第一篇:小學(xué)數(shù)學(xué)《分?jǐn)?shù)乘整數(shù)計(jì)算法則》教學(xué)反思
自我反思有助于改造和提升教師的教學(xué)經(jīng)驗(yàn),經(jīng)驗(yàn)+反思=成長,只有經(jīng)過反思,使原始的經(jīng)驗(yàn)不斷地處于被審視、被修正、被強(qiáng)化、被否定等思維加工中,去粗存精,去偽存真,這樣經(jīng)驗(yàn)才會(huì)得到提煉、得到升華,從而成為一種開放性的系統(tǒng)和理性的力量,唯其如此,經(jīng)驗(yàn)才能成為促進(jìn)教師專業(yè)成長的有力杠桿。閱讀這篇數(shù)學(xué)教學(xué)反思之《分?jǐn)?shù)乘整數(shù)計(jì)算法則》,和小編來感受它的魅力吧!
在教學(xué)“分?jǐn)?shù)乘整數(shù)計(jì)算法則”時(shí),我從一道計(jì)算題入手,讓學(xué)生聯(lián)系生活實(shí)際,創(chuàng)設(shè)問題情境,較好地體現(xiàn)了學(xué)生學(xué)習(xí)的主體性,溝通了數(shù)學(xué)與生活實(shí)際的聯(lián)系,使學(xué)生認(rèn)識(shí)到“數(shù)學(xué)”是生活中的數(shù)學(xué),是有用的數(shù)學(xué)。同時(shí)這道計(jì)算題還溝通了與新的知識(shí)的聯(lián)系,引出了分?jǐn)?shù)乘整數(shù)的意義,并能讓學(xué)生憑借這個(gè)知識(shí)點(diǎn),探索出分?jǐn)?shù)乘整數(shù)的計(jì)算法則。在教學(xué)分?jǐn)?shù)乘整數(shù)的計(jì)算法則時(shí),我還注重了放手讓學(xué)生去探索,注重了學(xué)生的合作交流,通過討論發(fā)現(xiàn)知識(shí)的奧秘,通過交流拓寬全體學(xué)生的知識(shí)面。由此我深深地體會(huì)到,教師不能要求學(xué)生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會(huì)阻礙學(xué)生的思維發(fā)展。我們教師在課堂上只是學(xué)生的引路人,是導(dǎo)師
這則數(shù)學(xué)教學(xué)反思之《分?jǐn)?shù)乘整數(shù)計(jì)算法則》希望能給你的學(xué)習(xí)生活增添益處。
第二篇:數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思1
這節(jié)課主要是通過以活動(dòng)的形式,讓學(xué)生在實(shí)踐的過程中感受學(xué)習(xí)的樂趣,感悟?qū)W習(xí)知識(shí)。使學(xué)生在自己的認(rèn)知的基礎(chǔ)上進(jìn)行學(xué)習(xí)。通過教學(xué)來看,效果比較好,學(xué)生學(xué)習(xí)的積極性高,學(xué)習(xí)興趣濃。可以從以下幾個(gè)方面來思考,以求取得更好的效果。
1、教學(xué)采用通過實(shí)踐“感悟”的教學(xué),讓學(xué)生從實(shí)踐的過程中自覺領(lǐng)悟互相垂直的概念。先采用學(xué)生生活中的事例,在生活中抽象出互相垂直的圖形。
從上面的圖形中可以看出互相垂直的直觀圖形在學(xué)生的頭腦中已經(jīng)有了很清晰的印象,這是一種為學(xué)生提供的憑直覺感悟的過程。從實(shí)踐看來學(xué)生接受的效果很好。
2、學(xué)生實(shí)踐,把長方形、正方形和平形四邊形的紙折出兩條互相垂直的線,出現(xiàn)了下面的情況:
教師通過引導(dǎo)學(xué)生觀察,學(xué)生得出用一張紙先折一次,然后沿折痕對折,就可以得到兩條互相垂直的直線。在折的時(shí)候,出現(xiàn)了有的同學(xué)折得很復(fù)雜,找出了很多組互相垂直的線。
3、學(xué)生悟出結(jié)論: 要形成互相垂直的必備條件是:在同一平面內(nèi)相交、交角成直角。
4、這節(jié)課成功地采取選擇貼近學(xué)生思維的素材,通過學(xué)生實(shí)踐感悟?qū)W習(xí)的教學(xué)方法,成功地從培養(yǎng)學(xué)生的創(chuàng)新能力和探究問題的能力著手,讓學(xué)生主動(dòng)獲取知識(shí),發(fā)現(xiàn)知識(shí)。盡管要解決的問題具有挑戰(zhàn)性,探究的過程也有一定的難度,但是由于將解決互相垂直的知識(shí)置于生活實(shí)踐之中,學(xué)生已有的知識(shí)經(jīng)驗(yàn)被“激活”,因此就能夠在磕磕碰碰的探索中主動(dòng)完成認(rèn)知的建構(gòu),把直角、相交等知識(shí)結(jié)合起來。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思2
在這一片斷中,學(xué)生積極主動(dòng)地投入到問題的研討和解決之中,課堂氣氛輕松、活潑。反思這一教學(xué)過程的成功,主要有以下兩個(gè)原因。
一、尊重學(xué)生的數(shù)學(xué)現(xiàn)實(shí)。
在第一次教學(xué)《分?jǐn)?shù)乘整數(shù)》之后,其實(shí)班里已經(jīng)有許多學(xué)生知道了分?jǐn)?shù)乘整數(shù)的計(jì)算方法。如果再按照一般的教學(xué)程序(呈現(xiàn)問題探討研究得出結(jié)論)進(jìn)行教學(xué),學(xué)生就會(huì)覺得這些知識(shí)我早就知道了,沒什么可學(xué)的了。,從而失去探究的興趣。教師的主導(dǎo)作用在于設(shè)計(jì)恰當(dāng)?shù)慕虒W(xué)形式,調(diào)動(dòng)不同層次的學(xué)生的學(xué)習(xí)興趣。于是在教學(xué)時(shí),我故意將分?jǐn)?shù)乘整數(shù)的結(jié)論灌輸給學(xué)生,省去了獲取結(jié)論的研究過程,意在讓學(xué)生問為什么。這時(shí)學(xué)生抓住這一質(zhì)疑點(diǎn),提出:為什么只把分子與整數(shù)相乘,分母10不和3相乘?接下來的教學(xué)就引導(dǎo)學(xué)生帶著為什么去探索。由質(zhì)疑開始的探索是學(xué)生為滿足自身需要而進(jìn)行的主動(dòng)探索,因此學(xué)生在課堂上迫不及待地,積極主動(dòng)地進(jìn)行討論,從不同的角度解決疑問。
二、實(shí)現(xiàn)教學(xué)學(xué)習(xí)的個(gè)性化。
每個(gè)學(xué)生都有各自的生活經(jīng)驗(yàn)和知識(shí)基礎(chǔ),面對需要解決的問題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實(shí)出發(fā)來構(gòu)建知識(shí)的,這就決定了不同的孩子在解決同一問題時(shí)會(huì)有不同的視角。在本節(jié)課中,教師放手讓學(xué)生用自己思維方式進(jìn)行自由的、多角度的思考,學(xué)生自主地構(gòu)建知識(shí),充分體現(xiàn)了不同的人學(xué)習(xí)不同的數(shù)學(xué)的理念。有的學(xué)生通過對分?jǐn)?shù)乘整數(shù)的意義的理解,將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來思考;有的學(xué)生通過計(jì)算分?jǐn)?shù)單位的個(gè)數(shù)來理解;有的學(xué)生講清了分母不能與整數(shù)相乘,只能將分子與整數(shù)相乘的道理;還有的學(xué)生將分?jǐn)?shù)轉(zhuǎn)換為小數(shù),同樣得到了正確的結(jié)果;也有的學(xué)生通過生動(dòng)的數(shù)學(xué)實(shí)例進(jìn)行了分析。由此我深深地體會(huì)到,包或教師在內(nèi)的任何人,都不能要求學(xué)生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會(huì)阻礙學(xué)生的思維發(fā)展。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思3
這節(jié)課的教學(xué),讓學(xué)生進(jìn)入一個(gè)生動(dòng)活潑、主動(dòng)的和富有個(gè)性的活動(dòng),以學(xué)生為主體的、和諧的課堂氛圍。學(xué)生興趣高漲,進(jìn)行了充分的活動(dòng),并且自主探索,在充分的體驗(yàn)中,感悟到了周長的實(shí)際含義。教學(xué)過程比較好地體現(xiàn)了新課標(biāo)的“讓學(xué)生經(jīng)歷知識(shí)形成的全過程”這一理念。
1、明暗雙線交融,關(guān)注三維目標(biāo)
以小螞蟻的引領(lǐng)為主線,小螞蟻從“客人”到“同學(xué)”,最后到“小螞蟻考一考我們”關(guān)注學(xué)生的情感態(tài)度,小螞蟻――這個(gè)使學(xué)生平視的形象融合在整個(gè)課堂中,從象小螞蟻一樣描邊線,到小螞蟻提出的問題,讓學(xué)生關(guān)注自己、關(guān)注他人――小螞蟻。以周長的認(rèn)識(shí)為暗線,實(shí)現(xiàn)過程性和知識(shí)目標(biāo)――經(jīng)歷周長的認(rèn)識(shí)過程,理解周長的含義。兩條線相互交融,共同著力于學(xué)生的發(fā)展。
2、動(dòng)手體驗(yàn)數(shù)學(xué),動(dòng)腦提煉數(shù)學(xué)
學(xué)生在學(xué)習(xí)過程,通過自己動(dòng)手,用手摸物體的邊線一周,用筆描樹葉和圖形的輪廓,測量周長等親身體驗(yàn)周長的意義與測量方法,學(xué)生學(xué)習(xí)興趣高漲,使學(xué)生把周長這個(gè)抽象的概念與生活中具體的事例聯(lián)系起來,在親身體驗(yàn)和經(jīng)歷中真切的感受周長。同時(shí),在體驗(yàn)之后動(dòng)腦提煉周長的含義:選擇一個(gè)圖形,比較快地測量出它的周長;測量老師的腰圍時(shí),先讓學(xué)生估測老師的腰圍,然后選用合適的工具實(shí)際去測量,借此來估計(jì)自己的腰圍。通過這個(gè)環(huán)節(jié),學(xué)生在初步體驗(yàn)的基礎(chǔ)上上,拓寬對周長意義的理解,實(shí)現(xiàn)了對周長的深入建構(gòu)。
3、鼓勵(lì)猜測,激發(fā)自主學(xué)習(xí)熱情
我在教學(xué)中,鼓勵(lì)學(xué)生大膽地進(jìn)行數(shù)學(xué)想象,以激起學(xué)生飽滿的學(xué)習(xí)熱情和積極的思維,促進(jìn)學(xué)生自主探究。如“∠”有沒有周長?這一問題的設(shè)計(jì),鼓勵(lì)孩子進(jìn)行大膽猜測。有的孩子說有,而有的孩子說沒有,這一矛盾的激化,孩子們很自然地投入到研究中。在老師的指導(dǎo)下,應(yīng)用所學(xué)知識(shí),通過猜測、思考、討論、表達(dá)等數(shù)學(xué)活動(dòng),主動(dòng)探索出“角”沒有周長,只有封閉圖形才有周長。從而進(jìn)一步認(rèn)識(shí)周長。
反思至此,我最大的感觸是: 優(yōu)點(diǎn)與遺憾是每一堂課必經(jīng)的兩道風(fēng)景。我這節(jié)課的遺憾是:在每一次活動(dòng)進(jìn)行總結(jié)時(shí) 引導(dǎo)學(xué)生進(jìn)行總結(jié)時(shí),要多給學(xué)生機(jī)會(huì)說說。在測量腰圍時(shí),有的學(xué)生隔著很厚的衣服從外面測量腰圍,出現(xiàn)了很不準(zhǔn)確的估算結(jié)果,教師指導(dǎo)不到位。 如果我們每一位教師都能冷靜珍視每一堂課,化遺憾為經(jīng)驗(yàn),我們的課堂不就達(dá)到了“柳暗花明又一村”的境界了嗎?
