欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      23(高中競(jìng)賽講座)抽屜原理

      時(shí)間:2019-05-14 19:58:36下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫(kù)小編為你整理了多篇相關(guān)的《23(高中競(jìng)賽講座)抽屜原理》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫(kù)還可以找到更多《23(高中競(jìng)賽講座)抽屜原理》。

      第一篇:23(高中競(jìng)賽講座)抽屜原理

      高中數(shù)學(xué)競(jìng)賽講座23

      23抽屜原理

      在數(shù)學(xué)問(wèn)題中有一類與“存在性”有關(guān)的問(wèn)題,例如:“13個(gè)人中至少有兩個(gè)人出生在相同月份”;“某校400名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^(guò)生日”;“2003個(gè)人任意分成200個(gè)小組,一定存在一組,其成員數(shù)不少于11”;“把[0,1]內(nèi)的全部有理數(shù)放到100個(gè)集合中,一定存在一個(gè)集合,它里面有無(wú)限多個(gè)有理數(shù)”。這類存在性問(wèn)題中,“存在”的含義是“至少有一個(gè)”。在解決這類問(wèn)題時(shí),只要求指明存在,一般并不需要指出哪一個(gè),也不需要確定通過(guò)什么方式把這個(gè)存在的東西找出來(lái)。這類問(wèn)題相對(duì)來(lái)說(shuō)涉及到的運(yùn)算較少,依據(jù)的理論也不復(fù)雜,我們把這些理論稱之為“抽屜原理”。

      “抽屜原理”最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家迪里赫萊(Dirichlet)運(yùn)用于解決數(shù)學(xué)問(wèn)題的,所以又稱“迪里赫萊原理”,也有稱“鴿巢原理”的。這個(gè)原理可以簡(jiǎn)單地?cái)⑹鰹椤鞍?0個(gè)蘋果,任意分放在9個(gè)抽屜里,則至少有一個(gè)抽屜里含有兩個(gè)或兩個(gè)以上的蘋果”。這個(gè)道理是非常明顯的,但應(yīng)用它卻可以解決許多有趣的問(wèn)題,并且常常得到一些令人驚異的結(jié)果。抽屜原理是國(guó)際國(guó)內(nèi)各級(jí)各類數(shù)學(xué)競(jìng)賽中的重要內(nèi)容,本講就來(lái)學(xué)習(xí)它的有關(guān)知識(shí)及其應(yīng)用。

      (一)抽屜原理的基本形式

      定理

      1、如果把n+1個(gè)元素分成n個(gè)集合,那么不管怎么分,都存在一個(gè)集合,其中至少有兩個(gè)元素。

      證明:(用反證法)若不存在至少有兩個(gè)元素的集合,則每個(gè)集合至多1個(gè)元素,從而n個(gè)集合至多有n個(gè)元素,此與共有n+1個(gè)元素矛盾,故命題成立。

      在定理1的敘述中,可以把“元素”改為“物件”,把“集合”改成“抽屜”,抽屜原理正是由此得名。

      同樣,可以把“元素”改成“鴿子”,把“分成n個(gè)集合”改成“飛進(jìn)n個(gè)鴿籠中”?!傍澔\原理”由此得名。

      例題講解

      1. 已知在邊長(zhǎng)為1的等邊三角形內(nèi)(包括邊界)有任意五個(gè)點(diǎn)(圖1)。證明:至少有兩個(gè)點(diǎn)之間的距離不大于

      2.從1-100的自然數(shù)中,任意取出51個(gè)數(shù),證明其中一定有兩個(gè)數(shù),它們中的一個(gè)是另一個(gè)的整數(shù)倍。

      3.從前25個(gè)自然數(shù)中任意取出7個(gè)數(shù),證明:取出的數(shù)中一定有兩個(gè)數(shù),這兩個(gè)數(shù)中大數(shù)不超過(guò)小數(shù)的1.5倍。

      4.已給一個(gè)由10個(gè)互不相等的兩位十進(jìn)制正整數(shù)組成的集合。求證:這個(gè)集合必有兩個(gè)無(wú)公共元素的子集合,各子集合中各數(shù)之和相等。

      5.在坐標(biāo)平面上任取五個(gè)整點(diǎn)(該點(diǎn)的橫縱坐標(biāo)都取整數(shù)),證明:其中一定存在兩個(gè)整點(diǎn),它們的連線中點(diǎn)仍是整點(diǎn)。

      6.在任意給出的100個(gè)整數(shù)中,都可以找出若干個(gè)數(shù)來(lái)(可以是一個(gè)數(shù)),它們的和可被100整除。

      7. 17名科學(xué)家中每?jī)擅茖W(xué)家都和其他科學(xué)家通信,在他們通信時(shí),只討論三個(gè)題目,而且任意兩名科學(xué)家通信時(shí)只討論一個(gè)題目,證明:其中至少有三名科學(xué)家,他們相互通信時(shí)討論的是同一個(gè)題目。

      課后練習(xí)

      ?1.幼兒園買來(lái)了不少白兔、熊貓、長(zhǎng)頸鹿塑料玩具,每個(gè)小朋友任意選擇兩件,那么不管怎樣挑選,在任意七個(gè)小朋友中總有兩個(gè)彼此選的玩具都相同,試說(shuō)明道理.?

      2.正方體各面上涂上紅色或藍(lán)色的油漆(每面只涂一種色),證明正方體一定有三個(gè)面顏色相同.3.把1到10的自然數(shù)擺成一個(gè)圓圈,證明一定存在在個(gè)相鄰的數(shù),它們的和數(shù)大于17.4.有紅襪2雙,白襪3雙,黑襪4雙,黃襪5雙,藍(lán)襪6雙(每雙襪子包裝在一起)若取出9雙,證明其中必有黑襪或黃襪2雙.5.在邊長(zhǎng)為1的正方形內(nèi),任意給定13個(gè)點(diǎn),試證:其中必有4個(gè)點(diǎn),以此4點(diǎn)為頂點(diǎn)的四邊開(kāi)面積不超過(guò)(假定四點(diǎn)在一直線上構(gòu)成面積為零的四邊形).6.在一條筆直的馬路旁種樹(shù),從起點(diǎn)起,每隔一米種一棵樹(shù),如果把三塊“愛(ài)護(hù)樹(shù)木”的小牌分別掛在三棵樹(shù)上,那么不管怎樣掛,至少有兩棵掛牌的樹(shù)之間的距離是偶數(shù)(以米為單位),這是為什么?

      課后練習(xí)答案

      1.解 從三種玩具中挑選兩件,搭配方式只能是下面六種:

      (兔、兔),(兔、熊貓),(兔、長(zhǎng)頸鹿),(熊貓、熊貓),(熊貓、長(zhǎng)頸鹿),(長(zhǎng)頸鹿、長(zhǎng)頸鹿)

      把每種搭配方式看作一個(gè)抽屜,把7個(gè)小朋友看作物體,那么根據(jù)原則1,至少有兩個(gè)物體要放進(jìn)同一個(gè)抽屜里,也就是說(shuō),至少兩人挑選玩具采用同一搭配方式,選的玩具相同.原則2 如果把mn+k(k≥1)個(gè)物體放進(jìn)n個(gè)抽屜,則至少有一個(gè)抽屜至多放進(jìn)m+1個(gè)物體.證明同原則相仿.若每個(gè)抽屜至多放進(jìn)m個(gè)物體,那么n個(gè)抽屜至多放進(jìn)mn個(gè)物體,與題設(shè)不符,故不可能.原則1可看作原則2的物例(m=1)

      2.證明把兩種顏色當(dāng)作兩個(gè)抽屜,把正方體六個(gè)面當(dāng)作物體,那么6=2×2+2,根據(jù)原則二,至少有三個(gè)面涂上相同的顏色.3.證明 如圖12-1,設(shè)a1,a2,a3,?,a9,a10分別代表不超過(guò)10的十個(gè)自然數(shù),它們圍成一個(gè)圈,三個(gè)相鄰的數(shù)的組成是(a1,a2,a3),(a2,a3,a4),(a3,a4,a5),?,(a9,a10,a1),(a10,a1,a2)共十組.現(xiàn)把它們看作十個(gè)抽屜,每個(gè)抽屜的物體數(shù)是a1+a2+a3,a2+a3+a4,a3+a4+a5,?a9+a10+a1,a10+a1+a2,由于

      (a1+a2+a3)+(a2+a3+a4)+?+(a9+a10+a1)+(a10+a1+a2)=3(a1+a2+?+a9+a10)=3×(1+2+?+9+10)

      根據(jù)原則2,至少有一個(gè)括號(hào)內(nèi)的三數(shù)和不少于17,即至少有三個(gè)相鄰的數(shù)的和不小于17.原則

      1、原則2可歸結(jié)到期更一般形式:

      原則3把m1+m2+?+mn+k(k≥1)個(gè)物體放入n個(gè)抽屜里,那么或在第一個(gè)抽屜里至少放入m1+1個(gè)物體,或在第二個(gè)抽屜里至少放入m2+1個(gè)物體,??,或在第n個(gè)抽屜里至少放入mn+1個(gè)物體.證明假定第一個(gè)抽屜放入物體的數(shù)不超過(guò)m1個(gè),第二個(gè)抽屜放入物體的數(shù)不超過(guò)m2個(gè),??,第n個(gè)抽屜放入物體的個(gè)數(shù)不超過(guò)mn,那么放入所有抽屜的物體總數(shù)不超過(guò)m1+m2+?+mn個(gè),與題設(shè)矛盾.4.證明 除可能取出紅襪、白襪3雙外.還至少?gòu)钠渌N顏色的襪子里取出4雙,根據(jù)原理3,必在黑襪或黃襪、藍(lán)襪里取2雙.上面數(shù)例論證的似乎都是“存在”、“總有”、“至少有”的問(wèn)題,不錯(cuò),這正是抽屜原則的主要作用.需要說(shuō)明的是,運(yùn)用抽屜原則只是肯定了“存在”、“總有”、“至少有”,卻不能確切地指出哪個(gè)抽屜里存在多少.制造抽屜是運(yùn)用原則的一大關(guān)鍵

      首先要指出的是,對(duì)于同一問(wèn)題,??梢罁?jù)情況,從不同角度設(shè)計(jì)抽屜,從而導(dǎo)致不同的制造抽屜的方式.5.證明如圖12-2把正方形分成四個(gè)相同的小正方形.因13=3×4+1,根據(jù)原則2,總有4點(diǎn)落在同一個(gè)小正方形內(nèi)(或邊界上),以此4點(diǎn)為頂點(diǎn)的四邊形的面積不超過(guò)小正方形的面積,也就不超過(guò)整個(gè)正方形面積的.事實(shí)上,由于解決問(wèn)題的核心在于將正方形分割成四個(gè)面積相等的部分,所以還可以把正方形按圖12-3(此處無(wú)圖)所示的形式分割.合理地制造抽屜必須建立在充分考慮問(wèn)題自身特點(diǎn)的基礎(chǔ)上.6.解如圖12-4(設(shè)掛牌的三棵樹(shù)依次為A、B、C.AB=a,BC=b,若a、b中有一為偶數(shù),命題得證.否則a、b均為奇數(shù),則AC=a+b為偶數(shù),命題得證.下面我們換一個(gè)角度考慮:給每棵樹(shù)上編上號(hào),于是兩棵樹(shù)之間的距離就是號(hào)碼差,由于樹(shù)的號(hào)碼只能為奇數(shù)和偶數(shù)兩類,那么掛牌的三棵樹(shù)號(hào)碼至少有兩個(gè)同為奇數(shù)或偶數(shù),它們的差必為偶數(shù),問(wèn)題得證.后一證明十分巧妙,通過(guò)編號(hào)碼,將兩樹(shù)間距離轉(zhuǎn)化為號(hào)碼差.這種轉(zhuǎn)化的思想方法是一種非常重要的數(shù)學(xué)方法

      例題答案:

      1.分析:5個(gè)點(diǎn)的分布是任意的。如果要證明“在邊長(zhǎng)為1的等邊三角形內(nèi)(包括邊界)有5個(gè)點(diǎn),那么這5個(gè)點(diǎn)中一定有距離不大于的兩點(diǎn)”,則順次連接三角形三邊中點(diǎn),即三角形的三條中位線,可以分原等邊三角形為4個(gè)全等的邊長(zhǎng)為的小等邊三角形,則5個(gè)點(diǎn)中必有2點(diǎn)位于同一個(gè)小等邊三角形中(包括邊界),其距離便不大于。

      以上結(jié)論要由定理“三角形內(nèi)(包括邊界)任意兩點(diǎn)間的距離不大于其最大邊長(zhǎng)”來(lái)保證,下面我們就來(lái)證明這個(gè)定理。

      如圖2,設(shè)BC是△ABC的最大邊,P,M是△ABC內(nèi)(包括邊界)任意兩點(diǎn),連接PM,過(guò)P分別作AB、BC邊的平行線,過(guò)M作AC邊的平行線,設(shè)各平行線交點(diǎn)為P、Q、N,那么

