第一篇:釘子板教案
時間:12月9日 地點:會議室 做課人:焦海云
釘子板上的多邊形
一、板書課題:由談話導入
二、出示教學目標:探索釘子板上的多邊形的面積與它邊上的釘子數(shù)之間的關系,并用含有字母的式子表示規(guī)律。
三、交流探索,尋找規(guī)律:
1、出示釘子圖:
2、出示自學指導(一): 請打開課本108頁:(1)認真數(shù)一數(shù),算一算:釘子板上這些圖形的面積各是多少平方厘米?每 個多邊形邊上的釘子各是多少枚?(完成108頁表格)(2)、從這些圖形中,你發(fā)現(xiàn)了什么?用字母怎樣表示?(重點看西紅柿、小蘑菇、小蘿卜、青辣椒的提示)
(比比看誰看書最認真,完成后同桌互相說一說,時間為3分鐘)
(3)、先學: ①數(shù)一數(shù),算一算(完成108頁表格)② 說一說
③、總結(jié)規(guī)律:當a=1,s=n÷2
3、出示自學指導(二):
請出示釘子圖,看探索二中的圖形:
(1)、認真數(shù)一數(shù),算一算:釘子板上這些多邊形內(nèi)都有2枚釘子,它們的 面積各是多少平方厘米?每個多邊形邊上的釘子各是多少枚?(完成探索二的表格)
(2)、它們的面積與它們邊上的釘子數(shù)有什么關系?用字母又怎樣表示?(動手算一算,再和同桌說一說,時間為2分鐘)
(3)先學:①數(shù)一數(shù),算一算(完成釘子圖(1)的表格)② 說一說
③、總結(jié)規(guī)律:當a=2,s=n÷2+1
4、出示自學指導(三): 請出示釘子圖,看探索三中的圖形:
(1)、數(shù)出各多邊形邊上的釘子數(shù),算出它的面積.(完成探索三的表格)(2)、你發(fā)現(xiàn)了什么?用字母又怎樣表示?
(動手數(shù)一數(shù),算一算,時間為2分鐘)
(3)先學:①數(shù)一數(shù),算一算(完成釘子圖(2)的表格)② 說一說
③、總結(jié)規(guī)律:當a=3,s=n÷2+2
5、猜想并驗證規(guī)律:(1)畫一畫(2)算一算,數(shù)一數(shù)
(3)總結(jié)規(guī)律:當a=4,s=n÷2+3 當a=5,s=n÷2+4當a=0,s=n÷2-1
四、總結(jié)規(guī)律:當a=m時S=n÷2+(m-1)
五、課堂檢測我最棒:小牛刀試
六、回顧探索和發(fā)現(xiàn)規(guī)律的過程,你有什么體會?
第二篇:釘子板上的多邊形教案
基地數(shù)學學科《釘子板上的多邊形》教學設計
溧陽市平橋小學
潘紅星
教學目標:
1.經(jīng)歷畫圖、填表、分析數(shù)據(jù)、探索規(guī)律的過程,讓學生自主發(fā)現(xiàn)釘子板上的釘子數(shù)與面積之間的關系。
2.初步感悟通過固定某些變量的值來探求其余變量的變化規(guī)律的科學思維方法。3.培養(yǎng)學生獲取由簡單到復雜的探究問題的方法和經(jīng)驗。教學過程:
一、認識釘子板
同學們,大屏幕上的是什么?今天我們要學習與釘子板有關的數(shù)學知識,老師沒有帶釘子板,怎么辦,有沒有替代品。
講述:釘子板上的多邊形是用橡皮筋圍的,今天我們就用畫的形式表示好嗎?
