能從這項(xiàng)乏味的常規(guī)工作中解放出來(lái)。機(jī)器人也能按程序要求用來(lái)拆除炸彈,輔助殘疾人,在社會(huì)的很多應(yīng)用場(chǎng)合下履行職能。
機(jī)器人可以認(rèn)為是將手臂末端的工具、傳感器和(或)手爪移到程序指定位置的一種機(jī)器。當(dāng)機(jī)器人到達(dá)位置后,它將執(zhí)行某種任務(wù)。這些任務(wù)可以是焊接、密封、機(jī)器裝料、拆卸以及裝配工作。除了編程以及系統(tǒng)的開(kāi)停之外,一般來(lái)說(shuō)這些工作可以在無(wú)人干預(yù)下完成。如下敘述的是機(jī)器人系統(tǒng)基本術(shù)語(yǔ):
1.機(jī)器人是一個(gè)可編程、多功能的機(jī)械手,通過(guò)給要完成的不同任務(wù)編制各種動(dòng)作,它可以移動(dòng)零件、材料、工具以及特殊裝置。這個(gè)基本定義引導(dǎo)出后續(xù)段落的其他定義,從而描繪出一個(gè)完整的機(jī)器人系統(tǒng)。
2.預(yù)編程位置點(diǎn)是機(jī)器人為完成工作而必須跟蹤的軌跡。在某些位
沈陽(yáng)航空工業(yè)學(xué)院學(xué)士學(xué)位論文
置點(diǎn)上機(jī)器人將停下來(lái)做某些操作,如裝配零件、噴涂油漆或焊接。這些預(yù)編程點(diǎn)貯存在機(jī)器人的貯存器中,并為后續(xù)的連續(xù)操作所調(diào)用,而且這些預(yù)編程點(diǎn)想其他程序數(shù)據(jù)一樣,可在日后隨工作需要而變化。因而,正是這種編程的特征,一個(gè)工業(yè)機(jī)器 人很像一臺(tái)計(jì)算機(jī),數(shù)據(jù)可在這里儲(chǔ)存、后續(xù)調(diào)用與編譯。
3.機(jī)器手是機(jī)器人的手臂,它使機(jī)器人能彎曲、延伸和旋轉(zhuǎn),提供這些運(yùn)動(dòng)的是機(jī)器手的軸,亦是所謂的機(jī)器人的自由度。一個(gè)機(jī)器人能有3~16軸,自由度一詞總是與機(jī)器人軸數(shù)相關(guān)。
4.工具和手爪不是機(jī)器人自身組成部分,但它們是安裝在機(jī)器人手臂末端的附件。這些連在機(jī)器人手臂末端的附件可使機(jī)器人抬起工件、點(diǎn)焊、刷漆、電弧焊、鉆孔、打毛刺以及根據(jù)機(jī)器人的要求去做各種各樣的工作。
5.機(jī)器人系統(tǒng)還可以控制機(jī)器人的工作單元,工作單元是機(jī)器人執(zhí)行任務(wù)所處的整體環(huán)境,該單元包括控制器、機(jī)械手、工作平臺(tái)、安全保護(hù)裝置或者傳輸裝置。所有這些為保證機(jī)器人完成自己任務(wù)而必須的裝置都包括在這一工作單元中。另外,來(lái)自外設(shè)的信號(hào)與機(jī)器人通訊,通知機(jī)器人何時(shí)裝配工件、取工件或放工件到傳輸裝置上。機(jī)器人系統(tǒng)有三個(gè)基本部件:機(jī)械手、控制器和動(dòng)力源。
A.機(jī)械手
沈陽(yáng)航空工業(yè)學(xué)院學(xué)士學(xué)位論文
機(jī)械手做機(jī)器人系統(tǒng)中粗重工作,它包括兩個(gè)部分:機(jī)構(gòu)與附件,機(jī)械手也用聯(lián)接附件基座,圖21-1表示了一機(jī)器人基座與附件之間的聯(lián)接情況。
機(jī)械手基座通常固定在工作區(qū)域的地基上,有時(shí)基座也可以移動(dòng),在這種情況下基座安裝在導(dǎo)軌回軌道上,允許機(jī)械手從一個(gè)位置移到另外一個(gè)位置。
正如前面所提到的那樣,附件從機(jī)器人基座上延伸出來(lái),附件就是機(jī)器人的手臂,它可以是直動(dòng)型,也可以是軸節(jié)型手臂,軸節(jié)型手臂也是大家所知的關(guān)節(jié)型手臂。
機(jī)械臂使機(jī)械手產(chǎn)生各軸的運(yùn)動(dòng)。這些軸連在一個(gè)安裝基座上,然后再連到拖架上,拖架確保機(jī)械手停留在某一位置。
在手臂的末端上,連接著手腕(圖21-1),手腕由輔助軸和手腕凸緣組成,手腕是讓機(jī)器人用戶(hù)在手腕凸緣上安裝不同的工具來(lái)做不同的工作。
機(jī)械手的軸使機(jī)械手在某一區(qū)域內(nèi)執(zhí)行任務(wù),我們將這個(gè)區(qū)域?yàn)闄C(jī)器人的工作單元,該區(qū)域的大小與機(jī)械手的尺寸相對(duì)應(yīng),圖21-2列舉了一個(gè)典型裝配機(jī)器人的工作單元。隨著機(jī)器人機(jī)械結(jié)構(gòu)尺寸的增加,工作單元的范圍也必須相應(yīng)的增加。
機(jī)械手的運(yùn)動(dòng)有執(zhí)行元件或驅(qū)動(dòng)系統(tǒng)來(lái)控制。執(zhí)行元件或驅(qū)動(dòng)系統(tǒng)
沈陽(yáng)航空工業(yè)學(xué)院學(xué)士學(xué)位論文
允許各軸力經(jīng)機(jī)構(gòu)轉(zhuǎn)變?yōu)闄C(jī)械能,驅(qū)動(dòng)系統(tǒng)與機(jī)械傳動(dòng)鏈相匹配。由鏈、齒輪和滾珠絲杠組成的機(jī)械傳動(dòng)鏈驅(qū)動(dòng)著機(jī)器人的各軸。
B.控制器
機(jī)器人控制器是工作單元的核心??刂破鲀?chǔ)存著預(yù)編程序供后續(xù)調(diào)用、控制外設(shè),及與廠(chǎng)內(nèi)計(jì)算機(jī)進(jìn)行通訊以滿(mǎn)足產(chǎn)品更新的需要。
控制器用于控制機(jī)械手運(yùn)動(dòng)和在工作單元內(nèi)控制機(jī)器人外設(shè)。用戶(hù)可通過(guò)手持的示教盒將機(jī)械手運(yùn)動(dòng)的程序編入控制器。這些信息儲(chǔ)存在控制器的儲(chǔ)存器中以備后續(xù)調(diào)用,控制器儲(chǔ)存了機(jī)器人系統(tǒng)的所有編程數(shù)據(jù),它能儲(chǔ)存幾個(gè)不同的程序,并且所有這些程序均能編輯。
控制器要求能夠在工作單元內(nèi)與外設(shè)進(jìn)行通信。例如控制器有一個(gè)輸入端,它能標(biāo)識(shí)某個(gè)機(jī)加工操作何時(shí)完成。當(dāng)該加工循環(huán)完成后,輸入端接通,告訴控制器定位機(jī)械手以便能抓取已加工工件,隨后,機(jī)械手抓取一未加工件,將其放置在機(jī)床上。接著,控制器給機(jī)床發(fā)出開(kāi)始加工的信號(hào)。
控制器可以由根據(jù)事件順序而步進(jìn)的機(jī)械式輪鼓組成,這種類(lèi)型的控制器可用在非常簡(jiǎn)單的機(jī)械系統(tǒng)中。用于大多數(shù)機(jī)器人系統(tǒng)中的控制器代表現(xiàn)代電子學(xué)的水平,是更復(fù)雜的裝置,即它們是由微處理器操縱的。這些微處理器可以是8位、16位或32位處理器。它們可以使得控制器在操作過(guò)程中顯得非常柔性。
沈陽(yáng)航空工業(yè)學(xué)院學(xué)士學(xué)位論文
控制器能通過(guò)通信線(xiàn)發(fā)送電信號(hào),使它能與機(jī)械手各軸交流信息,在機(jī)器人的機(jī)械手和控制器之間的雙向交流信息可以保持系統(tǒng)操作和位置經(jīng)常更新,控制器亦能控制安裝在機(jī)器人手腕上的任何工具。
控制器也有與廠(chǎng)內(nèi)各計(jì)算機(jī)進(jìn)行通信的任務(wù),這種通信聯(lián)系使機(jī)器人成為計(jì)算機(jī)輔助制造(CAM)系統(tǒng)的一個(gè)組成部分。
存儲(chǔ)器。給予微處理器的系統(tǒng)運(yùn)行時(shí)要與固態(tài)的存儲(chǔ)裝置相連,這些存儲(chǔ)裝置可以是磁泡,隨機(jī)存儲(chǔ)器、軟盤(pán)、磁帶等。每種記憶存儲(chǔ)裝置均能貯存、編輯信息以備后續(xù)調(diào)用和編輯。
C.動(dòng)力源
動(dòng)力源是給機(jī)器人和機(jī)械手提供動(dòng)力的單元。傳給機(jī)器人系統(tǒng)的動(dòng)力源有兩種,一種是用于控制器的交流電,另一種是用于驅(qū)動(dòng)機(jī)械手各軸的動(dòng)力源,例如,如果機(jī)器人的機(jī)械手是有液壓和氣壓驅(qū)動(dòng)的,控制信號(hào)便傳送到這些裝置中,驅(qū)動(dòng)機(jī)器人運(yùn)動(dòng)。
沈陽(yáng)航空工業(yè)學(xué)院學(xué)士學(xué)位論文
液壓與氣壓系統(tǒng)
僅有以下三種基本方法傳遞動(dòng)力:電氣,機(jī)械和流體。大多數(shù)應(yīng)用系統(tǒng)實(shí)際上是將三種方法組合起來(lái)而得到最有效的最全面的系統(tǒng)。為了合理地確定采取哪種方法。重要的是了解各種方法的顯著特征。例如液壓系統(tǒng)在長(zhǎng)距離上比機(jī)械系統(tǒng)更能經(jīng)濟(jì)地傳遞動(dòng)力。然而液壓系統(tǒng)與電氣系統(tǒng)相比,傳遞動(dòng)力的距離較短。
液壓動(dòng)力傳遞系統(tǒng)涉及電動(dòng)機(jī),調(diào)節(jié)裝置和壓力和流量控制,總的來(lái)說(shuō),該系統(tǒng)包括:
泵:將原動(dòng)機(jī)的能量轉(zhuǎn)換成作用在執(zhí)行部件上的液壓能。閥:控制泵產(chǎn)生流體的運(yùn)動(dòng)方向、產(chǎn)生的功率的大小,以及到達(dá)執(zhí)行部件流體的流量。功率大小取決于對(duì)流量和壓力大小的控制。
