圓錐的體積教學設計優(yōu)秀
圓錐的體積教學設計優(yōu)秀1
教學內(nèi)容:
練習四第4~12題和第23頁思考題
教學目標:
1.使學生進步理解、掌握圓錐的體積計算方法,能根據(jù)不同的條件計算出圓錐的體積。
2.提高學生解決生活中實際問題的能力。
3.養(yǎng)成良好的學習習慣。
教學重點:
進步掌握圓錐體積的計算方法。
教學難點:
圓柱和圓錐體積之間的聯(lián)系與區(qū)別。
教學過程:
一、復習舊知
1.復習體積計算。
(1)提問:圓錐的體積怎樣計算?
(2)口答下列各圓錐的體積。
①底面積3平方分米,高2分米。
②底面積4平方厘米,高4.5厘米。
2.引入新課。
今天這節(jié)課,我們練習圓錐體積的計算,通過練習,還要能應用圓錐體積計算的。方法解決一些簡單的'實際問題。
二、教學新課
組織練習。
1.做練習四第4題。
學生獨立計算。
2.做練習四第5題。
把等底等高的圓柱體積和圓錐體積相互轉(zhuǎn)化,從已知的圓柱體積得出相應的圓錐體積,從已知的圓錐體積得出相應的圓柱體積,繼續(xù)加強對等底等高圓柱和圓錐體積關系的理解。
3.做練習四第6題。
出示第6題的圖。
引導分析:根據(jù)圖示的各個立體圖形的底面直徑與高,尋找與圓錐體積相等的圓柱,可以從圓錐體積是等底等高圓柱體積的1/3,推理出體積相等的圓柱與圓錐,如果底面積相等,圓錐的高是圓柱的3倍圓柱的高是圓錐的1/3;如果高相等,圓錐的底面積是圓柱的3倍圓柱的底面積是圓錐的1/3。還要注意到,大圓的直徑是小圓的3倍小圓直徑是大圓的1/3,大圓的面積則是小圓的9倍小圓的面積是大圓的1/9。
4.做練習四第7題。
(1)提問:圓錐體積最大時與圓柱的關系是什么?(等底等高)
接著讓學生獨立練習。
(2)讓學生自主地提出其他問題,進一步的掌握圓錐和圓柱的關系。
5.做練習四第8題。
聯(lián)系實際,解決問題。
6.做練習四第9題。
讓學生動手操作,理解三角形繞它的兩條高旋轉(zhuǎn)一周形成兩個大小不同的圓錐。在此基礎上讓學生獨立計算。
7.做練習四第12題。
出示圓錐形模型,提問:你有什么辦法算山它的體積嗎,需要測量哪些數(shù)據(jù)?怎樣測量直徑和高。請同學們回去測量你用第115頁圖制作的圓錐,求出它的體積來。
三、課堂小結
這節(jié)課練習了圓錐的體積計算和應用:計算體積需要知道底面積和高。如果沒有告訴底面積,我們要先求半徑算出底面積,再計算體積。應用圓錐體積計算方法,有時候還可以計算出圓錐形物休的重量。
四、布置作業(yè)
1.練習四第10.11題。
2.學有余力學生完成思考題。
圓錐的體積教學設計優(yōu)秀2
教學內(nèi)容:
教材第11~17頁圓錐的認識和體積計算、例1。
教學要求:
l.使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2.使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3.培養(yǎng)學生初步的空間觀念和發(fā)展學生的思維能力。
教具準備:
長方體、正方體、圓柱體等,根據(jù)教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的 的教具。
教學重點:
掌握圓錐的特征。
教學難點:
理解和掌握圓錐體積的計算公式。
教學過程:
一、鋪墊孕伏:
1. 說出圓柱的體積計算公式。
2. 我們已經(jīng)學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常??吹较旅嬉恍┪矬w(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學習圓錐和圓錐的體積。(板書課題)
二、自主探究:
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據(jù)教材第16頁插圖,和學生舉的.例子通過幻燈片或其他方法抽象出立體圖。
3.利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1) 圓錐的底面是個圓,圓錐的側面是一個曲面。
(2) 認識圓錐的頂點,從圓錐的頂點到底面圓心的距離是圓錐的高。(在圖上表示出這條高)提問:圖里畫的這條高和底面圓的所有直徑有什么關系?