二、揭題
1.今天我們學習的數(shù)學內(nèi)容是什么? 生:釘子板上的多邊形 師板書:釘子板上的多邊形
師:你覺得我們今天會研究多邊形的什么數(shù)學問題呢? 生:面積、周長……
2.師:今天我們就學習多邊形的面積,想一想,今天學習的多邊形面積還可能和什么有關系? 生:釘子板
師補充:釘子板上的釘子,你覺得會有什么樣的關系呢? 生:釘子越多,面積越大
師:這只是你的猜想,要想得到證明,我們還要進行操作是嗎? 師:我們從簡單的圖形學起 師:說一說上面圖形的面積各是多少 說一說你是用什么方法的呢?
根據(jù)學生的回答板書:算 說一說你是用什么方法的 根據(jù)學生的回答板書:數(shù)
3.師提問:剛才我們說多邊形的面積可能和什么有關系?。?生:釘子數(shù)
4.多媒體出示:多邊形邊上的釘子數(shù) 一起讀一讀,我們要數(shù)什么 5.一起和老師數(shù),師點生數(shù) 6.你發(fā)現(xiàn)了什么?
生:釘子數(shù)÷2=面積
…… 讓3-4名學生說一說。
師:很難說,如果我們用字母表示就簡單多了。
用s表示多邊形的面積,用n表示多邊形邊上的釘子數(shù)你會表示嗎? 學生根據(jù)自己的理解得到S=N÷2
三、引發(fā)矛盾
師:剛才我們的圖上是不是還有4幅圖形啊,我們一起來驗證一下好嗎? 師:你有什么想要說的
師:現(xiàn)在我們從不同中找相同,回頭再看看前面4幅圖,你有什么發(fā)現(xiàn)? 生:中間只有一枚釘子 師:點一點
師:你覺得剛才我們的這句話應該怎么說才更合適呢? 生:當中間只有一枚釘子時,師:如果中間釘子數(shù)用字母a表示,這個公式應該怎么表示。
四、反思與小結(jié)
師:剛才我們研究了什么,你能不能用一句話說一說。生:多邊形的面積等于多邊形邊上的釘子數(shù)除以2。
五、遷移研究
師:接下來,我們應該研究什么了,生:A=2 師出示:兩幅圖,你還記得剛才的數(shù)據(jù)嗎?說一說
師:現(xiàn)在拿出你的釘子板紙,在上面畫一個中間有兩枚釘子的多邊形,并寫出他的面積與邊上的釘子數(shù)。生演示并匯報,師填寫
師:你有什么發(fā)現(xiàn),在小組里和大家說一說。指名說一說你的發(fā)現(xiàn)
師:剛才我們又研究了什么,你能不能用一句話說給大家聽一聽。研究A=3 師:你覺得接下來我們要研究什么了。在你的釘子板上畫一畫,小組里完成表格。遷移知識:如果A=4、5…..當A=0的時候呢?
學生利用學習研究單分別研究出A=2、3、4、5等多邊形的面積與邊上釘子數(shù)的關系。
師:象這樣的研究我們還可以繼續(xù),如果你有興趣的話,老師推薦你一本書有兩個人。
出示兩個關于這一數(shù)學現(xiàn)象研究的數(shù)學家。六:全課小結(jié)
這節(jié)課,我們一起研究了什么?能不能把你的發(fā)現(xiàn)和大家說一說。
第三篇:釘子板上的多邊形教案
釘子板上的多邊形
教學目標:
1.經(jīng)歷畫圖、填表、分析數(shù)據(jù)、探索規(guī)律的過程,發(fā)現(xiàn)皮克公式。
2.初步感悟通過固定某些變量的值來探求其余變量的變化規(guī)律的科學思維方法。
3.獲取由簡單到復雜的探究問題的方法和經(jīng)驗。
4.能類比遷移探求問題的方法,嘗試拓展研究同類新問題。教學重點:
發(fā)現(xiàn)、得出多邊形的面積與邊上釘子數(shù)和多邊形中間釘子數(shù)之間的規(guī)律 教學難點:
類比推導出一般規(guī)律 教學準備:
作業(yè)紙,多媒體課件 教學過程:
一、激趣生疑,直觀感知
1、呈現(xiàn)一個釘子板上的多邊形
說明:每相鄰的四個釘子構(gòu)成一個正方形,邊長是1,面積是1個面積單位。提問:這個圖形有幾個面積單位?你是怎么知道的? 組織交流:(1)、面積公式計算;(2)、分割數(shù)方格
2、啟發(fā):你能再圍一個面積和剛才不一樣的多邊形嗎?在圍過程中想一想多邊形的面積可能跟什么有關呢?