執(zhí)行部件:將液壓能轉(zhuǎn)成可用的機(jī)械能。
介質(zhì)即油液:可進(jìn)行無(wú)壓縮傳遞和控制,同時(shí)可以潤(rùn)滑部件,使閥體密封和系統(tǒng)冷卻。
聯(lián)接件:聯(lián)接各個(gè)系統(tǒng)部件,為壓力流體提供功率傳輸通路,將液體返回油箱(貯油器)。
油液貯存和調(diào)節(jié)裝置:用來(lái)確保提供足夠質(zhì)量和數(shù)量并冷卻的液體。
沈陽(yáng)航空工業(yè)學(xué)院學(xué)士學(xué)位論文
液壓系統(tǒng)在工業(yè)中應(yīng)用廣泛。例如沖壓`鋼類(lèi)工件的磨削幾一般加工業(yè)、農(nóng)業(yè)、礦業(yè)、航天技術(shù)、深海勘探、運(yùn)輸、海洋技術(shù),近海天然氣和石油勘探等行業(yè),簡(jiǎn)而言之,在日常生活中有人不從液壓技術(shù)中得到某種益處。
液壓系統(tǒng)成功而又廣泛使用的秘密在于它的通用性和易操作性。液壓動(dòng)力傳遞不會(huì)象機(jī)械系統(tǒng)那樣受到機(jī)器幾何形狀的制約,另外,液壓系統(tǒng)不會(huì)像電氣系統(tǒng)那樣受到材料物理性能的制約,它對(duì)傳遞功率幾乎沒(méi)有量的限制。例如,一個(gè)電磁體的性能受到鋼的磁飽和極限的限制,相反,液壓系統(tǒng)的功率僅僅受材料強(qiáng)度的限制。
企業(yè)為了提高生產(chǎn)率將越來(lái)越依靠自動(dòng)化,這包括遠(yuǎn)程和直接控制生產(chǎn)操作、加工過(guò)程和材料處理等。液壓動(dòng)力之所以成為自動(dòng)化的組成部分,是因?yàn)樗腥缦轮饕奶攸c(diǎn):
1.控制方便精確
通過(guò)一個(gè)簡(jiǎn)單的操作桿和按扭,液壓系統(tǒng)的操作者便能立即起動(dòng),停止、加減速和能提供任意功率、位置精度為萬(wàn)分之一英寸的位置控制力。圖13-1是一個(gè)使飛機(jī)駕駛員升起和落下起落架的液壓系統(tǒng),當(dāng)飛行向某方向移動(dòng)控制閥,壓力油流入液壓缸的某一腔從而降下起落架。飛行員向反方向移動(dòng)控制閥,允許油液進(jìn)入液壓缸的另一腔,便收回起落架。
2.增力 一個(gè)液壓系統(tǒng)(沒(méi)有使用笨重的齒輪、滑輪和杠桿)能簡(jiǎn)單
沈陽(yáng)航空工業(yè)學(xué)院學(xué)士學(xué)位論文
有效地將不到一盎司的力放大產(chǎn)生幾百?lài)嵉妮敵觥?/p>
3.恒力或恒扭矩
只有液壓系統(tǒng)能提供不隨速度變化而變化的恒力或恒扭矩,他可以驅(qū)動(dòng)對(duì)象從每小時(shí)移動(dòng)幾英寸到每分鐘幾百英寸,從每小時(shí)幾轉(zhuǎn)到每分鐘幾千轉(zhuǎn)。
4.簡(jiǎn)便、安全、經(jīng)濟(jì)
總的來(lái)說(shuō),液壓系統(tǒng)比機(jī)械或電氣系統(tǒng)使用更少的運(yùn)動(dòng)部件,因此,它們運(yùn)行與維護(hù)簡(jiǎn)便。這使得系統(tǒng)結(jié)構(gòu)緊湊,安全可靠。例如 一種用于車(chē)輛上的新型動(dòng)力轉(zhuǎn)向控制裝置一淘汰其他類(lèi)型的轉(zhuǎn)向動(dòng)力裝置,該轉(zhuǎn)向部件中包含有人力操縱方向控制閥和分配器。因?yàn)檗D(zhuǎn)向部件是全液壓的,沒(méi)有方向節(jié)、軸承、減速齒輪等機(jī)械連接,使得系統(tǒng)簡(jiǎn)單緊湊。
另外,只需要輸入很小的扭矩就能產(chǎn)生滿(mǎn)足極其惡劣的工作條件所需的控制力,這對(duì)于因操作空間限制而需要小方向盤(pán)的場(chǎng)合很重要,這也是減輕司機(jī)疲勞度所必須的。
液壓系統(tǒng)的其他優(yōu)點(diǎn)包括雙向運(yùn)動(dòng)、過(guò)載保護(hù)和無(wú)級(jí)變速控制,在已有的任何動(dòng)力、系統(tǒng)中液壓系統(tǒng)也具有最大的單位質(zhì)量功率比。
盡管液壓系統(tǒng)具有如此的高性能,但它不是可以解決所有動(dòng)力傳遞問(wèn)題的靈丹妙藥。液壓系統(tǒng)也有缺點(diǎn),液壓油有污染,并且泄露不可能完全避免,另外如果油液滲漏發(fā)生在灼熱設(shè)備附近,大多數(shù)液壓油能引起火災(zāi)。
沈陽(yáng)航空工業(yè)學(xué)院學(xué)士學(xué)位論文
氣壓系統(tǒng)
氣壓系統(tǒng)是用壓力氣體傳遞和控制動(dòng)力,正如名稱(chēng)所表明的那樣,氣壓系統(tǒng)通常用空氣(不用其他氣體)作為流體介質(zhì),因?yàn)榭諝馐前踩⒊杀镜投蛛S處可得的流體,在系統(tǒng)部件中產(chǎn)生電弧有可能點(diǎn)燃泄露物的場(chǎng)合下(使用空氣作為介質(zhì))尤其安全。
在氣壓系統(tǒng)中,壓縮機(jī)用來(lái)壓縮并提供所需的空氣。壓縮機(jī)一般有活塞式、葉片式和螺旋式等類(lèi)型。壓縮機(jī)基本上是根據(jù)理想氣體法則,通過(guò)減小氣體體積來(lái)增加氣體壓力的。氣壓系統(tǒng)通??紤]采用大的中央空氣壓縮機(jī)作為一個(gè)無(wú)限量的氣源,這類(lèi)似于電力系統(tǒng)中只要將插頭插入插座邊可獲得電能。用這種方法,壓力氣體可以總氣體源輸送到整個(gè)工廠(chǎng)的各個(gè)角落,壓力氣體可通過(guò)空氣濾清器除去污物,這些污染可能會(huì)損壞氣動(dòng)組件的精密配合部件如閥和汽缸等,隨后輸送到各個(gè)回路中,接著空氣流經(jīng)減壓閥以減小氣壓值適合某一回路使用。因?yàn)榭諝獠皇呛玫臐?rùn)滑油,氣壓系統(tǒng)需要一個(gè)油霧器將細(xì)小的油霧注射到經(jīng)過(guò)減壓閥減壓空氣中,這有幫助于減少氣動(dòng)組件精密配合運(yùn)動(dòng)件的磨損。
由于來(lái)自大氣中的空氣含不同數(shù)量的水分,這些水分是有害的,它可以帶走潤(rùn)滑劑引起的過(guò)分磨損和腐蝕,因此,在一些使用場(chǎng)合中,要用空氣干燥器來(lái)除去這些有還的水分。由于氣壓系統(tǒng)直接向大氣排
沈陽(yáng)航空工業(yè)學(xué)院學(xué)士學(xué)位論文
氣,會(huì)產(chǎn)生過(guò)大的噪聲,因此可在氣閥和執(zhí)行組件排氣口安裝銷(xiāo)聲器來(lái)降低噪聲,以防止操作人員因接觸噪聲及高速空氣粒子有可能引發(fā)的傷害。
用氣動(dòng)系統(tǒng)代替液壓系統(tǒng)有以下幾條理由:液體的慣性遠(yuǎn)比氣體大,因此,在液壓系統(tǒng)中,當(dāng)執(zhí)行組件加速減速和閥突然開(kāi)啟關(guān)閉時(shí),油液的質(zhì)量更是一個(gè)潛在的問(wèn)題,根據(jù)牛頓運(yùn)動(dòng)定律,產(chǎn)生加速度運(yùn)動(dòng)油液所需的力要比加速同等體積空氣所需的力高出許多倍。液體比氣體具有更大的粘性,這會(huì)因?yàn)閮?nèi)摩擦而引起更大的壓力和功率損失;另外,由于液壓系統(tǒng)使用的液體要與大氣隔絕,故它們需要特殊的油箱和無(wú)泄露系統(tǒng)設(shè)計(jì)。氣壓系統(tǒng)使用可以直接排到周?chē)h(huán)境中的空氣,一般來(lái)說(shuō)氣壓系統(tǒng)沒(méi)有液體系統(tǒng)昂貴。
然而,由于空氣的可壓縮性,使得氣壓系統(tǒng)執(zhí)行組件不可能得到精確的速度控制和位置控制。氣壓系統(tǒng)由于壓縮機(jī)局限,其系統(tǒng)壓力相當(dāng)?shù)停ǖ陀?50psi),而液壓力可達(dá)1000psi之高,因此液壓系統(tǒng)可以是大功率系統(tǒng),而氣動(dòng)系統(tǒng)僅用于小功率系統(tǒng),典型例子有沖壓、鉆孔、夾緊、組裝、鉚接、材料處理和邏輯控制操作等。
第三篇:機(jī)器人路徑規(guī)劃畢業(yè)論文外文翻譯
外文文獻(xiàn):
Space Robot Path Planning for Collision Avoidance
Yuya Yanoshita and Shinichi Tsuda
Abstract — This paper deals with a path planning of space robot which includes a collision avoidance algorithm.For the future space robot operation, autonomous and self-contained path planning is mandatory to capture a target without the aid of ground station.Especially the collision avoidance with target itself must be always considered.Once the location, shape and grasp point of the target are identified, those will be expressed in the configuration space.And in this paper a potential method.Laplace potential function is applied to obtain the path in the configuration space in order to avoid so-called deadlock phenomenon.Improvement on the generation of the path has been observed by applying path smoothing method, which utilizes the spline function interpolation.This reduces the computational load and generates the smooth path of the space robot.The validity of this approach is shown by a few numerical simulations.Key Words —Space Robot, Path Planning, Collision Avoidance, Potential Function, Spline Interpolation