4.學生練習。
口答練習三第1題。
5.教學圓錐高的測量方法。(見課本第17頁有關內(nèi)容)
6.讓學生根據(jù)上述方法測量自制圓錐的高。
7.實驗操作、推導圓錐體積計算公式。
(1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)
(2)讓學生猜想:老師手中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關系?
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的 。
老師把圓柱里的黃沙倒進圓錐,問:把圓柱內(nèi)的沙往圓錐內(nèi)倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?
(4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的 。
(5)啟發(fā)引導推導出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積13=底面積高13
用字母表示:V= 13 Sh
(6)小結:要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以 13 ?
8.教學例l
(1)出示例1
(2)審題后可讓學生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
圓錐的體積教學設計優(yōu)秀3
教學內(nèi)容:教材第20頁例2、練一練。
教學要求:使學生進步掌握圓錐的體積計算方法,能根據(jù)不同的條件計算圓錐的體積,能應用圓錐體積公式解決-些簡單的實際問題:
教學重點:進步掌握圓錐的體積計算方法。
教學難點:根據(jù)不同的條件計算圓錐的體積。
教學過程:
一.鋪墊孕伏:
1.口算。
2.復習體積計算。
(1)提問:圓錐的體積怎樣計算?
(2)口答下列各圓錐的體積:①底面積3平方分米,高2分米。
②底面積4平方厘米,高4.5厘米。
3.引入新課。
今天這節(jié)課,我們練習圓錐體積的計算,通過練習,還要能應用圓錐體積計算的方法解決一些簡單的實際問題。
二、自主探究:
l.教學例2。
出示例題,讓學生讀題。提問:你們認為這道題要先求什么,再求這堆沙的重量?讓學生說說為什么要先求體積,才能求這堆沙的重量?這里底面直徑和高的`數(shù)據(jù)怎樣獲得?指名板演,其他學生做在練習本上,集體訂正。
2.組織練習。
(1)做練一練。
指名一人板演,其余學生做在練習本上,集體訂正。
(2)討論練習三第6題:圓柱和圓錐的體積和高分別相等,那么,圓柱的底面積和圓錐的底面積有什么關系?這道題,已知圓柱底面的周長,先求出什么?在怎樣?理清思路后
學生做在練習本上。集體訂正。
(3)討論練習三第7題。
底面周長相等,底面積就相等嗎?
三、課堂小結
這節(jié)課練習了圓錐的體積計算和應用:計算體積需要知道底面積和高。如果沒有告訴底面積,我們要先求半徑算出底面積,再計算體積。應用圓錐體積計算.有時候還可以計算出圓錐形物體的重量。
四、布置作業(yè)
1.練習三第5題及數(shù)訓。
2.出示圓錐形模型,提問:你有什么辦法算山它的體積嗎,需要測量哪些數(shù)據(jù)?怎樣測量直徑和高。請同學們回去測量你用第167頁圖制作的圓錐,求出它的體積來。
3.思考練習三第8、9題。
圓錐的體積教學設計優(yōu)秀4
教學內(nèi)容:
教科書第20~21頁例5及相應的 試一試,練一練和練習四的第1~3題。
教學目標:
1.組織學生參與實驗,從而推導出圓錐體積的計算公式。
2.會運用圓錐的體積計算公式計算圓錐的體積。
3.培養(yǎng)學生觀察、比較、分析、綜合的能力以及初步的空間觀念。
4.以小組形式參與學習過程,培養(yǎng)學生的合作意識。
5.滲透轉(zhuǎn)化的數(shù)學思想。
教學重點:
理解和掌握圓錐體積的計算公式。
教學難點:
理解圓柱和圓錐等底等高時體積間的倍數(shù)關系。
教學資源:
等底等高的圓柱和圓錐容器一套,一些沙或米等。
教學過程:
一、聯(lián)系舊知,設疑激趣,導入新課。
1.我們已經(jīng)知道了哪些立體圖形體積的求法?(學生回答時老師出示相應的教具---長方體,正方體圓柱體,然后板書相應的計算公式。)
2.我們是用什么方法推出圓柱體積的計算公式的?(是把圓柱體轉(zhuǎn)化為長方體來推導的。板書:轉(zhuǎn)化)
3.(出示教具)大家覺得這個圓錐與哪個立體圖形的關系最近呢?(老師比較學生指出的圓柱與圓錐的底和高,引導學生發(fā)現(xiàn)這個圓柱與圓錐等底等高。)
4.大家覺得我們今天要研究的圓錐的體積可能轉(zhuǎn)化為什么圖形來研究比較簡單呢?能說說自己的理由嗎?
