欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      勾股定理的多種證明方法(5篇可選)

      時(shí)間:2019-05-12 23:01:54下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫(kù)小編為你整理了多篇相關(guān)的《勾股定理的多種證明方法》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫(kù)還可以找到更多《勾股定理的多種證明方法》。

      第一篇:勾股定理的多種證明方法

      勾股定理的多種證明方法

      這個(gè)定理有許多證明的方法,其證明的方法可能是數(shù)學(xué)眾多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition(《畢達(dá)哥拉斯命題》)一書中總共提到367種證明方式。

      有人會(huì)嘗試以三角恒等式(例如:正弦和余弦函數(shù)的泰勒級(jí)數(shù))來證明勾股定理,但是,因?yàn)樗械幕救呛愕仁蕉际墙ɑ诠垂啥ɡ恚圆荒茏鳛楣垂啥ɡ淼淖C明(參見循環(huán)論證)。

      證法

      1作兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b(b>a),斜邊長(zhǎng)為c.再做一個(gè)邊長(zhǎng)為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點(diǎn)在一條直線上.過點(diǎn)Q作QP∥BC,交AC于點(diǎn)P.過點(diǎn)B作BM⊥PQ,垂足為M;再過點(diǎn)

      F作FN⊥PQ,垂足為N.∵ ∠BCA = 90°,QP∥BC,∴ ∠MPC = 90°,∵ BM⊥PQ,∴ ∠BMP = 90°,∴ BCPM是一個(gè)矩形,即∠MBC = 90°.∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°,∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可證RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^

      2證法2

      作兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b(b>a),斜邊長(zhǎng)為c.再作一個(gè)邊長(zhǎng)為c的正方形.把它們拼成如圖所示的多邊形.分別以CF,AE為邊長(zhǎng)做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直線上,∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,∴RtΔCJB ≌ RtΔCFD,同理,RtΔABG ≌ RtΔADE,∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE

      ∴∠ABG = ∠BCJ,∵∠BCJ +∠CBJ= 90°,∴∠ABG +∠CBJ= 90°,∵∠ABC= 90°,∴G,B,I,J在同一直線上,a^2+b^2=c^

      2證法3(歐幾里得的證法)

      《幾何原本》中的證明

      在歐幾里得的《幾何原本》一書中提出勾股定理由以下證明后可成立。設(shè)△ABC為一直角三角形,其中A為直角。從A點(diǎn)劃一直線至對(duì)邊,使其垂直于對(duì)邊上的正方形。此線把對(duì)邊上的正方形一分為二,其面積分別與其余兩個(gè)正方形相等。在正式的證明中,我們需要四個(gè)輔助定理如下:

      如果兩個(gè)三角形有兩組對(duì)應(yīng)邊和這兩組邊所夾的角相等,則兩三角形全等。(SAS定理)三角形面積是任一同底同高之平行四邊形面積的一半。任意一個(gè)正方形的面積等于其二邊長(zhǎng)的乘積。任意一個(gè)四方形的面積等于其二邊長(zhǎng)的乘積(據(jù)輔助定理

      3)。證明的概念為:把上方的兩個(gè)正方形轉(zhuǎn)換成兩個(gè)同等面積的平行四邊形,再旋轉(zhuǎn)并轉(zhuǎn)換成下方的兩個(gè)同等面積的長(zhǎng)方形。

      其證明如下:

      設(shè)△ABC為一直角三角形,其直角為CAB。其邊為BC、AB、和CA,依序繪成四方形CBDE、BAGF和ACIH。畫出過點(diǎn)A之BD、CE的平行線。此線將分別與BC和DE直角相交于K、L。分別連接CF、AD,形成兩個(gè)三角形BCF、BDA?!螩AB和∠BAG都是直角,因此C、A 和 G 都是線性對(duì)應(yīng)的,同理可證B、A和H?!螩BD和∠FBA皆為直角,所以∠ABD等于∠FBC。因?yàn)?AB 和 BD 分別等于 FB 和 BC,所以△ABD 必須相等于△FBC。因?yàn)?A 與 K 和 L是線性對(duì)應(yīng)的,所以四方形 BDLK 必須二倍面積于△ABD。因?yàn)镃、A和G有共同線性,所以正方形BAGF必須二倍面積于△FBC。因此四邊形 BDLK 必須有相同的面積 BAGF = AB^2。同理可證,四邊形 CKLE 必須有相同的面積 ACIH = AC^2。把這兩個(gè)結(jié)果相加,AB^2+ AC^2;= BD×BK + KL×KC。由于BD=KL,BD×BK + KL×KC = BD(BK + KC)= BD×BC 由于CBDE是個(gè)正方形,因此AB^2 + AC^2= BC^2。此證明是于歐幾里得《幾何原本》一書第1.47節(jié)所提出的證法4(歐幾里德(Euclid)射影定理證法)