      ∠PQN=∠C,∠QNP=∠A

      因?yàn)锽C≥AB,所以∠A≥∠C,則∠QNP≥∠PQN,而∠QMP≥∠QNP≥∠PQN(三角形的外角大于不相鄰的內(nèi)角),所以 PQ≥PM。顯然BC≥PQ,故BC≥PM。

      由此我們可以推知,邊長(zhǎng)為的等邊三角形內(nèi)(包括邊界)兩點(diǎn)間的距離不大于。

      說(shuō)明:

      (1)這里是用等分三角形的方法來(lái)構(gòu)造“抽屜”。類似地,還可以利用等分線段、等分正方形的方法來(lái)構(gòu)造“抽屜”。例如“任取n+1個(gè)正數(shù)ai,滿足0<ai≤1(i=1,2,?,n+1),試證明:這n+1個(gè)數(shù)中必存在兩個(gè)數(shù),其差的絕對(duì)值小于”。又如:“在邊長(zhǎng)為1的正方形內(nèi)任意放置五個(gè)點(diǎn),求證:其中必有兩點(diǎn),這兩點(diǎn)之間的距離不大于。

      (2)例1中,如果把條件(包括邊界)去掉,則結(jié)論可以修改為:至少有兩個(gè)點(diǎn)之間的距離小于“,請(qǐng)讀者試證之,并比較證明的差別。

      (3)用同樣的方法可證明以下結(jié)論:

      2i)在邊長(zhǎng)為1的等邊三角形中有n+1個(gè)點(diǎn),這n+1個(gè)點(diǎn)中一定有距離不大于的兩點(diǎn)。

      ii)在邊長(zhǎng)為1的等邊三角形內(nèi)有n2+1個(gè)點(diǎn),這n2+1個(gè)點(diǎn)中一定有距離小于的兩點(diǎn)。

      (4)將(3)中兩個(gè)命題中的等邊三角形換成正方形,相應(yīng)的結(jié)論中的換成,命 題仍然成立。

      (5)讀者還可以考慮相反的問(wèn)題:一般地,“至少需要多少個(gè)點(diǎn),才能夠使得邊長(zhǎng) 為1的正三角形內(nèi)(包括邊界)有兩點(diǎn)其距離不超過(guò)”。

      2.分析:本題似乎茫無(wú)頭緒,從何入手?其關(guān)鍵何在?其實(shí)就在“兩個(gè)數(shù)”,其中一個(gè)是另一個(gè)的整數(shù)倍。我們要構(gòu)造“抽屜”,使得每個(gè)抽屜里任取兩個(gè)數(shù),都有一個(gè)是另一個(gè)的整數(shù)倍,這只有把公比是正整數(shù)的整個(gè)等比數(shù)列都放進(jìn)去同一個(gè)抽屜才行,這里用得到一個(gè)自然數(shù)分類的基本知識(shí):任何一個(gè)正整數(shù)都可以表示成一個(gè)奇數(shù)與2的方冪的積,即若m∈N+,K∈N+,n∈N,則m=(2k-1)·2n,并且這種表示方式是唯一的,如1=1×2°,2=1×21,3=3×2°,??

      證明:因?yàn)槿魏我粋€(gè)正整數(shù)都能表示成一個(gè)奇數(shù)乘2的方冪,并且這種表示方法是唯一的,所以我們可把1-100的正整數(shù)分成如下50個(gè)抽屜(因?yàn)?-100中共有50個(gè)奇數(shù)):

      (1){1,1×2,1×2,1×2,1×2,1×2,1×2};

      (2){3,3×2,3×22,3×23,3×24,3×25};

      (3){5,5×2,5×22,5×23,5×24};

      (4){7,7×2,7×22,7×23};

      (5){9,9×2,9×22,9×23};

      (6){11,11×2,11×2,11×2};

      ??

      (25){49,49×2};

      (26){51};

      ??

      (50){99}。

      這樣,1-100的正整數(shù)就無(wú)重復(fù),無(wú)遺漏地放進(jìn)這50個(gè)抽屜內(nèi)了。從這100個(gè)數(shù)中任取51個(gè)數(shù),也即從這50個(gè)抽屜內(nèi)任取51個(gè)數(shù),根據(jù)抽屜原則,其中必定至少有兩個(gè)數(shù)屬于同一個(gè)抽屜,即屬于(1)-(25)號(hào)中的某一個(gè)抽屜,顯然,在這25個(gè)抽屜中的任何同一個(gè)抽屜內(nèi)的兩個(gè)數(shù)中,一個(gè)是另一個(gè)的整數(shù)倍。

      說(shuō)明:

      (1)從上面的證明中可以看出,本題能夠推廣到一般情形:從1-2n的自然數(shù)中,任意取出n+1個(gè)數(shù),則其中必有兩個(gè)數(shù),它們中的一個(gè)是另一個(gè)的整數(shù)倍。想一想,為什么?因?yàn)?-2n中共含1,3,?,2n-1這n個(gè)奇數(shù),因此可以制造n個(gè)抽屜,而n+1>n,由抽屜原則,結(jié)論就是必然的了。給n以具體值,就可以構(gòu)造出不同的題目。例2中的n取值是50,還可以編制相反的題目,如:“從前30個(gè)自然數(shù)中最少要(不看這些數(shù)而以任意方式地)取出幾個(gè)數(shù),才能保證取出的數(shù)中能找到兩個(gè)數(shù),其中較大的數(shù)是較小的數(shù)的倍數(shù)?”

      (2)如下兩個(gè)問(wèn)題的結(jié)論都是否定的(n均為正整數(shù))想一想,為什么?

      ①?gòu)?,3,4,?,2n+1中任取n+1個(gè)數(shù),是否必有兩個(gè)數(shù),它們中的一個(gè)是另一個(gè)的整數(shù)倍?

      ②從1,2,3,?,2n+1中任取n+1個(gè)數(shù),是否必有兩個(gè)數(shù),它們中的一個(gè)是另一個(gè)的整數(shù)倍?

      你能舉出反例,證明上述兩個(gè)問(wèn)題的結(jié)論都是否定的嗎?

      (3)如果將(2)中兩個(gè)問(wèn)題中任取的n+1個(gè)數(shù)增加1個(gè),都改成任取n+2個(gè)數(shù),則它們的結(jié)論是肯定的還是否定的?你能判斷證明嗎? 3.證明:把前25個(gè)自然數(shù)分成下面6組:

      1;

      2,3;

      4,5,6;

      7,8,9,10;

      11,12,13,14,15,16;

      17,18,19,20,21,22,23,⑥

      因?yàn)閺那?5個(gè)自然數(shù)中任意取出7個(gè)數(shù),所以至少有兩個(gè)數(shù)取自上面第②組到第⑥組中的某同一組,這兩個(gè)數(shù)中大數(shù)就不超過(guò)小數(shù)的1.5倍。

      說(shuō)明: 2

      56(1)本題可以改變敘述如下:在前25個(gè)自然數(shù)中任意取出7個(gè)數(shù),求證其中存在兩個(gè)數(shù),它們相互的比值在內(nèi)。

      顯然,必須找出一種能把前25個(gè)自然數(shù)分成6(7-1=6)個(gè)集合的方法,不過(guò)分類時(shí)有一個(gè)限制條件:同一集合中任兩個(gè)數(shù)的比值在內(nèi),故同一集合中元素的數(shù)值差不得過(guò)大。這樣,我們可以用如上一種特殊的分類法:遞推分類法:

      從1開(kāi)始,顯然1只能單獨(dú)作為1個(gè)集合{1};否則不滿足限制條件。

      能與2同屬于一個(gè)集合的數(shù)只有3,于是{2,3}為一集合。

      如此依次遞推下去,使若干個(gè)連續(xù)的自然數(shù)屬于同一集合,其中最大的數(shù)不超過(guò)最小的數(shù)的倍,就可以得到滿足條件的六個(gè)集合。

      (2)如果我們按照(1)中的遞推方法依次造“抽屜”,則第7個(gè)抽屜為

      {26,27,28,29,30,31,32,33,34,35,36,37,38,39};

      第8個(gè)抽屜為:{40,41,42,?,60};

      第9個(gè)抽屜為:{61,62,63,?,90,91};

      ??

      那么我們可以將例3改造為如下一系列題目:

      (1)從前16個(gè)自然數(shù)中任取6個(gè)自然數(shù);

      (2)從前39個(gè)自然數(shù)中任取8個(gè)自然數(shù);

      (3)從前60個(gè)自然數(shù)中任取9個(gè)自然數(shù);

      (4)從前91個(gè)自然數(shù)中任取10個(gè)自然數(shù);?

      都可以得到同一個(gè)結(jié)論:其中存在2個(gè)數(shù),它們相互的比值在]內(nèi)。

      上述第(4)個(gè)命題,就是前蘇聯(lián)基輔第49屆數(shù)學(xué)競(jìng)賽試題。如果我們改變區(qū)間[](p>q)端點(diǎn)的值,則又可以構(gòu)造出一系列的新題目來(lái)。

      4.分析與解答:一個(gè)有著10個(gè)元素的集合,它共有多少個(gè)可能的子集呢?由于在組成一個(gè)子集的時(shí)候,每一個(gè)元素都有被取過(guò)來(lái)或者不被取過(guò)來(lái)兩種可能,因此,10個(gè)元素的集合就有210=1024個(gè)不同的構(gòu)造子集的方法,也就是,它一共有1024個(gè)不同的子集,包括空集和全集在內(nèi)??占c全集顯然不是考慮的對(duì)象,所以剩下1024-2=1022個(gè)非空真子集。

      再來(lái)看各個(gè)真子集中一切數(shù)字之和。用N來(lái)記這個(gè)和數(shù),很明顯:

      10≤N≤91+92+93+94+95+96+97+98+99=855

      這表明N至多只有855-9=846種不同的情況。由于非空真子集的個(gè)數(shù)是1022,1022>846,所以一定存在兩個(gè)子集A與B,使得A中各數(shù)之和=B中各數(shù)之和。

      若A∩B=φ,則命題得證,若A∩B=C≠φ,即A與B有公共元素,這時(shí)只要剔除A與B中的一切公有元素,得出兩個(gè)不相交的子集A1與B1,很顯然

      A1中各元素之和=B1中各元素之和,因此A1與B1就是符合題目要求的子集。

      說(shuō)明:本例能否推廣為如下命題:

      已給一個(gè)由m個(gè)互不相等的n位十進(jìn)制正整數(shù)組成的集合。求證:這個(gè)集合必有兩個(gè)無(wú)公共元素的子集合,各子集合中各數(shù)之和相等。

      請(qǐng)讀者自己來(lái)研究這個(gè)問(wèn)題。

      5.分析與解答:由中點(diǎn)坐標(biāo)公式知,坐標(biāo)平面兩點(diǎn)(x1,y1)、(x2,y2)的中點(diǎn)坐標(biāo)是。欲使都是整數(shù),必須而且只須x1與x2,y1與y2的奇偶性相同。坐標(biāo)平面上的任意整點(diǎn)按照橫縱兩個(gè)坐標(biāo)的奇偶性考慮有且只有如下四種:(奇數(shù)、奇數(shù)),(偶數(shù),偶數(shù)),(奇數(shù),偶數(shù)),(偶數(shù),奇數(shù))以此構(gòu)造四個(gè)“抽屜”,則在坐標(biāo)平面上任取五個(gè)整點(diǎn),那么至少有兩個(gè)整點(diǎn),屬于同一個(gè)“抽屜”因此它們連線的中點(diǎn)就必是整點(diǎn)。

      說(shuō)明:我們可以把整點(diǎn)的概念推廣:如果(x1,x2,?xn)是n維(元)有序數(shù)組,且x1,x2,?xn中的每一個(gè)數(shù)都是整數(shù),則稱(x1,x2,?xn)是一個(gè)n維整點(diǎn)(整點(diǎn)又稱格點(diǎn))。如果對(duì)所有的n維整點(diǎn)按每一個(gè)xi的奇偶性來(lái)分類,由于每一個(gè)位置上有奇、偶兩種可能性,因此共可分為2×2×?×2=2n個(gè)類。這是對(duì)n維整點(diǎn)的一種分類方法。當(dāng)n=3時(shí),23=8,此時(shí)可以構(gòu)造命題:“任意給定空間中九個(gè)整點(diǎn),求證它們之中必有兩點(diǎn)存在,使連接這兩點(diǎn)的直線段的內(nèi)部含有整點(diǎn)”。這就是1971年的美國(guó)普特南數(shù)學(xué)競(jìng)賽題。在n=2的情形,也可以構(gòu)造如下的命題:“平面上任意給定5個(gè)整點(diǎn)”,對(duì)“它們連線段中點(diǎn)為整點(diǎn)”的4個(gè)命題中,為真命題的是:

      (A)最少可為0個(gè),最多只能是5個(gè)(B)最少可為0個(gè),最多可取10個(gè)

      (C)最少為1個(gè),最多為5個(gè)(D)最少為1個(gè),最多為10個(gè)

      (正確答案(D))

      6.分析:本題也似乎是茫無(wú)頭緒,無(wú)從下手,其關(guān)鍵何在?仔細(xì)審題,它們的“和”能“被100整除”應(yīng)是做文章的地方。如果把這100個(gè)數(shù)排成一個(gè)數(shù)列,用Sm記其前m項(xiàng)的和,則其可構(gòu)造S1,S2,?S100共100個(gè)”和"數(shù)。討論這些“和數(shù)”被100除所得的余數(shù)。注意到S1,S2,?S100共有100個(gè)數(shù),一個(gè)數(shù)被100除所得的余數(shù)有0,1,2,?99共100種可能性?!疤O果”數(shù)與“抽屜”數(shù)一樣多,如何排除“故障”?