5.它們的體積之間到底有什么關系呢?
二、實驗操作、推導圓錐體積計算公式。
1.課件出示例5。
(1)通過演示使學生知道什么叫等底等高。
(2)讓學生猜想:圖中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的'關系?
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
(用學具演示)在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的 。
老師把圓柱里的黃沙倒進圓錐,問:把圓柱內(nèi)的沙往圓錐內(nèi)倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?
(4)是不是所有的圓柱和圓錐都有這樣的。關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的 。
2.教師課件演示
3.學生討論實驗情況,匯報實驗結果。
4.啟發(fā)引導推導出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積 1/3=底面積高1/3
用字母表示:V= 1/3Sh
小結:要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以1/3 ?
5.教學試一試
(1)出示題目
(2)審題后可讓學生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
三、發(fā)散練習、鞏固推展
1.做練一練第1.2題。
指名一人板演,其余學生做在練習本上。集體訂正,強調(diào)要乘以1/3 。
2.做練習四第1.2題。
學生做在課本上。之后學生反饋。錯的要求說明理由。
四、小結
這節(jié)課你學習了什么內(nèi)容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?
學生交流
五、作業(yè)
練習四第3題。
圓錐的體積教學設計優(yōu)秀5
教學目標:
1、通過讓學生小組合作探究,利用不同的方法測量出圓錐的體積。體驗到計算圓錐體積的計算公式v=1/3sh是最簡便的方法。
2、鍛煉學生的操作能力,估算能力,評價能力,更好的發(fā)展他們的創(chuàng)新能力。
3、培養(yǎng)學生的合作意識及主動探索知識的精神。
教學重點:
讓學生自己親身體驗到計算圓錐體積的不同方法。從而理解計算公式v=1/3sh,并感受到計算公式的簡便。
教學難點:能利用不同方法計算不同物體的體積。知識的活學活用。
教學準備:
1、個學生一組,每組各有量杯;量桶;一升的容器;等底等高的圓柱與圓錐器皿;大米,沙子或水;1立方厘米的小方塊若干。6
2、教學軟件。
教學流程:
一、創(chuàng)設情景,激趣引新。
1、首先教師手中拿一圓柱體問:同學們,老師想知道這個圓柱體的體積你們能幫助我嗎?