      如圖1,Rt△ABC中,∠ABC=90°,BD是斜邊AC上的高,通過證明三角形相似則有射影定理如下:

      1)(BD)^2;=AD·DC,(2)(AB)^2;=AD·AC,(3)(BC)^2;=CD·AC。由公式(2)+(3)得:

      (AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,圖

      1即(AB)^2;+(BC)^2;=(AC)^2,這就是勾股定理的結(jié)論。

      證法5(趙爽弦圖)

      在這幅“勾股圓方圖”中,以弦為邊長(zhǎng)得到正方形ABDE是由4個(gè)相等的直角三角形再加上中間的那個(gè)小正方形組成的。每個(gè)直角三角形的面積為ab/2;中間懂得小正方形邊長(zhǎng)為b-a,則面積為(b-a)2。于是便可得如下的式子:

      4×(ab/2)+(b-a)2=c

      2化簡(jiǎn)后便可得:

      a2+b2=c2

      亦即:

      c=(a2+b2)(1/2)

      勾股定理的別名 勾股定理,是幾何學(xué)中一顆光彩奪目的明珠,被稱為“幾何學(xué)的基石”,而且在高等數(shù)學(xué)和其他學(xué)科中也有著極為廣泛的應(yīng)用。正因?yàn)檫@樣,世界上幾個(gè)文明古國(guó)都已發(fā)現(xiàn)并且進(jìn)行了廣泛深入的研究,因此有許多名稱。

      我國(guó)是發(fā)現(xiàn)和研究勾股定理最古老的國(guó)家之一。我國(guó)古代數(shù)學(xué)家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。在公元前1000多年,據(jù)記載,商高(約公元前1120年)答周公曰“故折矩,以為句廣三,股修四,徑隅五。既方之,外半其一矩,環(huán)而共盤,得成三四五。兩矩共長(zhǎng)二十有五,是謂積矩?!币虼耍垂啥ɡ碓谖覈?guó)又稱“商高定理”。在公元前7至6世紀(jì)一中國(guó)學(xué)者陳子,曾經(jīng)給出過任意直角三角形的三邊關(guān)系即“以日下為勾,日高為股,勾、股各乘并開方除之得邪至日。

      在法國(guó)和比利時(shí),勾股定理又叫“驢橋定理”。還有的國(guó)家稱勾股定理為“平方定理”。

      在陳子后一二百年,希臘的著名數(shù)學(xué)家畢達(dá)哥拉斯發(fā)現(xiàn)了這個(gè)定理,因此世界上許多國(guó)家都稱勾股定理為“畢達(dá)哥拉斯”定理。為了慶祝這一定理的發(fā)現(xiàn),畢達(dá)哥拉斯學(xué)派殺了一百頭牛酬謝供奉神靈,因此這個(gè)定理又有人叫做“百牛定理”.

      前任美國(guó)第二十屆總統(tǒng)伽菲爾德證明了勾股定理(1876年4月1日)。1 周髀算經(jīng), 文物出版社,1980年3月, 據(jù)宋代嘉定六年本影印,1-5頁。

      2.陳良佐: 周髀算經(jīng)勾股定理的證明與出入相補(bǔ)原理的關(guān)系.刊於《漢學(xué)研究》, 1989年第7卷第1期, 255-281頁。

      3.李國(guó)偉: 論「周髀算經(jīng)」“商高曰數(shù)之法出于圓方”章.刊於《第二屆科學(xué)史研討會(huì)匯刊》, 臺(tái)灣, 1991年7月,227-234頁。

      4.李繼閔: 商高定理辨證.刊於《自然科學(xué)史研究》,1993年第12卷第1期,29-41頁。

      5.曲安京: 商高、趙爽與劉徽關(guān)於勾股定理的證明.刊於《數(shù)學(xué)傳播》20卷, 臺(tái)灣, 1996年9月第3期, 20-27頁

      證法6(達(dá)芬奇的證法)