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思4
首先,給學(xué)生創(chuàng)設(shè)學(xué)習(xí)情境,三個(gè)圖形的比較,學(xué)生通過仔細(xì)觀察,發(fā)現(xiàn)圓環(huán)的特點(diǎn),(引出圓環(huán))激發(fā)了學(xué)生的學(xué)習(xí)興趣。再通過引導(dǎo)學(xué)生主動(dòng)探究,發(fā)現(xiàn)了圓環(huán)面積的計(jì)算方法。然后通過觀察算式的特點(diǎn)引導(dǎo)出另一種方法。
在課堂評(píng)價(jià)時(shí),我想了很多鼓勵(lì)學(xué)生的話,學(xué)生在得到賞心悅目的語言評(píng)價(jià)中得到自信和興趣。
本節(jié)課我感覺有幾個(gè)思考的地方。1,在試一試做完后,我應(yīng)該馬上總結(jié)出要求圓環(huán)的面積必須知道哪些條件。(兩個(gè)半徑)2,出現(xiàn)環(huán)寬的兩個(gè)應(yīng)用題,是否簡單,是否要出示??赡苤苯映鍪尽皥A形花園周圍鋪上一條石子小路,求出小路的面積?!备唵我恍R哺蜗笠恍?。3,可以利用學(xué)生做的圓環(huán)來貫穿下面的練習(xí)。首先可以讓他們量出他們做的圓環(huán)的大小半徑和環(huán)寬,這樣就可以形象地讓學(xué)生理解環(huán)寬的概念。避免了我在練習(xí)中涉及環(huán)寬的概念而說不清楚的尷尬。然后可以求出圓環(huán)的面積,這樣學(xué)生就通過實(shí)際操作,真正理解了圓環(huán)的面積計(jì)算。達(dá)到理想的效果。4,3.14×(R2—r2)這個(gè)公式還是出現(xiàn)比較好.學(xué)生可以更清楚地運(yùn)用這個(gè)簡單的運(yùn)算方法。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思5
把這次公開課選為《分?jǐn)?shù)乘整數(shù)》這一內(nèi)容,是因?yàn)樯蠈W(xué)年聽了冬梅老師講了若干遍《分?jǐn)?shù)乘分?jǐn)?shù)》,并一舉在市名列前茅。我選了《分?jǐn)?shù)乘分?jǐn)?shù)》的.前一信息窗,內(nèi)容相對來說比較簡單。對此類課的教學(xué)思路有了一定的了解,感覺有信心上好這節(jié)課。
課堂上,我是按照事先設(shè)計(jì)好的方案一步一步地進(jìn)行著。結(jié)果第一環(huán)節(jié)提出數(shù)學(xué)問題,根據(jù)已有的經(jīng)驗(yàn)列出算式就出了問題,我提出:“‘求做一個(gè)風(fēng)箏一共需要多少米布條?’其實(shí)就是求什么?”。一下子把孩子問在那里了。周折了一小會(huì)兒才開始列式計(jì)算了。緊接著第二個(gè)環(huán)節(jié)列式計(jì)算,并理解分?jǐn)?shù)乘整數(shù)算式的意義還好。很順利地進(jìn)行到第三個(gè)環(huán)節(jié)學(xué)習(xí)計(jì)算方法。大部分學(xué)生都用分母不變,只把分子與整數(shù)相乘的方法計(jì)算的。我不失時(shí)機(jī)地啟發(fā)學(xué)生思考:為什么只把分子與整數(shù)相乘呢?比比看誰的理由最充分。這時(shí)學(xué)生們都陷入了思考,帶著“為什么”去探索。在課堂上迫不及待。積極主動(dòng)地進(jìn)行討論,在理清算理的基礎(chǔ)上通過課件演示總結(jié)出法則。這一環(huán)節(jié)我自己還比較滿意。到了第四環(huán)節(jié),通過法則指導(dǎo)計(jì)算,并學(xué)會(huì)簡便方法約分時(shí),又出問題了,學(xué)生不理解為什么約分后的分子相乘分?jǐn)?shù)的大小還不變,一直在那里糾結(jié),足足耽誤了將近十分鐘的練習(xí)時(shí)間。
通過評(píng)課,同行們給我找明了問題的關(guān)鍵:
1、教師在第一環(huán)節(jié)的提問繞圈子了,不要問學(xué)生“要求這個(gè)問題就是求什么?”直接讓學(xué)生列式解答即可。在列式的基礎(chǔ)上讓學(xué)生自己發(fā)現(xiàn)6個(gè)相加可以寫成×6的形式,從而明白分?jǐn)?shù)乘整數(shù)的意義。
2、在探究算法的過程中,應(yīng)當(dāng)與算理相融合,一位同學(xué)探究說出算理和算法以后,應(yīng)該結(jié)合課件再多找?guī)讉€(gè)學(xué)生強(qiáng)化一下,這樣落實(shí)面才會(huì)更廣一些。
3、當(dāng)學(xué)生提出對于約分環(huán)節(jié)的不理解時(shí),教師不要急于解釋,可讓其在練習(xí)的基礎(chǔ)上驗(yàn)證一下,或告知其下課后繼續(xù)研究,一定不要把時(shí)間浪費(fèi)在與個(gè)別學(xué)生糾結(jié)一些價(jià)值不大的問題。教師要有主觀能控力。
4、分?jǐn)?shù)的書寫順序要注意標(biāo)準(zhǔn)。
聽了大家伙的建議,自己感覺很有道理,不再去鄰班講一次真對不住朋友們提出的這些大好建議。感謝教研組的評(píng)課,各路高手就像是一位位神醫(yī),幫我查找到這節(jié)課的各種病癥,只不過要想醫(yī)治成功還需要“患者”的努力。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思6
本節(jié)課我是在學(xué)生學(xué)習(xí)了分?jǐn)?shù)的產(chǎn)生和意義的基礎(chǔ)上教學(xué)的,教學(xué)分?jǐn)?shù)的產(chǎn)生時(shí),平均分的過程往往不能得到整數(shù)的結(jié)果,要用分?jǐn)?shù)來表示,已初步涉及到分?jǐn)?shù)與除法的關(guān)系;教學(xué)分?jǐn)?shù)的意義時(shí),把一個(gè)物體或一個(gè)整體平均分成若干份,也蘊(yùn)涵著分?jǐn)?shù)與除法的關(guān)系,但是都沒有明確提出來,在學(xué)生理解了分?jǐn)?shù)的意義之后,教學(xué)分?jǐn)?shù)與除法的關(guān)系,使學(xué)生初步知道兩個(gè)整數(shù)相除,不論被除數(shù)小于、等于、大于除數(shù),都可以用分?jǐn)?shù)來表示商。這樣可以加深和擴(kuò)展學(xué)生對分?jǐn)?shù)意義的理解,同時(shí)也為講假分?jǐn)?shù)與分?jǐn)?shù)的基本性質(zhì)打下基礎(chǔ)。具體說本節(jié)課有以下幾個(gè)特點(diǎn):
一、直觀演示是學(xué)生理解分?jǐn)?shù)與除法的關(guān)系的前提。
由于學(xué)生在學(xué)習(xí)分?jǐn)?shù)的意義時(shí)已經(jīng)對把一個(gè)物體平均分比較熟悉,所以本節(jié)課教學(xué)把一張餅平均分給3個(gè)人時(shí)并沒有讓學(xué)生操作,而是計(jì)算機(jī)演示分的過程,讓學(xué)生理解1張餅的就是張。3塊餅平均分給4個(gè)人,每人分多少張餅,是本節(jié)課教學(xué)的重點(diǎn),也是難點(diǎn)。教師提供學(xué)具讓學(xué)生充分操作,體驗(yàn)兩種分法的含義,重點(diǎn)在如何理解3塊餅的就是張。把2塊餅平均分給3個(gè)人,每人應(yīng)該分得多少塊?繼續(xù)讓學(xué)生操作,豐富對2塊餅的就是2/3塊餅的理解。學(xué)生操作經(jīng)驗(yàn)的積累有效地突破了本節(jié)課的難點(diǎn)。
二、培養(yǎng)學(xué)生提出問題的意識(shí)與能力是培養(yǎng)學(xué)生創(chuàng)新精神的關(guān)鍵。
愛因斯坦曾說:提出一個(gè)問題比解決一個(gè)問題更重要。學(xué)生提出問題的能力不是與生俱來的,需要教師精心、具體的指導(dǎo)。本節(jié)課圍繞兩種分法精心設(shè)計(jì)了具有思考性的、合乎邏輯的問題串,“逼”學(xué)生進(jìn)行有序的思考,從而進(jìn)一步提出有價(jià)值的問題。比如學(xué)生展示完自己的分法后教師啟發(fā)學(xué)生提出問題:
a:你們是幾塊幾塊的分的?
b:每人每次分得多少塊餅?
c:分了幾次,共分了多少塊?(就是3個(gè)塊就是幾塊)
d:怎樣才能看出是幾塊?
問題的提出針對性強(qiáng),有利于學(xué)生把握數(shù)學(xué)的本質(zhì)。
三、用發(fā)展的思維去理解所學(xué)的知識(shí),注重了知識(shí)的系統(tǒng)性。
數(shù)學(xué)知識(shí)不是孤立的,而是密切聯(lián)系的,只有把知識(shí)放在一個(gè)完整的系統(tǒng)中,學(xué)生的研究才是有意義的。比如學(xué)生在應(yīng)用分?jǐn)?shù)與除法的關(guān)系練習(xí)時(shí)對于0.7÷2=,部分學(xué)生會(huì)覺著的表示方法是不行的,教師解釋:這種分?jǐn)?shù)形式平時(shí)并不常見,隨著今后的學(xué)習(xí),大家就能把它轉(zhuǎn)化成常見的分?jǐn)?shù)形式。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思7
數(shù)學(xué)是研究現(xiàn)實(shí)世界的空間形式和數(shù)量關(guān)系的科學(xué)。數(shù)學(xué)學(xué)習(xí)是中學(xué)生增長學(xué)習(xí)能力和創(chuàng)造能力的廣闊天地。而數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)是教育者通過一定的教育途徑對學(xué)習(xí)者進(jìn)行學(xué)習(xí)方法的傳授、誘導(dǎo)、診治,使學(xué)習(xí)者掌握科學(xué)的學(xué)習(xí)方法并靈活運(yùn)用于學(xué)習(xí)之中,逐步形成較強(qiáng)的自學(xué)能力的方法。
長期以來,對教師教學(xué)的要求強(qiáng)調(diào)領(lǐng)會(huì)教學(xué)大綱、駕馭教材較多,因此教師鉆研教材多,研究教法多,而研究學(xué)生思維活動(dòng)較少,因而選擇適合學(xué)生認(rèn)知過程的教法也少。學(xué)生對知識(shí)的獲得一般都要經(jīng)過主動(dòng)探究,小組合作,主動(dòng)建構(gòu)過程。在新課程背景下,如何讓感到數(shù)學(xué)好學(xué),把學(xué)數(shù)學(xué)當(dāng)成一種樂趣,真正做初中數(shù)學(xué)的小主人。然后有計(jì)劃、有步驟、分階段、分層次、有針對性地指導(dǎo)學(xué)生掌握各種學(xué)習(xí)方法。使我們的學(xué)生能夠主動(dòng)地、獨(dú)立地學(xué)習(xí),達(dá)到新課程要求標(biāo)準(zhǔn)。具體數(shù)學(xué)學(xué)習(xí)方法的指導(dǎo)是長期艱巨的任務(wù),抓好學(xué)法指導(dǎo)對今后的學(xué)習(xí)會(huì)起到至關(guān)重要的作用。主要從以下幾個(gè)方面來談一談。
一、引導(dǎo)學(xué)生預(yù)習(xí),細(xì)心讀教材培養(yǎng)學(xué)生的自學(xué)能力
學(xué)生往往不善于預(yù)習(xí),也不知道預(yù)習(xí)起什么作用,預(yù)習(xí)僅是流于形式,草草看一遍,看不出問題和疑點(diǎn)。在指導(dǎo)學(xué)生預(yù)習(xí)時(shí)應(yīng)要求學(xué)生做到:新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特別重視課堂的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。
在教學(xué)過程中,教師應(yīng)指導(dǎo)學(xué)生學(xué)會(huì)讀書的方法,做到眼到、口到、心到、手到。新學(xué)一個(gè)章節(jié)內(nèi)容,先粗粗讀一遍,即瀏覽本章節(jié)所學(xué)內(nèi)容的枝干,然后一邊讀一邊勾,粗略懂得教材的內(nèi)容的重點(diǎn)、難點(diǎn)所在,對不理解的地方打上記號(hào)。然后細(xì)細(xì)的讀,即根據(jù)每章節(jié)后的學(xué)習(xí)要求一粗讀,先粗略瀏覽教材的有關(guān)內(nèi)容,掌握本節(jié)知識(shí)的概貌。二細(xì)讀,對重要概念、公式、法則、定理反復(fù)閱讀、體會(huì)、思考,注意知識(shí)的形成過程,對難以理解的概念作出記號(hào),以便帶著疑問去聽課。方法上可采用隨課預(yù)習(xí)或單元預(yù)習(xí)。預(yù)習(xí)前教師先布置預(yù)習(xí)提綱,使學(xué)生有的放矢。實(shí)踐證明,養(yǎng)成良好的預(yù)習(xí)習(xí)慣,能使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),同時(shí)能逐漸培養(yǎng)學(xué)生的自學(xué)能力。
二、加強(qiáng)互助學(xué)習(xí),共同提高
教師在教學(xué)中要注意培養(yǎng)差生的自信心外,更應(yīng)該充分利用優(yōu)等生這個(gè)教育資源,進(jìn)行好生差生配對,這也是合作學(xué)習(xí)的一種方式,它從以人為本的理念出發(fā),關(guān)注了差生的發(fā)展,構(gòu)建了團(tuán)結(jié),合作共同發(fā)展的良好的,和諧的學(xué)習(xí)環(huán)境。同時(shí)它也彌補(bǔ)了教師課后輔導(dǎo)時(shí)間不足的缺陷。
三、課內(nèi)重視聽講,培養(yǎng)學(xué)生的思維能力
初中新生往往對課程增多、課堂學(xué)習(xí)容量加大不適應(yīng),顧此失彼、精力分散,使聽課效率下降,因此,重視聽法指導(dǎo),使他們學(xué)會(huì)聽,是提高學(xué)習(xí)效率的關(guān)鍵。
上課時(shí)要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類公式的推理過程,盡量回憶而不采用不清楚立即翻書之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。聽教師講課要重點(diǎn)突出,層次分明,要注意防止“注入式”、“滿堂灌”,一定掌握最佳講授時(shí)間,使學(xué)生聽之有效。這樣,讓學(xué)生抓住重、難點(diǎn),沿著知識(shí)的發(fā)生發(fā)展的過程來聽課,不僅能提高聽課效率,而且能使其由“聽會(huì)”轉(zhuǎn)變?yōu)椤皶?huì)聽”。
四、指導(dǎo)學(xué)生思考
數(shù)學(xué)學(xué)習(xí)是學(xué)習(xí)者在原有數(shù)學(xué)認(rèn)知結(jié)構(gòu)基礎(chǔ)上,通過新舊知識(shí)之間的聯(lián)系,形成新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的過程。由于這種工作最終必須由每個(gè)學(xué)習(xí)者相對獨(dú)立地完成。因此,在教學(xué)過程中老師對學(xué)生要進(jìn)行思法指導(dǎo),教師應(yīng)著力于以下幾點(diǎn):使學(xué)生達(dá)到融會(huì)貫通的境界。在思維方法指導(dǎo)時(shí),應(yīng)使學(xué)生注意:多思、勤思,隨聽隨思;深思,即追根溯源地思考,善于大膽提出問題;善思,由聽和觀察去聯(lián)想、猜想、歸納;
五、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題目是難免的,但不是爛做搞題海戰(zhàn)術(shù),熟悉掌握各種題型的解題思路。學(xué)生課后往往容易急于完成書面作業(yè),忽視必要的鞏固、記憶、復(fù)習(xí)。以致出現(xiàn)照例題模仿、套公式解題的現(xiàn)象,造成為交作業(yè)而做作業(yè),起不到作業(yè)的練習(xí)鞏固、深化理解知識(shí)的應(yīng)有作用。
在作業(yè)書寫方面也應(yīng)注意“寫法”指導(dǎo),要求學(xué)生書寫格式要規(guī)范、條理要清楚。對于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。
六、指導(dǎo)學(xué)生記憶。
教學(xué)生如何克服遺忘,以科學(xué)的方法記憶數(shù)學(xué)知識(shí),對學(xué)生來說是很有益處的。初中新生由于正處在初級(jí)的邏輯思維階段,識(shí)記知識(shí)時(shí)機(jī)械記憶的成分較多,理解記憶的成分較少,這就不能適應(yīng)初中學(xué)生的新要求。因此,重視對學(xué)生進(jìn)行記憶方法指導(dǎo),這是初中數(shù)學(xué)教學(xué)的必然要求。
教學(xué)中,首先要重視改革教學(xué)方法,拋棄滿堂灌,以避免學(xué)生“消化不良”,其次要善于結(jié)合數(shù)學(xué)實(shí)際,教給學(xué)生相應(yīng)的方法??傊?,對初中生數(shù)學(xué)學(xué)習(xí)方法的指導(dǎo),必須與教學(xué)改革同步進(jìn)行,協(xié)調(diào)開展,持之以恒。要力求做到轉(zhuǎn)變思想與傳授方法結(jié)合,課上與課下結(jié)合,學(xué)法與教法結(jié)合,教師指導(dǎo)與學(xué)生探求結(jié)合,統(tǒng)一指導(dǎo)與個(gè)別指導(dǎo)結(jié)合,建立縱橫交錯(cuò)的學(xué)法指導(dǎo)網(wǎng)絡(luò),促進(jìn)學(xué)生掌握正確的學(xué)習(xí)方法、同時(shí)要理論聯(lián)系實(shí)際,因人而異,因材施教,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。
以上這些只是我個(gè)人在從事數(shù)學(xué)教學(xué)過程中的一點(diǎn)心得體會(huì),說出來,與大家共勉。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思8
教學(xué)片斷:
師:哪些同學(xué)知道3/103的計(jì)算結(jié)果?