      證明:設(shè)已知的整數(shù)為a1,a2,?a100考察數(shù)列a1,a2,?a100的前n項(xiàng)和構(gòu)成的數(shù)列S1,S2,?S100。

      如果S1,S2,?S100中有某個(gè)數(shù)可被100整除,則命題得證。否則,即S1,S2,?S100均不能被100整除,這樣,它們被100除后余數(shù)必是{1,2,?,99}中的元素。由抽屜原理I知,S1,S2,?S100中必有兩個(gè)數(shù),它們被100除后具有相同的余數(shù)。不妨設(shè)這兩個(gè)數(shù)為Si,S(,則100∣(Sj-Si),ji<j)即100∣。命題得證。

      說(shuō)明:有時(shí)候直接對(duì)所給對(duì)象作某種劃分,是很難構(gòu)造出恰當(dāng)?shù)某閷系摹_@時(shí)候,我們需要對(duì)所給對(duì)象先作一些變換,然后對(duì)變換得到的對(duì)象進(jìn)行分類,就可以構(gòu)造出恰當(dāng)?shù)某閷?。本題直接對(duì){an}進(jìn)行分類是很難奏效的。但由{an}構(gòu)造出{Sn}后,再對(duì){Sn}進(jìn)行分類就容易得多。

      另外,對(duì){Sn}按模100的剩余類劃分時(shí),只能分成100個(gè)集合,而{Sn}只有100項(xiàng),似乎不能應(yīng)用抽屜原則。但注意到余數(shù)為0的類恰使結(jié)論成立,于是通過(guò)分別情況討論后,就可去掉余數(shù)為0的類,從而轉(zhuǎn)化為100個(gè)數(shù)分配在剩下的99個(gè)類中。這種處理問(wèn)題的方法應(yīng)當(dāng)學(xué)會(huì),它會(huì)助你從“山窮水盡疑無(wú)路”時(shí),走入“柳暗花明又一村”中。

      最后,本例的結(jié)論及證明可以推廣到一般情形(而且有加強(qiáng)的環(huán)節(jié)):

      在任意給定的n個(gè)整數(shù)中,都可以找出若干個(gè)數(shù)來(lái)(可以是一個(gè)數(shù)),它們的和可被n整除,而且,在任意給定的排定順序的n個(gè)整數(shù)中,都可以找出若干個(gè)連續(xù)的項(xiàng)(可以是一項(xiàng)),它們的和可被n整除。

      將以上一般結(jié)論中的n賦以相應(yīng)的年份的值如1999,2000,2001?,就可以編出相應(yīng)年份的試題來(lái)。如果再賦以特殊背景,則可以編出非常有趣的數(shù)學(xué)智力題來(lái),如下題:

      有100只猴子在吃花生,每只猴子至少吃了1?;ㄉ?,多者不限。請(qǐng)你證明:一定有若干只猴子(可以是一只),它們所吃的花生的粒數(shù)總和恰好是100的倍數(shù)。

      7.證明:視17個(gè)科學(xué)家為17個(gè)點(diǎn),每?jī)蓚€(gè)點(diǎn)之間連一條線表示這兩個(gè)科學(xué)家在討論同一個(gè)問(wèn)題,若討論第一個(gè)問(wèn)題則在相應(yīng)兩點(diǎn)連紅線,若討論第2個(gè)問(wèn)題則在相應(yīng)兩點(diǎn)連條黃線,若討論第3個(gè)問(wèn)題則在相應(yīng)兩點(diǎn)連條藍(lán)線。三名科學(xué)家研究同一個(gè)問(wèn)題就轉(zhuǎn)化為找到一個(gè)三邊同顏色的三角形。

      考慮科學(xué)家A,他要與另外的16位科學(xué)家每人通信討論一個(gè)問(wèn)題,相應(yīng)于從A出發(fā)引出16條線段,將它們?nèi)境?種顏色,而16=3×5+1,因而必有6=5+1條同色,不妨記為AB1,AB2,AB3,AB4,AB5,AB6同紅色,若Bi(i=1,2,?,6)之間有紅線,則出現(xiàn)紅色三角線,命題已成立;否則B1,B2,B3,B4,B5,B6之間的連線只染有黃藍(lán)兩色。

      考慮從B1引出的5條線,B1B2,B1B3,B1B4,B1B5,B1B6,用兩種顏色染色,因?yàn)?=2×2+1,故必有3=2+1條線段同色,假設(shè)為黃色,并記它們?yōu)锽1B2,B1B3,B1B4。這時(shí)若B2,B3,B4之間有黃線,則有黃色三角形,命題也成立,若B2,B3,B4,之間無(wú)黃線,則△B2,B3,B4,必為藍(lán)色三角形,命題仍然成立。

      說(shuō)明:(1)本題源于一個(gè)古典問(wèn)題--世界上任意6個(gè)人中必有3人互相認(rèn)識(shí),或互相不認(rèn)識(shí)。(美國(guó)普特南數(shù)學(xué)競(jìng)賽題)。

      (2)將互相認(rèn)識(shí)用紅色表示,將互相不認(rèn)識(shí)用藍(lán)色表示,(1)將化為一個(gè)染色問(wèn)題,成為一個(gè)圖論問(wèn)題:空間六個(gè)點(diǎn),任何三點(diǎn)不共線,四點(diǎn)不共面,每?jī)牲c(diǎn)之間連線都涂上紅色或藍(lán)色。求證:存在三點(diǎn),它們所成的三角形三邊同色。

      (3)問(wèn)題(2)可以往兩個(gè)方向推廣:其一是顏色的種數(shù),其二是點(diǎn)數(shù)。

      本例便是方向一的進(jìn)展,其證明已知上述。如果繼續(xù)沿此方向前進(jìn),可有下題:

      在66個(gè)科學(xué)家中,每個(gè)科學(xué)家都和其他科學(xué)家通信,在他們的通信中僅僅討論四個(gè)題目,而任何兩個(gè)科學(xué)家之間僅僅討論一個(gè)題目。證明至少有三個(gè)科學(xué)家,他們互相之間討論同一個(gè)題目。

      (4)回顧上面證明過(guò)程,對(duì)于17點(diǎn)染3色問(wèn)題可歸結(jié)為6點(diǎn)染2色問(wèn)題,又可歸結(jié)為3點(diǎn)染一色問(wèn)題。反過(guò)來(lái),我們可以繼續(xù)推廣。從以上(3,1)→(6,2)→(17,3)的過(guò)程,易發(fā)現(xiàn)

      6=(3-1)×2+2,17=(6-1)×3+2,66=(17-1)×4+2,同理可得(66-1)×5+2=327,(327-1)×6+2=1958?記為r1=3,r2=6,r3=17,r4=66,r5=327,r6=1958,?

      我們可以得到遞推關(guān)系式:rn=n(rn-1-1)+2,n=2,3,4?這樣就可以構(gòu)造出327點(diǎn)染5色問(wèn)題,1958點(diǎn)染6色問(wèn)題,都必出現(xiàn)一個(gè)同色三角形。

      第二篇:高中數(shù)學(xué)競(jìng)賽講義-抽屜原理

      數(shù)學(xué)教育網(wǎng)---數(shù)學(xué)試題-數(shù)學(xué)教案-數(shù)學(xué)課件-數(shù)學(xué)論文-競(jìng)賽試題-中高考試題信息http://004km.cn

      抽屜原理

      在數(shù)學(xué)問(wèn)題中有一類與“存在性”有關(guān)的問(wèn)題,例如:“13個(gè)人中至少有兩個(gè)人出生在相同月份”;“某校400名學(xué)生中,一定存在兩名學(xué)生,他們?cè)谕惶爝^(guò)生日”;“2003個(gè)人任意分成200個(gè)小組,一定存在一組,其成員數(shù)不少于11”;“把[0,1]內(nèi)的全部有理數(shù)放到100個(gè)集合中,一定存在一個(gè)集合,它里面有無(wú)限多個(gè)有理數(shù)”。這類存在性問(wèn)題中,“存在”的含義是“至少有一個(gè)”。在解決這類問(wèn)題時(shí),只要求指明存在,一般并不需要指出哪一個(gè),也不需要確定通過(guò)什么方式把這個(gè)存在的東西找出來(lái)。這類問(wèn)題相對(duì)來(lái)說(shuō)涉及到的運(yùn)算較少,依據(jù)的理論也不復(fù)雜,我們把這些理論稱之為“抽屜原理”。

      “抽屜原理”最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家迪里赫萊(Dirichlet)運(yùn)用于解決數(shù)學(xué)問(wèn)題的,所以又稱“迪里赫萊原理”,也有稱“鴿巢原理”的。這個(gè)原理可以簡(jiǎn)單地?cái)⑹鰹椤鞍?0個(gè)蘋果,任意分放在9個(gè)抽屜里,則至少有一個(gè)抽屜里含有兩個(gè)或兩個(gè)以上的蘋果”。這個(gè)道理是非常明顯的,但應(yīng)用它卻可以解決許多有趣的問(wèn)題,并且常常得到一些令人驚異的結(jié)果。抽屜原理是國(guó)際國(guó)內(nèi)各級(jí)各類數(shù)學(xué)競(jìng)賽中的重要內(nèi)容,本講就來(lái)學(xué)習(xí)它的有關(guān)知識(shí)及其應(yīng)用。

      (一)抽屜原理的基本形式

      定理

      1、如果把n+1個(gè)元素分成n個(gè)集合,那么不管怎么分,都存在一個(gè)集合,其中至少有兩個(gè)元素。

      證明:(用反證法)若不存在至少有兩個(gè)元素的集合,則每個(gè)集合至多1個(gè)元素,從而n個(gè)集合至多有n個(gè)元素,此與共有n+1個(gè)元素矛盾,故命題成立。

      在定理1的敘述中,可以把“元素”改為“物件”,把“集合”改成“抽屜”,抽屜原理正是由此得名。

      同樣,可以把“元素”改成“鴿子”,把“分成n個(gè)集合”改成“飛進(jìn)n個(gè)鴿籠中”?!傍澔\原理”由此得名。

      例題講解

      1. 已知在邊長(zhǎng)為1的等邊三角形內(nèi)(包括邊界)有任意五個(gè)點(diǎn)(圖1)。證明:至少有兩個(gè)點(diǎn)之間的距離不大于

      2.從1-100的自然數(shù)中,任意取出51個(gè)數(shù),證明其中一定有兩個(gè)數(shù),它們中的一個(gè)是另一個(gè)的整數(shù)倍。

      數(shù)學(xué)教育網(wǎng)http://004km.cn 數(shù)學(xué)教育網(wǎng)---數(shù)學(xué)試題-數(shù)學(xué)教案-數(shù)學(xué)課件-數(shù)學(xué)論文-競(jìng)賽試題-中高考試題信息http://004km.cn 3.從前25個(gè)自然數(shù)中任意取出7個(gè)數(shù),證明:取出的數(shù)中一定有兩個(gè)數(shù),這兩個(gè)數(shù)中大數(shù)不超過(guò)小數(shù)的1.5倍。

      4.已給一個(gè)由10個(gè)互不相等的兩位十進(jìn)制正整數(shù)組成的集合。求證:這個(gè)集合必有兩個(gè)無(wú)公共元素的子集合,各子集合中各數(shù)之和相等。

      5.在坐標(biāo)平面上任取五個(gè)整點(diǎn)(該點(diǎn)的橫縱坐標(biāo)都取整數(shù)),證明:其中一定存在兩個(gè)整點(diǎn),它們的連線中點(diǎn)仍是整點(diǎn)。

      6.在任意給出的100個(gè)整數(shù)中,都可以找出若干個(gè)數(shù)來(lái)(可以是一個(gè)數(shù)),它們的和可被100整除。

      7. 17名科學(xué)家中每?jī)擅茖W(xué)家都和其他科學(xué)家通信,在他們通信時(shí),只討論三個(gè)題目,而且任意兩名科學(xué)家通信時(shí)只討論一個(gè)題目,證明:其中至少有三名科學(xué)家,他們相互通信時(shí)討論的是同一個(gè)題目。

      例題答案:

      1.分析:5個(gè)點(diǎn)的分布是任意的。如果要證明“在邊長(zhǎng)為1的等邊三角形內(nèi)(包括邊界)有5個(gè)點(diǎn),那么這5個(gè)點(diǎn)中一定有距離不大于的兩點(diǎn)”,則順次連接三角形三邊中點(diǎn),數(shù)學(xué)教育網(wǎng)http://004km.cn 數(shù)學(xué)教育網(wǎng)---數(shù)學(xué)試題-數(shù)學(xué)教案-數(shù)學(xué)課件-數(shù)學(xué)論文-競(jìng)賽試題-中高考試題信息http://004km.cn 即三角形的三條中位線,可以分原等邊三角形為4個(gè)全等的邊長(zhǎng)為的小等邊三角形,則5個(gè)點(diǎn)中必有2點(diǎn)位于同一個(gè)小等邊三角形中(包括邊界),其距離便不大于。