學生動手圍一圍,同桌相互說一說怎樣求出面積的。
3、追問:跟哪里的釘子數(shù)有關?
4、揭題:面積與釘子數(shù)之間是否存在一定的規(guī)律呢?我們這節(jié)課就來研究釘子板上的多邊形面積與釘子數(shù)之間的關系。提問:想一想,我們可以怎樣來研究? 提出猜想——驗證猜想——概括結(jié)論
二、簡單入手,探究多邊形內(nèi)有一枚釘子的情況
1、個例發(fā)現(xiàn),形成猜想
出示:一組釘子板上的多邊形。提問:每個多邊形各有多少個面積單位?邊上的釘子數(shù)各有多少枚?先數(shù)一數(shù)、算一算,把結(jié)果填入表中,再和同桌說說你的發(fā)現(xiàn)。
生獨立計數(shù),完成表格 出示資源: 提問:(1)校對結(jié)果
(2)你有什么發(fā)現(xiàn)?
全班交流:(1)多邊形邊上的釘子數(shù)越多,面積越大
(2)多邊形的面積等于多邊形邊上釘子數(shù)的一半
如果用S表示面積單位的個數(shù),n表示多邊形邊上的釘子數(shù),你能用字母表達式表示這一發(fā)現(xiàn)嗎?動手寫一寫。
2、舉例驗證,明確前提
引導:由剛才這四個圖形,有了這樣的發(fā)現(xiàn),這一發(fā)現(xiàn)是否也適用于釘子板上的其他圖形呢?我們還要舉例驗證。
要求:在釘子板上畫一些多邊形,驗證剛才的發(fā)現(xiàn)。并列呈現(xiàn)學生資源,引導觀察。
(1)符合規(guī)律(2)不符合規(guī)律
提問:看來剛才的發(fā)現(xiàn)并不適合釘子板上的所有圖形,到底怎樣的圖形才具有這樣的規(guī)律呢?,它們有什么共同的特點?仔細觀察,把你的發(fā)現(xiàn)說給同桌聽聽。
指名交流:多邊形中間只有一枚釘子
3、歸納概括,形成結(jié)論
總結(jié):看來要使這一發(fā)現(xiàn)成立,還要加個前提,誰能把這個規(guī)律完整的說一說?
同桌互相說一說,再指名交流。
當多邊形里面只有1枚釘子時,多邊形的面積等于多邊形邊上釘子數(shù)的一半。
如果把多邊形里面的釘子數(shù)用a來表示,完善字母表達式??偨Y(jié):看來釘子板上的多邊形的面積不僅跟多邊形邊上的釘子數(shù)有關,還跟多邊形里面的釘子數(shù)有關。
正因為面積和兩個量都有關系,所以我們研究是時候先確定一個量(里面的釘子數(shù))
三、運用結(jié)構(gòu),探究多邊形內(nèi)有多枚釘子的情況
1、探究形內(nèi)有2枚釘子的情況
形內(nèi)只有1枚釘子的情況已經(jīng)研究了,往下我們應該研究?