(學生踴躍舉手說明??梢韵葴y量出圓柱的半徑與高。再用圓周率乘半徑的平方得到底面積,最后乘以高就可以了。)
2、教師表示贊同,并抓住這一契機拿出于剛才圓柱等底等高的圓錐,問:那老師這里還有一個圓錐體,它的.體積應該怎樣計算呢?你們知道嗎?(學生齊答不)那你們想不想研究呢?(學生齊答想)好,下面我們就一起來研究圓錐的體積該怎樣計算。
〈設計意圖:通過以舊引新,不僅讓學生感受到圓錐與圓柱的聯(lián)系,而且還能體驗得到新知的親切。從而產(chǎn)生學習新知的欲望。〉
二、小組合作,探究學習。
1、動手操作,測量圓錐體的體積。
要求:每組同學,利用桌面上的工具(量杯,量桶,與圓錐等底等高圓柱容器,大米,沙子,水,1立方分米小方塊)測量出自己組內(nèi)的圓錐體的體積。測量物體是容器的厚度不計。
〈全體學生在動手操作,互相商量解決問題的辦法。教師巡回指導。課堂呈現(xiàn)小組探究學習的熱烈場面。〉
3、分組匯報不同的方法。
〈學生在匯報時可邊講解邊示范〉
方法一:可以利用量杯。首先把圓錐體容器內(nèi)裝滿水,然后把它倒入量杯內(nèi),我們看到水面的刻度就是水的。體積也就是圓錐體的體積。
方法二:利用手中的一立方厘米的小木塊進行估算。
方法三:受《曹沖稱象》的啟示。利用一生的容器。把它裝滿水后將圓錐體放入,溢出水后拿出圓錐體。這時看容器空出來的地方為長方體,用一立方分米減去長方體的體積就可以得到圓錐體的體積了。
方法四:把圓錐體內(nèi)裝滿大米、沙子或水,然后將它到入與它等底等高的圓柱體容器里。發(fā)現(xiàn)到了3次正好到慢。也就是說,圓錐體的體積等于與它等底等高的圓柱體的三分之一。用字母表示為:v=1/3sh
〈設計意圖:通過討論研究和動手操作,發(fā)展學生的創(chuàng)新能力,和解決實際問題的能力?!?/p>
(1)在講解第四個方法時,教師可以向?qū)W生質(zhì)疑,在操作此過程時有一個非常重要的前提條件是什么?為什么圓錐體的體積等于與它等底等高圓柱體體積的三分之一?
(2)學生再次在小組內(nèi)操作探究。
(3)匯報結論。
(4)微機演示。
當?shù)鹊撞坏雀邥r,當?shù)雀卟坏鹊讜r,當?shù)缀透叨疾幌嗟葧r,出現(xiàn)的結果是怎樣的。
〈設計意圖:通過學生探究與微機演示,使學生直觀的感受圓錐體與圓柱體之間關系。加深對圓錐體體積計算公式的理解?!?/p>
4、評價以上各種辦法
同學們的結論是用公式計算比較方便。
三、解決實際問題
(問題一)
1、各小組量一量,算一算自己組內(nèi)的圓錐體的體積。(測量,計算時都要保留整數(shù))
2、匯報結果。
先測量出圓錐體的直徑,算出底面積。再測量出高,算出它的體積。算式:1/3x[3.14x(10/2)x10]262立方厘米(忽略厚度,即把溶劑可看作體積)
(問題二)
1、現(xiàn)知道手中的圓錐體每立方厘米約裝0.9克大米,計算這個圓錐體容器可裝多少克大米?
2、匯報結果。
用每立方厘米裝大米的克數(shù)乘圓錐的體積。算式:0.9x262236克
3、驗證計算結果
用稱稱一稱,比較一下結果。
4、討論兩次結果為什么不同。
由于測量時厚度不計,計算時是近似值。都存在誤差。
〈設計意圖:通過測量,計算等環(huán)節(jié),發(fā)展學生的應用意識及估算的能力?!?/p>
(問題三)
利用圓錐體積公式計算。
(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?
(問題四)
計算不規(guī)則物體體積或容積。(直說出計算的方法即可)
1、用什么方法計算出葫蘆能裝多少水?
2、胡蘿卜的體積怎樣計算?
3、不規(guī)則的零件體積計算?