      以上結(jié)論要由定理“三角形內(nèi)(包括邊界)任意兩點(diǎn)間的距離不大于其最大邊長(zhǎng)”來(lái)保證,下面我們就來(lái)證明這個(gè)定理。

      如圖2,設(shè)BC是△ABC的最大邊,P,M是△ABC內(nèi)(包括邊界)任意兩點(diǎn),連接PM,過(guò)P分別作AB、BC邊的平行線,過(guò)M作AC邊的平行線,設(shè)各平行線交點(diǎn)為P、Q、N,那么

      ∠PQN=∠C,∠QNP=∠A

      因?yàn)锽C≥AB,所以∠A≥∠C,則∠QNP≥∠PQN,而∠QMP≥∠QNP≥∠PQN(三角形的外角大于不相鄰的內(nèi)角),所以 PQ≥PM。顯然BC≥PQ,故BC≥PM。

      由此我們可以推知,邊長(zhǎng)為的等邊三角形內(nèi)(包括邊界)兩點(diǎn)間的距離不大于。

      說(shuō)明:

      (1)這里是用等分三角形的方法來(lái)構(gòu)造“抽屜”。類似地,還可以利用等分線段、等分正方形的方法來(lái)構(gòu)造“抽屜”。例如“任取n+1個(gè)正數(shù)ai,滿足0<ai≤1(i=1,2,?,n+1),試證明:這n+1個(gè)數(shù)中必存在兩個(gè)數(shù),其差的絕對(duì)值小于”。又如:“在邊長(zhǎng)為1的正方形內(nèi)任意放置五個(gè)點(diǎn),求證:其中必有兩點(diǎn),這兩點(diǎn)之間的距離不大于。

      (2)例1中,如果把條件(包括邊界)去掉,則結(jié)論可以修改為:至少有兩個(gè)點(diǎn)之間的距離小于“,請(qǐng)讀者試證之,并比較證明的差別。

      (3)用同樣的方法可證明以下結(jié)論:

      2i)在邊長(zhǎng)為1的等邊三角形中有n+1個(gè)點(diǎn),這n+1個(gè)點(diǎn)中一定有距離不大于的兩點(diǎn)。

      ii)在邊長(zhǎng)為1的等邊三角形內(nèi)有n+1個(gè)點(diǎn),這n+1個(gè)點(diǎn)中一定有距離小于的兩點(diǎn)。

      (4)將(3)中兩個(gè)命題中的等邊三角形換成正方形,相應(yīng)的結(jié)論中的換成,命 題仍然成立。

      (5)讀者還可以考慮相反的問(wèn)題:一般地,“至少需要多少個(gè)點(diǎn),才能夠使得邊長(zhǎng) 為1的正三角形內(nèi)(包括邊界)有兩點(diǎn)其距離不超過(guò)”。

      2.分析:本題似乎茫無(wú)頭緒,從何入手?其關(guān)鍵何在?其實(shí)就在“兩個(gè)數(shù)”,其中一個(gè)是另一個(gè)的整數(shù)倍。我們要構(gòu)造“抽屜”,使得每個(gè)抽屜里任取兩個(gè)數(shù),都有一個(gè)是另一個(gè)的整數(shù)倍,這只有把公比是正整數(shù)的整個(gè)等比數(shù)列都放進(jìn)去同一個(gè)抽屜才行,這里用得到一個(gè)自然數(shù)分類的基本知識(shí):任何一個(gè)正整數(shù)都可以表示成一個(gè)奇數(shù)與2的方冪的積,即若

      nm∈N+,K∈N+,n∈N,則m=(2k-1)·2,并且這種表示方式是唯一的,如1=1×2°,2=1×21,3=3×2°,??

      證明:因?yàn)槿魏我粋€(gè)正整數(shù)都能表示成一個(gè)奇數(shù)乘2的方冪,并且這種表示方法是唯一的,所以我們可把1-100的正整數(shù)分成如下50個(gè)抽屜(因?yàn)?-100中共有50個(gè)奇數(shù)):

      23456

      (1){1,1×2,1×2,1×2,1×2,1×2,1×2};

      234

      5(2){3,3×2,3×2,3×2,3×2,3×2};

      4(3){5,5×2,5×2,5×2,5×2};

      3(4){7,7×2,7×2,7×2};

      (5){9,9×2,9×2,9×2};

      (6){11,11×2,11×2,11×2};

      數(shù)學(xué)教育網(wǎng)http://004km.cn 數(shù)學(xué)教育網(wǎng)---數(shù)學(xué)試題-數(shù)學(xué)教案-數(shù)學(xué)課件-數(shù)學(xué)論文-競(jìng)賽試題-中高考試題信息http://004km.cn

      ??

      (25){49,49×2};

      (26){51};

      ??

      (50){99}。

      這樣,1-100的正整數(shù)就無(wú)重復(fù),無(wú)遺漏地放進(jìn)這50個(gè)抽屜內(nèi)了。從這100個(gè)數(shù)中任取51個(gè)數(shù),也即從這50個(gè)抽屜內(nèi)任取51個(gè)數(shù),根據(jù)抽屜原則,其中必定至少有兩個(gè)數(shù)屬于同一個(gè)抽屜,即屬于(1)-(25)號(hào)中的某一個(gè)抽屜,顯然,在這25個(gè)抽屜中的任何同一個(gè)抽屜內(nèi)的兩個(gè)數(shù)中,一個(gè)是另一個(gè)的整數(shù)倍。

      說(shuō)明:

      (1)從上面的證明中可以看出,本題能夠推廣到一般情形:從1-2n的自然數(shù)中,任意取出n+1個(gè)數(shù),則其中必有兩個(gè)數(shù),它們中的一個(gè)是另一個(gè)的整數(shù)倍。想一想,為什么?因?yàn)?-2n中共含1,3,?,2n-1這n個(gè)奇數(shù),因此可以制造n個(gè)抽屜,而n+1>n,由抽屜原則,結(jié)論就是必然的了。給n以具體值,就可以構(gòu)造出不同的題目。例2中的n取值是50,還可以編制相反的題目,如:“從前30個(gè)自然數(shù)中最少要(不看這些數(shù)而以任意方式地)取出幾個(gè)數(shù),才能保證取出的數(shù)中能找到兩個(gè)數(shù),其中較大的數(shù)是較小的數(shù)的倍數(shù)?”

      (2)如下兩個(gè)問(wèn)題的結(jié)論都是否定的(n均為正整數(shù))想一想,為什么?

      ①?gòu)?,3,4,?,2n+1中任取n+1個(gè)數(shù),是否必有兩個(gè)數(shù),它們中的一個(gè)是另一個(gè)的整數(shù)倍?

      ②從1,2,3,?,2n+1中任取n+1個(gè)數(shù),是否必有兩個(gè)數(shù),它們中的一個(gè)是另一個(gè)的整數(shù)倍?

      你能舉出反例,證明上述兩個(gè)問(wèn)題的結(jié)論都是否定的嗎?

      (3)如果將(2)中兩個(gè)問(wèn)題中任取的n+1個(gè)數(shù)增加1個(gè),都改成任取n+2個(gè)數(shù),則它們的結(jié)論是肯定的還是否定的?你能判斷證明嗎? 3.證明:把前25個(gè)自然數(shù)分成下面6組:

      1;

      2,3;

      4,5,6;

      7,8,9,10;

      11,12,13,14,15,16;

      17,18,19,20,21,22,23,⑥

      因?yàn)閺那?5個(gè)自然數(shù)中任意取出7個(gè)數(shù),所以至少有兩個(gè)數(shù)取自上面第②組到第⑥組中的某同一組,這兩個(gè)數(shù)中大數(shù)就不超過(guò)小數(shù)的1.5倍。

      說(shuō)明:

      (1)本題可以改變敘述如下:在前25個(gè)自然數(shù)中任意取出7個(gè)數(shù),求證其中存在兩個(gè)數(shù),它們相互的比值在內(nèi)。

      顯然,必須找出一種能把前25個(gè)自然數(shù)分成6(7-1=6)個(gè)集合的方法,不過(guò)分類時(shí)有一個(gè)限制條件:同一集合中任兩個(gè)數(shù)的比值在內(nèi),故同一集合中元素的數(shù)值差不得過(guò)大。這樣,我們可以用如上一種特殊的分類法:遞推分類法:

      從1開(kāi)始,顯然1只能單獨(dú)作為1個(gè)集合{1};否則不滿足限制條件。

      能與2同屬于一個(gè)集合的數(shù)只有3,于是{2,3}為一集合。

      數(shù)學(xué)教育網(wǎng)http://004km.cn 數(shù)學(xué)教育網(wǎng)---數(shù)學(xué)試題-數(shù)學(xué)教案-數(shù)學(xué)課件-數(shù)學(xué)論文-競(jìng)賽試題-中高考試題信息http://004km.cn

      如此依次遞推下去,使若干個(gè)連續(xù)的自然數(shù)屬于同一集合,其中最大的數(shù)不超過(guò)最小的數(shù)的倍,就可以得到滿足條件的六個(gè)集合。

      (2)如果我們按照(1)中的遞推方法依次造“抽屜”,則第7個(gè)抽屜為

      {26,27,28,29,30,31,32,33,34,35,36,37,38,39};

      第8個(gè)抽屜為:{40,41,42,?,60};

      第9個(gè)抽屜為:{61,62,63,?,90,91};

      ??

      那么我們可以將例3改造為如下一系列題目:(1)從前16個(gè)自然數(shù)中任取6個(gè)自然數(shù);(2)從前39個(gè)自然數(shù)中任取8個(gè)自然數(shù);(3)從前60個(gè)自然數(shù)中任取9個(gè)自然數(shù);(4)從前91個(gè)自然數(shù)中任取10個(gè)自然數(shù);?

      ]內(nèi)。

      都可以得到同一個(gè)結(jié)論:其中存在2個(gè)數(shù),它們相互的比值在上述第(4)個(gè)命題,就是前蘇聯(lián)基輔第49屆數(shù)學(xué)競(jìng)賽試題。如果我們改變區(qū)間[](p>q)端點(diǎn)的值,則又可以構(gòu)造出一系列的新題目來(lái)。

      4.分析與解答:一個(gè)有著10個(gè)元素的集合,它共有多少個(gè)可能的子集呢?由于在組成一個(gè)子集的時(shí)候,每一個(gè)元素都有被取過(guò)來(lái)或者不被取過(guò)來(lái)兩種可能,因此,10個(gè)元素的集合10就有2=1024個(gè)不同的構(gòu)造子集的方法,也就是,它一共有1024個(gè)不同的子集,包括空集和全集在內(nèi)??占c全集顯然不是考慮的對(duì)象,所以剩下1024-2=1022個(gè)非空真子集。

      再來(lái)看各個(gè)真子集中一切數(shù)字之和。用N來(lái)記這個(gè)和數(shù),很明顯:

      10≤N≤91+92+93+94+95+96+97+98+99=855

      這表明N至多只有855-9=846種不同的情況。由于非空真子集的個(gè)數(shù)是1022,1022>846,所以一定存在兩個(gè)子集A與B,使得A中各數(shù)之和=B中各數(shù)之和。

      若A∩B=φ,則命題得證,若A∩B=C≠φ,即A與B有公共元素,這時(shí)只要剔除A與B中的一切公有元素,得出兩個(gè)不相交的子集A1與B1,很顯然

      A1中各元素之和=B1中各元素之和,因此A1與B1就是符合題目要求的子集。

      說(shuō)明:本例能否推廣為如下命題:

      已給一個(gè)由m個(gè)互不相等的n位十進(jìn)制正整數(shù)組成的集合。求證:這個(gè)集合必有兩個(gè)無(wú)公共元素的子集合,各子集合中各數(shù)之和相等。

      請(qǐng)讀者自己來(lái)研究這個(gè)問(wèn)題。5.分析與解答:由中點(diǎn)坐標(biāo)公式知,坐標(biāo)平面兩點(diǎn)(x1,y1)、(x2,y2)的中點(diǎn)坐標(biāo)是。欲使都是整數(shù),必須而且只須x1與x2,y1與y2的奇偶性相同。坐標(biāo)平面上的任意整點(diǎn)按照橫縱兩個(gè)坐標(biāo)的奇偶性考慮有且只有如下四種:(奇數(shù)、奇數(shù)),(偶數(shù),偶數(shù)),(奇數(shù),偶數(shù)),(偶數(shù),奇數(shù))以此構(gòu)造四個(gè)“抽屜”,則在坐標(biāo)平面上任取五個(gè)整點(diǎn),那么至少有兩個(gè)整點(diǎn),屬于同一個(gè)“抽屜”因此它們連線的中點(diǎn)就必是整點(diǎn)。