當形內(nèi)有2枚釘子時會有怎樣的規(guī)律呢?同學們也像剛才那樣畫一些形內(nèi)只有2枚釘子的多邊形,老師這里也提供一些,算一算,數(shù)一數(shù),多邊形有幾個面積單位?多邊形邊上的釘子數(shù)有幾枚?把結(jié)果填入表中,再與同桌說說你的發(fā)現(xiàn)。
過程指導:也像剛才那樣,把釘子數(shù)除以2,再跟面積進行比較??纯从惺裁匆?guī)律。
如果用字母表達式來表示這一規(guī)律應該怎么寫? 學生獨立探究,發(fā)現(xiàn)規(guī)律 個別交流:當多邊形內(nèi)有2枚釘子時,多邊形的面積等于多邊形邊上的釘子數(shù)÷2+1 同桌互說規(guī)律 學生獨立完成
板書:當a=2時,S= n÷2+1
2、推想形內(nèi)有2枚以上釘子的情況
提問:比較這兩個規(guī)律,你覺得a=3、4時會有怎樣的規(guī)律? 如果你能直接推想出規(guī)律,那就寫出你的猜想,然后舉例驗證,如果不能,那也像剛才那樣先畫出圖形內(nèi)有3枚釘子的多邊形,再數(shù)一數(shù)、算一算,看看有什么規(guī)律。左邊同學研究a=3的情況,右邊同學研究a=4的情況。
分工合作,推想規(guī)律 個別交流規(guī)律
當a=3時,S=n÷2+2 當a=4時,S=n÷2+3
3、歸納推理,形成一般公式
像這樣推想下去,當a=m時,s=? 學生獨立完成 個別交流:
當a=m時,s=n÷2+m-1 同學們:今天我們通過對形內(nèi)有1枚、2枚、3枚、4枚釘子數(shù)的的多邊形的研究,發(fā)現(xiàn)多邊形的面積單位個數(shù)與釘子數(shù)之間的關系,并歸納推理出一般公式,當a=m時,s=n÷2+m-1,這一公式對于形內(nèi)有5、6…甚至更多釘子時是否成立,我們還需舉例驗證,下節(jié)課我們就來驗證這一規(guī)律。板書設計:
釘子板上的多邊形
當多邊形內(nèi)只有1枚釘子時,多邊形面積單位的個數(shù)等于多邊形邊上的釘子數(shù)÷2 當a=1時,S=n÷2
當a=2時,S=n÷2+1 當a=3時,S=n÷2+2 當a=m時,s=n÷2+m-1
第四篇:釘子板上的多邊形 教學設計
釘子板上的多邊形
教學內(nèi)容:五年級上冊p108-109探索規(guī)律“釘子板上的多邊形” 教學目標:
1、使學生探索并發(fā)現(xiàn)釘子板上圍城的多邊形的面積,與圍城的多邊形邊上的釘子 數(shù)、多邊形內(nèi)部釘子數(shù)之間的關系,并嘗試用字母式子表示關系。
2、使學生經(jīng)歷探索釘子板上圍城的多邊形面積與相關釘子數(shù)間的關系的過程,體 會規(guī)律的復雜性和全面性,體會歸納思維,體會用字母表示關系的簡潔性,發(fā)展 觀察、比較、推理、綜合和抽象、概括等思維能力。
3、使學生獲得探索規(guī)律成功的體驗,樹立學習數(shù)學的自信心,感受數(shù)學規(guī)律的奇 妙,對數(shù)學產(chǎn)生好奇心,提高學習數(shù)學的興趣和積極性。
教學重點:探索釘子板上多邊形的面積與多邊形邊上釘子數(shù)、內(nèi)部釘子數(shù)之間的關系 教學難點:綜合、歸納多邊形的面積與多邊形邊上釘子數(shù)、內(nèi)部釘子數(shù)之間的關系 教學過程:
課前活動:每個小組里發(fā)一個釘子板實物。并激發(fā)他們在釘子板上圍多邊形。玩出精彩!有一位數(shù)學家就在小小的釘子板上玩出了精彩。皮克定理是世界上的最重要的100個數(shù)學定理之一。今天我們也走進釘子板的世界去看一看。
一:創(chuàng)設情境,引出問題
今天我們研究————釘子板上的多邊形(出示課題)
師:為了研究的方便,我們通常用這樣的點陣圖代替釘子板。每相鄰兩個釘子之間的距離都是1cm,相鄰4個點圍成一個面積是1cm2。你們看現(xiàn)在點陣圖上的點子可以怎么分分類?