〈設計意圖:結合生活實際讓學生感受到數(shù)學與生活的聯(lián)系。及解決實際問題的不同方法及策略,培養(yǎng)創(chuàng)新能力?!?/p>
四、總結全課
說說你的收獲,鼓勵學生學習知識要活學活用,大膽動腦,勇于創(chuàng)新。
圓錐的體積教學設計優(yōu)秀6
【教材分析】
本節(jié)課屬于空間與圖形知識的教學,是小學階段幾何知識的重難點部分,是小學學習立體圖形體積計算的飛躍,通過這部分知識的教學,可以發(fā)展學生的空間觀念、想象能力,較深入地理解幾何體體積推導方法的新領域,為學生進一步學習幾何知識奠定良好的基礎。本節(jié)內(nèi)容是在學生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎上進行教學的,教材重視類比,轉(zhuǎn)化思想的滲透,直觀引導學生經(jīng)歷“猜測、類比、觀察、實驗、探究、推理、總結”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學生建立空間觀念,還能培養(yǎng)學生抽象的邏輯思維能力,激發(fā)學生的想象力。
【設計理念】
數(shù)學課程標準中指出:應放手讓學生經(jīng)歷探索的過程,在觀察、操作、推理、歸納、總結過程中掌握知識、發(fā)展空間觀念,從而提高學生自主解決問題的能力。
【教學目標】
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的'體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結論——實踐運用”探索過程,獲得圓錐體積的推導過程和學習的方法。
3、情感、態(tài)度與價值觀:培養(yǎng)學生勇于探索的求知精神,感受到數(shù)學來源于生活,能積極參與數(shù)學活動,自覺養(yǎng)成與人合作交流與獨立思考的良好習慣。
【教學重點】
圓錐體積公式的理解,并能運用公式求圓錐的體積。
【教學難點】
圓錐體積公式的推導
【學情分析】
學生已學習了圓柱的體積計算,在教學中采用放手讓學生操作、小組合作探討的形式,讓學生在研討中自主探索,發(fā)現(xiàn)問題并運用學過的圓柱知識遷移到圓錐,得出結論。所以對于新的知識教學,他們一定能表現(xiàn)出極大的熱情。
【教法學法】
試驗探究法小組合作學習法
【教具學具準備】
多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
【教學課時】
2課時
【教學流程】
第一課時
一、回顧舊知識
1、你能計算哪些規(guī)則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
【設計意圖】通過對舊知識的回顧,進一步為學習新知識作好鋪墊。
二、創(chuàng)設情景激發(fā)激情
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
【設計意圖】以生活中的數(shù)學的形式進行設置情景,引疑激趣遷移,激發(fā)學生好奇心和求知欲。(揭示課題:圓錐的體積)
三、試驗探究合作學習(探討圓柱與圓錐體積之間的關系)
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關系?
1、猜想:猜想它們的底、高之間各有什么關系?
2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結果;
3、小組匯報試驗結論,集體評議:(注意匯報出試驗步驟和結論)
4、教師介紹數(shù)學專用名詞:等底等高
【設計意圖】通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關系
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關系?邊試驗邊記錄試驗數(shù)據(jù)(教師巡視指導每組的試驗)
3、小組匯報試驗結論(提醒學生匯報出試驗步驟)
教學預設:
(1)圓椎的體積是圓柱體積的3倍;
(2)圓錐的體積是圓柱體積的三分之一;
(3)當?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學生匯報的試驗結論,分析歸納總結試驗結論。
5、你能用字母表示出它們的關系嗎?要求圓錐的體積必須知道什么條件呢?(學生反復朗讀公式)
【設計意圖】通過學生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結論的過程,充分調(diào)動學生主動探索的意識,激發(fā)了學生的求知欲,培養(yǎng)了學生的動手能力,突破了本課的難點,突出了教學的重點。
探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關系。
1、觀察老師的試驗,你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關系?
2、觀察老師的試驗,你發(fā)現(xiàn)了不等底等高的圓柱與圓錐的體積之間還有三分之一的關系嗎?
