欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      《3的倍數(shù)的特征》教學反思

      2023-11-30下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了這篇《《3的倍數(shù)的特征》教學反思》及擴展資料,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《《3的倍數(shù)的特征》教學反思》。

      《3的倍數(shù)的特征》教學反思1

      今天我教學了3的倍數(shù)的特征,我首先復習2、5的倍數(shù)的特征,然后我出示了幾個不同的四位數(shù),問生:誰能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當,學生也很有興趣。下面,我先讓學生寫出50以內(nèi)3的倍數(shù),再觀察:3的`倍數(shù)有什么特點?學生一時很難發(fā)現(xiàn),仍從個位上的數(shù)去觀察,但馬上被其他同學否定,當時我心里有點擔心怎么看不來呢?,我啟發(fā)學生再看看個位和十位上的數(shù),通過交流后,在部分學生馬上發(fā)現(xiàn)把每個數(shù)的數(shù)字加起來的和除以3都是正好除的,我讓學生用這個發(fā)現(xiàn)對書上第76頁的表格100以內(nèi)的數(shù)進行驗證一下,學生驗證后我又讓學生從100以外的數(shù)來驗證。從而得出了3的倍數(shù)的特征。再通過用1、2、6可以寫成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學生進一步明白3的倍數(shù)跟數(shù)字的位置沒有關(guān)系,只跟各位上數(shù)的和有關(guān)系。這樣學生在完成想想做做第5題時學生思考時就不會漏寫了。最后,通過后面的練習,我覺得在教學某些知識時,最好老師不要輕易下結(jié)論,只有讓他們自己在反復實踐中自己得出結(jié)論,才能牢固地掌握知識。

      《3的倍數(shù)的特征》教學反思2

      3的倍數(shù)的特征的教學與2、5倍數(shù)的特征難度上有不同,因為2、5的倍數(shù)的特征從數(shù)的表面的特點就可以很容易看出(根據(jù)個位數(shù)的特點就可以判斷出來),但是3的倍數(shù)的特征卻不能從表面去判斷,因而我特設(shè)以下環(huán)節(jié)突破重難點預習題。

      1、給出一些數(shù)讓學生先判斷哪些數(shù)是3的倍數(shù)。并讓學生說一說你是怎么判斷的?

      2、從以上的3的倍數(shù)進行思考:

      (1)、3的倍數(shù)與它個位上的數(shù)有關(guān)系嗎?

      (2)、3的倍數(shù)的各位上的數(shù)的和都是3的倍數(shù)嗎?

      新課時讓學生從上面的`練習中去發(fā)現(xiàn)了什么,從而歸納3的倍數(shù)的特征:一個數(shù)的各個數(shù)位上的數(shù)字和是3的倍數(shù),這個數(shù)就是3的倍數(shù)

      然后再讓每個同學任意寫一個3的倍數(shù),再看看這個數(shù)的各個數(shù)位上的數(shù)的和是不是3的倍數(shù)。要求學生說出方法和思路。

      經(jīng)過以上這些活動后學生都能對一個數(shù)是不是3的倍數(shù)進行簡單的判斷。特別是學生對3的倍數(shù)特征的判斷大多數(shù)的學生能先求出各個數(shù)位的數(shù)字之和是不是3的倍數(shù),然后再進行判斷,效果很好。

      《3的倍數(shù)的特征》教學反思3

      1.以學生原有認知為基礎(chǔ),激發(fā)學生的探究欲望。教師利用學生剛學完“2、5的倍數(shù)的特征”產(chǎn)生的`負遷移,直接拋出問題,激活了學生的原有認知,學生自然而然地會將“2、5的倍數(shù)的特征”遷移到解決“3的倍數(shù)特征”的問題,產(chǎn)生認知沖突,萌發(fā)疑問,激發(fā)強烈的探究欲望。本案例中,學生很快進入問題情境,猜測、否定、反思、觀察、討論,大部分學生漸漸進入了探究者的角色。

      2.以問題為中心組織學生展開探究活動。在上面案例中,教師注意突出學生的主體地位,教師依據(jù)學生年齡特征和認知水平設(shè)計具有探索性的問題,引導學生緊緊圍繞“3的倍數(shù)有什么特征”這個問題來開展學習活動,指導學生圍繞問題展開探究活動,并不斷組織師生之間、生生之間的交流和討論,逐步發(fā)現(xiàn)、歸納規(guī)律、得出結(jié)論,培養(yǎng)了學生的探索意識和分析、概括、驗證、判斷等能力。

      《3的倍數(shù)的特征》教學反思4

      《3 的倍數(shù)的特征》本節(jié)課的教學活動,注重學生實踐操作,展開探究活動,組織學生進行交流和探討,注重培養(yǎng)學生發(fā)現(xiàn)問題,解決問題的能力,讓學生經(jīng)歷科學探索的過程,感受數(shù)學的嚴謹性和數(shù)學結(jié)論的正確性。我是從教學環(huán)節(jié)維度進行觀課的,本節(jié)課有五個環(huán)節(jié)包括:一、復習舊知,直接導入。二、自主探究,合作驗證。三、總結(jié)提升,共同驗證。四、運用結(jié)論,鞏固訓練。五、全課小結(jié),課后延伸。每個環(huán)節(jié)環(huán)環(huán)相扣,設(shè)計合理。下面就說一下自己的想法。

      一、以舊帶新,引入新課。

      趙老師先復習了2、5的倍數(shù)的特征,為這節(jié)課的學習打下了基礎(chǔ)。趙老師以學生原有認知為基礎(chǔ),激發(fā)學生的探究欲望,利用學生剛學完“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此萌發(fā)疑問,激發(fā)強烈的探究欲望,因此學生很快進入問題情境,猜測、否定、反思、觀察、討論,使得大部分學生漸漸進入了探究者的.角色。

      二、親身經(jīng)歷,探索規(guī)律。

      本節(jié)課教師努力嘗試構(gòu)建數(shù)學生態(tài)課堂,讓學生繼續(xù)利用小棒擺一擺,進而發(fā)現(xiàn)不止是3根、6根小棒能擺出3的倍數(shù),9根也能“只要小棒的根數(shù)是3的倍數(shù),擺出來的數(shù)就是3的倍數(shù)?!苯處煂ⅰ皠邮謹[小棒”升級為“腦中撥計數(shù)器”,將“直觀性思維”升華為“理性思維”,通過小組交流、集體驗證,學生的探索發(fā)現(xiàn)離“3的倍數(shù)的特征”只有咫尺之遙。整節(jié)課讓學生經(jīng)歷“動手操作——觀察發(fā)現(xiàn)——舉例驗證——歸納總結(jié)”的探究過程,實現(xiàn)課程、師生、知識等多層次的互動。