邊上的釘子,圖形內(nèi)的釘子、圖形外的釘子
出示課件:釘子板上的多邊形,共3個不同的多邊形。問題1:你想研究釘子板上的多邊形的哪些項目呢?
生:多邊形的面積、面積的大小和什么有關?······
問題2:你猜想下,釘子板上的多邊形的面積會有什么因素有關?
生:釘子數(shù)、多邊形邊上的釘子數(shù)、多邊形內(nèi)的釘子數(shù)······
師小結(jié):這些多邊形的面積是否和以上的各個因素有關呢?下面我們就來研究下這些圖形。
二:自主研究,得出猜想
問題1:你想怎樣研究?
生:畫圖、計算、數(shù)······
師:很好,下面我們就來研究影響多邊形面積的因素,我們從最簡單的一組圖形開始。
研究1:獨立完成“釘子板上的多邊形”研究單1
1、學生通過算一算、數(shù)一數(shù),完成研究單1;
2、師展示學生的研究單,說一說你的研究過程;——學生自己介紹表格中數(shù)據(jù)的由來。
3、觀察分析表格中的數(shù)據(jù),你有什么發(fā)現(xiàn)?
——同桌互相說一說
——個別的匯報
4、通常我們用S表示面積,n表示多邊形邊上的釘子數(shù),你能用一個式子表示上面得到的關系嗎?
——S=n÷2
小結(jié):根據(jù)學生的研究和匯報,初步得出多邊形的面積等于多邊形邊上的釘子數(shù)除以2.三、質(zhì)疑驗證,歸納結(jié)論
S=n÷2這個規(guī)律是否對釘子板上所有的多邊形都成立呢?應該怎么辦?————驗證
1、完成研究單1上面的第二題的①②兩個,并填表。
2、出示課件上⑦⑧兩個圖形,再次驗證。
3、通過兩次的驗證,你有什么發(fā)現(xiàn)?——發(fā)現(xiàn)S=n÷2在其它的多邊形中不成立。
4、思考:為什么呢?
引導學生再次觀察①②③④四個圖形,你有什么發(fā)現(xiàn)?同桌互相說一說,再個 別發(fā)表看法?!贸觯孩佗冖邰芩膫€多邊形內(nèi)部都只有一個點。
5、再次驗證:每位學生再提供的備用點子圖上畫一個內(nèi)部只有一個點的多邊形,計算并觀察多邊形的面積和邊上的釘子數(shù)是否符合S=n÷2?
6、誰能完整的把剛才的規(guī)律說一說?
小結(jié):多邊形的面積不僅僅和邊上的釘子數(shù)有關,還和多邊形內(nèi)的釘子數(shù)有關。多邊形內(nèi)的釘子數(shù)用a表示,上面的規(guī)律可以歸納為:
當a=1時,S=n÷2 數(shù)學中的一些美麗定理具有這樣的特性:它們極易從事實中歸納出來,但證明卻隱藏的極深。----高斯
四、合作探究,得出規(guī)律
引入:多邊形內(nèi)有一枚釘子的情況,同學們已經(jīng)研究過了,而且找出了一般規(guī)律,那下面你們想研究什么呢?——————多邊形內(nèi)有2枚釘子的時候,面積和釘子數(shù)的關系。
合作交流,完成研究單1的第二題。
1、首先獨立畫一個內(nèi)部兩個點的多邊形,得出S和n;
2、同桌交流,完善表格。
3、觀察表格中的S與n的 值,再互相說一說,你有什么發(fā)現(xiàn)?