      說(shuō)明:我們可以把整點(diǎn)的概念推廣:如果(x1,x2,?xn)是n維(元)有序數(shù)組,且x1,x2,?xn中的每一個(gè)數(shù)都是整數(shù),則稱(x1,x2,?xn)是一個(gè)n維整點(diǎn)(整點(diǎn)又稱格點(diǎn))。如果對(duì)所有的n維整點(diǎn)按每一個(gè)xi的奇偶性來(lái)分類,由于每一個(gè)位置上有奇、偶兩種可能性,因此

      n3共可分為2×2×?×2=2個(gè)類。這是對(duì)n維整點(diǎn)的一種分類方法。當(dāng)n=3時(shí),2=8,此時(shí)可數(shù)學(xué)教育網(wǎng)http://004km.cn 數(shù)學(xué)教育網(wǎng)---數(shù)學(xué)試題-數(shù)學(xué)教案-數(shù)學(xué)課件-數(shù)學(xué)論文-競(jìng)賽試題-中高考試題信息http://004km.cn 以構(gòu)造命題:“任意給定空間中九個(gè)整點(diǎn),求證它們之中必有兩點(diǎn)存在,使連接這兩點(diǎn)的直線段的內(nèi)部含有整點(diǎn)”。這就是1971年的美國(guó)普特南數(shù)學(xué)競(jìng)賽題。在n=2的情形,也可以構(gòu)造如下的命題:“平面上任意給定5個(gè)整點(diǎn)”,對(duì)“它們連線段中點(diǎn)為整點(diǎn)”的4個(gè)命題中,為真命題的是:

      (A)最少可為0個(gè),最多只能是5個(gè)(B)最少可為0個(gè),最多可取10個(gè)

      (C)最少為1個(gè),最多為5個(gè)(D)最少為1個(gè),最多為10個(gè)

      (正確答案(D))6.分析:本題也似乎是茫無(wú)頭緒,無(wú)從下手,其關(guān)鍵何在?仔細(xì)審題,它們的“和”能“被100整除”應(yīng)是做文章的地方。如果把這100個(gè)數(shù)排成一個(gè)數(shù)列,用Sm記其前m項(xiàng)的和,則其可構(gòu)造S1,S2,?S100共100個(gè)”和"數(shù)。討論這些“和數(shù)”被100除所得的余數(shù)。注意到S1,S2,?S100共有100個(gè)數(shù),一個(gè)數(shù)被100除所得的余數(shù)有0,1,2,?99共100種可能性?!疤O果”數(shù)與“抽屜”數(shù)一樣多,如何排除“故障”?

      證明:設(shè)已知的整數(shù)為a1,a2,?a100考察數(shù)列a1,a2,?a100的前n項(xiàng)和構(gòu)成的數(shù)列S1,S2,?S100。

      如果S1,S2,?S100中有某個(gè)數(shù)可被100整除,則命題得證。否則,即S1,S2,?S100均不能被100整除,這樣,它們被100除后余數(shù)必是{1,2,?,99}中的元素。由抽屜原理I知,S1,S2,?S100中必有兩個(gè)數(shù),它們被100除后具有相同的余數(shù)。不妨設(shè)這兩個(gè)數(shù)為Si,Sj(i<j),則100∣(Sj-Si),即100∣。命題得證。

      說(shuō)明:有時(shí)候直接對(duì)所給對(duì)象作某種劃分,是很難構(gòu)造出恰當(dāng)?shù)某閷系?。這時(shí)候,我們需要對(duì)所給對(duì)象先作一些變換,然后對(duì)變換得到的對(duì)象進(jìn)行分類,就可以構(gòu)造出恰當(dāng)?shù)某閷稀1绢}直接對(duì){an}進(jìn)行分類是很難奏效的。但由{an}構(gòu)造出{Sn}后,再對(duì){Sn}進(jìn)行分類就容易得多。

      另外,對(duì){Sn}按模100的剩余類劃分時(shí),只能分成100個(gè)集合,而{Sn}只有100項(xiàng),似乎不能應(yīng)用抽屜原則。但注意到余數(shù)為0的類恰使結(jié)論成立,于是通過(guò)分別情況討論后,就可去掉余數(shù)為0的類,從而轉(zhuǎn)化為100個(gè)數(shù)分配在剩下的99個(gè)類中。這種處理問(wèn)題的方法應(yīng)當(dāng)學(xué)會(huì),它會(huì)助你從“山窮水盡疑無(wú)路”時(shí),走入“柳暗花明又一村”中。

      最后,本例的結(jié)論及證明可以推廣到一般情形(而且有加強(qiáng)的環(huán)節(jié)):

      在任意給定的n個(gè)整數(shù)中,都可以找出若干個(gè)數(shù)來(lái)(可以是一個(gè)數(shù)),它們的和可被n整除,而且,在任意給定的排定順序的n個(gè)整數(shù)中,都可以找出若干個(gè)連續(xù)的項(xiàng)(可以是一項(xiàng)),它們的和可被n整除。

      將以上一般結(jié)論中的n賦以相應(yīng)的年份的值如1999,2000,2001?,就可以編出相應(yīng)年份的試題來(lái)。如果再賦以特殊背景,則可以編出非常有趣的數(shù)學(xué)智力題來(lái),如下題:

      有100只猴子在吃花生,每只猴子至少吃了1?;ㄉ嗾卟幌?。請(qǐng)你證明:一定有若干只猴子(可以是一只),它們所吃的花生的粒數(shù)總和恰好是100的倍數(shù)。

      7.證明:視17個(gè)科學(xué)家為17個(gè)點(diǎn),每?jī)蓚€(gè)點(diǎn)之間連一條線表示這兩個(gè)科學(xué)家在討論同一個(gè)問(wèn)題,若討論第一個(gè)問(wèn)題則在相應(yīng)兩點(diǎn)連紅線,若討論第2個(gè)問(wèn)題則在相應(yīng)兩點(diǎn)連條黃線,若討論第3個(gè)問(wèn)題則在相應(yīng)兩點(diǎn)連條藍(lán)線。三名科學(xué)家研究同一個(gè)問(wèn)題就轉(zhuǎn)化為找到一個(gè)三邊同顏色的三角形。

      考慮科學(xué)家A,他要與另外的16位科學(xué)家每人通信討論一個(gè)問(wèn)題,相應(yīng)于從A出發(fā)引出16條線段,將它們?nèi)境?種顏色,而16=3×5+1,因而必有6=5+1條同色,不妨記為AB1,AB2,AB3,AB4,AB5,AB6同紅色,若Bi(i=1,2,?,6)之間有紅線,則出現(xiàn)紅色三角線,命題已成立;否則B1,B2,B3,B4,B5,B6之間的連線只染有黃藍(lán)兩色。

      考慮從B1引出的5條線,B1B2,B1B3,B1B4,B1B5,B1B6,用兩種顏色染色,因?yàn)?=2×2+1,故必有3=2+1條線段同色,假設(shè)為黃色,并記它們?yōu)锽1B2,B1B3,B1B4。這時(shí)若B2,B3,B4之?dāng)?shù)學(xué)教育網(wǎng)http://004km.cn 數(shù)學(xué)教育網(wǎng)---數(shù)學(xué)試題-數(shù)學(xué)教案-數(shù)學(xué)課件-數(shù)學(xué)論文-競(jìng)賽試題-中高考試題信息http://004km.cn 間有黃線,則有黃色三角形,命題也成立,若B2,B3,B4,之間無(wú)黃線,則△B2,B3,B4,必為藍(lán)色三角形,命題仍然成立。

      說(shuō)明:(1)本題源于一個(gè)古典問(wèn)題--世界上任意6個(gè)人中必有3人互相認(rèn)識(shí),或互相不認(rèn)識(shí)。(美國(guó)普特南數(shù)學(xué)競(jìng)賽題)。

      (2)將互相認(rèn)識(shí)用紅色表示,將互相不認(rèn)識(shí)用藍(lán)色表示,(1)將化為一個(gè)染色問(wèn)題,成為一個(gè)圖論問(wèn)題:空間六個(gè)點(diǎn),任何三點(diǎn)不共線,四點(diǎn)不共面,每?jī)牲c(diǎn)之間連線都涂上紅色或藍(lán)色。求證:存在三點(diǎn),它們所成的三角形三邊同色。

      (3)問(wèn)題(2)可以往兩個(gè)方向推廣:其一是顏色的種數(shù),其二是點(diǎn)數(shù)。

      本例便是方向一的進(jìn)展,其證明已知上述。如果繼續(xù)沿此方向前進(jìn),可有下題:

      在66個(gè)科學(xué)家中,每個(gè)科學(xué)家都和其他科學(xué)家通信,在他們的通信中僅僅討論四個(gè)題目,而任何兩個(gè)科學(xué)家之間僅僅討論一個(gè)題目。證明至少有三個(gè)科學(xué)家,他們互相之間討論同一個(gè)題目。

      (4)回顧上面證明過(guò)程,對(duì)于17點(diǎn)染3色問(wèn)題可歸結(jié)為6點(diǎn)染2色問(wèn)題,又可歸結(jié)為3點(diǎn)染一色問(wèn)題。反過(guò)來(lái),我們可以繼續(xù)推廣。從以上(3,1)→(6,2)→(17,3)的過(guò)程,易發(fā)現(xiàn)

      6=(3-1)×2+2,17=(6-1)×3+2,66=(17-1)×4+2,同理可得(66-1)×5+2=327,(327-1)×6+2=1958?記為r1=3,r2=6,r3=17,r4=66,r5=327,r6=1958,?

      我們可以得到遞推關(guān)系式:rn=n(rn-1-1)+2,n=2,3,4?這樣就可以構(gòu)造出327點(diǎn)染5色問(wèn)題,1958點(diǎn)染6色問(wèn)題,都必出現(xiàn)一個(gè)同色三角形。

      數(shù)學(xué)教育網(wǎng)http://004km.cn

      第三篇:抽屜原理

      抽屜原理

      把5個(gè)蘋果放到4個(gè)抽屜中,必然有一個(gè)抽屜中至少有2個(gè)蘋果,這是抽屜原理的通俗解釋。一般地,我們將它表述為:

      第一抽屜原理:把(mn+1)個(gè)物體放入n個(gè)抽屜,其中必有一個(gè)抽屜中至少有(m+1)個(gè)物體。

      使用抽屜原理解題,關(guān)鍵是構(gòu)造抽屜。一般說(shuō)來(lái),數(shù)的奇偶性、剩余類、數(shù)的分組、染色、線段與平面圖形的劃分等,都可作為構(gòu)造抽屜的依據(jù)。

      例1 從1,2,3,…,100這100個(gè)數(shù)中任意挑出51個(gè)數(shù)來(lái),證明在這51個(gè)數(shù)中,一定:

      (1)有2個(gè)數(shù)互質(zhì);

      (2)有2個(gè)數(shù)的差為50;

      (3)有8個(gè)數(shù),它們的最大公約數(shù)大于1。

      證明:(1)將100個(gè)數(shù)分成50組:

      {1,2},{3,4},…,{99,100}。

      在選出的51個(gè)數(shù)中,必有2個(gè)數(shù)屬于同一組,這一組中的2個(gè)數(shù)是兩個(gè)相鄰的整數(shù),它們一定是互質(zhì)的。

      (2)將100個(gè)數(shù)分成50組:

      {1,51},{2,52},…,{50,100}。

      在選出的51個(gè)數(shù)中,必有2個(gè)數(shù)屬于同一組,這一組的2個(gè)數(shù)的差為50。

      (3)將100個(gè)數(shù)分成5組(一個(gè)數(shù)可以在不同的組內(nèi)):

      第一組:2的倍數(shù),即{2,4,…,100};

      第二組:3的倍數(shù),即{3,6,…,99};

      第三組:5的倍數(shù),即{5,10,…,100};

      第四組:7的倍數(shù),即{7,14,…,98};

      第五組:1和大于7的質(zhì)數(shù)即{1,11,13,…,97}。

      第五組中有22個(gè)數(shù),故選出的51個(gè)數(shù)至少有29個(gè)數(shù)在第一組到第四組中,根據(jù)抽屜原理,總有8個(gè)數(shù)在第一組到第四組的某一組中,這8個(gè)數(shù)的最大公約數(shù)大于1。

      例2 求證:可以找到一個(gè)各位數(shù)字都是4的自然數(shù),它是1996的倍數(shù)。

      證明:因1996÷4=499,故只需證明可以找到一個(gè)各位數(shù)字都是1的自然數(shù),它是499的倍數(shù)就可以了。

      得到500個(gè)余數(shù)r1,r2,…,r500。由于余數(shù)只能取0,1,2,…,499這499個(gè)值,所以根據(jù)抽屜原理,必有2個(gè)余數(shù)是相同的,這2個(gè)數(shù)的差就是499的倍數(shù),這個(gè)差的前若干位是1,后若干位是0:11…100…0,又499和10是互質(zhì)的,故它的前若干位由1組成的自然數(shù)是499的倍數(shù),將它乘以4,就得到一個(gè)各位數(shù)字都是4的自然數(shù),它是1996的倍數(shù)。