      三、精心選題,鞏固新知。

      習題的設(shè)計力爭在突出重點,突破難點,遵循學生認知規(guī)律的基礎(chǔ)上,體現(xiàn)基礎(chǔ)性、層次性、靈活性、生活性、趣味性。本節(jié)課教師設(shè)計了3道練習題。在鞏固練習部分,第(1)、(2)題是基本題;第(3)題,教師努力拉近數(shù)學與生活的聯(lián)系。把數(shù)學和生活有機聯(lián)系起來,使學生體會到數(shù)學在現(xiàn)實生活中作用和價值,初步學會用數(shù)學的眼光去觀察事物、思考問題,樹立學好數(shù)學、用好數(shù)學的志趣。

      四、回顧梳理,舉一反。

      在學生學習的過程中注意“學習方法”的指導,讓學生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個環(huán)節(jié)設(shè)計了讓學生靜靜的回顧這節(jié)課的學習歷程“動手操作——觀察發(fā)現(xiàn)——舉例驗證——歸納總結(jié)”,使其在數(shù)學思想上做進一步的提升。

      《3的倍數(shù)的特征》教學反思5

      3的倍數(shù)的特征比較隱蔽,學生一般想不到從“各位上數(shù)的和”去研究。上課開始先讓學生回顧舊知:2的倍數(shù)和5的倍數(shù)有什么特征?學生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順利地設(shè)下了陷阱:“同學們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學思考方法,讓學生猜測3的倍數(shù)有什么特征,能較好地調(diào)動學生的學習積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學生很自然猜測到“個位上是0,3,6,9的數(shù)一定是3的.倍數(shù)”,還有學生猜測“個位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點應(yīng)該說是了不起的。本課到這里都很順利,因為完全在我的預設(shè)之中。

      下面進入驗證環(huán)節(jié),先讓學生判斷自己的學號是不是3的倍數(shù),再在這些學號中挑出個位上是0,3,6,9的數(shù),通過交流,學生發(fā)現(xiàn)這些數(shù)不一定是3的倍數(shù)。學生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關(guān)系呢?于是進入到動手操作環(huán)節(jié)。在此基礎(chǔ)上,抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。

      “試一試”是數(shù)學的第三步,如果一個數(shù)不是3的倍數(shù),那么這個數(shù)各位數(shù)的和不是3的倍數(shù),利用反例進一步證實3的倍數(shù)的特征,體現(xiàn)了數(shù)學的嚴謹性和數(shù)學結(jié)論的確定性。隨后設(shè)計了一系列習題,使學生得到鞏固提高。

      《3的倍數(shù)的特征》教學反思6

      本節(jié)課設(shè)計讓學生先復習2,5的倍數(shù)特征,然后讓學生先猜測一下3的倍數(shù)會有哪些特征,一部分學生很自然會猜測3的倍數(shù)也是看個位是否是3,6,9,這個時候就舉出13這個反例推翻學生的猜測,讓學生產(chǎn)生認知沖突,進而對3的倍數(shù)的學習有濃厚的學習積極性。之后讓學生在百數(shù)表中圈出100以內(nèi)3的所有倍數(shù),最后讓學生分小組討論3的倍數(shù)特征。

      在教學之前,我一直很忐忑學生能不能在討論中發(fā)現(xiàn)3的倍數(shù)的特征。教學中按照預先設(shè)計的進行,當進行到小組討論環(huán)節(jié)時,我走進小組聽學生的交流,令我驚異的是,有一大部分小組能夠發(fā)現(xiàn)3的倍數(shù)的特征。交流結(jié)束后,找學生來跟大家分享時,孩子們說的頭頭是道,比我預想的好的多得多,我想孩子自己發(fā)現(xiàn)并且分享后達到的效果一定比我灌輸給他們的.效果好的多的多。

      通過本節(jié)課的經(jīng)歷,我有一些感悟。在以后的教學中,很多內(nèi)容可以放手讓學生自己去探討去研究,學生會給我意想不到的驚喜,相信學生。本節(jié)存在著很多不足:在組織學生小組活動時,沒有在活動前明晰好規(guī)則,以至于活動的秩序不是很好,浪費了挺多的時間,最后的練習都沒有進行完成,以后的備課要更加精細,把活動細則都寫清楚。路漫漫其修遠兮,吾將上下而求索。