I.INTRODUCTION
In the future space development, the space robot and its autonomy will be key features of the space technology.The space robot will play roles to construct space structures and perform inspections and maintenance of spacecrafts.These operations are expected to be performed in an autonomous.In the above space robot operations, a basic and important task is to capture free flying targets on orbit by the robotic arm.For the safe capturing operation, it will be required to move the arm from initial posture to final posture without collisions with the target.山東建筑大學(xué)畢業(yè)論文外文文獻(xiàn)及譯文
The configuration space and artificial potential methods are often applied to the operation planning of the usual robot.This enables the robot arm to evade the obstacle and to move toward the target.Khatib proposed a motion planning method, in which between each link of the robot and the obstacle the repulsive potential is defined and between the end-effecter of the robot and the goal the attractive potential is defined and by summing both of the potentials and using the gradient of this potential field the path is generated.This method is advantageous by its simplicity and applicability for real-time operation.However there might be points at which the repulsive force and the attractive force are equal and this will lead to the so-called deadlock.In order to resolve the above issue, a few methods are proposed where the solution of Laplace equation is utilized.This method assures the potential fields without the local minimum, i.e., no deadlock.In this method by numerical computation Laplace equation will be solved and generates potential field.The potential field is divided into small cells and on each node the discrete value of the potential will be specified.In this paper for the elimination of the above defects, spline interpolation technique is proposed.The nodal point which is given as a point of path will be defined to be a part of smoothed spline function.And numerical simulations are conducted for the path planning of the space robot to capture the target, in which the potential by solving the Laplace equation is applied and generates the smooth and continuous path by the spline interpolation from the initial to the final posture.II.ROBOT MODEL The model of space robot is illustrated in Fig.1.The robot is mounted on a spacecraft and has two rotary joints which allow the in-plane motion of the end-effecter.In this case we have an additional freedom of the spacecraft attitude angle and this will be considered the additional rotary joint.This means that the space robot is three linked with 3 DOF(Degree Of Freedom).The length of each link and the angle of each rotary joint are given byliand?i(i = 1,2,3), respectively.In order to simplify the discussions a few assumptions are made in this paper:-the motion of the space robot is in-plane,i.e., two dimensional one.-effect of robot arm motion to the spacecraft attitude is negligible.山東建筑大學(xué)畢業(yè)論文外文文獻(xiàn)及譯文
?2??2??2?0
(2)2?x?yAnd this will be converted into the difference equation and then solved by Gauss-Seidel method.In equation(2)if we take the central difference formula for second derivatives, the following equation will be obtained: ?2??2???0?x2?y2?(x??x,y)?2?(x,y)??(x??x,y)
(3)??x2?(x,y??y)?2?(x,y)??(x,y??y)??y2where ?x,?y are the step(cell)sizes between adjacent nodes for each x, y direction.If the step size is assumed equal and the following notation is used:
?(x??x,y)??i?1,j
Then equation(3)is expressed in the following manner: ?i?1,j??i?1,j??i,j?1??i,j?1???i,j?0
(4)
And as a result, two dimensional Laplace equation will be converted into the equation(5)as below: ?i,j?1??i?1,j??i?1,j??i,j?1??i,j?1?
(5)4In the same manner as in the three dimensional case, the difference equation for the three dimensional Laplace equation will be easily obtained by the following:
?i,j,k?1??i?1,j,k??i?1,j,k??i,j?1,k??i,j?1,k??i,j,k?1??i,j,k?1?