3、學生通過觀看試驗匯報結論。
4、教師引導學生分析歸納總結圓錐體積是圓柱體積的三分之一所存在的條件。
5、結合探究二和探究三,進一步引導學生掌握圓錐的體積公式。
【設計意圖】通過教師課件演示試驗,進一步讓學生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學生對圓錐體積公式理解,再次突出了本課的難點,培養(yǎng)了學生的觀察能,分析能力,邏輯思維能力等,進一步讓學生從感性認識上升到了理性認識。
四、實踐運用提升技能
1、判斷題:【題目內(nèi)容見多媒體展示】獨立思考---抽生匯報---說明理由---師生評議
2、口答題:【題目內(nèi)容見多媒體展示】獨立思考---抽生匯報---學生評議
3、拓展運用:【課本例題3】學生分析題意---小組合作解答---學生解答展示---師生評議
【設計意圖】通過判斷題、口答題題型的訓練,及時檢查學生對所學知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機會,以達到培養(yǎng)能力、發(fā)展個性的目的。
五、談談收獲:
這節(jié)課你學到了什么呢?
六、課堂作業(yè):
1、做在書上作業(yè):練習四第4、7題
2、坐在作業(yè)本上作業(yè):練習四第3題
【課后反思】
【板書設計】
圓錐的體積教學設計優(yōu)秀7
圓錐的體積教學目的:使同學初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積,發(fā)展同學的空間觀念。
學具準備:等底等高的圓柱和圓錐8組,比圓柱體積多的沙土
教學過程:
一、復習
1、圓錐有什么特征?
使同學進一步熟悉圓錐的特征:底面,側面,高和頂點。
2、圓柱體積的計算公式是什么?
指名同學回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉(zhuǎn)化方法在數(shù)學學習中的應用。
二、導人新課
我們已經(jīng)學過圓柱體積的計算公式,那么圓錐的體積是不是和圓柱體積有關呢?今天我們就來學習圓錐體積的計算。
板書課題:圓錐的體積
三、新課
1、教學圓錐體積的計算公式。
師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?
指名同學敘述圓柱體積計算公式的推導過程,使同學明確求圓柱的體積是通過切拼生長方體來求得的`。
師:那么圓錐的體積該怎樣求呢?能不能也通過已學過的圖形來求呢?
先讓同學討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。
教師拿出等底等高的。圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么一起的地方?”
然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關系?”
同學分組實驗。
匯報實驗結果。先在圓錐里裝滿沙土,然后倒入圓柱。正好3次可以倒?jié)M。
多指名說
接著,教師課件邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱的體積的。
多找?guī)酌瑢W說。
板書:圓錐的體積=1/3 × 圓柱體積
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢?
引導同學想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。
板書:圓錐的體積= 1/3 ×底面積×高
師:用字母應該怎樣表示?
然后板書字母公式:V=1/3 SH
師:在這個公式里你覺得哪里最應該注意?
2、鞏固練習
(1)已知圓柱和圓錐等底等高。圓柱的體積是45立方厘米,圓錐的體積是( )立方厘米。已知圓柱和圓錐等底等高。圓錐的體積是20立方厘米,圓柱的體積是( )立方厘米。
(2)求下面圓錐的體積。
已知底面面積是9.6平方米,高是2米。
底面半徑是4厘米,高是3.5厘米。
底面直徑是4厘米,高是6厘米。
在列式時注意什么?( ) 在計算時,我們怎樣計算比較簡便?(能約分的要先約分)
(3)判斷:
(l)圓錐體積是圓柱體積的1/3( )
(2)圓柱體的體積大于與它等底等高的圓錐體的體積。( )
(3)假如圓柱圓錐等底等高,圓柱體積是圓錐的3倍,圓錐體積是圓柱體積的2/3。( )
(4)圓錐的底面積是3平方厘米,體積是6立方厘米。( )
《圓錐的體積》教學設計
教學目標:
1.通過“演示、猜測、操作、驗證”使學生理解和掌握圓錐體積的計算公式,會運用公式計算圓錐的體積并能運用公式解決簡單的實際問題。
2.在推導公式過程中,通過小組合作、動手實驗的方法,培養(yǎng)學生分析、推理的能力及抽象概括能力,發(fā)展學生空間觀念。
3.在探究公式的過程中,向?qū)W生滲透“事物之間是相互聯(lián)系”的,并通過活動,使學生形成良好的合作探究意識。
教學重點:理解和掌握圓錐體積的計算公式。教學難點:圓錐體積公式的推導過程。教 具:ppt課件
學 具:圓柱、圓錐量杯各一個,水一桶。教學過程:
一、復習舊知,設疑導入
1、前幾節(jié)課我們學習了圓柱的體積,圓柱的體積的計算公式你還記得么?字母公式又怎樣表示?(板書:v =sh)
2、一個圓柱的底面積是60平方分米,高是15分米,它的體積是多少立方分米?