      《3的倍數(shù)的特征》教學反思7

      《3的倍數(shù)特征》進行了兩次教學授課,第一次是新授,第二次是錄課重復授課。下面就本節(jié)課前后兩次上課進行如下反思:第一次上課,采用游戲的方式引入,提前給學生編號,根據(jù)編號做游戲。由于每個學生的編號不一樣,所以在做游戲的時候,每個學生集中注意力,傾聽游戲要求,激發(fā)了學生的學習興趣。設(shè)置游戲的目的是復習2或5倍數(shù)的特征,同時,對3的倍數(shù)特征的學習產(chǎn)生求知欲。接下來是采用提出猜想,舉出個例否定猜想來過渡。讓學生充分地認識到依據(jù)2或5的倍數(shù)特征的思想已經(jīng)行不通了,從而開始新的探索。在探索過程中借助“百數(shù)表”,讓學生獨立地圈出3的倍數(shù),圈完后互相交流3的倍數(shù)的個位有什么特點,再次否定了之前的思維定式。由于個位上沒有特點,所以引導學生從其他的角度觀察,學生能想到橫著觀察、豎著觀察,但對于斜著觀察不能很好的發(fā)現(xiàn),所以本節(jié)課中我關(guān)注到學生的思考困境,引導學生從斜著觀察的角度思考探索。當學生斜著觀察時能發(fā)現(xiàn)個位上的數(shù)字依次減1,十位上的數(shù)字依次加1,適時提出“什么是沒有變的?”問題一提出,學生恍然大悟,發(fā)現(xiàn):個位和十位上的數(shù)的和沒有變!順其自然的知道了3的倍數(shù)具有這樣規(guī)律。經(jīng)過研究每一斜行發(fā)現(xiàn):個位和十位上的數(shù)的和不變,都是3的倍數(shù)。知道了這個規(guī)律后,下面開始延伸這個規(guī)律。一方面:驗證百數(shù)表內(nèi)其他不是3的倍數(shù)是否具有這個規(guī)律?另一方面:比100大的數(shù),三位數(shù)、四位數(shù)、五位數(shù)等是否具有這個規(guī)律?通過兩方面的驗證,再次強調(diào)了這個規(guī)律是普遍存在的,而這時3的倍數(shù)特征已經(jīng)歸結(jié)為:一個數(shù)各位上的數(shù)的和是3的`倍數(shù),這個數(shù)就是3的倍數(shù)。知道了3的倍數(shù)特征之后通過練習鞏固加強,練習的設(shè)計是三道題,這三道題設(shè)計為不同的層次,第一題是基礎(chǔ)題,第二題是拔高題,第三題是解決問題。通過做題發(fā)現(xiàn)學生本節(jié)課掌握得不錯。最后,對本節(jié)課的知識進行了延伸,通過出示課本第13頁“你知道嗎?”,讓學生明白為什么2或5的倍數(shù)特征只看個位就可以了,而3的倍數(shù)特征需要看所有數(shù)位。從而達到學知識不但要知其然還要知其所以然。整個教學過程中,學生能在猜想、操作、驗證、交流、歸納的數(shù)學活動中獲得豐富的數(shù)學經(jīng)驗,同時這也有利于學生創(chuàng)造力的培養(yǎng)。通過本節(jié)課的教學以及學生的掌握情況,最終檢測本節(jié)課的目標較好的達成。但反思這節(jié)課的不足,我覺得在每個環(huán)節(jié)上的過渡應(yīng)該更加的自然。另外,在小組討論的時候應(yīng)多關(guān)注學生的交流,對學生進行適時地指導?;诘谝还?jié)課的優(yōu)點和不足,進行了第二次的授課即錄課。由于學生們已經(jīng)學習了過本節(jié)課,所以對于學生們來說已經(jīng)是舊知識。要把舊知識重新來講,如果照搬之前的授課方式已經(jīng)遠遠不夠了。如何更改,這給我提出來一個新的問題。為此,這節(jié)課我做了適當?shù)恼{(diào)整。本節(jié)課我更多關(guān)注的是數(shù)學方法和思維方式的培養(yǎng)。其中體現(xiàn)在:

      1、學生在舉例驗證猜想的時候,讓學生體會反例的作用,如果有一個反例的存在,就說明猜想的結(jié)論是錯誤的。

      2、在探索3的倍數(shù)特征時,對于100以內(nèi)3的倍數(shù),應(yīng)如何著手驗證,怎么選取數(shù)來驗證,這一環(huán)節(jié)讓學生體會:在研究規(guī)律的時候,優(yōu)先選擇數(shù)比較多的這一組,讓學生明白如果有規(guī)律更容易探索和發(fā)現(xiàn)。

      3、在拓展規(guī)律的時候,采用舉了大量的數(shù)據(jù),證明了規(guī)律的普遍存在,讓學生體會規(guī)律的適用范圍。

      4、在做練習的時候,第2小題,關(guān)注學生思考問題是否全面,關(guān)注學生的思考過程。

      5、練習的第3小題,一道解決問題的題目,通過讓學生讀題、審題、分析題之后,再思考。這一道題學生展示了多種的做題方法,體現(xiàn)了方法的多樣性,同時也說明學生的思維是活躍的。本節(jié)課中的不足,練習中第3題學生的做法沒有完全的在黑板上板書,另外,本節(jié)課中學生會超前說出所有問題的答案,使得教師略顯失措,我覺得這是因為我備學生還不夠。在今后的教學中,我會改進自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學水平,設(shè)計出學生更能接受和喜歡的課。

      《3的倍數(shù)的特征》教學反思8

      3的倍數(shù)的特征比較隱蔽,學生一般想不到從“個位上的數(shù)字之和”去研究。上課開始先讓學生通過練習回顧舊知:2的倍數(shù)與5的倍數(shù)的特征。然后讓學生猜想:3的倍數(shù)又有什么特征呢?這樣能較好調(diào)動學生學習的積極性。由于受2的倍數(shù)與5的倍數(shù)特征的影響,有些學生很自然猜測到“個位上是0,3,6,9的數(shù)是3的倍數(shù)”、“各位上的數(shù)字加起來是3,6,9的數(shù)是3的倍數(shù)”等等,學生能想到這幾點是非常不錯的。

      學生進行猜想后,我并沒有判斷學生的猜想是否正確,而是出現(xiàn)了百數(shù)表,讓學生在百數(shù)表中圈出所有的`3的倍數(shù),讓學生從表中發(fā)現(xiàn)3 的倍數(shù)的特征,把自己發(fā)現(xiàn)的在小組間交流。此時,我還是沒有判斷學生的發(fā)現(xiàn)是否正確,而是讓學生打開課本自學,從課本中找3的倍數(shù)的特征,當遇到問題解決不了時,我們可以向課本求助。然后問學生“各位上的數(shù)字的和是3的倍數(shù)是什么意思?請結(jié)合舉例說說。”接下來將數(shù)擴到百以上,通過各種方式舉正反例通過計算來驗證從而得出3的倍數(shù)的特征。最后比較驗證之前的猜想與發(fā)現(xiàn)。當我們向課本找到結(jié)論時,我們也要質(zhì)疑,通過舉例來驗證。鼓勵學生對知識要敢于質(zhì)疑,敢于通過各種方式去驗證,培養(yǎng)學生良好的數(shù)學思維。

      在教學中,我能有效獲取課堂生成資源,同時也注重方法的指導。比如:同桌舉例驗證時,涉及到了“123456”是否是3的倍數(shù),先給予學生思考的時間,讓后問:還有更加簡便的方法嗎?老師有效引導,讓學生去發(fā)現(xiàn)“去3法”能給我們的判斷帶來很大的方便。還有在方框里填數(shù)等。有較好的教學機智與課堂駕馭能力,如:在百數(shù)表圈3的倍數(shù)時,我的課件中有個數(shù)“99”忘記沒有圈好,學生發(fā)現(xiàn)了這問題。在這里,我是表揚了發(fā)現(xiàn)此問題的學生,老師故意說:我是特意沒有圈的,看我們的學生觀察是否仔細,考慮問題是否全面……,把原本的錯誤變成良好的教學資源。練習的設(shè)計業(yè)很有層次與梯度,聯(lián)系生活實際。