4、個別同學匯報發(fā)現(xiàn),其他同學根據(jù)自己的圖形驗證發(fā)現(xiàn)是否正確。
小結(jié):多邊形的面積不僅僅和邊上的釘子數(shù)有關,還和多邊形內(nèi)的釘子數(shù)有關。多邊形內(nèi)的釘子數(shù)用a表示,上面的規(guī)律可以歸納為:
當a=2時,S=n÷2+1
五、推想、驗證,得出規(guī)律
引入:當a=1時,S=n÷2 當a=2時,S=n÷2+1 猜想:當a=3、4、5······時,S與n之間有什么關系呢?
學生猜想:當a=3時,S=n÷2+2 當a=4時,S=n÷2+3 學生驗證:分組研究,分成4人小組
1、組內(nèi)確定研究主題:a=3或者a=4.2、三人每人分別畫一個,并且得出S與n的值,第四個人匯總并匯報小組的研究成果。
3、觀察比較分析,研究的結(jié)果和猜想的結(jié)論是否一致?
小 結(jié): 根據(jù)剛才同學們的研究,我們得到了這些規(guī)律
當a=1時,S=n÷2 當a=2時,S=n÷2+1 當a=3時,S=n÷2+2 當a=4時,S=n÷2+3
請你說一說
當a=5時,S=
······
當a=10時,S=
·······
問題:你能用一個含有S、n、a的式子概括出以上所有的規(guī)律嗎?
——————
S=n÷2+a-1
六:拓展研究,形成體系
出示:釘子板上的多邊形實物圖形,觀察這些多邊形有什么特點?
——內(nèi)部的釘子數(shù)為0.即a=0
問題:當a=0時,上面的規(guī)律還成立嗎?你是怎么想的?說一說你的想法和結(jié)論。
七:總結(jié)收獲,形成方法。
說明:我們今天研究的規(guī)律,就是數(shù)學上著名的皮克定理(適當介紹)。有興趣的同學,可以在網(wǎng)絡上或書籍里了解皮克定理。如果有進一步認識的要求,那記住這本書:閔酮鶴的著作《格點和面積》,以后有興趣、有條件了,可以去閱讀。
回顧過程,交流體會。
提問:回顧剛才探索和發(fā)現(xiàn)規(guī)律的過程,你有什么體會和收獲? 追問:還有什么疑問嗎?
小結(jié):今天我們一起研究了釘子板上多邊形面積與釘子數(shù)之間的關系。在研究的過程中,我們從簡單情形入手,通過畫一畫、數(shù)一數(shù)、算一算等方法,經(jīng)歷觀察、比較、猜想、驗證等活動,發(fā)現(xiàn)了規(guī)律。從上面的過程中我們發(fā)現(xiàn),要從各種不同情況的多邊形中研究,要善于發(fā)現(xiàn)不同多邊形中的共同點,比如形狀、大小不同的多邊形中都有幾個釘;發(fā)現(xiàn)的不同關系式中的共同規(guī)律等。在探索規(guī)律時,一定要注意認真觀察、反復比較,舉例驗證。表示數(shù)學規(guī)律一般用含有字母的式子,它具有簡潔、明了、易記的特點。
第五篇:釘子板上的多邊形面積說課稿
《釘子板上的多邊形》說課稿 橫板橋鎮(zhèn)中心小學 廖為火
一、說教學內(nèi)容:
蘇教版(新版)五年級上冊第8單元108-109探索規(guī)律“釘子板上的多邊形”
二、說教學目標:
1、使學生探索并發(fā)現(xiàn)釘子板上圍城的多邊形的面積,與圍城的多邊形邊上的釘子數(shù)、多邊形內(nèi)部釘子數(shù)之間的關系,并嘗試用字母式子表示關系。
2、使學生經(jīng)歷探索釘子板上圍城的多邊形面積與相關釘子數(shù)間的關系的過程,體會規(guī)律的復雜性和全面性,體會歸納思維,體會用字母表示關系的簡潔性,發(fā)展觀察、比較、推理、綜合和抽象、概括等思維能力。
3、使學生獲得探索規(guī)律成功的體驗,樹立學習數(shù)學的自信心,感受數(shù)學規(guī)律的奇妙,對數(shù)學產(chǎn)生好奇心,提高學習數(shù)學的興趣和積極性。
三、說教學重點難點:
探索釘子板上多邊形的面積與多邊形邊上釘子數(shù)、內(nèi)部釘子數(shù)之間的關系
綜合、歸納多邊形的面積與多邊形邊上釘子數(shù)、內(nèi)部釘子數(shù)之間的關系
四、說教學過程:
一、問題引入,揭示課題
1.設疑激趣。
PPT出示點子板上圍成的多邊形,提出問題:不準分割你能迅速計算出下列方格圖中每個多邊形的面積嗎(說明:這里的每個格子面積1cm2的正方形)?