      達(dá)芬奇的證法

      三張紙片其實(shí)是同一張紙,把它撕開重新拼湊之后,中間那個(gè)“洞”的面積前后仍然是一樣的,但是面積的表達(dá)式卻不再相同,讓這兩個(gè)形式不同的表達(dá)式相等,就能得出一個(gè)新的關(guān)系式——勾股定理,所有勾股定理的證明方法都有這么個(gè)共同點(diǎn)。觀察紙片一,因?yàn)橐C的事勾股定理,那么容易知道EB⊥CF,又因?yàn)榧埰膬蛇吺菍?duì)稱的,所以能夠知道四邊形ABOF和CDEO都是正方形。然后需要知道的是角A'和角D'都是直角,原因嘛,可以看紙片一,連結(jié)AD,因?yàn)閷?duì)稱的緣故,所以

      ∠BAD=∠FAD=∠CDA=∠EDA=45°,那么很明顯,圖三中角A'和角D'都是直角。證明:第一張紙片多邊形ABCDEF的面積S1=S正方形ABOF+S正方形

      CDEO+2S△BCO=OF^2+OE^2+OF·OE 第三張紙片中多邊形A'B'C'D'E'F'的面積S2=S正方形B'C'E'F'+2△C'D'E'=E'F'^2+C'D'·D'E'因?yàn)镾1=S2 所以

      OF^2+OE^2+OF·OE=E'F'^2+C'D'·D'E'又因?yàn)镃'D'=CD=OE,D'E'=AF=OF所以

      OF·OE=C'D'·D'E' 則OF^2+OE^2=E'F'^2因?yàn)镋'F'=EF所以O(shè)F^2+OE^2=EF^2勾股定理得證

      第二篇:勾股定理證明方法

      勾股定理證明方法

      勾股定理的種證明方法(部分)

      【證法1】(梅文鼎證明)

      做四個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c.把它們拼成如圖那樣的一個(gè)多邊形,使D、E、F在一條直線上.過C作AC的延長(zhǎng)線交DF于點(diǎn)p.∵D、E、F在一條直線上,且RtΔGEF≌RtΔEBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180o―90o=90o.又∵AB=BE=EG=GA=c,∴ABEG是一個(gè)邊長(zhǎng)為c的正方形.∴∠ABC+∠CBE=90o.∵RtΔABC≌RtΔEBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90o.即∠CBD=90o.又∵∠BDE=90o,∠BCp=90o,BC=BD=a.∴BDpC是一個(gè)邊長(zhǎng)為a的正方形.同理,HpFG是一個(gè)邊長(zhǎng)為b的正方形.設(shè)多邊形GHCBE的面積為S,則,∴.【證法2】(項(xiàng)明達(dá)證明)

      做兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b(b>a),斜邊長(zhǎng)為c.再做一個(gè)邊長(zhǎng)為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點(diǎn)在一條直線上.過點(diǎn)Q作Qp‖BC,交AC于點(diǎn)p.過點(diǎn)B作BM⊥pQ,垂足為M;再過點(diǎn)

      F作FN⊥pQ,垂足為N.∵∠BCA=90o,Qp‖BC,∴∠MpC=90o,∵BM⊥pQ,∴∠BMp=90o,∴BCpM是一個(gè)矩形,即∠MBC=90o.∵∠QBM+∠MBA=∠QBA=90o,∠ABC+∠MBA=∠MBC=90o,∴∠QBM=∠ABC,又∵∠BMp=90o,∠BCA=90o,BQ=BA=c,∴RtΔBMQ≌RtΔBCA.同理可證RtΔQNF≌RtΔAEF.【證法3】(趙浩杰證明)

      做兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b(b>a),斜邊長(zhǎng)為c.再做一個(gè)邊長(zhǎng)為c的正方形.把它們拼成如圖所示的多邊形.分別以CF,AE為邊長(zhǎng)做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直線上,∵CJ=CF=a,CB=CD=c,∠CJB=∠CFD=90o,∴RtΔCJB≌RtΔCFD,同理,RtΔABG≌RtΔADE,∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE

      ∴∠ABG=∠BCJ,∵∠BCJ+∠CBJ=90o,∴∠ABG+∠CBJ=90o,∵∠ABC=90o,∴G,B,I,J在同一直線上,【證法4】(歐幾里得證明)

      做三個(gè)邊長(zhǎng)分別為a、b、c的正方形,把它們拼成如圖所示形狀,使H、C、B三點(diǎn)在一條直線上,連結(jié)

      BF、CD.過C作CL⊥DE,交AB于點(diǎn)M,交DE于點(diǎn)