      本節(jié)課也有很多不足的地方:百數(shù)表中的數(shù)據(jù)太多,部分學生的發(fā)現(xiàn)是亂七八糟的;在舉例驗證的過程中,學生的計算還不夠,學生親自從算中去體會更好;總結(jié)不太及時,從及時總結(jié)中提煉、提升會更好。

      《3的倍數(shù)的特征》教學反思9

      《3的倍數(shù)的特征》看似一節(jié)知識簡單的課,但從教學實際來看,是我想得過于簡單了,教師注重的不應(yīng)該僅僅是對知識的掌握,更應(yīng)該使學生站在跳板上學習數(shù)學,關(guān)注數(shù)學思維的發(fā)展。

      新的課程理念要求我們在教學中盡可能地為學生提供一個自主、合作、探究機會,其宗旨也就在于培養(yǎng)學生在實際的學習活動中,善于發(fā)現(xiàn)問題和提出問題的能力,靈活運用知識去解決問題的能力,在研究和解決問題的過程中學會合作。3的倍數(shù)的特征,有規(guī)律可循,容易上成機械刻板、枯燥無味的課,學生雖能死套規(guī)律判斷,但學生的能力沒能培養(yǎng),智力得不到開發(fā)。本課的設(shè)計采用了啟發(fā)與發(fā)現(xiàn)相結(jié)合的教學方法,激勵學生大膽猜想,動手實踐,去發(fā)現(xiàn)規(guī)律,形成技能,升華至應(yīng)用于生活。

      本課主要使學生在原有認知的基礎(chǔ)上產(chǎn)生認知沖突,進而產(chǎn)生新的探索欲望,突出了對學生“提出問題—探索問題—解決問題”的能力培養(yǎng),學生能在猜想、操作、驗證、交流、反思、歸納的'數(shù)學活動中,獲得較為豐富的數(shù)學經(jīng)驗,也有助于創(chuàng)造性的培養(yǎng)。當然,培養(yǎng)學生的創(chuàng)造個性,僅僅停留在教學活動的情境上是不夠的,教師首先要具有創(chuàng)造精神,注重設(shè)計寬松和諧民主的教學氛圍,尊重學生,抓住一切可以利用的機會,激發(fā)學生的創(chuàng)新欲望,學生的創(chuàng)造意識才能得以培養(yǎng),個性才能充分發(fā)展。本課重點是要理解3的倍數(shù)特征,能夠準確判斷一個數(shù)是不是3的倍數(shù)。我采用的是復習導入,先和學生們一起回憶了一下

      2、5的倍數(shù)特征,然后出示本課的教學目標。新授環(huán)節(jié)先讓學生猜測一下3的倍數(shù)會有哪些特征呢?接著采用數(shù)形結(jié)合的方法,學生動手操作,在1~100的數(shù)字卡里找一找3的倍數(shù),然后用自己喜歡的符號圈起來,然后觀察小組討論匯報。發(fā)現(xiàn)3的倍數(shù)特征不像

      2、5的倍數(shù)特征一樣,看一個數(shù)的末尾了,引導學生是不是要看這個數(shù)其它的數(shù)位上的數(shù)呢?學生發(fā)現(xiàn)也不是很難。教材中有提示,學生回家預習后也會清楚敘述出3的倍數(shù)特征是一個數(shù)各個數(shù)位上數(shù)字相加的和。找準知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結(jié)果在一個班實踐后認為效果并不是很理想,由于數(shù)太多,讓學生觀察3的倍數(shù)的這些數(shù)時,并從中找出相同的地方,結(jié)果,很多同學找了與本節(jié)課毫無關(guān)系的東西,浪費了很多時間。在評課的時候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計了一個表格,讓學生用除法計算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個位分別從0到9都有,讓學生知道3的倍數(shù)的特征跟數(shù)的個位沒有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨展示出來,讓學生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。

      這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習題方面,也應(yīng)形式面多樣化,如用卡片練習判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學生的發(fā)展始終是教學的落腳點。我們的教學應(yīng)著眼于學生對解決問題方法的感悟,這樣才可獲得最佳的效果。

      《3的倍數(shù)的特征》教學反思10

      《3的倍數(shù)的特征》是人教版義務(wù)教材新課程第八冊的教學內(nèi)容,對這節(jié)課的教學設(shè)計,有從2、5的倍數(shù)的特征中引入的、有讓學生通過擺火柴棒研究的,其中不乏好點子好設(shè)計。但是,大部分老師都要拋出一個問題讓學生思考:“火柴棒的總根數(shù)跟3的倍數(shù)有什么聯(lián)系?”或者干脆問“3的倍數(shù)和數(shù)位上的數(shù)字的和有什么關(guān)系?”總覺得教師對學生的引導過于直接,對于五年級的學生,經(jīng)過這樣的提問,一般都能找到3的倍數(shù)的特征,也能用語言來表述。我認為,我們的關(guān)鍵不但要讓學生找到3的倍數(shù)的特征,更應(yīng)該引導學生怎樣去發(fā)現(xiàn)數(shù)位上的數(shù)字的和與3的倍數(shù)之間的關(guān)系。我考慮,能不能在本節(jié)課中運用分類,讓學生自主探究呢?以下是兩個教學片段:

      教學片段一:

      讓學生用30秒時間,寫3的倍數(shù),大部分學生都從小到大寫了25個左右

      老師板演了10個:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任務(wù)。

      師:請你給自己寫的3的倍數(shù)分類,看看能不能找到規(guī)律。限時2分鐘。

      (結(jié)束)學生回答。

      生1:3、6、9;12、15、18、21、24……按位數(shù)分類。(有3人和他一樣分)師:按位數(shù)分類,那么3位數(shù)里哪些是3的倍數(shù)呢:103、208是3的倍數(shù)

      嗎?(學生答不出)

      生2:3、6、9、12、15、18、21、24、27、30;

      33、36、39、42、45、48、51、54、57、60

      63、66……

      (有32人和他一樣)

      師:你分類的標準是什么?