(6)6In order to solve the above equations we apply Gauss-Seidel method and have equations as follows: n?1?i,j?1n1nn?1??i?1,j??in??1,j??i,j?1??i,j?1?
(7)41where ?in,?j is the computational result from the(n +1)-th iterative calculations of the potential.In the above computations, as the boundary conditions, a certain positive number ?0 is defined for the obstacle and 0 for the goal.And as the initial conditions the same number ?0 is
山東建筑大學(xué)畢業(yè)論文外文文獻(xiàn)及譯文
The length of each link is given as follows:
l1 =1.4[m], l2 = 2.0[m], l3 = 2.0[m] , and the target satellite was assumed 1m square.The grasp handle, 0.1 m square, was located at a center of one side of the target.So this handle is a goal of the path.Let us explain the geometrical relation between the space robot and the target satellite.When we consider the operation after capturing the target, it is desirable for the space robot to have the large manipulability.Therefore in this paper the end-effecter will reach the target when the manipulability is maximized.In the 3DOF case, not depending on the spacecraft body attitude, the manipulability is measured by?2,?3.And if we assume the end-effector of the space robot should be vertical to the target, then all of the joints angles are predetermined as follows:
?1?160.7o,?2?32.8o,?3?76.5o
As all the joints angles are determined, the relative position between the spacecraft and the target is also decided uniquely.If the spacecraft is assumed to locate at the origin of the inertial frame(0, 0), the goal is given by(-3.27,-2.00)in the above case.Based on these preparations, we can search the path to the goal by moving the arm in the configuration space.Two simulations for path planning were carried out and the results are shown below.A.2 DOF Robot In order to simplify the situation, the attitude angle(Link 1 joint angle)is assumed to coincide with the desirable angle from the beginning.The coordinate system was assumed as shown in Fig.2.?1 was taken into consideration for the calculation of the initial condition of the Link 2 and its
山東建筑大學(xué)畢業(yè)論文外文文獻(xiàn)及譯文
the connection of-180 degrees in the ?1direction was illustrated.From this figure it is easily seen that over-180 degrees the path is going toward the goal C.B and C are the same goal point.V.CONCLUSION In this paper a path generation method for capturing a target satellite was proposed.And its applicability was demonstrated by numerical simulations.By using interpolation technique the computational load will be decreased and smoothed path will be available.Further research will be recommended to incorporate the attitude motion of the spacecraft body affected by arm motion.山東建筑大學(xué)畢業(yè)論文外文文獻(xiàn)及譯文
本文對(duì)上述缺陷的消除,提出了樣條插值技術(shù)。給定的節(jié)點(diǎn)作為路徑的一部分將被定義為平滑樣條函數(shù)的一部分。為了捕獲到目標(biāo),空間機(jī)器人的路徑規(guī)劃運(yùn)用了數(shù)字模擬技術(shù),它是通過(guò)對(duì)勢(shì)場(chǎng)域求解拉普拉斯函數(shù)來(lái)實(shí)現(xiàn)的,并且從最初的位置到末尾位置的樣條插值來(lái)產(chǎn)生連續(xù)光滑的路徑。
2.機(jī)器人模型
空間機(jī)器人的模型如圖1所示:機(jī)器人被安裝在航天器和兩個(gè)旋轉(zhuǎn)接頭上,這兩個(gè)旋轉(zhuǎn)接頭可以實(shí)現(xiàn)末端執(zhí)行器的平面運(yùn)動(dòng)。這種情況下,我們的航天器的姿態(tài)角有一個(gè)額外的自由度,我們將這個(gè)額外的自由度視為額外的旋轉(zhuǎn)接頭。這意味著空間機(jī)器人有三個(gè)自由度的鏈接,每個(gè)鏈路的長(zhǎng)度和每個(gè)旋轉(zhuǎn)關(guān)節(jié)角度,分別由li和?i(i = 1,2,3)表示。為了簡(jiǎn)化這個(gè)討論,本文做了一些假設(shè):(1)空間機(jī)器人的運(yùn)動(dòng)是平面的,即二維;
(2)機(jī)器人機(jī)械臂的運(yùn)動(dòng)對(duì)航天器姿態(tài)的影響是可以忽略的;(3)機(jī)器人運(yùn)動(dòng)給出了靜態(tài)幾何關(guān)系,并沒(méi)有明確的依賴(lài)時(shí)間;(4)目標(biāo)衛(wèi)星在慣性的作用下是很穩(wěn)定的;
一般情況下,平面運(yùn)動(dòng)和空間運(yùn)動(dòng)將分別進(jìn)行,所以我們可以假設(shè)上面的第一個(gè)不失一般性,第二個(gè)假設(shè)來(lái)自機(jī)械臂和航天器質(zhì)量比的比較,對(duì)于第三個(gè)假設(shè),我們專(zhuān)注于生成機(jī)器人的路徑規(guī)劃,這基本上是由幾何關(guān)系的靜態(tài)性質(zhì)決定,因此并不依賴(lài)明確的時(shí)間,最后一個(gè)就是合作衛(wèi)星。
圖1 雙鏈路空間機(jī)器人
0
山東建筑大學(xué)畢業(yè)論文外文文獻(xiàn)及譯文
為了解決上述方程,我們應(yīng)用了高斯賽德?tīng)査惴ê颓蠼夥匠?,如下?/p>
n?1?i,j?1n1nn?1??i?1,j??in??1,????ji,j?1i,j?1?
(8)4?in,?j1表示勢(shì)場(chǎng)域的迭代計(jì)算結(jié)果。
在上述的計(jì)算中,作為邊界條件,定義特定的正數(shù)?0來(lái)表示障礙物和目標(biāo)。為保證初始條件相同,給所有的自由節(jié)點(diǎn)賦同樣的數(shù)值?0。通過(guò)這種方法,在迭代計(jì)算的邊界節(jié)點(diǎn)獲得的的值將不會(huì)改變,而且自由節(jié)點(diǎn)的值是不同。我們應(yīng)用相同的域值作為障礙物,并且按照迭代計(jì)算方法,則目標(biāo)周?chē)^小的勢(shì)場(chǎng)域會(huì)像障礙物一樣緩慢的向周?chē)鷤鞑?,?shì)場(chǎng)域就是根據(jù)上述方法建立的。采用4節(jié)點(diǎn)相鄰的空間機(jī)器人存在的節(jié)點(diǎn)上的勢(shì)場(chǎng),最小的節(jié)點(diǎn)選擇移動(dòng)到另一點(diǎn),這個(gè)過(guò)程最終引導(dǎo)機(jī)器人無(wú)碰撞的到達(dá)目標(biāo)的位置。
樣條內(nèi)插法:
通過(guò)上述方法給出的路徑不能保證能夠與另一個(gè)目標(biāo)順利連接,如果節(jié)點(diǎn)上沒(méi)有給定目標(biāo),我們會(huì)將柵格劃分成的更小,但這將增加計(jì)算量和所用時(shí)間。為了消除這些弊端,我們提出利用樣條插值技術(shù)。通過(guò)在將節(jié)點(diǎn)解給出的通過(guò)點(diǎn)的道路上,我們?cè)噲D獲得順利連接路徑與準(zhǔn)確獲取最初的和最后的點(diǎn)。本文主要是通過(guò)MATLAB命令應(yīng)用樣條函數(shù)。
配置空間:
當(dāng)我們?cè)趹?yīng)用拉普拉斯勢(shì)域的時(shí)候,路徑搜索只能在當(dāng)機(jī)器人在搜索空間過(guò)程中表示成一個(gè)點(diǎn)的情況下才能保證實(shí)現(xiàn)。配置空間(C空間)中機(jī)器人僅表示為一個(gè)點(diǎn),主要是用于路徑搜索。將真正的空間轉(zhuǎn)換到C空間,必須執(zhí)行判斷碰撞條件的計(jì)算,如果碰撞存在,相應(yīng)的點(diǎn)在c空間被認(rèn)為是障礙。本文中,在生成勢(shì)場(chǎng)域時(shí),所有現(xiàn)實(shí)空間的點(diǎn)的生成條件對(duì)應(yīng)于所有的節(jié)點(diǎn)都是經(jīng)過(guò)計(jì)算的。在構(gòu)成的機(jī)械臂和生成的節(jié)點(diǎn)的障礙物出現(xiàn)判斷選擇時(shí),該節(jié)點(diǎn)可以看作是在c空間的障礙點(diǎn)。
數(shù)值仿真:
基于上述方法對(duì)于捕獲目標(biāo)衛(wèi)星路徑規(guī)劃的檢查是使用空間機(jī)器人模型進(jìn)行的。在本文中,我們假設(shè)空間機(jī)器人二維和2自由度機(jī)械手臂見(jiàn)圖1。每個(gè)鏈接的長(zhǎng)度給出如下:
山東建筑大學(xué)畢業(yè)論文外文文獻(xiàn)及譯文
初始角度:?2??64.3?,?3?90o 目標(biāo)角度:?2??166.5?,?3?76.5o
在這種情況下,勢(shì)場(chǎng)域分成180段計(jì)算成C空間。圖3顯示的C空間和計(jì)劃中的很大一部分的中心是由航天器本體映射的障礙了,左邊部分是目標(biāo)衛(wèi)星的映射。圖4顯示的是生成的路徑,這是通過(guò)利用離散數(shù)據(jù)點(diǎn)平滑交替生成的樣條插值曲線(xiàn)。當(dāng)我們考慮航天器本體的旋轉(zhuǎn)時(shí),-180度相當(dāng)于+180度狀態(tài),然后,狀態(tài)超過(guò)-180度時(shí),它將從180度再次轉(zhuǎn)到C-空間當(dāng)中。正是由于這個(gè)原因,為了保證旋轉(zhuǎn)的連續(xù)性,我們需要充分利用周期性的邊界條件。為方便觀(guān)察路徑,航天器機(jī)體的映射體積忽略不計(jì)。同時(shí)為了路徑表述的更加簡(jiǎn)單,附有在?1方向上-180度范圍的連接的插圖,并做了說(shuō)明。從圖中可以很容易看出在-180度的范圍內(nèi),沿著路徑走向目標(biāo)C,B和C是走向相同的目標(biāo)點(diǎn)。
圖3 兩個(gè)自由度的C空間
圖4 C空間的路徑(2個(gè)自由度)
第四篇:智能機(jī)器人外文翻譯
Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on.With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being.The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program.At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use.To development economic practicality and high reliability robot system will be value to robot social application and economy development.With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal.Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal.The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity.Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding.With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware.In this article, the mechanical configuration combines the character of direction coordinate and the arthrosis coordinate which can improve the stability and operation flexibility of the system.The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement.In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion.Worm gear can give vary transmission ratio.Both of the transmission mechanisms have a characteristic of compact structure.The design of drive system often is limited by the environment condition and the factor of cost and technical lever.'The step motor can receive digital signal directly and has the ability to response outer environment immediately and has no accumulation error, which often is used in driving system.In this driving system, open-loop control system is composed of stepping motor, which can satisfy the demand not only for control precision but also for the target of economic and practicality.on this basis, the analysis of stepping motor in power calculating and style selecting is also given.The analysis of kinematics and dynamics for object holding manipulator is given in completing the design of mechanical structure and drive system.Kinematics analysis is the basis of path programming and track control.The positive and reverse analysis of manipulator gives the relationship between manipulator space and drive space in position and speed.The relationship between manipulator’s tip position and arthrosis angles is concluded by coordinate transform method.The geometry method is used in solving inverse kinematics problem and the result will provide theory evidence for control system.The f0unction of dynamics is to get the relationship between the movement and force and the target is to satisfy the demand of real time control.in this chamfer, Newton-Euripides method is used in analysis dynamic problem of the cleaning robot and the arthrosis force and torque are given which provide the foundation for step motor selecting and structure dynamic optimal ting.Control system is the key and core part of the object holding manipulator system design which will direct effect the reliability and practicality of the robot system in the division of configuration and control function and also will effect or limit the development cost and cycle.With the demand of the PCL-839 card, the PC computer which has a.tight structure and is easy to be extended is used as the principal computer cell and takes the function of system initialization, data operation and dispose, step motor drive and error diagnose and so on.A t the same time, the configuration structure features, task principles and the position function with high precision of the control card PCL-839 are analyzed.Hardware is the matter foundation of the control.System and the software is the spirit of the control system.The target of the software is to combine all the parts in optimizing style and to improve the efficiency and reliability of the control system.The software design of the object holding manipulator control system is divided into several blocks such as 2 system initialization block, data process block and error station detect and dispose model and so on.PCL-839 card can solve the communication between the main computer and the control cells and take the measure of reducing the influence of the outer signal to the control system.The start and stop frequency of the step motor is far lower than the maximum running frequency.In order to improve the efficiency of the step motor, the increase and decrease of the speed is must considered when the step motor running in high speed and start or stop with great acceleration.The increase and decrease of the motor’s speed can be controlled by the pulse frequency sent to the step motor drive with a rational method.This can be implemented either by hardware or by software.A step motor shift control method is proposed, which is simple to calculate, easy to realize and the theory means is straightforward.The motor' s acceleration can fit the torque-frequency curve properly with this method.And the amount of calculation load is less than the linear acceleration shift control method and the method which is based on the exponential rule to change speed.The method is tested by experiment.At last, the research content and the achievement are sum up and the problems and shortages in main the content are also listed.The development and application of robot in the future is expected.機(jī)器人
機(jī)器人是典型的機(jī)電一體化裝置,它綜合運(yùn)用了機(jī)械與精密機(jī)械、微電子與計(jì)算機(jī)、自動(dòng)控制與驅(qū)動(dòng)、傳感器與信息處理以及人工智能等多學(xué)科的最新研究成果,隨著經(jīng)濟(jì)的發(fā)展和各行各業(yè)對(duì)自動(dòng)化程度要求的提高,機(jī)器人技術(shù)得到了迅速發(fā)展,出現(xiàn)了各種各樣的機(jī)器人產(chǎn)品。機(jī)器人產(chǎn)品的實(shí)用化,既解決了許多單靠人力難以解決的實(shí)際問(wèn)題,又促進(jìn)了工業(yè)自動(dòng)化的進(jìn)程。目前,由于機(jī)器人的研制和開(kāi)發(fā)涉及多方面的技術(shù),系統(tǒng)結(jié)構(gòu)復(fù)雜,開(kāi)發(fā)和研制的成本普遍較高,在某種程度上限制了該項(xiàng)技術(shù)的廣泛應(yīng)用,因此,研制經(jīng)濟(jì)型、實(shí)用化、高可靠性機(jī)器人系統(tǒng)具有廣泛的社會(huì)現(xiàn)實(shí)意義和經(jīng)濟(jì)價(jià)值。
由于我國(guó)經(jīng)濟(jì)建設(shè)和城市化的快速發(fā)展,城市污水排放量增長(zhǎng)很快,污水處理己經(jīng)擺在了人們的議事日程上來(lái)。隨著科學(xué)技術(shù)的發(fā)展和人類(lèi)知識(shí)水平的提高,人們?cè)絹?lái)越認(rèn)識(shí)到污水處理的重要性和迫切性,科學(xué)家和研究人員發(fā)現(xiàn)塑料制品在水中是用于污水處理的很有效的污泥菌群的附著體。塑料制品的大量需求,使得塑料制品生產(chǎn)的自動(dòng)化和高效率要求成為經(jīng)濟(jì)發(fā)展的必然。
本文結(jié)合塑料一次擠出成型機(jī)和塑料抓取機(jī)械手的研制過(guò)程中出現(xiàn)的問(wèn)題,綜述近幾年機(jī)器人技術(shù)研究和發(fā)展的狀況,在充分發(fā)揮機(jī)、電、軟、硬件各自特點(diǎn)和優(yōu)勢(shì)互補(bǔ)的基礎(chǔ)上,對(duì)物料抓取機(jī)械手整體機(jī)械結(jié)構(gòu)、傳動(dòng)系統(tǒng)、驅(qū)動(dòng)裝置和控制系統(tǒng)進(jìn)行了分析和設(shè)計(jì),提出了一套經(jīng)濟(jì)型設(shè)計(jì)方案。采用直角坐標(biāo)和關(guān)節(jié)坐標(biāo)相結(jié)合的框架式機(jī)械結(jié)構(gòu)形式,這種方式能夠提高系統(tǒng)的穩(wěn)定性和操作靈活性。傳動(dòng)裝置的作用是將驅(qū)動(dòng)元件的動(dòng)力傳遞給機(jī)器人機(jī)械手相應(yīng)的執(zhí)行機(jī)構(gòu),以實(shí)現(xiàn)各種必要的運(yùn)動(dòng),傳動(dòng)方式上采用結(jié)構(gòu)緊湊、傳動(dòng)比大的蝸輪蝸桿傳動(dòng)和將旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)換為直線(xiàn)運(yùn)動(dòng)的螺旋傳動(dòng)。機(jī)械手驅(qū)動(dòng)系統(tǒng)的設(shè)計(jì)往往受到作業(yè)環(huán)境條件的限制,同時(shí)也要考慮價(jià)格因素的影響以及能夠達(dá)到的技術(shù)水平。由于步進(jìn)電機(jī)能夠直接接收數(shù)字量,響應(yīng)速度快而且工作可靠并無(wú)累積誤差,常用作數(shù)字控制系統(tǒng)驅(qū)動(dòng)機(jī)構(gòu)的動(dòng)力元件,因此,在驅(qū)動(dòng)裝置中采用由步進(jìn)電機(jī)構(gòu)成的開(kāi)環(huán)控制方式,這種方式既能滿(mǎn)足控制精度的要求,又能達(dá)到經(jīng)濟(jì)性、實(shí)用化目的,在此基礎(chǔ)上,對(duì)步進(jìn)電機(jī)的功率計(jì)一算及選型問(wèn)題經(jīng)行了分析。
在完成機(jī)械結(jié)構(gòu)和驅(qū)動(dòng)系統(tǒng)設(shè)計(jì)的基礎(chǔ)上,對(duì)物料抓取機(jī)械手運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)進(jìn)行了分析。運(yùn)動(dòng)學(xué)分析是路徑規(guī)劃和軌跡控制的基礎(chǔ),對(duì)操作臂進(jìn)行了運(yùn)動(dòng)學(xué)正、逆問(wèn)題的分析可以完成操作空間位置和速度向驅(qū)動(dòng)空間的映射,采用齊次坐標(biāo)變換法得到了操作臂末端位置和姿態(tài)隨關(guān)節(jié)夾角之間的變換關(guān)系,采用幾何法分析了操作臂的逆向運(yùn)動(dòng)學(xué)方程求解問(wèn)題,對(duì)控制系統(tǒng)設(shè)計(jì)提供了理論依據(jù)。機(jī)器人動(dòng)力學(xué)是研究物體的運(yùn)動(dòng)和作用力之間的關(guān)系的科學(xué),研究的目的是為了4 滿(mǎn)足是實(shí)時(shí)性控制的需要,本文采用牛頓-歐拉方法對(duì)物料抓取機(jī)械手動(dòng)力學(xué)進(jìn)行了分析,計(jì)算出了關(guān)節(jié)力和關(guān)節(jié)力矩,為步進(jìn)電機(jī)的選型和動(dòng)力學(xué)分析與結(jié)構(gòu)優(yōu)化提供理論依據(jù)。