      L.∵AF=AC,AB=AD,∠FAB=∠GAD,∴ΔFAB≌ΔGAD,∵ΔFAB的面積等于,ΔGAD的面積等于矩形ADLM的面積的一半,∴矩形ADLM的面積=.同理可證,矩形MLEB的面積=.∵正方形ADEB的面積

      =矩形ADLM的面積+矩形MLEB的面積

      ∴,即.勾股定理的別名

      勾股定理,是幾何學(xué)中一顆光彩奪目的明珠,被稱為“幾何學(xué)的基石”,而且在高等數(shù)學(xué)和其他學(xué)科中也有著極為廣泛的應(yīng)用。正因?yàn)檫@樣,世界上幾個(gè)文明古國(guó)都已發(fā)現(xiàn)并且進(jìn)行了廣泛深入的研究,因此有許多名稱。

      我國(guó)是發(fā)現(xiàn)和研究勾股定理最古老的國(guó)家。我國(guó)古代數(shù)學(xué)家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。在公元前1000多年,據(jù)記載,商高(約公元前1120年)答周公曰“勾廣三,股修四,經(jīng)隅五”,其意為,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我國(guó)又稱“商高定理”.在公元前7至6世紀(jì)一中國(guó)學(xué)者陳子,曾經(jīng)給出過任意直角三角形的三邊關(guān)系即“以日下為勾,日高為股,勾、股各乘并開方除之得邪至日。

      在法國(guó)和比利時(shí),勾股定理又叫“驢橋定理”。還有的國(guó)家稱勾股定理為“平方定理”。

      在陳子后一二百年,希臘的著名數(shù)學(xué)家畢達(dá)哥拉斯發(fā)現(xiàn)了這個(gè)定理,因此世界上許多國(guó)家都稱勾股定理為“畢達(dá)哥拉斯”定理.為了慶祝這一定理的發(fā)現(xiàn),畢達(dá)哥拉斯學(xué)派殺了一百頭牛酬謝供奉神靈,因此這個(gè)定理又有人叫做“百牛定理”.前任美國(guó)第二十屆總統(tǒng)加菲爾德證明了勾股定理(1876年4月1日)。

      證明

      這個(gè)定理有許多證明的方法,其證明的方法可能是數(shù)學(xué)眾多定理中最多的。路明思(ElishaScottLoomis)的pythagoreanproposition一書中總共提到367種證明方式。

      有人會(huì)嘗試以三角恒等式(例如:正弦和余弦函數(shù)的泰勒級(jí)數(shù))來證明勾股定理,但是,因?yàn)樗械幕救呛愕仁蕉际墙ɑ诠垂啥ɡ?,所以不能作為勾股定理的證明(參見循環(huán)論證)。

      第三篇:勾股定理證明方法(精選)

      勾股定理證明方法

      勾股定理是初等幾何中的一個(gè)基本定理。所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方。這個(gè)定理有十分悠久的歷史,幾乎所有文明古國(guó)(希臘、中國(guó)、埃及、巴比倫、印度等)對(duì)此定理都有所研究。勾股定理在西方被稱為畢達(dá)哥拉斯定理,相傳是古希臘數(shù)學(xué)家兼哲學(xué)家畢達(dá)哥拉斯于公元前550年首先發(fā)現(xiàn)的。

      中國(guó)古代對(duì)這一數(shù)學(xué)定理的發(fā)現(xiàn)和應(yīng)用,遠(yuǎn)比畢達(dá)哥拉斯早得多。中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請(qǐng)教數(shù)學(xué)知識(shí)的對(duì)話:周公問:“我聽說您對(duì)數(shù)學(xué)非常精通,我想請(qǐng)教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地得到數(shù)據(jù)呢?” 商高回答說:“數(shù)的產(chǎn)生來源于對(duì)方和圓這些形體的認(rèn)識(shí)。其中有一條原理:當(dāng)直角三角形‘矩'得到的一條直角邊‘勾'等于3,另一條直角邊’股'等于4的時(shí)候,那么它的斜邊'弦'就必定是5。這個(gè)原理是大禹在治水的時(shí)候就總結(jié)出來的呵?!?如果說大禹治水因年代久遠(yuǎn)而無法確切考證的話,那么周公與商高的對(duì)話則可以確定在公元前1100年左右的西周時(shí)期,比畢達(dá)哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個(gè)應(yīng)用特例。所以現(xiàn)在數(shù)學(xué)界把它稱為勾股定理是非常恰當(dāng)?shù)摹?/p>