      生2:個位是0——9的都歸為一類,共兩類。

      生3:共十類。個位是0的一類,個位是1的一類,個位是2的一類,到個位是9的一類。

      師:懂了。3、33、63是一類;6、36、66是一類,共十類。那21253是不是3的倍數(shù),能迅速判斷嗎?(生無語)

      師:看來,分類的方法很多。但是,哪一種分類才能幫助我們發(fā)現(xiàn)3的倍數(shù)的特征,是有價值的呢?(學生陷入沉思)

      以上學生的分類方法,都有不同的標準,從單一分類的角度來看,沒有問題。但是對于尋求3的倍數(shù)的特征,卻沒有意義。大部分學生是從2、5的倍數(shù)的特征中受到啟示,這是學生的經(jīng)驗,卻是一種負遷移。課前,我也想到了,那么是不是就一定要先提醒學生,不要走彎路呢?我認為,負遷移也是一種寶貴的經(jīng)驗,經(jīng)歷過挫折,對知識的理解就會更加深刻,無需刻意回避。

      教學片段二:

      師:繼續(xù)觀察這些數(shù),還有其它分類方法嗎?限時5分鐘。(陸續(xù)有學生舉手,5分鐘后,共有15位學生舉手,巡視一遍。)

      師:誰來介紹自己新的分類方法?

      生1:3、21、30;

      6、15、24、33、42;

      9、18、36、45、63;

      12、39、48、57;

      ……

      師:你的分類標準是什么?

      生1:第一類,每個數(shù)數(shù)位上的數(shù)字的和是3;第二類,每個數(shù)數(shù)位上的數(shù)字的和是6;第三類,每個數(shù)數(shù)位上的數(shù)字的和是9;第四類,每個數(shù)數(shù)位上的數(shù)字的和是12;以此類推。

      師:誰來幫他“以此類推”?

      生2:每個數(shù)數(shù)位上的數(shù)字的和是15,也是3的倍數(shù);每個數(shù)數(shù)位上的數(shù)字的和是18,也是3的倍數(shù)。

      生3:每個數(shù)數(shù)位上的數(shù)字的和是21,也是3的倍數(shù);每個數(shù)數(shù)位上的數(shù)字的和是24,也是3的倍數(shù)。

      師:你能用一句話來表達嗎?

      生4:每個數(shù)位上的數(shù)字的和是3、6、9、12、15、18等,這個數(shù)就是3的倍數(shù)。

      生5:每個數(shù)位上的數(shù)字的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。

      師:很厲害。但是,我們需要驗證。判斷老師剛才寫的3的倍數(shù)(前5個)105、111、156、273、300。

      生4:1加0加5等于6,6是3的倍數(shù),105也是3的倍數(shù)。

      生5:1加1加1等于3,3是3的倍數(shù),111也是3的倍數(shù)。

      ……

      (一個學生根據(jù)規(guī)律回答,其他學生用豎式驗證。)

      生6:3的倍數(shù)的特征是找到了,但這樣的分類太亂。我一共分3類:

      第一類:每個數(shù)數(shù)位上的數(shù)字的和是3:3、12、21、30;

      第二類:每個數(shù)數(shù)位上的數(shù)字的和是6:6、15、24、42、51;

      第三類:每個數(shù)數(shù)位上的數(shù)字的和是9:9、18、27、36、45……,

      這樣的數(shù)是3的倍數(shù)。

      師:那老師的這些數(shù):339、504、918、1527、2442屬于哪一類呢?

      生6:339,3加3加9等于15,然后1加5等于6,分到第二類;918,9加1加8等于18,然后1加8等于9,分到第三類;1527分到第二類;2442分到第一類。所有3的倍數(shù)沒有超出這三類的。

      師:厲害?。ㄗ屍渌麑W生說了兩個四位數(shù),用他的方法來判斷是不是3的倍數(shù),大概有三十個左右的學生能用這樣的方法分析。老師又舉了一個反例。)

      師:誰能用幾句話來概括?

      生6:一個數(shù),每個數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個數(shù)就是3的倍數(shù)。

      師:真佩服你們!

      第二天,有學生告訴我他發(fā)現(xiàn)了一種更快判斷3的倍數(shù)的方法,不用把數(shù)位上的數(shù)都加起來,比如538,3是3的倍數(shù)就不要管它了,只要5加8加一下,13不是3的倍數(shù),538就不是3的倍數(shù)。我又說了一個五位數(shù)20xx,學生分析,6是3的倍數(shù),不去管它,2加7是9,9是3的倍數(shù),整個數(shù)就是3的倍數(shù)。

      學生的探究能力如此之強,是我沒想到的,學生快速判斷3的倍數(shù)的方法,實際上已經(jīng)綜合了很多的知識,盡管不能很明確地用語言來表達,但是,方法是完全正確的,其實這又是一個學生新的探究的開始。

      從本節(jié)課中,我有幾點小小的感悟:

      一、教師不要害怕學生探究的失敗。學生第一次探究的失敗,完全是正常的,這是他們運用已有的經(jīng)驗,進行探究后的結(jié)果。盡管這種經(jīng)驗的.遷移是負作用的,但是從失敗到成功的過程,記憶是深刻的。負遷移在教學中比比皆是,我們不但不能回避,而且要好好利用,要讓學生積累對數(shù)學活動的經(jīng)驗,同時能將“經(jīng)驗材料組織化”。

      二、教師要給學生創(chuàng)造探究的機會。學生的探究能力其實是老師意想不到的。最后一位學生對3的倍數(shù)的概括(一個數(shù),每個數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個數(shù)就是3的倍數(shù)。),盡管實際的意義不是很大,但是它更具有橫向的關(guān)聯(lián),2的倍數(shù)特征是:個位是0、2、4、6、8的數(shù)是2的倍數(shù);5的倍數(shù)的特征是個位是0或5的數(shù)是5的倍數(shù)?;蛟S,這種類比聯(lián)想更容易讓學生理解新的知識,更何況是學生自己探究出來的。其實很多教學內(nèi)容我們都可以讓學生進行探究,關(guān)鍵是教師如何給學生提供一個探究的載體,一種探究的環(huán)境。