控制部分是整個(gè)物料抓取機(jī)械手系統(tǒng)設(shè)計(jì)關(guān)鍵和核心,它在結(jié)構(gòu)和功能上的劃分和實(shí)現(xiàn)直接關(guān)系到機(jī)器人系統(tǒng)的可靠性、實(shí)用性,也影響和制約機(jī)械手系統(tǒng)的研制成本和開(kāi)發(fā)周期。在控制主機(jī)的選用上,采用結(jié)構(gòu)緊湊、擴(kuò)展功能強(qiáng)和可靠性高的PC工業(yè)控制計(jì)算機(jī)作為主機(jī),配以PCL-839卡主要承擔(dān)系統(tǒng)功能初始化、數(shù)據(jù)運(yùn)算與處理、步進(jìn)電機(jī)驅(qū)動(dòng)以及故障診斷等功能;同時(shí)對(duì)PCL-839卡的結(jié)構(gòu)特點(diǎn)、功能原理和其高定位功能等給與了分析。硬件是整個(gè)控制系統(tǒng)以及極限位置功能賴(lài)以存在的物質(zhì)基礎(chǔ),軟件則是計(jì)算機(jī)控制系統(tǒng)的神經(jīng)中樞,軟件設(shè)計(jì)的目的是以最優(yōu)的方式將各部分功能有機(jī)的結(jié)合起來(lái),使系統(tǒng)具有較高的運(yùn)行效率和較強(qiáng)的可靠性。在物料抓取機(jī)械手軟件的設(shè)計(jì)上,采用的是模塊化結(jié)構(gòu),分為系統(tǒng)初始化模塊、數(shù)據(jù)處理模塊和故障狀態(tài)檢測(cè)與處理等幾部分。主控計(jì)算機(jī)和各控制單元之間全部由PCL-839卡聯(lián)系,并且由該卡實(shí)現(xiàn)抗干擾等問(wèn)題,減少外部信號(hào)對(duì)系統(tǒng)的影響。
步進(jìn)電機(jī)的啟停頻率遠(yuǎn)遠(yuǎn)小于其最高運(yùn)行頻率,為了提高工作效率,需要步進(jìn)電機(jī)高速運(yùn)行并快速啟停時(shí),必須考慮它的升,降速控制問(wèn)題。電機(jī)的升降速控制可以歸結(jié)為以某種合理的力一式控制發(fā)送到步進(jìn)電機(jī)驅(qū)動(dòng)器的脈沖頻率,這可由硬件實(shí)現(xiàn),也可由軟件方法來(lái)實(shí)現(xiàn)。本文提出了一種算法簡(jiǎn)單、易于實(shí)現(xiàn)、理論意義明確的步進(jìn)電機(jī)變速控制策略:定時(shí)器常量修改變速控制方案。該方法能使步進(jìn)電機(jī)加速度與其力矩——頻率曲線(xiàn)較好地?cái)M合,從而提高變速效率。而且它的計(jì)算量比線(xiàn)性加速度變速和基于指數(shù)規(guī)律加速度的變速控制小得多。通過(guò)實(shí)驗(yàn)證明了該方法的有效性。
最后,對(duì)論文主要研究?jī)?nèi)容和取得的技術(shù)成果進(jìn)行了總結(jié),提出了存在的問(wèn)題和不足,同時(shí)對(duì)機(jī)器人技術(shù)的發(fā)展和應(yīng)用進(jìn)行了展望。
第五篇:機(jī)器人算法外文翻譯
Improved Genetic Algorithm and Its Performance Analysis
Abstract: Although genetic algorithm has become very famous with its global searching, parallel computing, better robustness, and not needing differential information during evolution.However, it also has some demerits, such as slow convergence speed.In this paper, based on several general theorems, an improved genetic algorithm using variant chromosome length and probability of crossover and mutation is proposed, and its main idea is as follows : at the beginning of evolution, our solution with shorter length chromosome and higher probability of crossover and mutation;and at the vicinity of global optimum, with longer length chromosome and lower probability of crossover and mutation.Finally, testing with some critical functions shows that our solution can improve the convergence speed of genetic algorithm significantly , its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.Genetic algorithm is an adaptive searching technique based on a selection and reproduction mechanism found in the natural evolution process, and it was pioneered by Holland in the 1970s.It has become very famous with its global searching, parallel computing, better robustness, and not needing differential information during evolution.However, it also has some demerits, such as poor local searching, premature converging, as well as slow convergence speed.In recent years, these problems have been studied.In this paper, an improved genetic algorithm with variant chromosome length and variant probability is proposed.Testing with some critical functions shows that it can improve the convergence speed significantly, and its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.In section 1, our new approach is proposed.Through optimization examples, in section 2, the efficiency of our algorithm is compared with the genetic algorithm which only reserves the best individual.And section 3 gives out the conclusions.Finally, some proofs of relative theorems are collected and presented in appendix.Description of the algorithm 1.1 Some theorems Before proposing our approach, we give out some general theorems(see
appendix)as follows: Let us assume there is just one variable(multivariable can be divided into many sections, one section for one variable)x ∈ [ a, b ] , x ∈ R, and chromosome length with binary encoding is 1.Theorem 1
Minimal resolution of chromosome is s = b?a 2l?1Theorem 2
Weight value of the ith bit of chromosome is
wi = b?ai?1(i = 1,2,…l)2l?1Theorem 3
Mathematical expectation Ec(x)of chromosome searching step with one-point crossover is Ec(x)= b?aPc 2lwhere Pc is the probability of crossover.Theorem 4
Mathematical expectation Em(x)of chromosome searching step with bit mutation is Em(x)=(b-a)Pm
1.2 Mechanism of algorithm
During evolutionary process, we presume that value domains of variable are fixed, and the probability of crossover is a constant, so from Theorem 1 and 3, we know that the longer chromosome length is, the smaller searching step of chromosome, and the higher resolution;and vice versa.Meanwhile, crossover probability is in direct proportion to searching step.From Theorem 4, changing the length of chromosome does not affect searching step of mutation, while mutation probability is also in direct proportion to searching step.At the beginning of evolution, shorter length chromosome(can be too shorter, otherwise it is harmful to population diversity)and higher probability of crossover and mutation increases searching step, which can carry out greater domain searching, and avoid falling into local optimum.While at the vicinity of global optimum, longer length chromosome and lower probability of crossover and mutation will decrease searching step, and longer length chromosome also improves resolution of mutation, which avoid wandering near the global optimum, and speeds up algorithm
converging.Finally, it should be pointed out that chromosome length changing keeps individual fitness unchanged, hence it does not affect select ion(with roulette wheel selection).1.3 Description of the algorithm
Owing to basic genetic algorithm not converging on the global optimum, while the genetic algorithm which reserves the best individual at current generation can, our approach adopts this policy.During evolutionary process, we track cumulative average of individual average fitness up to current generation.It is written as 1X(t)= GG?ft?1avg(t)where G is the current evolutionary generation, fitness.favg is individual average When the cumulative average fitness increases to k times(k> 1, k ∈ R)of initial individual average fitness, we change chromosome length to m times(m is a positive integer)of itself , and reduce probability of crossover and mutation, which can improve individual resolution and reduce searching step, and speed up algorithm converging.The procedure is as follows:
Step 1 Initialize population, and calculate individual average fitness and set change parameter flag.Flag equal to 1.favg0, Step 2 Based on reserving the best individual of current generation, carry out selection, regeneration, crossover and mutation, and calculate cumulative average of individual average fitness up to current generation
favg;
favgStep 3 If
favg0≥k and Flag equals 1, increase chromosome length to m times of itself, and reduce probability of crossover and mutation, and set Flag equal to 0;otherwise continue evolving.Step 4 If end condition is satisfied, stop;otherwise go to Step 2.2 Test and analysis
We adopt the following two critical functions to test our approach, and compare it with the genetic algorithm which only reserves the best individual: f1(x,y)?0.5?sin2x2?y2?0.5[1?0.01x?y?222?]