(絕大多數(shù)學(xué)生舉起了手,部分同學(xué)迫不及待地說出了答案:9/10。)
師:說一說你是怎么計(jì)算的?
生1:我從書上看到,分?jǐn)?shù)與整數(shù)相乘時(shí),只要把分子與整數(shù)相乘就可以了,分母不變。所以,33=9,分子是9,分母仍然是10,結(jié)果就是9/10。
(舉手的學(xué)生都點(diǎn)頭表示同意生1的發(fā)言,有個(gè)別學(xué)生表示是從課外數(shù)學(xué)班的學(xué)習(xí)中了解到的。)
師:老師也同意用這個(gè)方法進(jìn)行分?jǐn)?shù)與整數(shù)相乘的計(jì)算。對于這個(gè)內(nèi)容,大家還有什么疑問?
生2:為什么只把分子與整數(shù)相乘,分母10不和3相乘?
師:多好的問題?。ㄟ@個(gè)問題正是理解算理的關(guān)鍵。)大家有什么想法?可以在小組內(nèi)交流。
(幾分鐘以后,許多同學(xué)舉起了手。)
生3:我是這么想的:3/10表示3個(gè)1/10相加,同分母分?jǐn)?shù)加減法的計(jì)算法則是,分母不變,只把分子相加減。所以分母不變,只計(jì)算分子3+3+3,也就是33就可以了。
師:你能抓住分?jǐn)?shù)乘整數(shù)的意義,從而將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來思考,真好!
生4:3/10里面有3個(gè)1/10,3/10的3倍就是有9個(gè)1/10,也就是9/10。
師:你對分?jǐn)?shù)的計(jì)算單位以及分?jǐn)?shù)單位的個(gè)數(shù)理解得很透徹!
生5:如果將3/10的分子和分母都乘3,根據(jù)分?jǐn)?shù)的基本性質(zhì),結(jié)果還是3/10,而不是3個(gè)3/10。
師:生5從反面給我們講明了分母不能與整數(shù)相乘的道理,謝謝你。
生6:我認(rèn)為3/10等于0.3,0.33等于0.9,也就是9/10。所以,3/103等于9/10。
生7:我想給大家舉個(gè)例子說明3/103等于9。老師拿來10支粉筆,每天用去3/10,也就是3支,三天用去9支,也就是用去這些粉筆的9/10。
師:用日常生活中的實(shí)例來理解數(shù)學(xué),也是一種非常好的學(xué)習(xí)方法。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思9
一.在問題的引入上,新課標(biāo)規(guī)定應(yīng)從實(shí)際情景入手,并且使學(xué)生能夠?qū)栴}產(chǎn)生強(qiáng)烈的求知欲:
1.數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計(jì)的原型來源于生活實(shí)際,學(xué)生易于體驗(yàn)和接受,讓學(xué)生通過觀察、思考和自己動(dòng)手操作、經(jīng)歷和體驗(yàn)數(shù)軸的形成過 程,加深對數(shù)軸概念的理解,同時(shí)培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認(rèn)識(shí),到理性認(rèn)識(shí),到抽象概括的認(rèn)識(shí)規(guī)律。利用溫度計(jì)引入調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極 性。
2.教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。
二、在問題的探索上:
我采用了師生互動(dòng),通過師生雙邊活動(dòng)產(chǎn)生一種動(dòng)態(tài)效果,使學(xué)生在充滿好奇心的狀態(tài)下,在老師提供的情景下,在具有較多的時(shí)間和空間的條件下,親身參加探索 發(fā)現(xiàn),主動(dòng)的獲取知識(shí)和技能。但在整個(gè)的實(shí)施過程中出現(xiàn)了一些問題,比如:在概念的得出上學(xué)生的總結(jié)出現(xiàn)了一些問題,我再處理時(shí)由于怕時(shí)間不夠充裕所以學(xué) 生出現(xiàn)的問題我給做出了解答,其實(shí)這里應(yīng)由學(xué)生自己來解決,這樣對學(xué)生能力的提高非常有幫助。
三、習(xí)題的配備:
整個(gè)習(xí)題的配備大致是按從易到難的順序排列的,面向全體學(xué)生,采用多種形式,使不同層次的學(xué)生都有所得,并且采用循序漸進(jìn)的方。在講解完例題后,讓學(xué)生互 相提問,以促使學(xué)生積極踴躍的參與到教學(xué)活動(dòng)中來,創(chuàng)造一種輕松的學(xué)習(xí)氛圍。但我總體感覺習(xí)題的量不夠充足,學(xué)生的練習(xí)機(jī)會(huì)較少。
四.不足之處:
學(xué)生通過學(xué)習(xí)掌握了畫數(shù)軸時(shí)原點(diǎn)的位置和單位長度可以實(shí)際情況來確定,但由于受課本練習(xí)冊數(shù)軸圖形的影響,有部分學(xué)生認(rèn)為只有向右的方向才能作為數(shù)軸的正 方向,遇到向其它方向?yàn)檎较驍?shù)軸圖形就認(rèn)為它不是數(shù)軸了。這有待在今后的教學(xué)中改進(jìn)教學(xué)方法使學(xué)生加深對這方面的理解。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思10
“四則運(yùn)算”是人教版小學(xué)四年級(jí)數(shù)學(xué)下冊第一單元的資料,四則運(yùn)算是貫穿于小學(xué)數(shù)學(xué)教學(xué)全部過程。其資料占小學(xué)教學(xué)知識(shí)的主要位置,可見計(jì)算潛力的培養(yǎng)在數(shù)學(xué)教學(xué)過程中起到舉足輕重的作用。我在這一單元的教學(xué)中,充分利用教材帶給的生活素材,把解決問題與四則混合運(yùn)算順序有機(jī)結(jié)合起來,將探求解題思路與理解運(yùn)算順序有機(jī)結(jié)合起來,讓學(xué)生在經(jīng)歷解決問題的過程中明確先求什么,用什么方法計(jì)算;再求什么,又用什么方法計(jì)算;最后求什么,用什么方法計(jì)算。感受混合運(yùn)算順序的必要性,掌握混合運(yùn)算順序。
在教學(xué)過程中我主要有以下幾點(diǎn)體會(huì):
1、對四則運(yùn)算順序的理解
通過學(xué)習(xí)學(xué)生基本能記住掌握四則運(yùn)算的基本順序,即先括號(hào)內(nèi),后括號(hào)外,先乘除后加減,單一加減或單一乘除要從左到右的順序計(jì)算,學(xué)生雖說能記住,但在實(shí)際的練習(xí)中出現(xiàn)了以下的問題或者說是誤解應(yīng)值得教師注意。
(1)對“先”字的理解,我發(fā)此刻很多學(xué)生的練習(xí)中出現(xiàn)誤解現(xiàn)象,他們認(rèn)為先算的就就應(yīng)寫在前面,如計(jì)算12+(13-4)-6就會(huì)這樣些=9+12-6把先算的括號(hào)寫在前面,還如12+5×6-15就會(huì)這樣寫=30+12-15,打亂運(yùn)算的順序。
(2)在理解“先乘除,后加減”時(shí)誤認(rèn)為要先算乘法后算除法,先算加法后算減法,如計(jì)算12÷3×2寫成=12÷6=2,計(jì)算12-3+6就寫成=12-9=3。而實(shí)際所謂先乘除后加減是指乘除哪種運(yùn)算法則在前九先算哪種,加減也是。
以上兩點(diǎn)對“先”字的理解先算出現(xiàn)的誤解現(xiàn)象值得教師注意糾正指導(dǎo)。
2、很多學(xué)生在解答如“326與290的差去乘18與24的和,積是多少?”一類的問題時(shí),對“與”、“和”兩個(gè)字的含義理解出現(xiàn)誤解,個(gè)性是“和”的含義。在學(xué)生的練習(xí)中我發(fā)現(xiàn)很多學(xué)生出現(xiàn)錯(cuò)誤,不理解其意思導(dǎo)致出現(xiàn)錯(cuò)誤?!昂汀痹陬}目中是表示連接兩個(gè)數(shù)字的關(guān)系的連詞使用還是表示運(yùn)算法則中的加法來使用,老師必須要給學(xué)生將清,引導(dǎo)學(xué)生區(qū)別,正確的理解含義并寫出正確的四則余混合算式。
3、讓學(xué)生用數(shù)學(xué)語言把算式說出來。(如x除以a減b的差。)這也為學(xué)生對文字題的理解打下了基礎(chǔ)。
4、遇到學(xué)生錯(cuò)誤的典型例題時(shí),進(jìn)行錯(cuò)誤的辨析,讓學(xué)生知其所以然。使學(xué)生在經(jīng)歷
探索和交流解決實(shí)際問題的過程中,感受解決問題的一些策略和方法,學(xué)會(huì)用兩三步計(jì)算的方法解決一些實(shí)際問題。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思11
本節(jié)課我從復(fù)習(xí)同分母分?jǐn)?shù)加法引入,得出整數(shù)乘法的意義和分?jǐn)?shù)乘整數(shù)的意義相同都是求幾個(gè)相同加數(shù)和的簡便運(yùn)算,由此進(jìn)入分?jǐn)?shù)乘整數(shù)方法的計(jì)算教學(xué)。教學(xué)方法時(shí)我注重算理的講解、注重圖形和算式的聯(lián)系。可以說這節(jié)課的內(nèi)容很簡單,但作業(yè)反饋的情況看正確率卻很低。存在的問題就是約分的環(huán)節(jié),有些學(xué)生喜歡算出結(jié)果以后再約分,就比較愛出錯(cuò)。再由于上學(xué)期的約分知識(shí)很多學(xué)生就不熟練,有不少學(xué)生仍不斷出現(xiàn)約分錯(cuò)誤和忘記約分的情況。
作為分?jǐn)?shù)乘法的第一節(jié)課——分?jǐn)?shù)乘整數(shù),形成先約分后計(jì)算的良好計(jì)算習(xí)慣,對于提高學(xué)生計(jì)算的正確率和計(jì)算速度,有著很重要的作用。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思12
時(shí)間過得飛快,一眨眼之間開學(xué)的第一次月考已經(jīng)結(jié)束了。應(yīng)對這一張張優(yōu)而不尖和“絆腳石”似的的分?jǐn)?shù)令我不禁陷入沉思;看看一道道不該錯(cuò)的題目被打上大大的叉時(shí),心底里感到無限地自責(zé)……
數(shù)學(xué)的成績確實(shí)不能讓自己滿意。數(shù)學(xué)是開學(xué)以來主攻的科目,時(shí)間精力的投入收到了必須效果,但是細(xì)節(jié)與知識(shí)的結(jié)合還有漏洞,在以前沒有養(yǎng)成良好的學(xué)習(xí)習(xí)慣,對概念的模糊,都在這份數(shù)學(xué)試卷中暴露了。壓軸題上不去,細(xì)節(jié)還扣分,這樣高不成低不就的學(xué)習(xí)是務(wù)必要摒棄的。學(xué)習(xí)知識(shí)就要新舊結(jié)合,同時(shí)還要鍛煉思維的嚴(yán)謹(jǐn)性,把知識(shí)點(diǎn)學(xué)透不能摸棱兩個(gè)。只有把只是學(xué)透了,思維才能得到充分的發(fā)散。還有一些完全是粗心造成的,使那本該屬于我的分?jǐn)?shù)離我而去。學(xué)習(xí)務(wù)必循序漸進(jìn)。只有地基打牢固了,高樓大廈才不會(huì)傾斜;只有走穩(wěn)了,才會(huì)簡單地跑。學(xué)習(xí)任何知識(shí),務(wù)必注重基本訓(xùn)練,要一步一個(gè)腳印,由易到難,扎扎實(shí)實(shí)地練好基本功,不要前面的資料沒有學(xué)懂,就急著去學(xué)習(xí)后面的知識(shí);更不能基本的習(xí)題沒有做好,就一味去鉆偏題、難題。這是十分有害的。
在今后的學(xué)習(xí)生活中,仍然有一段很長的路要走,良好的學(xué)習(xí)習(xí)慣是成功的保障。我的目標(biāo)就是在所有考試中不丟讓自己覺得遺憾的分。學(xué)習(xí)而不思考,等于吃飯不消化,我相信對于學(xué)習(xí)中的問題,有了好的學(xué)習(xí)態(tài)度,在經(jīng)過自己的思考和總結(jié)必須會(huì)提升自己的學(xué)習(xí)質(zhì)量。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思13
“求一個(gè)數(shù)的幾分之幾是多少”的應(yīng)用題。這樣的應(yīng)用題實(shí)際上是一個(gè)數(shù)乘分?jǐn)?shù)的意義的應(yīng)用。它是分?jǐn)?shù)應(yīng)用題中最基本的。不僅分?jǐn)?shù)除法一步應(yīng)用題以它為基礎(chǔ),很多復(fù)合的分?jǐn)?shù)應(yīng)用題都是在它的基礎(chǔ)上擴(kuò)展的。因此,使學(xué)生掌握這種應(yīng)用題的解答方法具有重要的意義.在教學(xué)中我抓住關(guān)鍵句,找到兩個(gè)相比較的量,弄清哪個(gè)量是單位“1”,要求的量是單位“1”的幾分之幾后,再根據(jù)分?jǐn)?shù)的意義解答。在教學(xué)中,我強(qiáng)調(diào)以下幾點(diǎn):
(1)、讓學(xué)生用畫圖的方式強(qiáng)化理解一個(gè)分?jǐn)?shù)的幾分之幾用乘法計(jì)算.