      三、教師對學過的知識要經(jīng)常地進行整合。新教材的特點是有些知識點分得比較散,所以教師要經(jīng)常把學生學過的知識,在新知中不知不覺地再應(yīng)用,再鞏固。溫故而知新,在復習與鞏固中,學生會對舊知有更高的認識,更深的理解,也容易排除學生對新知的畏難思想。同時要經(jīng)常地對各種知識進行串聯(lián),編織學生知識的網(wǎng)絡(luò),使學生認識到各種知識之間是相互關(guān)聯(lián)相互作用的,以利于學生解決一些實際問題或綜合性問題。

      四、教師要經(jīng)常在教學中滲透一些數(shù)學思想。分類是一種數(shù)學思想,同時也是一種數(shù)學思維的工具。人教版小學數(shù)學第一冊學生就接觸了分類《整理房間》,第七冊《角的分類》、第八冊《三角形的分類》,讓學生對分類有了更多的理解。其實在生活中,無處不在的分類:超市貨物的擺放、自己書本的整理、性別之間、班級之間等等。對于分類的標準,分類的原則,學生在不知不覺中有了感悟。借助分類,有40%的學生找到了3的倍數(shù)的特征,學生完全是在觀察、嘗試、驗證的基礎(chǔ)上探究的,是自主的行為研究。在小學數(shù)學中,滲透了很多數(shù)學思想,如集合、對應(yīng)、假設(shè)、比較、類比、轉(zhuǎn)化、分類、統(tǒng)計思想等,在教學中合理地運用這些數(shù)學思想,對學生學習數(shù)學的影響是深遠的,也會讓我們的數(shù)學探究活動更有意義,更有價值。

      《3的倍數(shù)的特征》教學反思11

      2、3、5倍數(shù)的特征我設(shè)計的是一節(jié)課,但上完這節(jié)課上完后,給我最大的感受,學生對2、5的倍數(shù)的特征不難理解,對偶數(shù)和奇數(shù)的.概念也容易掌握,但我由于對教材的把握不夠,時間用到2、5倍數(shù)上的較多。以至于對3的倍數(shù)特征探究不到位。

      好的開始等于成功了一半。課伊始,我設(shè)計了搶“30”的游戲,目的是讓學生從中找到3的倍數(shù),但我發(fā)現(xiàn)這個游戲沒讓學生部明白要求沒有能提高學生的興趣。意義不到。數(shù)學學習過程中應(yīng)該是觀察、發(fā)現(xiàn)、驗證、結(jié)論等探索性與挑戰(zhàn)性活動。首先讓學生獨圈出寫出100以內(nèi)2、5的倍數(shù),獨立觀察,看看你有什么發(fā)現(xiàn)?學生很容易發(fā)現(xiàn)他們的特征,而這只是猜測,結(jié)論還需要進一步的驗證。但我對這部分的處理太過于復雜零碎。以至于用的時間過多。比如說2、5倍數(shù)與其他數(shù)位的關(guān)系,著就不是本節(jié)課的重點。

      小組合作,發(fā)揮團體的作用,動手實踐、合作交流是學生學習數(shù)學的重要方式。我覺得我們班小組小組合作還有很多部足的地方,比如說學生的之一能力傾聽能等等還需進一步訓練。

      《3的倍數(shù)的特征》教學反思12

      在執(zhí)教《2、5、3的倍數(shù)的特征》后,我針對本節(jié)課的教學情況進行反思。

      一、跨年級學習新數(shù)學知識,知識銜接不上,不符合學生的認知規(guī)律。

      雖然2、5、3的倍數(shù)的特征看起來很簡單,探究的過程可能沒有什么困難之處,但要內(nèi)容讓學生學懂,首先存在知識銜接問題,整除、倍數(shù)、因數(shù)這些概念學生都從未接觸過,因此,我在課開始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來,這些概念比較抽象,學生一時難以掌握。

      二、為了體現(xiàn)“容量大”,教學延堂。

      備課時也參考了不少資料,大多數(shù)教學設(shè)計都是將這一內(nèi)容分成兩節(jié)課來學習,一節(jié)學《2、5的倍數(shù)的特征》,一節(jié)學《3的倍數(shù)的特征》,我確定用一節(jié)課教學《2、5、3的倍數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計內(nèi)容多,相應(yīng)的學生自學、展示、鞏固練習的時間和機會就壓縮的比較少了。而3的倍數(shù)的'特征與2、5的又完全不同,學生接受起來可能會有一定的難度,最好單獨作為一課時學習。最后的環(huán)節(jié)達標測試拖堂了。

      三、學生合作學習的效果較好,但展示未體現(xiàn)立體式。

      高效課堂要充分發(fā)揮學生的主體作用,要體現(xiàn)學生會學,學會,在本節(jié)課上,學生合作學習的熱情高,通過展示,發(fā)現(xiàn)學生學懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學生講的、板書的相互干擾,于是,我臨時安排按先后順序進行,沒體現(xiàn)出高效課堂的“立體式”這一特點。

      《3的倍數(shù)的特征》教學反思13

      本節(jié)課探究3的倍數(shù)的特征之前,我還是先讓學生寫出50以內(nèi)3的倍數(shù),然后讓學生觀察這些數(shù)有何特征,大部分同學找不著規(guī)律,個別同學可能是受上節(jié)課的影響,說出了:個位上是0、1、2、3、4、5、6、7、8、9的數(shù)就是3的倍數(shù),但馬上就被其他同學推翻了。

      然后我就出示計數(shù)器,依次撥出3的倍數(shù),讓學生觀察一共用了幾顆珠子,讓學生體會到有幾顆珠子就是各個數(shù)位上數(shù)的和,發(fā)現(xiàn)珠子的顆數(shù)正好是3的倍數(shù),也就是各個數(shù)位上數(shù)的和是3的倍數(shù),那么這個數(shù)就是3的倍數(shù)。說實話,學生對于這一規(guī)律,不是很容易接受,在后來的練習中,才慢慢體會到。

      “想想做做”的五道題設(shè)計得比較好,體現(xiàn)了分層,特別是最后一道,學生通過交流討論后,得出了先選數(shù)后組數(shù)的'思路,練習的效果比較好。

      《3的倍數(shù)的特征》教學反思14

      《3的倍數(shù)的特征》的教學是在第一次教學之后,學校組織縣級教學能手選撥賽時候第二次上,可以說是“一課兩上”。我在第二次備課時完全從另一個角度來處理教材,收獲頗豐。下面我就本節(jié)課前后兩次上課反思如下:

      第一次上課我是讓學生圈出100以內(nèi)3的倍數(shù),去觀察3的倍數(shù)的特征,由此總結(jié)出3的倍數(shù)的特征,然后實際應(yīng)用,鞏固練習。效果一般。而第二次上課時我是這樣做的:使學生在原有認知的基礎(chǔ)上產(chǎn)生認知沖突,在學習2、5倍數(shù)特征的基礎(chǔ)上,讓學生猜測是不是3的倍數(shù)的特征也要去看數(shù)的個位呢,進而產(chǎn)生新的探索欲望,讓后在百數(shù)表中圈出3的倍數(shù)的特征,接著借助學生熟悉的計數(shù)器進行兩個實驗,實驗一:驗證3的倍數(shù)的特診,實驗二:驗證不是3的倍數(shù)的的'數(shù)的特征。最后實踐應(yīng)用,課堂檢測。

      整個教學過程突出了對學生“提出問題—探索問題—解決問題”的能力培養(yǎng),學生能在猜想、操作、驗證、交流、反思、歸納的數(shù)學活動中,獲得較為豐富的數(shù)學經(jīng)驗,也有助于創(chuàng)造性的培養(yǎng)。這就要求我們教師首先要具有創(chuàng)造精神,注重設(shè)計寬松和諧民主的教學氛圍,尊重學生,抓住一切可以利用的機會,激發(fā)學生的創(chuàng)新欲望,學生的創(chuàng)造意識才能得以培養(yǎng),個性才能充分發(fā)展。

      反思這節(jié)課的不足我覺得在每個環(huán)節(jié)的過渡上要做的更加自然、一氣呵成會更好。由于本節(jié)課按照賽教要求只有30分鐘,時間的把握做的還不夠恰到好處??傊虩o定法,學海無涯,需要我不斷的學習和實踐,不斷提高自身素質(zhì)和專業(yè)水平,大力提高教學質(zhì)量。

      《3的倍數(shù)的特征》教學反思15

      《2、5、3倍數(shù)的特征練習課》是一堂練習課,本節(jié)課是在學生已經(jīng)學習了2,5,3倍數(shù)的特征的基礎(chǔ)上進行教學的。為以后學習分數(shù),特別是約分、通分,需要以因數(shù)倍數(shù)的知識的概念為基礎(chǔ),到進一步掌握公因數(shù)、最大公因數(shù)和公倍數(shù)、最小公倍數(shù)的概念,需要用到質(zhì)數(shù)、合數(shù)的概念,而最基礎(chǔ)的就是掌握2,5,3的倍數(shù)的特征。從開始學習2,5的倍數(shù)特征僅僅體現(xiàn)在個位數(shù)上,到學習3的倍數(shù)特征時從只看個位轉(zhuǎn)向考察各位上的數(shù)相加的和,學生已經(jīng)有了思路上的轉(zhuǎn)變,思維的轉(zhuǎn)折,觀察角度的改變,以此讓學生自主探索4的倍數(shù)特征,但由于與2,5,3的倍數(shù)特征又有些許不同,對學生依然有一定難度。

      如果只是單一的做習題,勢必有學生會感到枯燥無味,這樣子學生的學習效果難以保障,對教師的功底與教學策略有很大的挑戰(zhàn)。因此課堂伊始,我直接開門見山式的先對前面學習的知識進行復習梳理,接著利用學生感興趣也是正在使用著的工具——“手機”的鎖屏密碼為線索,通過提示讓學生解密碼的方式激發(fā)學生的學習興趣,然后以破解后的密碼1080,導出本節(jié)課我們要重點探究的4的倍數(shù)特征。讓學生帶著趣味,自主的.去探索。由于有了前面探索2,5,3倍數(shù)特征的基礎(chǔ)在,所以在探索4的倍數(shù)特征時放手讓學生通過操作,觀察,思考從而有所發(fā)現(xiàn),體驗探索的樂趣。接著通過計數(shù)器,讓學生明白判斷4的倍數(shù)特征背后的原理。最后在練習鞏固中,逐漸熟練應(yīng)用所學知識,感知數(shù)學知識和我們的生活緊密聯(lián)系。如何讓練習課不僅僅只是做練習,讓學生能在練習中獲得對知識的理解以及思維上實質(zhì)的提升,仍然值得我在好好的去思考探索。

      《3的倍數(shù)特征》教學反思

      《3的倍數(shù)特征》是小學數(shù)學五年級教學內(nèi)容,它是在學生初步認識了因數(shù)和倍數(shù)以及2、5倍數(shù)特征的基礎(chǔ)上進行學習的,是求最大公因數(shù)和最小公倍數(shù)的重要基礎(chǔ),也是學習約分和通過的必要前提。3的倍數(shù)的特征迥然區(qū)別于2、5倍數(shù)的特征,3的倍數(shù)的特征的發(fā)現(xiàn)過程與2、5倍數(shù)的特征的發(fā)現(xiàn)過程有著顯著的差異。那么在學習“

      2、5倍數(shù)的特征”之后繼續(xù)學習“3的倍數(shù)的特征”,如何處理前面的學習經(jīng)驗與后續(xù)學習的關(guān)系?如何結(jié)合學習的內(nèi)容,合理設(shè)計探究的臺階?這些既構(gòu)成了教學的難點,同時也是教學中可以挖掘的資源,處理好這些問題,將會使學生經(jīng)歷更有效的探究活動,從而積累更為寶貴的數(shù)學活動經(jīng)驗,積淀基本的數(shù)學思想,進而彰顯這一內(nèi)容的教學價值。本節(jié)課有以下特點: 一、一環(huán)多效,目標明確

      (一)在知識鏈接部分,利用表格先讓學生判斷哪些數(shù)是2的倍數(shù),哪些數(shù) 是5的倍數(shù),既復習了舊知,又充分調(diào)動了學生的學習積極性。在隨后的鞏固練習中又利用此表中數(shù),讓學生判斷哪些數(shù)還是3的倍數(shù),不但讓學生鞏固了新知,而且為今后繼續(xù)研究的2、5、3倍數(shù)之間的聯(lián)系埋下伏筆。