課件出示圓錐形谷堆,問:它占了多大的空間呢?圓錐的體積怎樣計算呢?他又是怎樣推導出來了呢?這節(jié)課我們就來研究這個問題。(板書課題:圓錐的體積)
二、科學驗證,經(jīng)歷過程
引導學生借助圓柱,用實驗的方法,推導圓錐的體積公式。教師出示實驗用具:圓柱,圓錐,水。
1、引導學生觀察圓錐、圓柱的特點。
通過看一看,比一比,有什么特點?(學生發(fā)現(xiàn)等底等高)(師板書:等底等高)
2、這個圓柱和圓錐,誰的體積大?誰的體積???你是怎樣想的?(圓柱的體積大,它們等底等高,圓錐上面是尖的,所以體積小)
3、學生實驗。(把學生分成六組)
實驗要求:把圓錐裝滿水倒進等底等高的圓柱中,觀察要幾次才能倒?jié)M。
學生分小組動手演示:
(1)通過實驗,你們發(fā)現(xiàn)了所給的圓錐、圓柱在體積上有什么關系?
(2)根據(jù)這個關系怎樣求出圓錐的體積?
4、學生匯報,完成計算公式的推導:
一名學生匯報,師板書。
生:我們把圓錐裝滿水,倒入這個等底等高的圓柱體當中,正好倒了3次倒?jié)M,得出圓錐的體積等于這個等底等高圓柱的體積的1/3,因為圓柱的體積v=sh,所以圓錐的體積v =1/3sh(教師板書)
等底等高V=1/3Sh
5、教師課件再演示:圓柱體積與圓錐體積的關系。
6、找條件:根據(jù)這個公式就可以求出圓錐的體積,要計算圓錐的體積需要知道那些條件?
7、(反例子)強調(diào)等底等高: 同學們經(jīng)過實驗,發(fā)現(xiàn)了用來實驗的圓錐的體積等于圓柱的體積的1/3,老師也想做實驗:出示一個非常大的圓柱,一個很小的圓錐,這個圓柱的體積是圓錐體積的3倍嗎?(你有什么看法、為什么?)
強調(diào):圓錐的體積等于與它等底等高的圓柱的體積的1/3。(讓學生說)
三、鞏固練習,運用拓展 1.填空:(1)、一個圓柱體體積是27立方分米,與它等底等高的圓錐的體積是()立方分米。
(2)、一個圓錐體積是15立方厘米,與它等底等高的圓柱的體積是()立方厘米。
2.計算下列圓錐的體積(1)、底面半徑2厘米,高6厘米。(2)、底面半徑3厘米,高3厘米。
3、一個近似于圓錐的沙堆,測得底面直徑是4米,高是1.5米。每立方米沙約重1.7噸,這堆沙約重多少噸?(得數(shù)保留整噸數(shù))
4.如圖,直角梯形ABCD,以AB為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所圍成幾何圖形的體積是多少?
四、整理歸納,回顧體驗
本節(jié)課學習了什么?這節(jié)課你有什么收獲?
(從兩個方面談:圓錐體體積公式的推導方法和公式的應用)
板書:
圓錐的體積
v =sh 等底等高 V =1/3Sh