(2)、強(qiáng)化分率與數(shù)量的一一對應(yīng)關(guān)系.并根據(jù)關(guān)鍵句說出數(shù)量關(guān)系。
(3)、幫助學(xué)生理解“一個(gè)數(shù)的幾分之幾”與“一個(gè)數(shù)占另一個(gè)數(shù)”的幾分之幾的不同.
對稍復(fù)雜的分?jǐn)?shù)應(yīng)用題,通過分析關(guān)鍵句與線段圖,為后面的新授作鋪墊,并提高學(xué)生分析題意、理解數(shù)量關(guān)系的能力。通過溝通練習(xí)題與例題,利用學(xué)生解決稍復(fù)雜的應(yīng)用題,并從中理解新舊應(yīng)用題的不同結(jié)構(gòu)。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思14
自我反思有助于改造和提升教師的教學(xué)經(jīng)驗(yàn),經(jīng)驗(yàn)+反思=成長,只有經(jīng)過反思,使原始的經(jīng)驗(yàn)不斷地處于被審視、被修正、被強(qiáng)化、被否定等思維加工中,去粗存精,去偽存真,這樣經(jīng)驗(yàn)才會(huì)得到提煉、得到升華,從而成為一種開放性的系統(tǒng)和理性的力量,唯其如此,經(jīng)驗(yàn)才能成為促進(jìn)教師專業(yè)成長的有力杠桿。閱讀這篇數(shù)學(xué)教學(xué)反思之《分?jǐn)?shù)乘整數(shù)計(jì)算法則》,和小編來感受它的魅力吧!
在教學(xué)“分?jǐn)?shù)乘整數(shù)計(jì)算法則”時(shí),我從一道計(jì)算題入手,讓學(xué)生聯(lián)系生活實(shí)際,創(chuàng)設(shè)問題情境,較好地體現(xiàn)了學(xué)生學(xué)習(xí)的主體性,溝通了數(shù)學(xué)與生活實(shí)際的聯(lián)系,使學(xué)生認(rèn)識(shí)到“數(shù)學(xué)”是生活中的數(shù)學(xué),是有用的數(shù)學(xué)。同時(shí)這道計(jì)算題還溝通了與新的知識(shí)的聯(lián)系,引出了分?jǐn)?shù)乘整數(shù)的意義,并能讓學(xué)生憑借這個(gè)知識(shí)點(diǎn),探索出分?jǐn)?shù)乘整數(shù)的計(jì)算法則。在教學(xué)分?jǐn)?shù)乘整數(shù)的計(jì)算法則時(shí),我還注重了放手讓學(xué)生去探索,注重了學(xué)生的合作交流,通過討論發(fā)現(xiàn)知識(shí)的奧秘,通過交流拓寬全體學(xué)生的知識(shí)面。由此我深深地體會(huì)到,教師不能要求學(xué)生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會(huì)阻礙學(xué)生的思維發(fā)展。我們教師在課堂上只是學(xué)生的引路人,是導(dǎo)師
這則數(shù)學(xué)教學(xué)反思之《分?jǐn)?shù)乘整數(shù)計(jì)算法則》希望能給你的學(xué)習(xí)生活增添益處。
數(shù)學(xué)分?jǐn)?shù)乘整數(shù)教學(xué)反思15
我們常有這樣的困惑:不僅是講了,而且是講了多遍,可是學(xué)生的解題能力就是得不到提高!也常聽見學(xué)生這樣的埋怨:鞏固題做了千萬遍,數(shù)學(xué)成績卻遲遲得不到提高!這應(yīng)該引起我們的反思了。誠然,出現(xiàn)上述情況涉及方方面面,但其中的例題教學(xué)值得反思,數(shù)學(xué)的例題是知識(shí)由產(chǎn)生到應(yīng)用的關(guān)鍵一步,即所謂“拋磚引玉”,然而很多時(shí)候只是例題繼例題,解后并沒有引導(dǎo)學(xué)生進(jìn)行反思,因而學(xué)生的學(xué)習(xí)也就停留在例題表層,出現(xiàn)上述情況也就不奇怪了。
孔子云:學(xué)而不思則罔?!柏琛奔疵曰蠖鴽]有所得,把其意思引申一下,我們也就不難理解例題教學(xué)為什么要進(jìn)行解后反思了。事實(shí)上,解后反思是一個(gè)知識(shí)小結(jié)、方法提煉的過程;是一個(gè)吸取教訓(xùn)、逐步提高的過程;是一個(gè)收獲希望的過程。從這個(gè)角度上講,例題教學(xué)的解后反思應(yīng)該成為例題教學(xué)的一個(gè)重要內(nèi)容。本文擬從以下三個(gè)方面作些探究。
一、在解題的方法規(guī)律處反思
“例題千萬道,解后拋九霄”難以達(dá)到提高解題能力、發(fā)展思維的目的。善于作解題后的反思、方法的歸類、規(guī)律的小結(jié)和技巧的揣摩,再進(jìn)一步作一題多變,一題多問,一題多解,挖掘例題的深度和廣度,擴(kuò)大例題的輻射面,無疑對能力的提高和思維的發(fā)展是大有裨益的。
例如:(原例題)已知等腰三角形的腰長是4,底長為6;求周長。我們可以將此例題進(jìn)行一題多變。
變式1 已知等腰三角形一腰長為4,周長為14,求底邊長。(這是考查逆向思維能力)
變式2 已等腰三角形一邊長為4;另一邊長為6,求周長。(前兩題相比,需要改變思維策略,進(jìn)行分類討論)
變式3已知等腰三角形的一邊長為3,另一邊長為6,求周長。(顯然“3只能為底”否則與三角形兩邊之和大于第三邊相矛盾,這有利于培養(yǎng)學(xué)生思維嚴(yán)密性)
變式4 已知等腰三角形的腰長為x,求底邊長y的取值范圍。
變式5 已知等腰三角形的腰長為X,底邊長為y,周長是14。請先寫出二者的函數(shù)關(guān)系式,再在平面直角坐標(biāo)內(nèi)畫出二者的圖象。(與前面相比,要求又提高了,特別是對條件0﹤y﹤2x的理解運(yùn)用,是完成此問的關(guān)鍵)
再比如:人教版初三幾何中第93頁例2和第107頁例1分別用不同的方法解答,這是一題多解不可多得的素材(AB為⊙O的直徑,C為⊙O上的一點(diǎn),AD和過C點(diǎn)的切線互相垂直,垂足為D。求證:AC平分∠DAB)
通過例題的層層變式,學(xué)生對三邊關(guān)系定理的認(rèn)識(shí)又深了一步,有利于培養(yǎng)學(xué)生從特殊到一般,從具體到抽象地分析問題、解決問題;通過例題解法多變的教學(xué)則有利于幫助學(xué)生形成思維定勢,而又打破思維定勢;有利于培養(yǎng)思維的變通性和靈活性。
二,在學(xué)生易錯(cuò)處反思
學(xué)生的知識(shí)背景、思維方式、情感體驗(yàn)往往和成人不同,而其表達(dá)方式可能又不準(zhǔn)確,這就難免有“錯(cuò)”。例題教學(xué)若能從此切入,進(jìn)行解后反思,則往往能找到“病根”,進(jìn)而對癥下藥,常能收到事半功倍的效果!
有這樣一個(gè)曾刊載于《中小學(xué)數(shù)學(xué)》初中(教師)版20__年第5期的案例:一位初一的老師在講完負(fù)負(fù)得正的規(guī)則后,出了這樣一道題:—3×(—4)= ?, A學(xué)生的答案是“9”,老師一看:錯(cuò)了!于是馬上請B同學(xué)回答,這位同學(xué)的答案是“12”,老師便請他講一講算法:……,下課后聽課的老師對給出錯(cuò)誤的答案的學(xué)生進(jìn)行訪談,那位學(xué)生說:站在—3這個(gè)點(diǎn)上,因?yàn)槌艘浴?,所以要沿著數(shù)軸向相反方向移動(dòng)四次,每次移三格,故答案為9。他的答案的確錯(cuò)了,怎么錯(cuò)的?為什么會(huì)有這樣的想法?又怎樣糾正呢?如果我們的例題教學(xué)能抓住這一契機(jī),并就此展開討論、反思,無疑比講十道、百道乃至更多的例題來鞏固法則要好得多,而這一點(diǎn)恰恰容易被我們所忽視。
計(jì)算是初一代數(shù)的教學(xué)重點(diǎn)也是難點(diǎn),如何把握這一重點(diǎn),突破這一難點(diǎn)?各老師在例題教學(xué)方面可謂“千方百計(jì)”。例如在上完有關(guān)冪的性質(zhì),而進(jìn)入下一階段——單項(xiàng)式、多項(xiàng)式的乘除法時(shí),筆者就設(shè)計(jì)了如下的兩個(gè)例題:
(1)請分別指出(—2)2,—22,—2-2,2-2的意義;
(2)請辨析下列各式:
① a2+a2=a4 ②a4÷a2=a4÷2=a2
③-a3 ·(-a)2 =(-a)3+2 =-a5
④(-a)0 ÷a3=0 ⑤(a-2)3·a=a-2+3+1=a2
解后筆者便引導(dǎo)學(xué)生進(jìn)行反思小結(jié).
(1)計(jì)算常出現(xiàn)哪些方面的錯(cuò)誤?
(2)出現(xiàn)這些錯(cuò)誤的原因有哪些?
(3)怎樣克服這些錯(cuò)誤呢? 同學(xué)們各抒己見,針對各種“病因”開出了有效的“方子”。實(shí)踐證明,這樣的例題教學(xué)是成功的,學(xué)生在計(jì)算的準(zhǔn)確率、計(jì)算的速度兩個(gè)方面都有極大的提高。
三、在情感體驗(yàn)處反思
因?yàn)檎麄€(gè)的解題過程并非僅僅只是一個(gè)知識(shí)運(yùn)用、技能訓(xùn)練的過程,而是一個(gè)伴隨著交往、創(chuàng)造、追求和喜、怒、哀、樂的綜合過程,是學(xué)生整個(gè)內(nèi)心世界的參與。其間他既品嘗了失敗的苦澀,又收獲了“山重水復(fù)疑無路,柳暗花明又一村”的喜悅,他可能是獨(dú)立思考所得,也有可能是通過合作協(xié)同解決,既體現(xiàn)了個(gè)人努力的價(jià)值,又無不折射出集體智慧的光芒。在此處引導(dǎo)學(xué)生進(jìn)行解后反思,有利于培養(yǎng)學(xué)生積極的情感體驗(yàn)和學(xué)習(xí)動(dòng)機(jī);有利于激勵(lì)學(xué)生的學(xué)習(xí)興趣,點(diǎn)燃學(xué)習(xí)的熱情,變被動(dòng)學(xué)習(xí)為自主探究學(xué)習(xí);還有利于鍛煉學(xué)生的學(xué)習(xí)毅力和意志品格。同時(shí),在此過程中,學(xué)生獨(dú)立思考的學(xué)習(xí)習(xí)慣、合作意識(shí)和團(tuán)隊(duì)精神均能得到很好的培養(yǎng)。
數(shù)學(xué)教育家弗賴登塔爾就指出:反思是數(shù)學(xué)活動(dòng)的核心和動(dòng)力??傊?,解后的反思方法、規(guī)律得到了及時(shí)的小結(jié)歸納;解后的反思使我們撥開迷蒙,看清“廬山真面目”而逐漸成熟起來;在反思中學(xué)會(huì)了獨(dú)立思考,在反思中學(xué)會(huì)了傾聽,學(xué)會(huì)了交流、合作,學(xué)會(huì)了分享,體驗(yàn)了學(xué)習(xí)的樂趣,交往的快慰。
第三篇:分?jǐn)?shù)乘整數(shù)教學(xué)反思
《分?jǐn)?shù)乘整數(shù)》教學(xué)反思
舒蘭市實(shí)驗(yàn)小學(xué)
白麗萍
本單元是在學(xué)生掌握了整數(shù)乘法、分?jǐn)?shù)的意義和性質(zhì)、分?jǐn)?shù)加減法以及約分等知識(shí)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,又是學(xué)生學(xué)習(xí)分?jǐn)?shù)除法、比、分?jǐn)?shù)四則混合運(yùn)算及百分?jǐn)?shù)知識(shí)的重要基礎(chǔ)。于是,我教學(xué)時(shí)就從學(xué)生的已有知識(shí)基礎(chǔ)和生活經(jīng)驗(yàn)出發(fā),引導(dǎo)學(xué)生在解決實(shí)際問題的情境中,理解分?jǐn)?shù)乘整數(shù)的意義。
一、尊重學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”。
開頭依據(jù)知識(shí)的遷移,進(jìn)行很必要的鋪墊,利用知識(shí)間的聯(lián)系,精心設(shè)置復(fù)習(xí)題,為教學(xué)重點(diǎn)服務(wù),使學(xué)生順利掌握“分?jǐn)?shù)乘整數(shù)的意義與整數(shù)乘法意義相同”。同時(shí)復(fù)習(xí)相同分?jǐn)?shù)加法,為推導(dǎo)計(jì)算方法進(jìn)行鋪墊。