      例3 在一個(gè)禮堂中有99名學(xué)生,如果他們中的每個(gè)人都與其中的66人相識(shí),那么可能出現(xiàn)這種情況:他們中的任何4人中都一定有2人不相識(shí)(假定相識(shí)是互相的)。

      分析:注意到題中的說(shuō)法“可能出現(xiàn)……”,說(shuō)明題的結(jié)論并非是條件的必然結(jié)果,而僅僅是一種可能性,因此只需要設(shè)法構(gòu)造出一種情況使之出現(xiàn)題目中所說(shuō)的結(jié)論即可。

      解:將禮堂中的99人記為a1,a2,…,a99,將99人分為3組:

      (a1,a2,…,a33),(a34,a35,…,a66),(a67,a68,…,a99),將3組學(xué)生作為3個(gè)抽屜,分別記為A,B,C,并約定A中的學(xué)生所認(rèn)識(shí)的66人只在B,C中,同時(shí),B,C中的學(xué)生所認(rèn)識(shí)的66人也只在A,C和A,B中。如果出現(xiàn)這種局面,那么題目中所說(shuō)情況

      / 7

      就可能出現(xiàn)。

      因?yàn)槎Y堂中任意4人可看做4個(gè)蘋果,放入A,B,C三個(gè)抽屜中,必有2人在同一抽屜,即必有2人來(lái)自同一組,那么他們認(rèn)識(shí)的人只在另2組中,因此他們兩人不相識(shí)。

      例4 如右圖,分別標(biāo)有數(shù)字1,2,…,8的滾珠兩組,放在內(nèi)外兩個(gè)圓環(huán)上,開(kāi)始時(shí)相對(duì)的滾珠所標(biāo)數(shù)字都不相同。當(dāng)兩個(gè)圓環(huán)按不同方向轉(zhuǎn)動(dòng)時(shí),必有某一時(shí)刻,內(nèi)外兩環(huán)中至少有兩對(duì)數(shù)字相同的滾珠相對(duì)。

      分析:此題中沒(méi)有直接提供我們用以構(gòu)造抽屜和蘋果的數(shù)量關(guān)系,需要轉(zhuǎn)換一下看問(wèn)題的角度。

      解:內(nèi)外兩環(huán)對(duì)轉(zhuǎn)可看成一環(huán)靜止,只有一個(gè)環(huán)轉(zhuǎn)動(dòng)。一個(gè)環(huán)轉(zhuǎn)動(dòng)一周后,每個(gè)滾珠都會(huì)有一次與標(biāo)有相同數(shù)字的滾珠相對(duì)的局面出現(xiàn),那么這種局面共要出現(xiàn)8次。將這8次局面看做蘋果,再需構(gòu)造出少于8個(gè)抽屜。

      注意到一環(huán)每轉(zhuǎn)動(dòng)45°角就有一次滾珠相對(duì)的局面出現(xiàn),轉(zhuǎn)動(dòng)一周共有8次滾珠相對(duì)的局面,而最初的8對(duì)滾珠所標(biāo)數(shù)字都不相同,所以數(shù)字相同的滾珠相對(duì)的情況只出現(xiàn)在以后的7次轉(zhuǎn)動(dòng)中,將7次轉(zhuǎn)動(dòng)看做7個(gè)抽屜,8次相同數(shù)字滾珠相對(duì)的局面看做8個(gè)蘋果,則至少有2次數(shù)字相對(duì)的局面出現(xiàn)在同一次轉(zhuǎn)動(dòng)中,即必有某一時(shí)刻,內(nèi)外兩環(huán)中至少有兩對(duì)數(shù)字相同的滾珠相對(duì)。

      例5 有一個(gè)生產(chǎn)天平上用的鐵盤的車間,由于工藝上的原因,只能控制盤的重量在指定的20克到20.1克之間?,F(xiàn)在需要重量相差不超過(guò)0.005克的兩只鐵盤來(lái)裝配一架天平,問(wèn):最少要生產(chǎn)多少個(gè)盤子,才能保證一定能從中挑出符合要求的兩只盤子?

      解:把20~20.1克之間的盤子依重量分成20組:

      第1組:從20.000克到20.005克;

      第2組:從20.005克到20.010克;

      ……

      第20組:從20.095克到20.100克。

      這樣,只要有21個(gè)盤子,就一定可以從中找到兩個(gè)盤子屬于同一組,這2個(gè)盤子就符合要求。

      例6 在圓周上放著100個(gè)籌碼,其中有41個(gè)紅的和59個(gè)藍(lán)的。那么總可以找到兩個(gè)紅籌碼,在它們之間剛好放有19個(gè)籌碼,為什么?

      分析:此題需要研究“紅籌碼”的放置情況,因而涉及到“蘋果”的具體放置方法,由此我們可以在構(gòu)造抽屜時(shí),使每個(gè)抽屜中的相鄰“蘋果”之間有19個(gè)籌碼。

      解:依順時(shí)針?lè)较驅(qū)⒒I碼依次編上號(hào)碼:1,2,…,100。然后依照以下規(guī)律將100個(gè)籌碼分為20組:

      (1,21,41,61,81);

      (2,22,42,62,82);

      ……

      (20,40,60,80,100)。

      將41個(gè)紅籌碼看做蘋果,放入以上20個(gè)抽屜中,因?yàn)?1=2×20+1,所以至少有一個(gè)抽屜中有2+1=3(個(gè))蘋果,也就是說(shuō)必有一組5個(gè)籌碼中有3個(gè)紅色籌碼,而每組的5個(gè)籌碼在圓周上可看做兩兩等距,且每2個(gè)相鄰籌碼之間都有19個(gè)籌碼,那么3個(gè)紅色籌碼中必有2個(gè)相鄰(這將在下一個(gè)內(nèi)容——第二抽屜原理中說(shuō)明),即有2個(gè)紅色籌碼之間有19個(gè)籌碼。

      下面我們來(lái)考慮另外一種情況:若把5個(gè)蘋果放到6個(gè)抽屜中,則必然有一個(gè)抽屜空著。這種情況一般可以表述為:

      / 7

      第二抽屜原理:把(mn-1)個(gè)物體放入n個(gè)抽屜,其中必有一個(gè)抽屜中至多有(m-1)個(gè)物體。

      例7 在例6中留有一個(gè)疑問(wèn),現(xiàn)改述如下:在圓周上放有5個(gè)籌碼,其中有3個(gè)是同色的,那么這3個(gè)同色的籌碼必有2個(gè)相鄰。

      分析:將這個(gè)問(wèn)題加以轉(zhuǎn)化:

      如右圖,將同色的3個(gè)籌碼A,B,C置于圓周上,看是否能用另外2個(gè)籌碼將其隔開(kāi)。

      解:如圖,將同色的3個(gè)籌碼放置在圓周上,將每2個(gè)籌碼之間的間隔看做抽屜,將其余2個(gè)籌碼看做蘋果,將2個(gè)蘋果放入3個(gè)抽屜中,則必有1個(gè)抽屜中沒(méi)有蘋果,即有2個(gè)同色籌碼之間沒(méi)有其它籌碼,那么這2個(gè)籌碼必相鄰。

      例8 甲、乙二人為一個(gè)正方形的12條棱涂紅和綠2種顏色。首先,甲任選3條棱并把它們涂上紅色;然后,乙任選另外3條棱并涂上綠色;接著甲將剩下的6條棱都涂上紅色。問(wèn):甲是否一定能將某一面的4條棱全部涂上紅色?

      解:不能。

      如右圖將12條棱分成四組:

      第一組:{A1B1,B2B3,A3A4},第二組:{A2B2,B3B4,A4A1},第三組:{A3B3,B4B1,A1A2},第四組:{A4B4,B1B2,A2A3}。

      無(wú)論甲第一次將哪3條棱涂紅,由抽屜原理知四組中必有一組的3條棱全未涂紅,而乙只要將這組中的3條棱涂綠,甲就無(wú)法將某一面的4條棱全部涂紅了。

      下面我們討論抽屜原理的一個(gè)變形——平均值原理。

      我們知道n個(gè)數(shù)a1,a2,…,an的和與n的商是a1,a2,…,an這n個(gè)數(shù)的平均值。平均值原理:如果n個(gè)數(shù)的平均值為a,那么其中至少有一個(gè)數(shù)不大于a,也至少有一個(gè)不小于a。

      例9 圓周上有2000個(gè)點(diǎn),在其上任意地標(biāo)上0,1,2,…,1999(每一點(diǎn)只標(biāo)一個(gè)數(shù),不同的點(diǎn)標(biāo)上不同的數(shù))。求證:必然存在一點(diǎn),與它緊相鄰的兩個(gè)點(diǎn)和這點(diǎn)上所標(biāo)的三個(gè)數(shù)之和不小于2999。

      解:設(shè)圓周上各點(diǎn)的值依次是a1,a2,…,a2000,則其和

      a1+a2+…+a2000=0+1+2+…+1999=1999000。

      下面考慮一切相鄰三數(shù)組之和:

      (a1+a2+a3)+(a2+a3+a4)+…+(a1998+a1999+a2000)+(a1999+a2000+a1)+(a2000+a1+a2)

      =3(a1+a2+…+a2000)

      =3×1999000。

      這2000組和中必至少有一組和大于或等于

      但因每一個(gè)和都是整數(shù),故有一組相鄰三數(shù)之和不小于2999,亦即存在一個(gè)點(diǎn),與它緊相鄰的兩點(diǎn)和這點(diǎn)上所標(biāo)的三數(shù)之和不小于2999。

      例10 一家旅館有90個(gè)房間,住有100名旅客,如果每次都恰有90名旅客同時(shí)回來(lái),那么至少要準(zhǔn)備多少把鑰匙分給這100名旅客,才能使得每次客人回來(lái)時(shí),每個(gè)客人都能用自己分到的鑰匙打開(kāi)一個(gè)房門住進(jìn)去,并且避免發(fā)生兩人同時(shí)住進(jìn)一個(gè)房間?

      解:如果鑰匙數(shù)小于990,那么90個(gè)房間中至少有一個(gè)房間的鑰匙數(shù)少房間就打不開(kāi),因此90個(gè)人就無(wú)法按題述的條件住下來(lái)。

      / 7

      另一方面,990把鑰匙已經(jīng)足夠了,這只要將90把不同的鑰匙分給90個(gè)人,而其余的10名旅客,每人各90把鑰匙(每個(gè)房間一把),那么任何90名旅客返回時(shí),都能按要求住進(jìn)房間。

      最后,我們要指出,解決某些較復(fù)雜的問(wèn)題時(shí),往往要多次反復(fù)地運(yùn)用抽屜原理,請(qǐng)看下面兩道例題。

      例11 設(shè)有4×28的方格棋盤,將每一格涂上紅、藍(lán)、黃三種顏色中的任意一種。試證明:無(wú)論怎樣涂法,至少存在一個(gè)四角同色的長(zhǎng)方形。

      證明:我們先考察第一行中28個(gè)小方格涂色情況,用三種顏色涂28個(gè)小方格,由抽屜原理知,至少有10個(gè)小方格是同色的,不妨設(shè)其為紅色,還可設(shè)這10個(gè)小方格就在第一行的前10列。

      下面考察第二、三、四行中前面10個(gè)小方格可能出現(xiàn)的涂色情況。這有兩種可能:

      (1)這三行中,至少有一行,其前面10個(gè)小方格中,至少有2個(gè)小方格是涂有紅色的,那么這2個(gè)小方格和第一行中與其對(duì)應(yīng)的2個(gè)小方格,便是一個(gè)長(zhǎng)方形的四個(gè)角,這個(gè)長(zhǎng)方形就是一個(gè)四角同是紅色的長(zhǎng)方形。

      (2)這三行中每一行前面的10格中,都至多有一個(gè)紅色的小方格,不妨設(shè)它們分別出現(xiàn)在前三列中,那么其余的3×7個(gè)小方格便只能涂上黃、藍(lán)兩種顏色了。

      我們先考慮這個(gè)3×7的長(zhǎng)方形的第一行。根據(jù)抽屜原理,至少有4個(gè)小方格是涂上同一顏色的,不妨設(shè)其為藍(lán)色,且在第1至4列。

      再考慮第二行的前四列,這時(shí)也有兩種可能:

      (1)這4格中,至少有2格被涂上藍(lán)色,那么這2個(gè)涂上藍(lán)色的小方格和第一行中與其對(duì)應(yīng)的2個(gè)小方格便是一個(gè)長(zhǎng)方形的四個(gè)角,這個(gè)長(zhǎng)方形四角同是藍(lán)色。

      (2)這4格中,至多有1格被涂上藍(lán)色,那么,至少有3格被涂上黃色。不妨設(shè)這3個(gè)小方格就在第二行的前面3格。

      下面繼續(xù)考慮第三行前面3格的情況。用藍(lán)、黃兩色涂3個(gè)小方格,由抽屜原理知,至少有2個(gè)方格是同色的,無(wú)論是同為藍(lán)色或是同為黃色,都可以得到一個(gè)四角同色的長(zhǎng)方形。

      總之,對(duì)于各種可能的情況,都能找到一個(gè)四角同色的長(zhǎng)方形。

      例12 試卷上共有4道選擇題,每題有3個(gè)可供選擇的答案。一群學(xué)生參加考試,結(jié)果是對(duì)于其中任何3人,都有一道題目的答案互不相同。問(wèn):參加考試的學(xué)生最多有多少人?