x,y∈ [?5,5]
[?1,1] f2(x,y)?4?(x2?2y2?0.3cos(3πx)?0.4cos(4πy))
x,y∈2.1 Analysis of convergence During function testing, we carry out the following policies: roulette wheel select ion, one point crossover, bit mutation, and the size of population is 60, l is chromosome length, Pc and Pm are the probability of crossover and mutation respectively.And we randomly select four genetic algorithms reserving best individual with various fixed chromosome length and probability of crossover and mutation to compare with our approach.Tab.1 gives the average converging generation in 100 tests.In our approach, we adopt initial parameter l0= 10, Pc0= 0.3, Pm0= 0.1 and k= 1.2, when changing parameter condition is satisfied, we adjust parameters to l= 30, Pc= 0.1, Pm= 0.01.From Tab.1, we know that our approach improves convergence speed of genetic algorithm significantly and it accords with above analysis.2.2 Analysis of online and offline performance
Quantitative evaluation methods of genetic algorithm are proposed by Dejong, including online and offline performance.The former tests dynamic performance;and the latter evaluates convergence performance.To better analyze online and offline performance of testing function, w e multiply fitness of each individual by 10, and we give a curve of 4 000 and 1 000 generations for f1 and f2, respectively.(a)online
(b)online
Fig.1 Online and offline performance of f1
(a)online
(b)online
Fig.2 Online and offline performance of f2
From Fig.1 and Fig.2, we know that online performance of our approach is just little worse than that of the fourth case, but it is much better than that of the second, third and fifth case, whose online performances are nearly the same.At the same time, offline performance of our approach is better than that of other four cases.Conclusion In this paper, based on some general theorems, an improved genetic algorithm using variant chromosome length and probability of crossover and mutation is proposed.Testing with some critical functions shows that it can improve convergence speed of genetic algorithm significantly, and its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.Appendix With the supposed conditions of section 1, we know that the validation of Theorem 1 and Theorem 2 are obvious.Theorem 3 Mathematical expectation Ec(x)of chromosome searching step with one point crossover is b?aPc2lEc(x)=
where Pc is the probability of crossover.Proof
As shown in Fig.A1, we assume that crossover happens on the kth locus, i.e.parent’s locus from k to l do not change, and genes on the locus from 1 to k are exchanged.1During crossover, change probability of genes on the locus from 1 to k is 2
(“1” to “0” or “0” to “1”).So, after crossover, mathematical expectation of chromosome searching step on locus from 1 to k is
k11b?a1b?aEck(x)??wj???l?2j?1??l?(2k?1)
22?12?1j?12j?12Furthermore, probability of taking place crossover on each locus of k1chromosome is equal, namely l Pc.Therefore, after crossover, mathematical expectation of chromosome searching step is 1Ec(x)???Pc?Eck(x)
k?1lSubstituting Eq.(A1)into Eq.(A2), we obtain l?1Pb?aP?(b?a)11b?a1?Pc??l?(2k?1)?c?l?[(2i?1)?l]?c(1?l)22?12l2?12l2?1k?1llb?a?0, so Ec(x)?Pc where l is large, l2l2?1Ec(x)??l?1
Fig.A1 One point crossover
Theorem 4 Mathematical expectation Em(x)of chromosome searching step with bit mutation Em(x)?(b?a)?Pm, where Pm is the probability of mutation.Proof Mutation probability of genes on each locus of chromosome is equal, say Pm, therefore, mathematical expectation of mutation searching step is Em(x)=?Pm·wi=?Pm·i=1i=1llb-ai-1b-a·2=P··(2i-1)=(b-a)·Pm mli2-12-1
一種新的改進(jìn)遺傳算法及其性能分析
摘要:雖然遺傳算法以其全局搜索、并行計(jì)算、更好的健壯性以及在進(jìn)化過(guò)程中不需要求導(dǎo)而著稱(chēng),但是它仍然有一定的缺陷,比如收斂速度慢。本文根據(jù)幾個(gè)基本定理,提出了一種使用變異染色體長(zhǎng)度和交叉變異概率的改進(jìn)遺傳算法,它的主要思想是:在進(jìn)化的開(kāi)始階段,我們使用短一些的變異染色體長(zhǎng)度和高一些的交叉變異概率來(lái)解決,在全局最優(yōu)解附近,使用長(zhǎng)一些的變異染色體長(zhǎng)度和低一些的交叉變異概率。最后,一些關(guān)鍵功能的測(cè)試表明,我們的解決方案可以顯著提高遺傳算法的收斂速度,其綜合性能優(yōu)于只保留最佳個(gè)體的遺傳算法。