其實(shí)班里已經(jīng)有許多學(xué)生知道了分?jǐn)?shù)乘整數(shù)的計(jì)算方法。如果再按照一般的教學(xué)程序進(jìn)行教學(xué),學(xué)生就會(huì)覺得“這些知識(shí)我早就知道了,沒什么可學(xué)的了?!?,從而失去探究的興趣。教師的主導(dǎo)作用在于設(shè)計(jì)恰當(dāng)?shù)慕虒W(xué)形式,調(diào)動(dòng)不同層次的學(xué)生的學(xué)習(xí)興趣。于是在教學(xué)時(shí),我故意將分?jǐn)?shù)乘整數(shù)的結(jié)論“灌輸”給學(xué)生,省去了獲取結(jié)論的研究過程,意在讓學(xué)生問“為什么”。這時(shí)學(xué)生抓住這一質(zhì)疑點(diǎn),提出:“為什么只把分子與整數(shù)相乘,分母10不和3相乘?”接下來的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去探索。將例1進(jìn)一步作為驗(yàn)證計(jì)算方法的題材,通過畫圖來解決問題。由質(zhì)疑開始的探索是學(xué)生為滿足自身需要而進(jìn)行的主動(dòng)探索,因此學(xué)生在課堂上迫不及待地,積極主動(dòng)地進(jìn)行討論,從不同的角度解決疑問。
二、反思不足,提煉經(jīng)驗(yàn)。
本節(jié)課的重點(diǎn)是得出分?jǐn)?shù)乘整數(shù)的計(jì)算方法,約分時(shí),只能將分母與整數(shù)約分。我還沒有完全放手讓學(xué)生自己總結(jié)出計(jì)算方法,沒時(shí)間多練,同時(shí)沒注重學(xué)生口語能力的培養(yǎng)對學(xué)生還是不放心,老師講得太多,強(qiáng)調(diào)的主題太多,一些注意事項(xiàng)沒有變成學(xué)生的語言,讓學(xué)生去發(fā)現(xiàn),去解決,從而記憶不是很深刻。從這一點(diǎn),我深深體會(huì)到什么是“備教材”,“備學(xué)生”。課前要把知識(shí)點(diǎn)吃透把握住重點(diǎn)、難點(diǎn),哪些要補(bǔ)充,哪些地方要?jiǎng)?chuàng)造性使用教材。學(xué)生以一個(gè)什么樣的方式更容易接受,老師哪些地方該講不該講,都需要我們深思熟慮。
第四篇:分?jǐn)?shù)乘整數(shù)教學(xué)反思
開學(xué)以來,心情和心態(tài)大不如前,分?jǐn)?shù)乘整數(shù)教學(xué)反思。最開心的是晚上回到家里。董蘋在和浚溪一起完成做業(yè)。我在一邊看點(diǎn)書。感覺很幸福。
分?jǐn)?shù)乘整數(shù)這節(jié)課,我在設(shè)計(jì)這節(jié)課時(shí),主要看重三點(diǎn)、分?jǐn)?shù)乘整數(shù)的意義,分?jǐn)?shù)乘整數(shù)的算理、分?jǐn)?shù)乘整數(shù)的計(jì)算方法。也許是由于剛接手這個(gè)班,學(xué)生們比較膽小,也許是我的設(shè)計(jì)、調(diào)控、應(yīng)變能力還需提高。這節(jié)課的效果不好,我不太滿意。
1、分?jǐn)?shù)乘整數(shù)的意義,學(xué)生們沒法自己總結(jié)得出。這里浪費(fèi)了時(shí)間,教學(xué)反思《分?jǐn)?shù)乘整數(shù)教學(xué)反思》。不如教師總結(jié)歸納。
2、在讓學(xué)生試著做3/7*2,這個(gè)環(huán)節(jié),我在備課時(shí),也預(yù)測了學(xué)生的各種方法,(1)可以用3/7+3/7,(2)可以用3*2/7=6/7但是沒有想到很多學(xué)生用3/7*2/1,把2變成一個(gè)分?jǐn)?shù)。
3、在展示交流環(huán)節(jié),對于算理的教學(xué),學(xué)生們質(zhì)疑問難能力不好,對于為什么3/7只是3與2相乘,而7是不變的,學(xué)生們沒有一個(gè)敢說的。
4、這節(jié)課學(xué)生練的太少,總感覺效率不高。
王校也給我提了意見:一個(gè)學(xué)生板書出錯(cuò),教師沒有指出來。能否用驗(yàn)證的思路對設(shè)計(jì)3/7*2的結(jié)果,比如有的學(xué)生轉(zhuǎn)化成加法,有的學(xué)生用涂色的方法,有的學(xué)生用乘法,交流了以后,這個(gè)用乘法的方法對不對,我們再做一個(gè)題4/15乘4來驗(yàn)證一下。
加油吧,志超。
第五篇:分?jǐn)?shù)乘整數(shù)教學(xué)反思
分?jǐn)?shù)乘整數(shù)教學(xué)反思
分?jǐn)?shù)乘整數(shù)教學(xué)反思1
我從復(fù)習(xí)同分母分?jǐn)?shù)加法引入,得出整數(shù)乘法的意義和分?jǐn)?shù)乘整數(shù)的意義相同都是求幾個(gè)相同加數(shù)和的簡便運(yùn)算,由此進(jìn)入分?jǐn)?shù)乘整數(shù)方法的計(jì)算教學(xué)。在教學(xué)中,我充分利用學(xué)生已有的知識(shí)經(jīng)驗(yàn),努力結(jié)合現(xiàn)實(shí)的問題情境,將計(jì)算學(xué)習(xí)與解決問題有機(jī)結(jié)合,放手讓學(xué)生自主探究分?jǐn)?shù)乘法的意義。創(chuàng)設(shè)學(xué)生喜歡的實(shí)際情境,讓學(xué)生根據(jù)實(shí)際問題的數(shù)量關(guān)系,列出算式。學(xué)生很容易結(jié)合整數(shù)乘法的意義,列出乘法算式。這樣處理,既有利于學(xué)生主動(dòng)地把整數(shù)乘法的意義推廣到分?jǐn)?shù)中來,即分?jǐn)?shù)和整數(shù)相乘的意義與整數(shù)乘法的意義相同,都是求幾個(gè)相同加數(shù)和的'簡便運(yùn)算。存在的問題就是約分的環(huán)節(jié),有些學(xué)生喜歡算出結(jié)果以后再約分,對計(jì)算過程約分還不愿意采用??赡軐τ谶@種在計(jì)算過程當(dāng)中的約分,還是一知半解,對這樣約分的道理理解得不夠清楚。我在介紹這種辦法的時(shí)候還特意把要約分的分?jǐn)?shù)改寫成分母和分子分別由幾個(gè)數(shù)相乘的形式,幫助學(xué)生理解。
分?jǐn)?shù)乘整數(shù)教學(xué)反思2
“分?jǐn)?shù)乘整數(shù)”在練習(xí)中,50%的學(xué)生喜歡用分?jǐn)?shù)加法的計(jì)算方法來做分?jǐn)?shù)乘法。學(xué)生利用式題,不但總結(jié)出了分?jǐn)?shù)乘整數(shù)的計(jì)算方法,而且知道了算理(也就是分?jǐn)?shù)乘整數(shù)的意義),真正做到了算理與算法相結(jié)合。
基于這兩者天壤之別,筆者有了深深的感觸,上述兩個(gè)案例讓我想到一個(gè)相同的問題,就是我們常說的備課之先“備學(xué)生”到底備到什么程度?對于學(xué)生的知識(shí)前測,教師心中有多大的把握?沒有對學(xué)情準(zhǔn)確的偵察”,便絕對不會(huì)”打贏”有效教學(xué)乃至高效教學(xué)這一勝仗。很多教師在備學(xué)生的時(shí)候,是借用別人的眼光來估計(jì)自己的學(xué)生,看教參上是怎么說的。教參說這時(shí)的學(xué)生應(yīng)該具有什么樣的知識(shí)經(jīng)驗(yàn),教師便堅(jiān)信自己的學(xué)生也定是如此了。沒有或者很少考慮到雖然是同一個(gè)年齡段的孩子,但還有諸多不同的因素:也許你的學(xué)生是后進(jìn)的,他的基礎(chǔ)沒你想象的那么牢固;也許他是絕頂聰明的,學(xué)習(xí)進(jìn)度已經(jīng)超過好多課業(yè)了。
如上述案例中,關(guān)注學(xué)生轉(zhuǎn)化的思想就是本課時(shí)教學(xué)的重中之重.數(shù)學(xué)知識(shí)有著本身固有的結(jié)構(gòu)體系,往往是新知孕伏于舊知,舊知識(shí)點(diǎn)是新知識(shí)點(diǎn)的生長點(diǎn),數(shù)學(xué)教學(xué)如何讓知識(shí)體系由點(diǎn)到線,線到面,使知識(shí)結(jié)構(gòu)“見木又見林”是十分必要的。案例1從整數(shù)乘法遷移到分?jǐn)?shù)乘整數(shù),想法是可取的,但整數(shù)乘法的意義在二上年級(jí)就已經(jīng)出現(xiàn),而且教材中沒有出現(xiàn)整數(shù)乘法的抽象表達(dá)方式(即整數(shù)乘法表示求幾個(gè)相同加數(shù)的和),對于五下年級(jí)的學(xué)生來說,遺忘程度可想而知。而案例2中,以五上年級(jí)的分?jǐn)?shù)加法為基礎(chǔ),讓學(xué)生自由探索,效果是非常明顯的。轉(zhuǎn)化是需要條件的,只要“跳一跳”,就能摘到“桃子”,學(xué)生才會(huì)去嘗試。
今天這節(jié)課的算理看似簡單,其實(shí)理解還是有困難的.根據(jù)學(xué)生的.認(rèn)知心理,在遇到一個(gè)陌生的問題,如”1/5×3=?”時(shí),學(xué)生對算法的興趣遠(yuǎn)遠(yuǎn)勝于算理.因?yàn)樗惴梢灾苯拥玫浇Y(jié)果。一旦知道算法,多數(shù)學(xué)生會(huì)對算理失去興趣。甚至為了考試成績?nèi)ニ烙浻脖乘憷?,算法與算理完全脫離。那么我們實(shí)際上不是教數(shù)學(xué),而是在教一門計(jì)算程序:不是在培養(yǎng)研究者,而是在訓(xùn)練操作工。這與”學(xué)生能夠獲得適應(yīng)未來社會(huì)生活和進(jìn)一步發(fā)展所必需的重要數(shù)學(xué)知識(shí)以及基本的思想方法和必要的應(yīng)用技能”相違背的。
數(shù)學(xué)思想方法內(nèi)容十分豐富,學(xué)生一接觸到數(shù)學(xué)知識(shí),就聯(lián)系上許多數(shù)學(xué)思想方法。寓理于算的思想就是小學(xué)數(shù)學(xué)中的基本思想方法。在教學(xué)時(shí),把重點(diǎn)放在讓學(xué)生充分體驗(yàn)由直觀算理到抽象算法的過渡和演變過程,從而達(dá)到對算理的深層理解和對算法的切實(shí)把握。小學(xué)是打基礎(chǔ)的教育,有了算理的支撐,算法才會(huì)多樣化,課堂才會(huì)更開放。
課標(biāo)中,原來講“雙基”,現(xiàn)在變成“四基”,多了基本思想、基本活動(dòng)經(jīng)驗(yàn),筆者認(rèn)為,只有具備了基本思想、基本活動(dòng)經(jīng)驗(yàn),才能在思維上促進(jìn)基本知識(shí)、基本技能的發(fā)展。不但教給學(xué)生一個(gè)表層的知識(shí),更要給學(xué)生思維的方法與思想。
分?jǐn)?shù)乘整數(shù)教學(xué)反思3
分?jǐn)?shù)乘整數(shù)的知識(shí)基礎(chǔ)在于同分母分?jǐn)?shù)加法的計(jì)算方法及分?jǐn)?shù)的意義及整數(shù)乘法的意義等知識(shí)。在課堂的開始環(huán)節(jié),我對這些內(nèi)容進(jìn)行了一定的復(fù)習(xí),再進(jìn)入分?jǐn)?shù)乘整數(shù)的教學(xué)。
分?jǐn)?shù)乘整數(shù)的算法很簡單,在相乘時(shí),分母不變,只把整數(shù)和分?jǐn)?shù)的分子相乘作分子。在教學(xué)這個(gè)內(nèi)容時(shí),我關(guān)注到新教材在算理方面的重視,注意到圖形和算式之間的聯(lián)系,在計(jì)算前充分讓學(xué)生感知畫、涂圖形的'過程。因此,在后面計(jì)算方法的得出就水到渠成,比較容易了。再者,對“分?jǐn)?shù)乘整數(shù)表示的意義”也有機(jī)的滲透,為后面的知識(shí)打好鋪墊。
一堂課上下來,由于學(xué)生對內(nèi)容比較容易接受,課堂上有了空余時(shí)間。學(xué)生對算理的理解比較清晰,但還存在的問題就是約分的環(huán)節(jié),有些學(xué)生喜歡算出結(jié)果以后再約分,對計(jì)算過程約分還不愿意采用,教學(xué)反思《分?jǐn)?shù)乘整數(shù)教學(xué)反思》。這一環(huán)節(jié)還應(yīng)講深講透。學(xué)生可能對于這種在計(jì)算過程當(dāng)中的約分,還是一知半解,對這樣約分的道理理解得不夠清楚。學(xué)習(xí)分?jǐn)?shù)乘整數(shù),學(xué)生在計(jì)算時(shí)肯定會(huì)遇到先約分后乘還是先乘后約分的問題。如果僅僅是為得到一個(gè)正確的結(jié)果,那么無論前者,還是后者,都無關(guān)緊要,只要不出差錯(cuò),最后都能得到正確結(jié)果。顯然,我們還需要學(xué)生養(yǎng)成良好的計(jì)算習(xí)慣,較高的計(jì)算速度和計(jì)算正確率!那么我們就必須讓學(xué)生明白到底哪種思路更合理,更有助于自己的后續(xù)學(xué)習(xí)。作為分?jǐn)?shù)乘法的第一節(jié)課——分?jǐn)?shù)乘整數(shù),形成先約分后計(jì)算的良好計(jì)算習(xí)慣,對于提高學(xué)生計(jì)算的正確率和計(jì)算速度,有著很重要的作用。在教學(xué)分?jǐn)?shù)乘法在過程中約分時(shí),我給學(xué)生練習(xí)的題目是: ×5,并且列出兩種做法讓學(xué)生進(jìn)行比較。但我覺得這道題并不能體現(xiàn)在計(jì)算過程中先約分的優(yōu)越性。應(yīng)該將題目改得稍復(fù)雜些,變成“13× 5/26”,并且和同學(xué)們一起比賽誰做得快。如果哪位學(xué)生是用整數(shù)直接乘以分子的,速度當(dāng)然會(huì)很慢,當(dāng)做得最快的同學(xué)展示自己的做法時(shí),其他同學(xué)恍然大悟,深刻體會(huì)到計(jì)算過程中先約分,可以化繁為簡。這樣,學(xué)生在做分?jǐn)?shù)乘法時(shí),不僅僅滿足于“分子和整數(shù)相乘的積作分子,分母不變”,而是記住“能約分的要約分”這一要點(diǎn)。