      解:設(shè)每題的三個(gè)選擇分別為a,b,c。

      (1)若參加考試的學(xué)生有10人,則由第二抽屜原理知,第一題答案分別為a,b,c的三組學(xué)生中,必有一組不超過(guò)3人。去掉這組學(xué)生,在余下的學(xué)生中,定有7人對(duì)第一題的答案只有兩種。對(duì)于這7人關(guān)于第二題應(yīng)用第二抽屜原理知,其中必可選出5人,他們關(guān)于第二題的答案只有兩種可能。對(duì)于這5人關(guān)于第三題應(yīng)用第二抽屜原理知,可以選出4人,他們關(guān)于第三題的答案只有兩種可能。最后,對(duì)于這4人關(guān)于第四題應(yīng)用第二抽屜原理知,必可選出3人,他們關(guān)于第四題的答案也只有兩種。于是,對(duì)于這3人來(lái)說(shuō),沒(méi)有一道題目的答案是互不相同的,這不符合題目的要求??梢?jiàn),所求的最多人數(shù)不超過(guò)9人。

      另一方面,若9個(gè)人的答案如下表所示,則每3人都至少有一個(gè)問(wèn)題的答案互不相同。

      所以,所求的最多人數(shù)為9人。練習(xí)13

      1.六(1)班有49名學(xué)生。數(shù)學(xué)王老師了解到在期中考試中該班英文成績(jī)除3人外均在86分以上后就說(shuō):“我可以斷定,本班同學(xué)至少有4人成績(jī)相同。”請(qǐng)問(wèn)王老師說(shuō)得對(duì)嗎?為什么?

      2.現(xiàn)有64只乒乓球,18個(gè)乒乓球盒,每個(gè)盒子里最多可以放6只乒乓球,至少有幾個(gè)

      / 7

      乒乓球盒子里的乒乓球數(shù)目相同?

      3.某校初二年級(jí)學(xué)生身高的厘米數(shù)都為整數(shù),且都不大于160厘米,不小于150厘米。問(wèn):在至少多少個(gè)初二學(xué)生中一定能有4個(gè)人身高相同?

      4.從1,2,…,100這100個(gè)數(shù)中任意選出51個(gè)數(shù),證明在這51個(gè)數(shù)中,一定:

      (1)有兩個(gè)數(shù)的和為101;

      (2)有一個(gè)數(shù)是另一個(gè)數(shù)的倍數(shù);

      (3)有一個(gè)數(shù)或若干個(gè)數(shù)的和是51的倍數(shù)。

      5.在3×7的方格表中,有11個(gè)白格,證明

      (1)若僅含一個(gè)白格的列只有3列,則在其余的4列中每列都恰有兩個(gè)白格;

      (2)只有一個(gè)白格的列只有3列。

      6.某個(gè)委員會(huì)開(kāi)了40次會(huì)議,每次會(huì)議有10人出席。已知任何兩個(gè)委員不會(huì)同時(shí)開(kāi)兩次或更多的會(huì)議。問(wèn):這個(gè)委員會(huì)的人數(shù)能夠多于60人嗎?為什么?

      7.一個(gè)車間有一條生產(chǎn)流水線,由5臺(tái)機(jī)器組成,只有每臺(tái)機(jī)器都開(kāi)動(dòng)時(shí),這條流水線才能工作??偣灿?個(gè)工人在這條流水線上工作。在每一個(gè)工作日內(nèi),這些工人中只有5名到場(chǎng)。為了保證生產(chǎn),要對(duì)這8名工人進(jìn)行培訓(xùn),每人學(xué)一種機(jī)器的操作方法稱為一輪。問(wèn):最少要進(jìn)行多少輪培訓(xùn),才能使任意5個(gè)工人上班而流水線總能工作?

      8.有9名數(shù)學(xué)家,每人至多能講3種語(yǔ)言,每3人中至少有2人能通話。求證:在這9名中至少有3名用同一種語(yǔ)言通話。

      練習(xí)13

      1.對(duì)。解:因?yàn)?9-3=3×(100-86+1)+1,即46=3×15+1,也就是說(shuō),把從100分至86分的15個(gè)分?jǐn)?shù)當(dāng)做抽屜,49-3=46(人)的成績(jī)當(dāng)做物體,根據(jù)第二抽屜原理,至少有4人的分?jǐn)?shù)在同一抽屜中,即成績(jī)相同。

      2.4個(gè)。解:18個(gè)乒乓球盒,每個(gè)盒子里至多可以放6只乒乓球。為使相同乒乓球個(gè)數(shù)的盒子盡可能少,可以這樣放:先把盒子分成6份,每份有18÷6=3(只),分別在每一份的3個(gè)盒子中放入1只、2只、3只、4只、5只、6只乒乓球,即3個(gè)盒子中放了1只乒乓球,3個(gè)盒中放了2只乒乓球……3個(gè)盒子中放了6只乒乓球。這樣,18個(gè)盒子中共放了乒乓球

      (1+2+3+4+5+6)×3=63(只)。

      把以上6種不同的放法當(dāng)做抽屜,這樣剩下64-63=1(只)乒乓球不管放入哪一個(gè)抽屜里的任何一個(gè)盒子里(除已放滿6只乒乓球的抽屜外),都將使該盒子中的乒乓球數(shù)增加1只,這時(shí)與比該抽屜每盒乒乓數(shù)多1的抽屜中的3個(gè)盒子里的乒乓球數(shù)相等。例如剩下的1只乒乓球放進(jìn)原來(lái)有2只乒乓球的一個(gè)盒子里,該盒乒乓球就成了3只,再加上原來(lái)裝有3只乒乓球的3個(gè)盒子,這樣就有4個(gè)盒子里裝有3個(gè)乒乓球。所以至少有4個(gè)乒乓球盒里的乒乓球數(shù)目相同。

      3.34個(gè)。

      解:把初二學(xué)生的身高厘米數(shù)作為抽屜,共有抽屜

      160-150+1=11(個(gè))。

      根據(jù)抽屜原理,要保證有4個(gè)人身高相同,至少要有初二學(xué)生

      3×11+1=34(個(gè))。

      4.證:(1)將100個(gè)數(shù)分成50組:

      / 7

      {1,100},{2,99},…,{50,51}。

      在選出的51個(gè)數(shù)中,必有兩數(shù)屬于同一組,這一組的兩數(shù)之和為101。

      (2)將100個(gè)數(shù)分成10組:

      {1,2,4,8,16,32,64}, {3,6,12,24,48,96},{5,10,20,40,80}, {7,14,28,56},{9,18,36,72}, {11,22,44,88},{13,26,52}, {15,30,60},…, {49,98}, {其余數(shù)}。

      其中第10組中有41個(gè)數(shù)。在選出的51個(gè)數(shù)中,第10組的41個(gè)數(shù)全部選中,還有10個(gè)數(shù)從前9組中選,必有兩數(shù)屬于同一組,這一組中的任意兩個(gè)數(shù),一個(gè)是另一個(gè)的倍數(shù)。

      (3)將選出的51個(gè)數(shù)排成一列:

      a1,a2,a3,…,a51。

      考慮下面的51個(gè)和:

      a1,a1+a2,a1+a2+a3,…,a1+a2+a3+…+a51。

      若這51個(gè)和中有一個(gè)是51的倍數(shù),則結(jié)論顯然成立;若這51個(gè)和中沒(méi)有一個(gè)是51的倍數(shù),則將它們除以51,余數(shù)只能是1,2,…,50中的一個(gè),故必然有兩個(gè)的余數(shù)是相同的,這兩個(gè)和的差是51的倍數(shù),而這個(gè)差顯然是這51個(gè)數(shù)(a1,a2,a3,…,a51)中的一個(gè)數(shù)或若干個(gè)數(shù)的和。

      5.證:(1)在其余4列中如有一列含有3個(gè)白格,則剩下的5個(gè)白格要放入3列中,將3列表格看做3個(gè)抽屜,5個(gè)白格看做5個(gè)蘋果,根據(jù)第二抽屜原理,5(=2×3-1)個(gè)蘋果放入3個(gè)抽屜,則必有1個(gè)抽屜至多只有(2-1)個(gè)蘋果,即必有1列只含1個(gè)白格,也就是說(shuō)除了原來(lái)3列只含一個(gè)白格外還有1列含1個(gè)白格,這與題設(shè)只有1個(gè)白格的列只有3列矛盾。所以不會(huì)有1列有3個(gè)白格,當(dāng)然也不能再有1列只有1個(gè)白格。推知其余4列每列恰好有2個(gè)白格。

      (2)假設(shè)只含1個(gè)白格的列有2列,那么剩下的9個(gè)白格要放入5列中,而9=2×5-1,由第二抽屜原理知,必有1列至多只有2-1=1(個(gè))白格,與假設(shè)只有2列每列只1個(gè)白格矛盾。所以只有1個(gè)白格的列至少有3列。

      6.能。

      解:開(kāi)會(huì)的“人次”有 40×10=400(人次)。設(shè)委員人數(shù)為N,將“人次”看做蘋果,以委員人數(shù)作為抽屜。

      若N≤60,則由抽屜原理知至少有一個(gè)委員開(kāi)了7次(或更多次)會(huì)。但由已知條件知沒(méi)有一個(gè)人與這位委員同開(kāi)過(guò)兩次(或更多次)的會(huì),故他所參加的每一次會(huì)的另外9個(gè)人是不相同的,從而至少有7×9=63(個(gè))委員,這與N≤60的假定矛盾。所以,N應(yīng)大于60。

      7.20輪。

      解:如果培訓(xùn)的總輪數(shù)少于20,那么在每一臺(tái)機(jī)器上可進(jìn)行工作的工人果這3個(gè)工人某一天都沒(méi)有到車間來(lái),那么這臺(tái)機(jī)器就不能開(kāi)動(dòng),整個(gè)流水線就不能工作。故培訓(xùn)的總輪數(shù)不能少于20。

      另一方面,只要進(jìn)行20輪培訓(xùn)就夠了。對(duì)3名工人進(jìn)行全能性培訓(xùn),訓(xùn)練他們會(huì)開(kāi)每一臺(tái)機(jī)器;而對(duì)其余5名工人,每人只培訓(xùn)一輪,讓他們每人能開(kāi)動(dòng)一臺(tái)機(jī)器。這個(gè)方案實(shí)施后,不論哪5名工人上班,流水線總能工作。

      8.證:以平面上9個(gè)點(diǎn)A1,A2,…,A9表示9個(gè)數(shù)學(xué)家,如果兩人能通話,就把表示他們的兩點(diǎn)聯(lián)線,并涂上一種顏色(不同的語(yǔ)言涂上不同顏色)。此時(shí)有兩種情況:

      (1)9點(diǎn)中有任意2點(diǎn)都有聯(lián)線,并涂了相應(yīng)的顏色。于是從某一點(diǎn)A1出發(fā),分別與

      / 7

      A2,A3,…,A9聯(lián)線,又據(jù)題意,每人至多能講3種語(yǔ)言,因此A1A2,A1A3,…,A1A9中至多只能涂3種不同的顏色,由抽屜原理知,這8條線段中至少有2條同色的線段。不妨設(shè)A1A2與A1A3是同色線段,因此A1,A2,A3這3點(diǎn)表示的3名數(shù)學(xué)家可用同一種語(yǔ)言通話。

      (2)9點(diǎn)中至少有2點(diǎn)不聯(lián)線,不妨設(shè)是A1與A2不聯(lián)線。由于每3人中至少有兩人能通話,因此從A1與A2出發(fā)至少有7條聯(lián)線。再由抽屜原理知,其中必有4條聯(lián)線從A1或A2 出發(fā)。不妨設(shè)從A1出發(fā),又因A1至多能講3種語(yǔ)言,所以這4條聯(lián)線中,至少有2條聯(lián)線是同色的。若A1A3與A1A4同色,則A1,A3,A4這3點(diǎn)表示的3名數(shù)學(xué)家可用同一種語(yǔ)言通話。

      / 7

      第四篇:抽屜原理

      《抽屜原理》教學(xué)設(shè)計(jì)

      教材分析:現(xiàn)行小學(xué)教材人教版在十一冊(cè)編入這一原理,旨在于讓學(xué)生初步了解“抽屜原理”(也就是初步接觸第一原理),會(huì)用“抽屜原理”解決實(shí)際有關(guān)“存在”問(wèn)題;通過(guò)猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),讓孩子建立數(shù)學(xué)模型,發(fā)現(xiàn)規(guī)律;使孩子經(jīng)歷從具體到抽象的探究過(guò)程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力;通過(guò)“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問(wèn)題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。

      學(xué)情分析:使孩子經(jīng)歷從具體到抽象的探究過(guò)程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力;通過(guò)“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問(wèn)題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。教學(xué)目標(biāo):

      1、經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。

      2、通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

      3、通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

      教學(xué)重點(diǎn):經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”。

      教學(xué)難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。

      教學(xué)過(guò)程

      一、游戲引入

      3個(gè)人坐兩個(gè)座位,3人都要坐下,一定有一個(gè)座位上至少坐了2個(gè)人。

      這其中蘊(yùn)含了有趣的數(shù)學(xué)原理,這節(jié)課我們一起學(xué)習(xí)研究。

      二、新知探究

      1、把4枝鉛筆放進(jìn)3個(gè)文具盒里,不管怎么放,總有一個(gè)文具盒里至少放進(jìn)()枝鉛筆先猜一猜,再動(dòng)手放一放,看看有哪些不同方法。用自己的方法記錄(4,0,0)(3,1,0)(2,2,0)(2,1,1)你有什么發(fā)現(xiàn)?