      (二)隨后的換位提問,由學生出數(shù),老師判斷這部分承載著兩個作用。

      1、激發(fā)起學生的求知欲望

      2、通過學生驗證老師判斷是否正確,明確判斷一個數(shù)是否是3的倍數(shù)的驗證方法,為后面的多次驗證打下基礎(chǔ)。

      (二)引出課題后,我們先讓孩子嘗試做導學案上的36□,□中填幾就是3 的倍數(shù),很多孩子因為思維定勢會想到填0、3、6、9,通過驗證發(fā)現(xiàn)答案是正確的,由此很多孩子會認為3的倍數(shù)的特征是個位上是0、3、6、9的數(shù)就是3的倍數(shù)。但肯定也有孩子發(fā)現(xiàn)這句話的片面性,從而判斷這個猜想不成立。到此,我們并沒有引導孩子們?nèi)パ芯?的倍數(shù)的特征究竟是什么,而是尊重孩子們的這種猜測,引導孩子結(jié)合之前的方框填數(shù)思考,在什么情況下這句話成立,使孩子們能從不同角度去看3的倍數(shù)的特征,也為后面判斷一個數(shù)是否是3的倍數(shù)的方法的靈活性做好鋪墊。

      二、適時引領(lǐng),突破重點

      從建立猜想到自我否定猜想,是一個真實而自然的過程。在經(jīng)歷了這一過程之后,學生陷入探究困境的體驗無疑將會更為深刻。此時,教師基于學生的強烈心里需求提出新的研究思路,恰當?shù)伢w現(xiàn)了教師在探究過程中的引領(lǐng)作用。

      本節(jié)課的難點是學生自主發(fā)現(xiàn)3的倍數(shù)的特征,我們教研組在研討時,最初借鑒的是出示57 75 45 54 249 942一組數(shù),想引導學生發(fā)現(xiàn)3的倍數(shù)特征不但與個位數(shù)字無關(guān),與每個數(shù)字所在的數(shù)位也沒有關(guān)系,從而使學生發(fā)現(xiàn)與各個數(shù)位上的數(shù)的和有關(guān)。但實際實踐中,我們發(fā)現(xiàn),學生很難發(fā)現(xiàn)與每個數(shù)字各個數(shù)位上的數(shù)的和有關(guān)。于是,我們再次研討,修改設(shè)計,發(fā)現(xiàn)學生根據(jù)每組兩個數(shù)很難發(fā)現(xiàn)這組數(shù)的和都是3的倍數(shù),是不是和一樣的多出幾個數(shù),并且先出簡單的學生易發(fā)現(xiàn)的,是3的倍數(shù)的和不是3的倍數(shù)的都出兩組,便于學生對特征的發(fā)現(xiàn)。由此我們改成了現(xiàn)在的四組數(shù)。①12 201 111②66 804 2316③25 1114 1231④19 4006 2044用此方法,再次實踐,學生很容易發(fā)現(xiàn)了3的倍數(shù)特征與一個數(shù)各個數(shù)位上的數(shù)的和有關(guān)。

      三、設(shè)計簡約,注重實效

      通過不完全歸納得到某一結(jié)論的可靠性,取決于所研究的對象的代表性,研究的對象的覆蓋面越廣,代表性越強,結(jié)論的可靠性就越高。通過列舉其他的數(shù)驗證,使學生深切體驗了不完全歸納法的這一要義,同時也培養(yǎng)了學生縝密思考問題的意識和習慣。

      學生在驗證是否一個數(shù)各個數(shù)位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)時,我們本來的設(shè)計是以填空的形式來引導學生進行舉例驗證,但實踐中發(fā)現(xiàn)這種方法由于字太多,學生理解起來好像很費力,于是又改成了提示性的問題,改后字少了學生卻反而更糊涂了。再次研討,我們決定采用表格的形式,簡潔明了,實踐發(fā)現(xiàn),這種形式便于學生的理解,效果較上面兩種方法都好。

      下載《3的倍數(shù)的特征》教學反思word格式文檔
      下載《3的倍數(shù)的特征》教學反思.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔相關(guān)法律責任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        3的倍數(shù)特征教學反思

        3的倍數(shù)的特征 ——教學反思 濟陽縣澄波湖學校 趙娜 《3的倍數(shù)的特征》是學生在學習過2、5倍數(shù)特征之后的又一內(nèi)容,因為2、5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易......

        3的倍數(shù)特征教學反思

        3的倍數(shù)特征教學反思15篇 3的倍數(shù)特征教學反思1 “能被3整除數(shù)的數(shù)”一課,能體現(xiàn)新的教育理念、教育思想。仔細分析,有以下幾個特點:1、確立了基本技能目標和發(fā)展性目標并重的......

        3的倍數(shù)的特征教學反思

        3的倍數(shù)的特征教學反思 常路中心小學王慧 《3的倍數(shù)的特征》看似一節(jié)知識簡單的課,但從教學實際來看,是我想得過于簡單了,教師注重的不應(yīng)該僅僅是對知識的掌握,更應(yīng)該使學生站在......

        《3的倍數(shù)的特征》教學反思

        《3的倍數(shù)的特征》教學反思 今天學習了《3的倍數(shù)的特征》。有了昨天學生自學《2和5的倍數(shù)的特征》做基礎(chǔ),孩子們自學起來找到了些許門道。而我也顯得不那么急躁,不急于發(fā)言,而......

        《3的倍數(shù)的特征》教學反思

        《3的倍數(shù)的特征》教學反思 本節(jié)課設(shè)計讓學生先復習2,5的倍數(shù)特征,然后讓學生先猜測一下3的倍數(shù)會有哪些特征,一部分學生很自然會猜測3的倍數(shù)也是看個位是否是3,6,9,這個時候就......

        《3的倍數(shù)的特征》的教學反思

        《3的倍數(shù)的特征》是學生在學習過2.5倍數(shù)特征之后的又一內(nèi)容,因為2.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其......

        《3的倍數(shù)的特征》教學反思

        《3的倍數(shù)的特征》教學反思范文1 《3的倍數(shù)的特征》本節(jié)課的教學活動,注重學生實踐操作,展開探究活動,組織學生進行交流和探討,注重培養(yǎng)學生發(fā)現(xiàn)問題,解決問題的能力,讓學生經(jīng)歷......

        《3的倍數(shù)特征》教學反思

        3的倍數(shù)是在學習了2、5的倍數(shù)特征的基礎(chǔ)上進行學習的,我讓孩子們提前進行了預習,通過授課發(fā)現(xiàn)孩子們的預習沒有達到預想的效果。學生在匯報時能夠圈出3的倍數(shù),而且非常準確,在匯......