遺傳算法是一種以自然界進(jìn)化中的選擇和繁殖機(jī)制為基礎(chǔ)的自適應(yīng)的搜索技術(shù),它是由Holland 1975年首先提出的。它以其全局搜索、并行計(jì)算、更好的健壯性以及在進(jìn)化過(guò)程中不需要求導(dǎo)而著稱(chēng)。然而它也有一些缺點(diǎn),如本地搜索不佳,過(guò)早收斂,以及收斂速度慢。近些年,這個(gè)問(wèn)題被廣泛地進(jìn)行了研究。
本文提出了一種使用變異染色體長(zhǎng)度和交叉變異概率的改進(jìn)遺傳算法。一些關(guān)鍵功能的測(cè)試表明,我們的解決方案可以顯著提高遺傳算法的收斂速度,其綜合性能優(yōu)于只保留最佳個(gè)體的遺傳算法。
在第一部分,提出了我們的新算法。第二部分,通過(guò)幾個(gè)優(yōu)化例子,將該算法和只保留最佳個(gè)體的遺傳算法進(jìn)行了效率的比較。第三部分,就是所得出的結(jié)論。最后,相關(guān)定理的證明過(guò)程可見(jiàn)附錄。
1算法的描述
1.1 一些定理
在提出我們的算法之前,先給出一個(gè)一般性的定理(見(jiàn)附件),如下:我們假設(shè)有一個(gè)變量(多變量可以拆分成多個(gè)部分,每一部分是一個(gè)變量)x ∈ [ a, b ] , x ∈ R,二進(jìn)制的染色體編碼是1.定理1 染色體的最小分辨率是
s =
b?a l2?1定理2 染色體的第i位的權(quán)重值是
b?ai?1(i = 1,2,…l)2l?1定理3 單點(diǎn)交叉的染色體搜索步驟的數(shù)學(xué)期望Ec(x)是
wi =
Ec(x)= b?aPc 2l其中Pc是交叉概率
定理4 位變異的染色體搜索步驟的數(shù)學(xué)期望Em(x)是
Em(x)=(b-a)Pm
其中Pm是變異概率 算法機(jī)制
在進(jìn)化過(guò)程中,我們假設(shè)變量的值域是固定的,交叉的概率是一個(gè)常數(shù),所以從定理1 和定理3我們知道,較長(zhǎng)的染色體長(zhǎng)度有著較少的染色體搜索步驟和較高的分辨率;反之亦然。同時(shí),交叉概率與搜索步驟成正比。由定理4,改變?nèi)旧w的長(zhǎng)度不影響變異的搜索步驟,而變異概率與搜索步驟也是成正比的。
進(jìn)化的開(kāi)始階段,較短染色體(可以是過(guò)短,否則它不利于種群多樣性)和較高的交叉和變異概率會(huì)增加搜索步驟,這樣可進(jìn)行更大的域名搜索,避免陷入局部最優(yōu)。而全局最優(yōu)的附近,較長(zhǎng)染色體和較低的交叉和變異概率會(huì)減少搜索的步驟,較長(zhǎng)的染色體也提高了變異分辨率,避免在全局最優(yōu)解附近徘徊,提高了算法收斂速度。
最后,應(yīng)當(dāng)指出,染色體長(zhǎng)度的改變不會(huì)使個(gè)體適應(yīng)性改變,因此它不影響選擇(輪盤(pán)賭選擇)。
算法描述
由于基本遺傳算法沒(méi)有在全局優(yōu)化時(shí)收斂,而遺傳算法保留了當(dāng)前一代的最佳個(gè)體,我
們的方法采用這項(xiàng)策略。在進(jìn)化過(guò)程中,我們跟蹤到當(dāng)代個(gè)體平均適應(yīng)度的累計(jì)值。它被寫(xiě)成:
1GX(t)= favg(t)?Gt?1其中G是當(dāng)前進(jìn)化的一代,favg是個(gè)體的平均適應(yīng)度。
當(dāng)累計(jì)平均適用性增加到最初個(gè)體平均適應(yīng)度的k(k> 1, k ∈ R)倍,我們將染色體長(zhǎng)度變?yōu)槠渥陨淼膍(m 是一個(gè)正整數(shù))倍,然后減小交叉和變異的概率,可以提高個(gè)體分辨率、減少搜索步驟以及提高算法收斂速度。算法的執(zhí)行步驟如下:
第一步:初始化群體,并計(jì)算個(gè)體平均適應(yīng)度f(wàn)avg0,然后設(shè)置改變參數(shù)的標(biāo)志flag。flag設(shè)為1.第二步:在所保留的當(dāng)代的最佳個(gè)體,進(jìn)行選擇、再生、交叉和變異,并計(jì)算當(dāng)代個(gè)體的累積平均適應(yīng)度f(wàn)avg
favg0第三步:如果
favg?k 且flag = 1,把染色體的長(zhǎng)度增加至自身的m倍,減少交叉和變異概率,并設(shè)置flag等于0;否則繼續(xù)進(jìn)化。
第四步:如果滿(mǎn)足結(jié)束條件,停止;否則轉(zhuǎn)自第二步。
測(cè)試和分析
我們采用以下兩種方法來(lái)測(cè)試我們的方法,和只保留最佳個(gè)體的遺傳算法進(jìn)行比較:
f1(x,y)?0.5?sin2x2?y2?0.5[1?0.01x?y?222?] [?5,5]
x,y∈ [?1,1] f2(x,y)?4?(x2?2y2?0.3cos(3πx)?0.4cos(4πy))
x,y∈收斂的分析
在功能測(cè)試中,我們進(jìn)行了以下政策:輪盤(pán)賭選擇,單點(diǎn)交叉,位變異。種群的規(guī)
模是60。L是染色體長(zhǎng)度,Pc和Pm分別是交叉概率和變異概率。我們隨機(jī)選擇4個(gè)遺傳算法所保留的最佳個(gè)體來(lái)與我們的方法進(jìn)行比較,它們具有不同的固定染色體長(zhǎng)度和交叉和變異的概率。表1給出了在100次測(cè)試的平均收斂代。
在我們的方法中,我們采取的初始參數(shù)是l0 = 10,Pc0 = 0.3,Pm0 = 0.1和k = 1.2,當(dāng)滿(mǎn)足改變參數(shù)的條件時(shí),我們調(diào)整參數(shù)l = 30,Pc = 0.1,Pm = 0.01。
1.1 在線(xiàn)和離線(xiàn)性能的分析
Dejong提出了遺傳算法的定量評(píng)價(jià)方法,包括在線(xiàn)和離線(xiàn)性能評(píng)價(jià)。前者測(cè)試動(dòng)態(tài)性能,而后者評(píng)估收斂性能。為了更好地分析測(cè)試功能的在線(xiàn)和離線(xiàn)性能,我們把個(gè)體的適應(yīng)性乘以10,并f1和f2分別給出了4 000和1 000代的曲線(xiàn):
(a)在線(xiàn)
(b)離線(xiàn)
圖1 f1的在線(xiàn)與離線(xiàn)性能
(a)在線(xiàn)
(b)離線(xiàn)
從圖1和圖2可以看出,我們方法的在線(xiàn)性能只比第四種情況差一點(diǎn)點(diǎn),但比第二種、第三種、第五種好很多,這幾種情況下的在線(xiàn)性能幾乎完全相同。同時(shí),我們方法的離線(xiàn)性能也比其他四種好很多
結(jié)論
本文提出了一種使用變異染色體長(zhǎng)度和交叉變異概率的改進(jìn)遺傳算法。一些關(guān)鍵功能的測(cè)試表明,我們的解決方案可以顯著提高遺傳算法的收斂速度,其綜合性能優(yōu)于只保留最佳個(gè)體的遺傳算法。
附件
有了第一部分中假定的條件,定理1和定理2的驗(yàn)證是顯而易見(jiàn)的。下面給出定理3和定理4的證明過(guò)程:
定理3 單點(diǎn)交叉的染色體搜索步驟的數(shù)學(xué)期望Ec(x)是
Ec(x)= 其中Pc是交叉概率
b?aPc 2l證明:
如圖A1所示,我們假設(shè)交叉發(fā)生在第k個(gè)基因位點(diǎn),從k到l的父基因位點(diǎn)沒(méi)有變化,基因位點(diǎn)1到k上的基因改變了。
在交叉過(guò)程中,1到k基因位點(diǎn)上的基因改變的概率為0.5(“1”變化”0”或者”0”變?yōu)椤?”),因此,交叉之后,基因位點(diǎn)上的染色體搜索步驟從1到k的數(shù)學(xué)期望是
k11b?a1b?aEck(x)??wj???l?2j?1??l?(2k?1)
22?12?1j?12j?121此外,每個(gè)位點(diǎn)的染色體發(fā)生交叉的概率是相等的,即lPc。交叉后,染色
k體搜索步驟的數(shù)學(xué)期望是
1Ec(x)???Pc?Eck(x)k?1l
把Eq.(A1)替換為Eq.(A2),我們得到 l?1Pb?aP?(b?a)11b?a1?Pc??l?(2k?1)?c?l?[(2i?1)?l]?c(1?l)l22l2l2?12?12?1k?1lb?a?0,所以Ec(x)?Pc 其中l(wèi)是非常大的,l2l2?1Ec(x)??l?1圖1 單點(diǎn)交叉
定理4 位變異的染色體搜索步驟的數(shù)學(xué)期望是
Em(x)?(b?a)?Pm
其中Pm是變異概率。證明:
每個(gè)基因位點(diǎn)上的基因的變異概率是相等的,比如Pm,因此變異搜索步驟的數(shù)學(xué)期望是:
Em(x)=?Pm·wi=?Pm·i=1i=1ll
b-ai-1b-a·2=P··(2i-1)=(b-a)·Pmmli2-12-1