在學生學習了常見多邊形面積計算后,咋一看以為用常規(guī)方法能解答以上問題,但仔細一看題目要求,這些圖形的面積計算就比較困難,這樣就激發(fā)起學生強烈的求知欲。此時教師提出:用數(shù)格點的方法可以解決。此時學生腦里想的是:格點是什么?怎么數(shù)?與圖形面積有什么關系?帶著這一系列疑問,我出示第二組圖形(圖1-圖3)
2.引入課題。
談話:釘子板上多邊形的面積與哪里的釘子數(shù)有關,有怎樣的關系呢?我們這節(jié)課就來研究這個問題,看看到底有怎樣的關系。
二、分層探索,發(fā)現(xiàn)規(guī)律
(一)引導嘗試,初步感知。
1.引導學生觀察 圖1-圖3。
引導:請大家觀察PPT上面的多邊形,按上面要求數(shù)一數(shù),在教材第108頁的表格里填一填。
(1)數(shù)一數(shù)或算一算每個多邊形的面積各是多少平方厘米;
(2)數(shù)一數(shù)每個多邊形上的釘子各有多少枚;
(3)想一想多邊形的面積和邊上的釘子數(shù)有怎樣的關系。
2.學生交流,完成第108頁的表格。
3.觀察數(shù)據(jù),比較發(fā)現(xiàn)。
引導:你能看出這些多邊形的面積和邊上釘子數(shù)的關系嗎?同桌先說一說。
交流:你發(fā)現(xiàn)這里的多邊形面積和邊上的釘子數(shù)有什么關系?(板書:多邊形的面積=多邊形上的釘子數(shù)÷2)
說明:為了更簡潔、方便地表示出這個規(guī)律,我們可以用字母來表示。如果用n表示多邊形上的釘子數(shù),用S表示多邊形的面積,那上面發(fā)現(xiàn)的這個規(guī)律可以怎樣表示?
教師確認、說明字母表示的關系式,PPT出示:
S=n÷2 4.觀察比較,反思質(zhì)疑。
(二)繼續(xù)研究,拓展認識。
1.提出問題,引發(fā)思考。PPT出示圖4-圖6:
引導:如果多邊形內(nèi)部都有2枚釘子,多邊形面積與它邊上的釘子數(shù)又有什么關系呢?現(xiàn)在請大家自己在方格紙中畫圖,數(shù)一數(shù)、比一比,看看有沒有規(guī)律。
2.小組合作,探究規(guī)律。
引導:現(xiàn)在請你們四人小組合作,按照下面的辦法研究多邊形的面積。
出示活動要求:
(1)每人在方格紙中畫一個內(nèi)部有2枚釘子的多邊形,數(shù)出邊上的釘子數(shù),算出它的面積;
(2)每人把獲得的數(shù)據(jù)在小組內(nèi)交流,并記錄在課本第109頁的表格里;
(3)觀察表格中的數(shù)據(jù),小組討論交流:你有什么發(fā)現(xiàn)?