      不管怎么放總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆??傆惺鞘裁匆馑迹恐辽偈鞘裁匆馑?/p>

      2、思考

      有沒(méi)有一種方法不用擺放就可以知道至少數(shù)是多少呢?

      1、3人坐2個(gè)位子,總有一個(gè)座位上至少坐了2個(gè)人2、4枝鉛筆放進(jìn)3個(gè)文具盒中,總有一個(gè)文具盒中至少放了2枝鉛筆5枝鉛筆放進(jìn)4個(gè)文具盒中,6枝鉛筆放進(jìn)5個(gè)文具盒中。99支鉛筆放進(jìn)98個(gè)文具盒中。是否都有一個(gè)文具盒中

      至少放進(jìn)2枝鉛筆呢? 這是為什么?可以用算式表達(dá)嗎?

      4、如果是5枝鉛筆放到3個(gè)文具盒里,總有一個(gè)文具盒至少放進(jìn)幾枝鉛筆?把7枝筆放進(jìn)2個(gè)文具盒里呢? 8枝筆放進(jìn)2個(gè)文具盒呢? 9枝筆放進(jìn)3個(gè)文具盒呢?至少數(shù)=上+余數(shù)嗎?

      三、小試牛刀 1、7只鴿子飛回5個(gè)鴿舍,至少有幾只鴿子要飛進(jìn)同一個(gè)鴿舍里?

      2、從撲克牌中取出兩張王牌,在剩下的52張中任意抽出5張,至少有幾張是同花色的?

      四、數(shù)學(xué)小知識(shí)

      數(shù)學(xué)小知識(shí):抽屜原理的由來(lái)最先發(fā)現(xiàn)這些規(guī)律的人是誰(shuí)呢?最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄里克雷運(yùn)用于解決數(shù)學(xué)問(wèn)題的,后人們?yōu)榱思o(jì)念他從這么平凡的事情中發(fā)現(xiàn)的規(guī)律,就把這個(gè)規(guī)律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鴿巢原理”,還把它叫做

      “抽屜原理”。

      五、智慧城堡

      1、把13只小兔子關(guān)在5個(gè)籠子里,至少有多少只兔子要關(guān)在同一個(gè)籠子里?

      2、咱們班共59人,至少有幾人是同一屬相?

      3、張叔叔參加飛鏢比賽,投了5鏢,鏢鏢都中,成績(jī)是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?

      4、六年級(jí)四個(gè)班的學(xué)生去春游,自由活時(shí)有6個(gè)同學(xué)在一起,可以肯定。為什么?

      六、小結(jié)

      這節(jié)課你有什么收獲?

      七、作業(yè):課后練習(xí)

      第五篇:抽屜原理

      抽屜原理

      【知識(shí)要點(diǎn)】

      抽屜原理又稱鴿巢原理,它是組合數(shù)學(xué)的一個(gè)基本原理,最先是由德國(guó)數(shù)學(xué)家狹利克雷明確地提出來(lái)的,因此,也稱為狹利克雷原理。

      把3個(gè)蘋果放進(jìn)2個(gè)抽屜里,一定有一個(gè)抽屜里放了2個(gè)或2個(gè)以上的蘋果。這個(gè)人人皆知的常識(shí)就是抽屜原理在日常生活中的體現(xiàn)。用它可以解決一些相當(dāng)復(fù)雜甚至無(wú)從下手的問(wèn)題。

      原理1:把n+1個(gè)元素分成n類,不管怎么分,則一定有一類中有2個(gè)或2個(gè)以上的元素。

      原理2:把m個(gè)元素任意放入n(n<m)個(gè)集合,則一定有一個(gè)集合呈至少要有k個(gè)元素。

      其中 k= 商(當(dāng)n能整除m時(shí))

      商+1(當(dāng)n不能整除m時(shí))

      原理3:把無(wú)窮多個(gè)元素放入有限個(gè)集合里,則一定有一個(gè)集合里含有無(wú)窮多個(gè)元素?!窘忸}步驟】

      第一步:分析題意。分清什么是“東西”,什么是“抽屜”,也就是什么作“東西”,什么可作“抽屜”。

      第二步:制造抽屜。這個(gè)是關(guān)鍵的一步,這一步就是如何設(shè)計(jì)抽屜。根據(jù)題目條件和結(jié)論,結(jié)合有關(guān)的數(shù)學(xué)知識(shí),抓住最基本的數(shù)量關(guān)系,設(shè)計(jì)和確定解決問(wèn)題所需的抽屜及其個(gè)數(shù),為使用抽屜鋪平道路。

      第三步:運(yùn)用抽屜原理。觀察題設(shè)條件,結(jié)合第二步,恰當(dāng)應(yīng)用各個(gè)原則或綜合運(yùn)用幾個(gè)原則,以求問(wèn)題之解決。【例題講解】

      1、教室里有5名學(xué)生正在做作業(yè),今天只有數(shù)學(xué)、英語(yǔ)、語(yǔ)文、地理四科作業(yè)

      求證:這5名學(xué)生中,至少有兩個(gè)人在做同一科作業(yè)。證明:將5名學(xué)生看作5個(gè)蘋果 將數(shù)學(xué)、英語(yǔ)、語(yǔ)文、地理作業(yè)各看成一個(gè)抽屜,共4個(gè)抽屜 由抽屜原理1,一定存在一個(gè)抽屜,在這個(gè)抽屜里至少有2個(gè)蘋果。即至少有兩名學(xué)生在做同一科的作業(yè)。

      2、木箱里裝有紅色球3個(gè)、黃色球5個(gè)、藍(lán)色球7個(gè),若蒙眼去摸,為保證取出的球中有兩個(gè)球的顏色相同,則最少要取出多少個(gè)球? 解:把3種顏色看作3個(gè)抽屜

      若要符合題意,則小球的數(shù)目必須大于3 大于3的最小數(shù)字是4 故至少取出4個(gè)小球才能符合要求 答:最少要取出4個(gè)球。

      3、班上有50名學(xué)生,將書分給大家,至少要拿多少本,才能保證至少有一個(gè)學(xué)生能得到兩本或兩本以上的書。

      解:把50名學(xué)生看作50個(gè)抽屜,把書看成蘋果 根據(jù)原理1,書的數(shù)目要比學(xué)生的人數(shù)多 即書至少需要50+1=51本 答:最少需要51本。

      4、在一條長(zhǎng)100米的小路一旁植樹(shù)101棵,不管怎樣種,總有兩棵樹(shù)的距離不超過(guò)1米。

      解:把這條小路分成每段1米長(zhǎng),共100段

      每段看作是一個(gè)抽屜,共100個(gè)抽屜,把101棵樹(shù)看作是101個(gè)蘋果 于是101個(gè)蘋果放入100個(gè)抽屜中,至少有一個(gè)抽屜中有兩個(gè)蘋果 即至少有一段有兩棵或兩棵以上的樹(shù)

      例5、11名學(xué)生到老師家借書,老師是書房中有A、B、C、D四類書,每名學(xué)生最多可借兩本不同類的書,最少借一本 試證明:必有兩個(gè)學(xué)生所借的書的類型相同

      證明:若學(xué)生只借一本書,則不同的類型有A、B、C、D四種

      若學(xué)生借兩本不同類型的書,則不同的類型有AB、AC、AD、BC、BD、CD六種 共有10種類型

      把這10種類型看作10個(gè)“抽屜” 把11個(gè)學(xué)生看作11個(gè)“蘋果”

      如果誰(shuí)借哪種類型的書,就進(jìn)入哪個(gè)抽屜

      由抽屜原理,至少有兩個(gè)學(xué)生,他們所借的書的類型相同

      6、有50名運(yùn)動(dòng)員進(jìn)行某個(gè)項(xiàng)目的單循環(huán)賽,如果沒(méi)有平局,也沒(méi)有全勝 試證明:一定有兩個(gè)運(yùn)動(dòng)員積分相同 證明:設(shè)每勝一局得一分

      由于沒(méi)有平局,也沒(méi)有全勝,則得分情況只有1、2、3……49,只有49種可能 以這49種可能得分的情況為49個(gè)抽屜 現(xiàn)有50名運(yùn)動(dòng)員得分 則一定有兩名運(yùn)動(dòng)員得分相同

      7、體育用品倉(cāng)庫(kù)里有許多足球、排球和籃球,某班50名同學(xué)來(lái)倉(cāng)庫(kù)拿球,規(guī)定每個(gè)人至少拿1個(gè)球,至多拿2個(gè)球,問(wèn)至少有幾名同學(xué)所拿的球種類是一致的?

      解:根據(jù)規(guī)定,同學(xué)拿球的配組方式共有以下9種:

      {足}{排}{藍(lán)}{足足}{排排}{藍(lán)藍(lán)}{足排}{足藍(lán)}{排藍(lán)} 以這9種配組方式制造9個(gè)抽屜 將這50個(gè)同學(xué)看作蘋果

      50÷9=5.……5

      由抽屜原理2:k=商+1可得,至少有6人,他們所拿的球類是完全一致的

      下載23(高中競(jìng)賽講座)抽屜原理word格式文檔
      下載23(高中競(jìng)賽講座)抽屜原理.doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        抽屜原理

        抽屜原理 一、 起源 抽屜原理最先是由19 世紀(jì)的德國(guó)數(shù)學(xué)家迪里赫萊(Dirichlet)運(yùn)用于解決數(shù)學(xué)問(wèn)題的,所以又稱"迪里赫萊原理",也有稱"鴿巢原理"的.這個(gè)原理可以簡(jiǎn)單地?cái)⑹鰹?.....

        抽屜原理

        抽屜原理(1) 抽屜原則(1) 如果把n+k (k 大于等于1)件東西放入n個(gè)抽屜,那么至少有一個(gè)抽屜中有2件或2件以上的東西。 學(xué)習(xí)例題 例1.某次聯(lián)歡會(huì)有100人參加,每人在這個(gè)聯(lián)歡會(huì)上至少有......

        抽屜原理

        4分割圖形構(gòu)造“抽屜”與“蘋果” 在一個(gè)幾何圖形內(nèi), 有一些已知點(diǎn), 可以根據(jù)問(wèn)題的要求, 將幾何圖形進(jìn)行分割, 用這些分割成的圖形作抽屜, 從而對(duì)已知點(diǎn)進(jìn)行分類, 再集中對(duì)......

        抽屜原理

        B15六年級(jí)專題講座(十五)簡(jiǎn)單的抽屜原理 趙民強(qiáng) 抽屜原理一 把n+1個(gè)蘋果放入n個(gè)抽屜中,則必有一個(gè)抽屜中至少放了兩個(gè)蘋果. 在解答實(shí)際問(wèn)題時(shí),關(guān)鍵在于找準(zhǔn)什么是“抽屜”和......

        抽屜原理

        抽屜原理專項(xiàng)練習(xí)1.把紅、黃、藍(lán)三種顏色的球各5個(gè)放到一個(gè)袋子里,至少取多少個(gè)球可以保證取到兩個(gè)顏色相同的球?請(qǐng)簡(jiǎn)要說(shuō)明理由. 2.某校有201人參加數(shù)學(xué)競(jìng)賽,按百分制計(jì)分且得......

        抽屜原理

        抽屜原理(鴿巢問(wèn)題) 抽屜原理有兩條: (1)如果把x?k(k>1)個(gè)元素放到x個(gè)抽屜里,那么至少有一個(gè)抽屜里含有2個(gè)或2個(gè)以上的元素。 (2)如果把n個(gè)物體放在m個(gè)抽屜里,其中n>m,那么必有一個(gè)抽屜至......

        抽屜原理

        抽屜原理 1、某校六年級(jí)有367人,一定有至少有兩個(gè)學(xué)生的生日是同一天,為什么?2、某校有30名同學(xué)是2月份出生的,能否有兩個(gè)學(xué)生的生日是在同一天?3、15個(gè)小朋友中,至少有幾個(gè)小朋友......

        抽屜原理

        三、 抽屜原理的應(yīng)用 1、 求抽屜中物品至多數(shù) 例:17 名同學(xué)參加一次考試,考試題是三道判斷題(答案只有對(duì)錯(cuò)之分),每名同學(xué)都在答題紙上依次寫下三道題的答案。請(qǐng)問(wèn)至少有幾名同......