分?jǐn)?shù)乘整數(shù)教學(xué)反思4
分?jǐn)?shù)乘整數(shù)是“分?jǐn)?shù)乘法”教學(xué)的第一課時(shí),是學(xué)生理解分?jǐn)?shù)乘法意義的起點(diǎn)。這部分教材是在學(xué)生已學(xué)的整數(shù)乘法的意義和分?jǐn)?shù)加法計(jì)算的基礎(chǔ)上進(jìn)行教學(xué)的。
在教學(xué)中,我充分利用學(xué)生已有的知識(shí)經(jīng)驗(yàn),努力結(jié)合現(xiàn)實(shí)的'問題情境,將計(jì)算學(xué)習(xí)與解決問題有機(jī)結(jié)合,放手讓學(xué)生自主探究分?jǐn)?shù)乘法的意義。創(chuàng)設(shè)學(xué)生喜歡的實(shí)際情境,讓學(xué)生根據(jù)實(shí)際問題的數(shù)量關(guān)系,列出算式。學(xué)生很容易結(jié)合整數(shù)乘法的意義,列出乘法算式。這樣處理,既有利于學(xué)生主動(dòng)地把整數(shù)乘法的意義推廣到分?jǐn)?shù)中來,即分?jǐn)?shù)和整數(shù)相乘的意義與整數(shù)乘法的意義相同,都是求幾個(gè)相同加數(shù)和的簡便運(yùn)算。
在教學(xué)分?jǐn)?shù)和整數(shù)相乘的計(jì)算法則時(shí),我指導(dǎo)學(xué)生從讀一讀,說一說,練一練,想一想,議一議五個(gè)方面入手,例如:教學(xué)3/10×5,首先讓學(xué)生明確,要求3/10×5,也就是求3/10+3/10﹢3/10+3/10+3/10是多少,并聯(lián)系同分母分?jǐn)?shù)加法的計(jì)算得出3+3+3+3+3/10,然后讓學(xué)生分析分子部分5個(gè)3連加就是35,并算出結(jié)果,在此基礎(chǔ)上,引導(dǎo)學(xué)生觀察計(jì)算過程,特別是3/10×5與35/10之間的聯(lián)系,從而理解為什么“同分子和整數(shù)相乘的積作分子,分母不變”。接著讓學(xué)生自己嘗試練一練7/10×5,然后進(jìn)行集體交流,看一看能不能在相乘之前的那一步先約分,比一比在什么時(shí)候約分計(jì)算可以簡便一些,從而明白為了簡便,能約分的先約分。
總之,本節(jié)課我能盡量調(diào)動(dòng)學(xué)生的多種感官,改變以例題、示范、講解為主的教學(xué)方式,改變以記憶法則、機(jī)械訓(xùn)練為主的學(xué)習(xí)方式,引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動(dòng)之中,讓學(xué)生變被動(dòng)為主動(dòng),參與到算理的探討、運(yùn)算規(guī)律的歸納中來。
分?jǐn)?shù)乘整數(shù)教學(xué)反思5
反思本節(jié)課,無論是教學(xué)目標(biāo)的定位,還是教學(xué)過程的組織,都反映出一種新的教學(xué)理念。我認(rèn)為主要有以下幾個(gè)方面:
一、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài)
新課程標(biāo)準(zhǔn)指出:“要關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更要關(guān)注他們在教學(xué)活動(dòng)中所表現(xiàn)出來的情感和態(tài)度?!睘榇耍處熢诮虒W(xué)中為了讓學(xué)生能真正主動(dòng)地、投入地參與到探究過程中來,就應(yīng)該設(shè)法讓其在一開始就產(chǎn)生探究的內(nèi)在需要,這是非常關(guān)鍵的。因此,這就需要老師既兼顧知識(shí)本身的特點(diǎn),又兼顧學(xué)生的認(rèn)知和學(xué)生已有的水平,尋找合適的切入口,讓學(xué)生感受到眼前問題的挑戰(zhàn)性和可探索性,從而產(chǎn)生“我也來研究研究這個(gè)問題”的興趣。這節(jié)課一開始,我就讓學(xué)生經(jīng)歷折紙操作——合作交流——尋找計(jì)算方法這一過程,使學(xué)生發(fā)現(xiàn)并掌握分?jǐn)?shù)單位乘分?jǐn)?shù)單位的計(jì)算方法。由于在這個(gè)過程中討論的素材都來源于學(xué)生,他們討論自己的學(xué)習(xí)材料,熱情特別高漲,興趣特別濃厚,都想通過自己的努力,尋找出“我的發(fā)現(xiàn)”,而對自己尋找出的法則印象特別深,同時(shí)又產(chǎn)生了繼續(xù)探索、驗(yàn)證兩個(gè)一般分?jǐn)?shù)相乘的計(jì)算方法的欲望。
二、關(guān)注結(jié)論,更關(guān)注過程
傳統(tǒng)教學(xué)是教師利用復(fù)合投影片等手段,讓學(xué)生理解“分?jǐn)?shù)乘分?jǐn)?shù)”的算理,再利用其計(jì)算法則進(jìn)行大量練習(xí),以實(shí)現(xiàn)“熟能生巧”?!靶抡n程標(biāo)準(zhǔn)”指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)與共同發(fā)展的過程。”這一新的理念說明:數(shù)學(xué)教學(xué)活動(dòng)將是學(xué)生經(jīng)歷的 一個(gè)數(shù)學(xué)化的過程,是學(xué)生自己建構(gòu)數(shù)學(xué)知識(shí)的活動(dòng)。因此,教學(xué)本課時(shí)力圖讓學(xué)生親自經(jīng)歷學(xué)習(xí)過程,即讓學(xué)生在動(dòng)手操作——探究算法-舉例驗(yàn)證——交流評(píng)價(jià)——法則整理等一系列活動(dòng)中經(jīng)歷“分?jǐn)?shù)乘分?jǐn)?shù)”計(jì)算法則的形成過程。這里實(shí)現(xiàn)了讓學(xué)生自己去做、去悟、去經(jīng)歷、去體驗(yàn)、去創(chuàng)造,同時(shí)也考慮了學(xué)生解題策略的自主選擇,顧及了合作意識(shí)的培養(yǎng),我深信這比單純掌握計(jì)算方法再熟練生巧更有意義。
三、科學(xué)的學(xué)習(xí)方法的滲透
新課程標(biāo)準(zhǔn)指出:“幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識(shí)技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)?!彼越處熢谝龑?dǎo)學(xué)生經(jīng)過不斷思考獲得規(guī)律的過程中,著眼點(diǎn)不能知識(shí)規(guī)律的`本身,更重要的是一種“發(fā)現(xiàn)”的體驗(yàn)。在這種體驗(yàn)中感受數(shù)學(xué)的思維方法,體會(huì)科學(xué)的學(xué)習(xí)方法。本課從教學(xué)的整體設(shè)計(jì)上是由“特殊”去引發(fā)學(xué)生的猜想,再來舉例驗(yàn)證,然后歸納概括,力圖讓學(xué)生體會(huì)從特殊到一般的不完全歸納思想。首先讓學(xué)生通過活動(dòng)概括得出“分?jǐn)?shù)乘分?jǐn)?shù)”只要“分子不變,分母相乘”或“分子相乘,分母相乘”即可的計(jì)算方法,再由學(xué)生自己用折紙、化小數(shù)、分?jǐn)?shù)的意義等方法來驗(yàn)證這種計(jì)算方法,發(fā)現(xiàn)了“分?jǐn)?shù)乘分?jǐn)?shù),分子不變,分母相乘”特殊性,以及“分?jǐn)?shù)乘分?jǐn)?shù),分子相乘,分母相乘”的普遍性。這其間滲透了科學(xué)的學(xué)習(xí)方法和實(shí)事求是的科學(xué)精神。
四、困惑之處
如何關(guān)注全體?本課第一階段研究“幾分之幾乘幾分之幾”時(shí),由于學(xué)生是在自己操作的基礎(chǔ)上去發(fā)現(xiàn)規(guī)律的,所以全體學(xué)生興趣高漲,都積極主動(dòng)地參與到了探究的過程。而到第二階段去驗(yàn)證交流“幾分之幾乘幾分之幾”中,除了用折紙法驗(yàn)證交流外,其余的環(huán)節(jié)幾乎都被幾名“優(yōu)等生”“占領(lǐng)”,雖然教師多次這樣引導(dǎo):“誰能聽懂他的意思?你能再解釋一下嗎?”,“用他的方法去試試看?!钡糠謱W(xué)生還是不能參與其中,成了“伴學(xué)者”。所以,如何面對學(xué)生的差異,促使學(xué)生人人都能在原有的基礎(chǔ)上得到不同的發(fā)展,是課堂教學(xué)中值得探索的一個(gè)課題。
分?jǐn)?shù)乘整數(shù)教學(xué)反思6
一、引導(dǎo)自主探索,了解分?jǐn)?shù)與整數(shù)相乘的意義。
1、導(dǎo)入新課時(shí),引導(dǎo)學(xué)生涂色表示3個(gè)米,目的是讓學(xué)生認(rèn)識(shí)到求3個(gè)米可以用加法計(jì)算,也可以用乘法計(jì)算,再借助所列的加法算式初步理解分?jǐn)?shù)與整數(shù)相乘的意義,并為引導(dǎo)學(xué)生探索分?jǐn)?shù)與整數(shù)相乘的計(jì)算方法進(jìn)行了知識(shí)結(jié)構(gòu)上的鋪墊。
2、通過交流與討論,引導(dǎo)學(xué)生主動(dòng)聯(lián)系已有的知識(shí)經(jīng)驗(yàn)進(jìn)行分析、歸納和類推,進(jìn)一步發(fā)展學(xué)生合情推理能力,體驗(yàn)探索學(xué)習(xí)的樂趣。
二、加強(qiáng)過程體驗(yàn),體會(huì)過程約分比結(jié)果約分更簡便。
在解決例1的第(2)題時(shí),我在處理算法多樣化與算法優(yōu)化時(shí)設(shè)計(jì)了88×8/11=?的練習(xí),讓學(xué)生用兩種方法計(jì)算,加強(qiáng)過程體驗(yàn),學(xué)生通過親身體驗(yàn)后,體會(huì)到過程約分比結(jié)果約分更簡便且不易錯(cuò),形成一種內(nèi)在需求,優(yōu)化算法。
存在不足:
本課算理強(qiáng)調(diào)還不夠,特別是練一練第1題,在學(xué)生獨(dú)立完成后,我在組織交流時(shí)不夠充分,只交流了學(xué)生的計(jì)算方法和結(jié)果,忽視了學(xué)生是如何涂出4個(gè)3/16的,后來我發(fā)現(xiàn)學(xué)生涂得方法很多,其實(shí)通過學(xué)生涂色寫算式,可以溝通分?jǐn)?shù)乘法和分?jǐn)?shù)加法間的聯(lián)系,進(jìn)一步體會(huì)分?jǐn)?shù)與整數(shù)相乘的'意義,體會(huì)“求幾個(gè)幾分之幾相加的和”可以用乘法計(jì)算的算理,我沒有很好地把握教材這一練習(xí)設(shè)計(jì)的意圖,沒有敏銳地把握教學(xué)資源,很好地鞏固算理。
分?jǐn)?shù)乘整數(shù)教學(xué)反思7
自我反思有助于改造和提升教師的教學(xué)經(jīng)驗(yàn),經(jīng)驗(yàn)+反思=成長,只有經(jīng)過反思,使原始的經(jīng)驗(yàn)不斷地處于被審視、被修正、被強(qiáng)化、被否定等思維加工中,去粗存精,去偽存真,這樣經(jīng)驗(yàn)才會(huì)得到提煉、得到升華,從而成為一種開放性的系統(tǒng)和理性的力量,唯其如此,經(jīng)驗(yàn)才能成為促進(jìn)教師專業(yè)成長的有力杠桿。閱讀這篇數(shù)學(xué)教學(xué)反思之《分?jǐn)?shù)乘整數(shù)計(jì)算法則》,和小編來感受它的魅力吧!