      在《九章算術(shù)》一書中,勾股定理得到了更加規(guī)范的一般性表達(dá)。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進(jìn)行開方,便可以得到弦。”《九章算術(shù)》系統(tǒng)地總結(jié)了戰(zhàn)國(guó)、秦、漢以來的數(shù)學(xué)成就,共收集了246個(gè)數(shù)學(xué)的應(yīng)用問題和各個(gè)問題的解法,列為九章,可能是所有中國(guó)數(shù)學(xué)著作中影響最大的一部。

      中國(guó)古代的數(shù)學(xué)家們最早對(duì)勾股定理進(jìn)行證明的,是三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明。

      上中間的那個(gè)小正方形組成的。

      每個(gè)直角三角形的面積為ab/2;

      中間的小正方形邊長(zhǎng)為b-a,則面積為(b-a)2。

      于是便可得如下的式子:

      4×(ab/2)+(b-a)2=c

      2化簡(jiǎn)后便可得: a2+b2=c2

      在這幅“勾股圓方圖”中,以弦為邊長(zhǎng)得到正方形ABDE是由4個(gè)相等的直角三角形再加

      劉徽在證明勾股定理時(shí)也是用以形證數(shù)的方法,劉徽用了“出入相補(bǔ)法”即剪貼證明法,他把勾股為邊的正方形上的某些區(qū)域剪下來(出),移到以弦為邊的正方形的空白區(qū)域內(nèi)(入),結(jié)果剛好填滿,完全用圖解法就解決了問題。

      1876年4月1日,伽菲爾德在《新英格蘭教育日志》上發(fā)表了他對(duì)勾股定理的證法。1881年,伽菲爾德就任美國(guó)第二十任總統(tǒng)后來,人們?yōu)榱思o(jì)念他對(duì)勾股定理直觀、簡(jiǎn)捷、易懂、明了的證明,就把這一證法稱為“總統(tǒng)”證法

      古代數(shù)學(xué)家們對(duì)于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨(dú)特的貢獻(xiàn)和地位。尤其是其中體現(xiàn)出來的“形數(shù)統(tǒng)一”的思想方法,更具有科學(xué)創(chuàng)新的重大意義。

      第四篇:勾股定理五種證明方法

      勾股定理五種證明方法

      【證法1】

      做8

      個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,再做三個(gè)邊長(zhǎng)分別為a、b、c的正方形,把它們像上圖那樣拼成兩個(gè)正方形.從圖上可以看到,這兩個(gè)正方形的邊長(zhǎng)都是a + b,所以面積相等.即

      11a2?b2?4?ab?c2?4?ab22,整理得a2?b2?c2.【

      證法2】(鄒元治證明)

      以a、b 為直角邊,以c為斜邊做四個(gè)全等的直角三角形,則每個(gè)直角三角

      1ab2形的面積等于.把這四個(gè)直角三角形拼成如圖所示形狀,使A、E、B三點(diǎn)在一條直線上,B、F、C三點(diǎn)在一條直線上,C、G、D三點(diǎn)在一條直線上.∵ RtΔHAE ≌ RtΔEBF,∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o.∴ ∠HEF = 180o―90o= 90o.∴ 四邊形EFGH是一個(gè)邊長(zhǎng)為c的正方形.它的面積等于c2.∵ RtΔGDH ≌ RtΔHAE,∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90o,∴ ∠EHA + ∠GHD = 90o.又∵ ∠GHE = 90o,∴ ∠DHA = 90o+ 90o= 180o.2??a?b∴ ABCD是一個(gè)邊長(zhǎng)為a + b的正方形,它的面積等于.∴ ?a?b?21?4?ab?c

      22222.∴ a?b?c.【證法3】(梅文鼎證明)

      做四個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為

      c.把它們拼成如圖那樣的一個(gè)多邊形,使D、E、F在一條直線上.過C作AC的延長(zhǎng)線交DF于點(diǎn)P.∵ D、E、F在一條直線上, 且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180o―90o= 90o.又∵ AB = BE = EG = GA = c,∴ ABEG是一個(gè)邊長(zhǎng)為c的正方形.∴ ∠ABC + ∠CBE = 90o.∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90o.即∠CBD= 90o.又∵ ∠BDE = 90o,∠BCP = 90o,ABC = BD = a.∴ BDPC是一個(gè)邊長(zhǎng)為a的正方形.同理,HPFG是一個(gè)邊長(zhǎng)為b的正方形.設(shè)多邊形GHCBE的面積為S,則

      11a2?b2?S?2?ab,c2?S?2?ab22,222∴a?b?c.【證法4】(1876年美國(guó)總統(tǒng)Garfield證明)

      以a、b 為直角邊,以c為斜邊作兩個(gè)全等的直角三角形,則每個(gè)直角三角1ab2形的面積等于.把這兩個(gè)直角三角形拼成如圖所示形狀,使A、E、B三點(diǎn)在一條直線上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o.∴ ΔDEC是一個(gè)等腰直角三角形,12c2它的面積等于.又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD∥BC.1?a?b?