學生操作、填表、比較、思考,教師巡視。
3.交流引導,發(fā)現(xiàn)規(guī)律。
PPT 出示圖4-圖6及表格,指名學生交流結(jié)果,在表格里呈現(xiàn)。
引導:我們剛才已經(jīng)知道,這里的面積不等于n÷2,但和n÷2 有點什么關系嗎?同桌互相討論,看看有什么發(fā)現(xiàn)。
提問:通過數(shù)據(jù)比較,你有什么發(fā)現(xiàn)?
小結(jié):通過這里的多邊形的比較,可以發(fā)現(xiàn),當多邊形內(nèi)部釘子數(shù)a=2時,面積S=n÷2+1。(板書:a=2 S=n÷2+1)
追問:檢查你畫的內(nèi)部有2個釘子的多邊形,面積符合這個規(guī)律嗎?如果不符合,把你的例子在全班交流。
指出:現(xiàn)在沒有學生提出反例,所以的都符合這里的規(guī)律。從大家的圖形和數(shù)據(jù)可以發(fā)現(xiàn),當多邊形內(nèi)部有2個釘子時,也就是a=2時,S=n÷2+1。
(三)引導猜想,概括規(guī)律。
1.引發(fā)學生猜想。
提問:上面發(fā)現(xiàn)圖形內(nèi)部釘子數(shù)a=1時,S=n÷2;a=2時,S=n÷2+1。你能聯(lián)系這里的規(guī)律,猜一猜,如果多邊形內(nèi)部有3枚釘子,它的面積與邊上釘子數(shù)又有怎樣的關系呢?先想一想,再告訴大家你的猜想。
交流:你猜想的規(guī)律是怎樣的?(板書:a=3 S=n÷2+2 ?)怎樣想的?
2.畫圖舉例,驗證猜想。
讓學生在點子圖上畫出圖形,驗證上面的猜想。
交流:你畫出的是怎樣的圖形,驗證的結(jié)果有什么結(jié)論?(指名學生呈現(xiàn)圖形驗證結(jié)論)
PPT出示圖7-圖9,引導學生完成表格。
確認:當多邊形內(nèi)釘子數(shù)是3時,面積S就等于n÷2+2。
追問:現(xiàn)在我們又有什么發(fā)現(xiàn)?
3.拓展延伸,揭示規(guī)律。
引導學生觀察關系式:a=1 S=n÷2
a=2 S=n÷2+1
a=3 S=n÷2+2
引導:你覺得如果a=4,會有什么規(guī)律?a=5呢?
那你能任選一個a等于幾,畫一畫、算一算來驗證嗎?自己畫圖驗證。指名學生交流,呈現(xiàn)不同例子的圖形用數(shù)據(jù)驗證,并板書關系式。
提問:你現(xiàn)在能發(fā)現(xiàn)釘子板上多邊形面積的規(guī)律了嗎?
指出:如果用a表示多邊形內(nèi)部的釘子數(shù),n表示多邊形邊上的釘子數(shù),那么,多邊形的面積S就等于邊上的釘子數(shù)n除以2,再加上內(nèi)部的釘子數(shù)a,然后減1。(板書:S=n÷2+a-1)
驗證:請大家用這個規(guī)律解決本課開始的問題。PPT返回到本課 最早的三個多邊形圖,用上面的公式迅速計算,體驗成功的快樂。
(四).適當介紹,拓展視野。PPT
說明:我們今天研究的規(guī)律,就是數(shù)學上著名的皮克定理(一個計算點陣中頂點在格點上的多邊形面積公式:S=a+b÷2-1,其中a表示多邊形內(nèi)部的點數(shù),b表示多邊形邊界上的點數(shù),s表示多邊形的面積)。有興趣的同學,可以在網(wǎng)絡上或書籍里了解皮克定理。如果有進一步認識的要求,那記住這本書:閔酮鶴的著作《格點和面積》,以后有興趣、有條件了,可以去閱讀。