在教學(xué)“分?jǐn)?shù)乘整數(shù)計(jì)算法則”時(shí),我從一道計(jì)算題入手,讓學(xué)生聯(lián)系生活實(shí)際,創(chuàng)設(shè)問題情境,較好地體現(xiàn)了學(xué)生學(xué)習(xí)的主體性,溝通了數(shù)學(xué)與生活實(shí)際的聯(lián)系,使學(xué)生認(rèn)識(shí)到“數(shù)學(xué)”是生活中的數(shù)學(xué),是有用的數(shù)學(xué)。同時(shí)這道計(jì)算題還溝通了與新的知識(shí)的聯(lián)系,引出了分?jǐn)?shù)乘整數(shù)的`意義,并能讓學(xué)生憑借這個(gè)知識(shí)點(diǎn),探索出分?jǐn)?shù)乘整數(shù)的計(jì)算法則。在教學(xué)分?jǐn)?shù)乘整數(shù)的計(jì)算法則時(shí),我還注重了放手讓學(xué)生去探索,注重了學(xué)生的合作交流,通過討論發(fā)現(xiàn)知識(shí)的奧秘,通過交流拓寬全體學(xué)生的知識(shí)面。由此我深深地體會(huì)到,教師不能要求學(xué)生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會(huì)阻礙學(xué)生的思維發(fā)展。我們教師在課堂上只是學(xué)生的引路人,是導(dǎo)師
這則數(shù)學(xué)教學(xué)反思之《分?jǐn)?shù)乘整數(shù)計(jì)算法則》希望能給你的學(xué)習(xí)生活增添益處。
分?jǐn)?shù)乘整數(shù)教學(xué)反思8
反思本節(jié)課,無論是教學(xué)目標(biāo)的定位,還是教學(xué)過程的組織,都反映出一種新的教學(xué)理念。我認(rèn)為主要有以下幾個(gè)方面:
一、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài)新課程標(biāo)準(zhǔn)指出:“要關(guān)注學(xué)生數(shù)學(xué)學(xué)習(xí)的水平,更要關(guān)注他們在教學(xué)活動(dòng)中所表現(xiàn)出來的情感和態(tài)度?!睘榇?,教師在教學(xué)中為了讓學(xué)生能真正主動(dòng)地、投入地參與到探究過程中來,就應(yīng)該設(shè)法讓其在一開始就產(chǎn)生探究的內(nèi)在需要,這是非常關(guān)鍵的。因此,這就需要老師既兼顧知識(shí)本身的特點(diǎn),又兼顧學(xué)生的認(rèn)知和學(xué)生已有的水平,尋找合適的切入口,讓學(xué)生感受到眼前問題的挑戰(zhàn)性和可探索性,從而產(chǎn)生“我也來研究研究這個(gè)問題”的興趣。這節(jié)課一開始,我就讓學(xué)生經(jīng)歷折紙操作——合作交流——尋找計(jì)算方法這一過程,使學(xué)生發(fā)現(xiàn)并掌握分?jǐn)?shù)單位乘分?jǐn)?shù)單位的計(jì)算方法。由于在這個(gè)過程中討論的素材都來源于學(xué)生,他們討論自己的學(xué)習(xí)材料,熱情特別高漲,興趣特別濃厚,都想通過自己的努力,尋找出“我的發(fā)現(xiàn)”,而對自己尋找出的.法則印象特別深,同時(shí)又產(chǎn)生了繼續(xù)探索、驗(yàn)證兩個(gè)一般分?jǐn)?shù)相乘的計(jì)算方法的欲望。
二、關(guān)注結(jié)論,更關(guān)注過程傳統(tǒng)教學(xué)是教師利用復(fù)合投影片等手段,讓學(xué)生理解“分?jǐn)?shù)乘分?jǐn)?shù)”的算理,再利用其計(jì)算法則進(jìn)行大量練習(xí),以實(shí)現(xiàn)“熟能生巧”?!靶抡n程標(biāo)準(zhǔn)”指出:
“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)與共同發(fā)展的過程?!边@一新的理念說明:數(shù)學(xué)教學(xué)活動(dòng)將是學(xué)生經(jīng)歷的一個(gè)數(shù)學(xué)化的過程,是學(xué)生自己建構(gòu)數(shù)學(xué)知識(shí)的活動(dòng)。因此,教學(xué)本課時(shí)力圖讓學(xué)生親自經(jīng)歷學(xué)習(xí)過程,即讓學(xué)生在動(dòng)手操作——探究算法-舉例驗(yàn)證——交流評(píng)價(jià)——法則整理等一系列活動(dòng)中經(jīng)歷“分?jǐn)?shù)乘分?jǐn)?shù)”計(jì)算法則的形成過程。這里實(shí)現(xiàn)了讓學(xué)生自己去做、去悟、去經(jīng)歷、去體驗(yàn)、去創(chuàng)造,同時(shí)也考慮了學(xué)生解題策略的自主選擇,顧及了合作意識(shí)的培養(yǎng),我深信這比單純掌握計(jì)算方法再熟練生巧更有意義。三、科學(xué)的學(xué)習(xí)方法的滲透新課程標(biāo)準(zhǔn)指出:“幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識(shí)技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)?!彼越處熢谝龑?dǎo)學(xué)生經(jīng)過不斷思考獲得規(guī)律的過程中,著眼點(diǎn)不能知識(shí)規(guī)律的本身,更重要的是一種“發(fā)現(xiàn)”的體驗(yàn)。在這種體驗(yàn)中感受數(shù)學(xué)的思維方法,體會(huì)科學(xué)的學(xué)習(xí)方法。本課從教學(xué)的整體設(shè)計(jì)上是由“特殊”去引發(fā)學(xué)生的猜想,再來舉例驗(yàn)證,然后歸納概括,力圖讓學(xué)生體會(huì)從特殊到一般的不完全歸納思想。首先讓學(xué)生通過活動(dòng)概括得出“分?jǐn)?shù)乘分?jǐn)?shù)”只要“分子不變,分母相乘”或“分子相乘,分母相乘”即可的計(jì)算方法,再由學(xué)生自己用折紙、化小數(shù)、分?jǐn)?shù)的意義等方法來驗(yàn)證這種計(jì)算方法,發(fā)現(xiàn)了“分?jǐn)?shù)乘分?jǐn)?shù),分子不變,分母相乘”特殊性,以及“分?jǐn)?shù)乘分?jǐn)?shù),分子相乘,分母相乘”的普遍性。這其間滲透了科學(xué)的學(xué)習(xí)方法和實(shí)事求是的科學(xué)精神。四、困惑之處如何關(guān)注全體?本課第一階段研究“幾分之幾乘幾分之幾”時(shí),由于學(xué)生是在自己操作的基礎(chǔ)上去發(fā)現(xiàn)規(guī)律的,所以全體學(xué)生興趣高漲,都積極主動(dòng)地參與到了探究的過程。而到第二階段去驗(yàn)證交
流“幾分之幾乘幾分之幾”中,除了用折紙法驗(yàn)證交流外,其余的環(huán)節(jié)幾乎都被幾名“優(yōu)等生”“占領(lǐng)”,雖然教師多次這樣引導(dǎo):“誰能聽懂他的意思?你能再解釋一下嗎?”,“用他的方法去試試看。”但部分學(xué)生還是不能參與其中,成了“伴學(xué)者”。所以,如何面對學(xué)生的差異,促使學(xué)生人人都能在原有的基礎(chǔ)上得到不同的發(fā)展,是課堂教學(xué)中值得探索的一個(gè)課題。
分?jǐn)?shù)乘整數(shù)教學(xué)反思9
本節(jié)課我從復(fù)習(xí)同分母分?jǐn)?shù)加法引入,得出整數(shù)乘法的意義和分?jǐn)?shù)乘整數(shù)的意義相同都是求幾個(gè)相同加數(shù)和的簡便運(yùn)算,由此進(jìn)入分?jǐn)?shù)乘整數(shù)方法的計(jì)算教學(xué)。教學(xué)方法時(shí)我注重算理的講解、注重圖形和算式的`聯(lián)系。可以說這節(jié)課的內(nèi)容很簡單,但作業(yè)反饋的情況看正確率卻很低。存在的問題就是約分的環(huán)節(jié),有些學(xué)生喜歡算出結(jié)果以后再約分,就比較愛出錯(cuò)。再由于上學(xué)期的約分知識(shí)很多學(xué)生就不熟練,有不少學(xué)生仍不斷出現(xiàn)約分錯(cuò)誤和忘記約分的情況。
作為分?jǐn)?shù)乘法的第一節(jié)課——分?jǐn)?shù)乘整數(shù),形成先約分后計(jì)算的良好計(jì)算習(xí)慣,對于提高學(xué)生計(jì)算的正確率和計(jì)算速度,有著很重要的作用。
分?jǐn)?shù)乘整數(shù)教學(xué)反思10
分?jǐn)?shù)乘整數(shù)的知識(shí)基礎(chǔ)在于同分母分?jǐn)?shù)加法的計(jì)算方法及分?jǐn)?shù)的意義及整數(shù)乘法的意義等知識(shí)。在課前,我對這些內(nèi)容進(jìn)行了一定的復(fù)習(xí),再進(jìn)入分?jǐn)?shù)乘整數(shù)的教學(xué)。
分?jǐn)?shù)乘整數(shù)的算法很簡單,在相乘時(shí),分母不變,只把整數(shù)和分?jǐn)?shù)的分子相乘的積作分子。在教學(xué)這個(gè)內(nèi)容時(shí),我關(guān)注到新教材在算理方面的重視,注意到圖形和算式之間的聯(lián)系,在計(jì)算前充分讓學(xué)生感知畫、涂圖形的過程。因此,在后面計(jì)算方法的得出就水到渠成,比較容易了。再者,對“分?jǐn)?shù)乘整數(shù)表示的意義”也有機(jī)的滲透,為后面的知識(shí)打好鋪墊。
一堂課上下來,由于學(xué)生對內(nèi)容比較容易接受,課堂上有了空余時(shí)間。學(xué)生對算理的理解比較清晰,但還存在的問題就是約分的環(huán)節(jié),有些學(xué)生喜歡算出結(jié)果以后再約分,對計(jì)算過程約分還不愿意采用。
這一環(huán)節(jié)還應(yīng)講深講透。學(xué)生可能對于這種在計(jì)算過程當(dāng)中的約分,還是一知半解,對這樣約分的'道理理解得不夠清楚。學(xué)習(xí)分?jǐn)?shù)乘整數(shù),學(xué)生在計(jì)算時(shí)肯定會(huì)遇到先約分后乘還是先乘后約分的問題。如果僅僅是為得到一個(gè)正確的結(jié)果,那么無論前者,還是后者,都無關(guān)緊要,只要不出差錯(cuò),最后都能得到正確結(jié)果。顯然,我們還需要學(xué)生養(yǎng)成良好的計(jì)算習(xí)慣,較高的計(jì)算速度和計(jì)算正確率!那么我們就必須讓學(xué)生明白到底哪種思路更合理,更有助于自己的后續(xù)學(xué)習(xí)。作為分?jǐn)?shù)乘法的第一節(jié)課—分?jǐn)?shù)乘整數(shù),形成先約分后計(jì)算的良好計(jì)算習(xí)慣,對于提高學(xué)生計(jì)算的正確率和計(jì)算速度,有著很重要的作用。在教學(xué)分?jǐn)?shù)乘法過程中約分時(shí),我讓學(xué)生用兩種方法進(jìn)行了比賽,如果哪位學(xué)生是用整數(shù)直接乘以分子的,速度當(dāng)然會(huì)很慢,當(dāng)做得最快的同學(xué)展示自己的做法時(shí),其他同學(xué)恍然大悟,深刻體會(huì)到計(jì)算過程中先約分,可以化繁為簡。這樣,學(xué)生在做分?jǐn)?shù)乘法時(shí),不僅僅滿足于“分子和整數(shù)相乘的積作分子,分母不變”,而是記住“能約分的要先約分”這一要點(diǎn)。
分?jǐn)?shù)乘整數(shù)教學(xué)反思11
在教學(xué)分?jǐn)?shù)乘整數(shù)之前,班里已經(jīng)有不少學(xué)生知道了分?jǐn)?shù)乘整數(shù)的計(jì)算方法。如果按照一般的教學(xué)程序進(jìn)行教學(xué),學(xué)生就會(huì)覺得“這些知識(shí)我早就知道了,沒什么可學(xué)的了。”,從而失去學(xué)習(xí)的興趣。于是在教學(xué)時(shí),我提出:“為什么結(jié)果是9/10?為什么要把分子與整數(shù)相乘?”接下來的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去學(xué)習(xí)。
每個(gè)學(xué)生都有各自的生活經(jīng)驗(yàn)和知識(shí)基礎(chǔ),面對需要解決的問題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實(shí)出發(fā)來構(gòu)建知識(shí)的,這就決定了不同的孩子在解決同一問題時(shí)會(huì)有不同的視角。在本節(jié)課中,我放手讓學(xué)生用自己思維方式進(jìn)行多角度的思考,學(xué)生自主地構(gòu)建知識(shí),充分體現(xiàn)了“不同的人學(xué)習(xí)不同的數(shù)學(xué)”的理念。有的學(xué)生通過對分?jǐn)?shù)乘整數(shù)的意義的理解,將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來思考;有的學(xué)生通過在老師給的練習(xí)紙上涂色來得到結(jié)果;有的學(xué)生講清了為什么將分子與整數(shù)相乘的道理;還有的.學(xué)生將分?jǐn)?shù)轉(zhuǎn)換為小數(shù),同樣得到了結(jié)果。
存在的一些問題。
讓學(xué)生體會(huì)先約分比較簡單時(shí),出現(xiàn)了些問題。在做完例題第二個(gè)問題之后,依然有不少學(xué)生依然覺得先計(jì)算好,于是我就出示了四道題,其中最后一題數(shù)據(jù)較大,可以很好的引導(dǎo)學(xué)生得出正確的結(jié)論。但我現(xiàn)在覺得,如果在例題教學(xué)完之后就直接完成那個(gè)8/11×99,這樣就更加直接了,學(xué)生立刻就能體會(huì)到先約分的好處了,那么再做其它需要進(jìn)行約分的題目就方便了。
分?jǐn)?shù)乘整數(shù)教學(xué)反思12
在課前的備課中,我覺得這一課時(shí)主要解決的是三個(gè)方面的問題:
(1)分?jǐn)?shù)乘整數(shù)的意義;
(2)分?jǐn)?shù)乘整數(shù)的計(jì)算法則;
(3)計(jì)算時(shí)能約分的一定要約分?;谝陨系哪繕?biāo),我給自己設(shè)計(jì)了如下教學(xué)流程予以實(shí)施,下面想和大家交流解決的第一個(gè)問題:
一、分?jǐn)?shù)乘整數(shù)的意義部分:
師:上課之前,請同學(xué)們先來做一道思考題。
(在黑板上板書算式:2×3= 下面的學(xué)生本來神情緊張,看到我出的“思考題”是這樣一個(gè)題目,都忍不住笑了,有幾個(gè)口快的早已喊出了答案:6!6!…)
師:是啊,答案是6,看來這個(gè)思考題難不倒大家!其實(shí),對于這一題來說,不用乘法,用加法我們也可以把它計(jì)算出來,知道算式是多少嗎?
生1:2+2+2
生2:3+3
生3:1+1+1+1+1+1
生4:1+2+3
(下面有幾個(gè)同學(xué)舉手還要說,有一個(gè)學(xué)生在下面嘀咕:這不成湊得數(shù)的了嗎?我也知道學(xué)生開始錯(cuò)誤地“發(fā)揮”了,我把他們拉回來,讓學(xué)生思考,如果是用2×3這個(gè)算式來表示的,黑板上老師板書的算式哪幾個(gè)是對的,哪幾個(gè)是錯(cuò)的?然后在學(xué)生的糾錯(cuò)中擦去錯(cuò)誤的算式。在實(shí)際的.教學(xué)中,我也經(jīng)常會(huì)遇到這種情況,學(xué)生由于過分的“激動(dòng)”而忘乎所以,所思所想偏離了我的教學(xué)課堂,在學(xué)生偏離了課堂之后及時(shí)地把學(xué)生拉回來固然重要,但如何讓學(xué)生在思考問題不偏離課堂呢?我真應(yīng)該好好研究這個(gè)問題。)
師:(指著2+2+2)知道這個(gè)算式的意義嗎?
生:表示3個(gè)2是多少?