      2∴ ABCD是一個(gè)直角梯形,它的面積等于2.1?a?b?2?2?1ab?1c2

      22.∴ 2

      222∴ a?b?c.【證法5】(辛卜松證明)

      DD

      設(shè)直角三角形兩直角邊的長(zhǎng)分別為a、b,斜邊的長(zhǎng)為c.作邊長(zhǎng)是a+b的正方形ABCD.把正方形ABCD劃分成上方左圖所示的幾個(gè)部分,則正方形ABCD

      222??a?b?a?b?2ab;把正方形ABCD劃分成上方右圖所示的幾個(gè)的面積為

      部分,則正方形ABCD的面積為

      222∴a?b?2ab?2ab?c,222∴a?b?c.?a?b?21?4?ab?c222 =2ab?c.初二(1)

      第五篇:勾股定理的證明方法

      這個(gè)直角梯形是由2個(gè)直角邊分別為、,斜邊為 的直角

      三角形和1個(gè)直角邊為的等腰直角三角形拼成的。因?yàn)?個(gè)直角三角形的面積之和等于梯形的面積,所以可以列出等式

      化簡(jiǎn)得。

      下載勾股定理的多種證明方法(5篇可選)word格式文檔
      下載勾股定理的多種證明方法(5篇可選).doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        勾股定理的證明方法

        勾股定理的證明方法緒論勾股定理是世界上應(yīng)用最廣泛,歷史最悠久,研究最深入的定理之一,是數(shù)學(xué)、幾何中的重要且基本的工具。而數(shù)千年來,許多民族、許多個(gè)人對(duì)于這個(gè)定理之證......

        幾種簡(jiǎn)單證明勾股定理的方法

        幾種簡(jiǎn)單證明勾股定理的方法——拼圖法、定理法 江蘇省泗陽縣李口中學(xué)沈正中據(jù)說對(duì)社會(huì)有重大影響的10大科學(xué)發(fā)現(xiàn),勾股定理就是其中之一。早在4000多年前,中國(guó)的大禹曾在治理......

        勾股定理的8種證明方法

        勾股定理的8種證明方法這個(gè)定理有許多證明的方法,其證明的方法可能是數(shù)學(xué)眾多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition( 《畢達(dá)哥拉斯命題》)一書......

        勾股定理的證明方法(全文5篇)

        勾股定理的證明方法 勾股定理又叫畢氏定理:在一個(gè)直角三角形中,斜邊邊長(zhǎng)的平方等于兩條直角邊邊長(zhǎng)平方之和. 據(jù)考證,人類對(duì)這條定理的認(rèn)識(shí),少說也超過 4000 年!又據(jù)記載,現(xiàn)......

        初二上勾股定理證明方法

        勾股定理有十分悠久的歷史,兩千多年來,人們對(duì)勾股定理的證明頗感興趣,因?yàn)檫@個(gè)定理太貼近人們的生活實(shí)際,以至于古往今來,下至平民百姓,上至帝王總統(tǒng)都愿意探討和研究它的證明.下面......

        勾股定理的證明方法探究

        《勾股定理的證明方法探究》勾股定理又叫畢氏定理:在一個(gè)直角三角形中,斜邊邊長(zhǎng)的平方等于兩條直角邊邊長(zhǎng)平方之和。據(jù)考證,人類對(duì)這條定理的認(rèn)識(shí),少說也超過 4000 年!又據(jù)記載,現(xiàn)......

        勾股定理的證明方法探究

        勾股定理的證明方法 勾股定理是初等幾何中的一個(gè)基本定理。這個(gè)定理有十分悠久的歷史,兩千多年來,人們對(duì)勾股定理的證明頗感興趣,因?yàn)檫@個(gè)定理太貼近人們的生活實(shí)際,以至于古往......

        不等式的多種證明方法

        不等式的多種證明方法 汪洋,合肥師范學(xué)院摘要:數(shù)學(xué)是生活中的一門自然科學(xué),而不等式則是構(gòu)成這門自然科學(xué)的眾多基礎(chǔ)中相當(dāng)重要的組成之一,因此本文專門介紹不等式的各種證明方......