師:那這一個(gè)呢?
生:表示2個(gè)3是多少?
師:同學(xué)們說的很好,不過通過這個(gè)題目,我覺得學(xué)不學(xué)乘法無所謂。(下邊的學(xué)生一愣)因?yàn)槲矣X得加法計(jì)算也行,沒必要用乘法來計(jì)算???
(下面的學(xué)生開始議論紛紛,有幾個(gè)學(xué)生把手舉的高高的,要求發(fā)言。我請了翟卓起來說。)
生:不對!那要是1000×1000就不能用加法算。
師:不能,怎么不能?我也可以列加法算式。
(于是我就開始在黑板上板書:1000+1000+1000+1000+1000+1000+…,寫了不多個(gè),下面的學(xué)生就開始叫了,老師,不寫了!老師,不寫了!…于是我也裝作疲勞狀,向?qū)W生承認(rèn):看來還是乘法簡便!在此基礎(chǔ)上和學(xué)生一起回憶整數(shù)乘法的意義。)
師:現(xiàn)在大家都已經(jīng)知道了整數(shù)乘法的意義,那分?jǐn)?shù)乘法呢?下面就我們一起來研究。
(師出示例1,審題后)
師:你會(huì)列式嗎?
生1: ×3
生2: + +
師:看第一個(gè)算式,這個(gè)算式與我們以前學(xué)過的算式不同,它是分?jǐn)?shù)乘整數(shù)。聯(lián)系剛才回憶的整數(shù)乘法的意義,你能知道這個(gè)算式表示什么意義嗎?
(生稍思考后)
生:表示3個(gè)是多少?
師:你是怎么知道的?
生:我是看第二個(gè)算式的。
(師及時(shí)總結(jié),溝通分?jǐn)?shù)乘整數(shù)與整數(shù)乘法之間的聯(lián)系。)
思考:教學(xué)分?jǐn)?shù)乘整數(shù)的意義,我兜了這么大的一個(gè)圈子,有沒有必要?對于分?jǐn)?shù)乘整數(shù)的意義這一個(gè)知識(shí)點(diǎn),是教師講授性教學(xué),還是在學(xué)生的回憶探究中獲得?我這樣兜了一個(gè)圈子之后,學(xué)生就已經(jīng)理解了分?jǐn)?shù)乘整數(shù)的意義,還是從整數(shù)乘法的意義中“套”過來的?我覺得,這么一大堆問題,我似乎都回答不了。但值得肯定的是,在后來的練習(xí)中進(jìn)行檢驗(yàn)的時(shí)候,學(xué)生回答的都還是不錯(cuò)的。
分?jǐn)?shù)乘整數(shù)教學(xué)反思13
一、利用已有知識(shí)引導(dǎo)學(xué)生實(shí)現(xiàn)正遷移。
《分?jǐn)?shù)乘整數(shù)》是分?jǐn)?shù)乘法單元的第一課時(shí),本課主要讓學(xué)生通過自主探索,了解分?jǐn)?shù)與整數(shù)相乘的意義,知道“求幾個(gè)幾分之幾相加的和”可以用乘法計(jì)算,初步理解并掌握分?jǐn)?shù)與整數(shù)相乘的計(jì)算方法。而分?jǐn)?shù)與整數(shù)相乘的意義與整數(shù)相乘的意義相同,這節(jié)課在引入課題時(shí),葛文娟老師設(shè)計(jì)了下面的兩道習(xí)題:
(1)做一朵綢花要30厘米綢帶,小麗做3朵這樣的綢花,一共用多少厘米綢帶?
(2)做一朵綢花要0.3米綢帶,小紅做3朵這樣的綢花,一共用多少米綢帶?
通過讓學(xué)生列式并追問為什么都用乘法計(jì)算,激活學(xué)生已有的對整數(shù)乘法意義的認(rèn)識(shí)。然后再通過改題呈現(xiàn)例1:做一朵綢花要米綢帶,小芳做3朵這樣的綢花,一共用幾分之幾米綢帶?學(xué)生順理成章地列出了例1的乘法算式,通過我追問這題為什么也用乘法計(jì)算?學(xué)生自然地將整數(shù)乘法的意義遷移到分?jǐn)?shù)乘整數(shù)的意義中,實(shí)現(xiàn)了知識(shí)的正遷移。
二、尊重學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,加強(qiáng)算法的探究。
在學(xué)習(xí)本課之前,其實(shí)已經(jīng)有許多學(xué)生大概知道了分?jǐn)?shù)乘整數(shù)的計(jì)算方法,但對于為什么要這樣算就不清楚了。如果再按照一般的教學(xué)程序(呈現(xiàn)問題——探討研究——得出結(jié)論)進(jìn)行教學(xué),學(xué)生就會(huì)覺得“這些知識(shí)我早就知道了,沒什么可學(xué)的了?!?,從而失去探究的興趣。教師的主導(dǎo)作用在于設(shè)計(jì)恰當(dāng)?shù)慕虒W(xué)形式,調(diào)動(dòng)不同層次的學(xué)生的學(xué)習(xí)興趣。于是在教學(xué)時(shí)×3的算法時(shí),小葛老師問:你知道怎么乘嗎,你認(rèn)為整數(shù)3與分?jǐn)?shù)的什么相乘呢?重點(diǎn)讓學(xué)生明白為什么要這樣乘。抓住這一質(zhì)疑點(diǎn),提出:“為什么只把分子與整數(shù)相乘,分母不變”接下來的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去探索。由質(zhì)疑開始的探索是學(xué)生為滿足自身需要而進(jìn)行的主動(dòng)探索,因此學(xué)生在課堂上迫不及待地,積極主動(dòng)地進(jìn)行討論,從不同的角度解決疑問。
二、實(shí)現(xiàn)教學(xué)的個(gè)性化,發(fā)展學(xué)生的思維。
每個(gè)學(xué)生都有各自的生活經(jīng)驗(yàn)和知識(shí)基礎(chǔ),面對需要解決的問題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實(shí)出發(fā)來構(gòu)建知識(shí)的,這就決定了不同的孩子在解決同一問題時(shí)會(huì)有不同的視角。在本節(jié)課中,葛老師放手讓學(xué)生用自己思維方式進(jìn)行自由的、多角度的思考,學(xué)生自主地構(gòu)建知識(shí),充分體現(xiàn)了“不同的人學(xué)習(xí)不同的`數(shù)學(xué)”的理念。有的學(xué)生通過對分?jǐn)?shù)乘整數(shù)的意義的理解,將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來思考;有的學(xué)生通過計(jì)算分?jǐn)?shù)單位的個(gè)數(shù)來理解;有的學(xué)生講清了分母不能與整數(shù)相乘,只能將分子與整數(shù)相乘的道理;還有的學(xué)生將分?jǐn)?shù)轉(zhuǎn)換為小數(shù),同樣得到了正確的結(jié)果。由此我深深地體會(huì)到,包括教師在內(nèi)的任何人,都不能要求學(xué)生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會(huì)阻礙學(xué)生的思維發(fā)展。
分?jǐn)?shù)乘整數(shù)教學(xué)反思14
分?jǐn)?shù)乘整數(shù)的知識(shí)基礎(chǔ)在于同分母分?jǐn)?shù)加法的計(jì)算方法及分?jǐn)?shù)的意義及整數(shù)乘法的意義等知識(shí)。在課堂的開始環(huán)節(jié),我對這些內(nèi)容進(jìn)了一定的復(fù)習(xí),再進(jìn)入分?jǐn)?shù)乘整數(shù)的教學(xué)。分?jǐn)?shù)乘整數(shù)的算法很簡單,在相乘時(shí),分母不變,只把整數(shù)和分?jǐn)?shù)的分子相乘作分子。在教學(xué)這個(gè)內(nèi)容時(shí),我關(guān)注到新教材在算理方面的重視,注意到圖形和算式之間的聯(lián)系,在計(jì)算前充分讓學(xué)生感知涂圖形的過程。
一、關(guān)注學(xué)生的學(xué)習(xí)狀態(tài)
從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),復(fù)習(xí)幾個(gè)相同分?jǐn)?shù)和的計(jì)算方法。從而讓學(xué)生感知分?jǐn)?shù)乘法的意義-----求幾個(gè)相同分?jǐn)?shù)和的簡便運(yùn)算。在此基礎(chǔ)上學(xué)生很容易從加法的角度聯(lián)想到分?jǐn)?shù)乘整數(shù)的方法,這種順向遷移,對學(xué)生的學(xué)習(xí)作用很大。在學(xué)生研究分?jǐn)?shù)乘法的計(jì)算方法中,用以前所學(xué)的知識(shí)來解釋和理解分?jǐn)?shù)乘整數(shù)的計(jì)算方法,學(xué)生理解起來也很容易。教師運(yùn)用新知與舊識(shí)的密切聯(lián)系,讓學(xué)生在認(rèn)知的最近發(fā)展領(lǐng)域自由學(xué)習(xí)并有所收獲,學(xué)生的學(xué)習(xí)是積極有效的。
二、讓學(xué)生感受,學(xué)生才會(huì)感悟
對于學(xué)生而言,計(jì)算方法沒有難度。但是形成先約分后計(jì)算的計(jì)算習(xí)慣確實(shí)在教學(xué)中的難點(diǎn)。來自學(xué)生的困惑:為什么一定要先約分,不約分也可以計(jì)算出結(jié)果。只有讓學(xué)生真正感受到約分的'優(yōu)勢,以及不約分計(jì)算的弊端,學(xué)生才會(huì)自發(fā)的先約分后計(jì)算。先設(shè)計(jì)簡單的數(shù)據(jù),學(xué)生既可以先約分再計(jì)算,也可以先計(jì)算再約分。因?yàn)閿?shù)據(jù)簡單,所以無論哪一種學(xué)生都可以得到正確答案。再設(shè)計(jì)7/22×33這道題,學(xué)生先計(jì)算后數(shù)據(jù)比較大,看不出公因數(shù)沒有辦法約分。所以學(xué)生中出現(xiàn)兩種答案。這時(shí)兩種方法進(jìn)行比較,感受先約分?jǐn)?shù)據(jù)小容易,先計(jì)算數(shù)據(jù)大很難約分。只有經(jīng)歷過這種錯(cuò)誤的學(xué)生才有深刻的感受------先約分再計(jì)算,計(jì)算更方便。
三、掌握方法、提高計(jì)算能力
在這節(jié)課上,重點(diǎn)讓學(xué)生理解和掌握的分?jǐn)?shù)乘整數(shù)的計(jì)算方法,但是學(xué)生的計(jì)算能力的訓(xùn)練體現(xiàn)的不多。如果學(xué)生在課堂上的計(jì)算能力能夠有所提高,這樣一節(jié)計(jì)算課的效果就更好了。
分?jǐn)?shù)乘整數(shù)教學(xué)反思15
一、尊重學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”。
在教學(xué)分?jǐn)?shù)乘整數(shù)之前,其實(shí)班里已經(jīng)有不少學(xué)生知道了分?jǐn)?shù)乘整數(shù)的計(jì)算方法。如果再按照一般的教學(xué)程序進(jìn)行教學(xué),學(xué)生就會(huì)覺得“這些知識(shí)我早就知道了,沒什么可學(xué)的了?!?,從而失去探究的興趣。于是在教學(xué)時(shí),我提出:“為什么結(jié)果是9/10?為什么要把分子與整數(shù)相乘?”接下來的教學(xué)就引導(dǎo)學(xué)生帶著“為什么”去探索。
二、實(shí)現(xiàn)教學(xué)學(xué)習(xí)的個(gè)性化。
每個(gè)學(xué)生都有各自的生活經(jīng)驗(yàn)和知識(shí)基礎(chǔ),面對需要解決的問題,他們都是從自己特有的數(shù)學(xué)現(xiàn)實(shí)出發(fā)來構(gòu)建知識(shí)的,這就決定了不同的孩子在解決同一問題時(shí)會(huì)有不同的視角。在本節(jié)課中,我放手讓學(xué)生用自己思維方式進(jìn)行自由的、多角度的思考,學(xué)生自主地構(gòu)建知識(shí),充分體現(xiàn)了“不同的人學(xué)習(xí)不同的數(shù)學(xué)”的理念。有的學(xué)生通過對分?jǐn)?shù)乘整數(shù)的意義的理解,將分?jǐn)?shù)乘整數(shù)與分?jǐn)?shù)加法的計(jì)算方法聯(lián)系起來思考;有的學(xué)生通過在老師給的練習(xí)紙上涂色來得到結(jié)果;有的學(xué)生講清了為什么將分子與整數(shù)相乘的.道理;還有的學(xué)生將分?jǐn)?shù)轉(zhuǎn)換為小數(shù),同樣得到了正確的結(jié)果。由此我深深地體會(huì)到,包括教師在內(nèi)的任何人,都不能要求學(xué)生按照我們成人的或者教材編寫者的意圖去思考和解決問題,那些單一的、刻板的要求只會(huì)阻礙學(xué)生的思維發(fā)展。
三、對教材進(jìn)行重組。
本節(jié)課時(shí)一節(jié)枯燥乏味的計(jì)算課,因此我利用烏龜和兔子進(jìn)行智力比賽的方式來刺激學(xué)生求知解題的欲望,讓孩子們在充滿競爭和挑戰(zhàn)的環(huán)境氛圍下,不知不覺地完成書本上的基本練習(xí)。當(dāng)然我也對教材的聯(lián)系題目進(jìn)行了重組和改編。如練一練第一題,我就把4個(gè)改成了3個(gè),這樣就使得這題避免約分,先解決不用約分的計(jì)算方法,再進(jìn)行約分的教學(xué)。使整節(jié)課自然分成兩部分來進(jìn)行。
四、存在的一些問題。
本節(jié)課總體來說比較成功,課堂上的內(nèi)容都比較順利的完成了,但是在讓學(xué)生體會(huì)先約分比較簡單時(shí),出現(xiàn)了些問題。在做完例題第二個(gè)問題之后,依然有不少學(xué)生依然覺得先計(jì)算好,于是我就出示了四道題目,其中最后一題數(shù)據(jù)較大,可以很好的引導(dǎo)學(xué)生得出正確的結(jié)論。但我現(xiàn)在覺得,如果在例題教學(xué)完之后就直接完成那個(gè)8/11×99,這樣就更加直接了,學(xué)生立刻就能體會(huì)到先約分的好處了,那么再做其它需要進(jìn)行約分的題目就方便了。