第一篇:《二元一次方程組的解法——加減消元法》教案
《二元一次方程組的解法——加減消元法》
一、教學目標
(1)知識目標:進一步了解加減消元法,并能夠熟練地運用這種方法解較為復雜的二元一次方程組。
(2)能力目標:經(jīng)歷探索用“加減消元法”解二元一次方程組的過程,培養(yǎng)學生分析問題、解決問題的能力和創(chuàng)新意識。
(3)情感目標:在自由探索與合作交流的過程中,不斷讓學生體驗獲得成功的喜悅,培養(yǎng)學生的合作精神,激發(fā)學生的學習熱情,增強學生的自信心。
二、教學重點難點
(1)教學重點:利用加減法解二元一次方程組
(2)教學難點:二元一次方程組加減消元法的靈活應用
三、教學方法 啟發(fā)引導法、演示法
四、教學準備:小黑板
五、教學過程
(一)復習舊知
解二元一次方程組的基本思想是什么?(消元)
(二)探究新知
1、情境導入(利用小黑板)
王老師昨天在水果批發(fā)市場買了2千克蘋果和4千克梨共花了14元,李老師以同樣的價格買了2千克蘋果和3千克梨共花了12元,問:梨每千克的售價是多少元?
憑借學生的經(jīng)驗估計他們會在列出二元一次方程組后馬上想到用代入法解方程組,進而解決問題。這時教師出示兩種算法讓學生加以比較,通過比較學生不難發(fā)現(xiàn)第二種算法是解決這個問題更簡單的方法。
師:算法一是代入消元法,算法二就是今天我們將要學習的加減消元法。復習加減消元法的定義:利用等式的性質使方程組中兩個方程中的某一個未知數(shù)前的系數(shù)的絕對值相等,然后把兩個方程相加或相減,以消去這個未知數(shù),使方程只含有一個未知數(shù)而得以求解。
這種解二元一次方程組的方法叫作加減消元法,簡稱加減法
2、例題講評
?5x?2y?12 例①解方程組:??3x?2y?6解:⑴-⑵,得
2x=6
x =3 把x =3代入⑴得
5?3?2y?12
⑴ ⑵3 2??x?33 ∴原方程組的解為?y?-?2?解這個方程得y =?練習:指出下列方程組求解過程中有錯誤步驟,并給予訂正。
?7x?4y?4練習1.解方程組: ??5x?4y??4解:⑴-⑵,得
2x=4-4,x=0 把x=0代入⑴得
7?0?4y?4
⑴ ⑵解這個方程得y??1
?x?0∴原方程組的解為?
?y??1例②解方程組:??3x?5y?21⑴
2x?5y??11⑵?解:⑴﹢⑵,得
5x=10
x=2 把x=2代入⑴得
3×2+5y=21 解這個方程得y=3
?x?2∴原方程組的解為?
?y?3練習:指出下列方程組求解過程中有錯誤步驟,并給予訂正。
?3x?4y?14練習②解方程組??5x?4y?2解:⑴-⑵,得
-2x=12
x =-6 把x =-6代入⑴得
5?(?6)?4y?2
⑴ ⑵解這個方程得y = 8
?x??6∴原方程組的解為?
?y?8?2x?5y?6例③解方程組:??3x?6y?4解:由⑴?3得
6x?15y?18
⑶
⑴ ⑵由⑵?2得
6x?12y?8
⑷
由⑶-⑷得
27y?10
解這個方程得y?把y?10代入⑵得 27102x?5??6
2710 27解得x?56
??x?∴原方程組的解為??y??5627 1027練習:指出下列方程組求解過程中有錯誤步驟,并給予訂正。
?2x?5y?0練習③解方程組??x?3y?11解:由⑵?2得
2x?6y?1
1⑶
⑴ ⑵由⑴-⑶得
11y??11
解這個方程得y??1 把y??1代入⑵得
x?3?(?1)?11
解得x?14
?x?14∴原方程組的解為?
?y??1
六、小結
掌握加減消元法應注意兩點:(1)加減消元的根據(jù)是等式兩邊都加上或減去同一個數(shù)或同一個等式,等式不變。(2)相等兩數(shù)的差為零,互為相反數(shù)的和為零。因此,當兩個方程中的同一個未知數(shù)的絕對值相等時,可以把兩個方程相加或相減使這個未知數(shù)的系數(shù)化為零,從而達到消元的目的。
七、布置作業(yè)
練習3.3第2題(1)(2),第(3)選做。
八、板書設計
(1)復習舊知(2)例題講評
例①解方程組:??5x?2y?12?3x?2y?6?2x?5y?6?3x?6y?4⑴?3x?5y?21⑴ 例②解方程組:? ⑵?2x?5y??11⑵⑴
⑵例③解方程組:?(3)小結
第二篇:二元一次方程組的解法(加減消元法)說課稿
二元一次方程組的解法(加減消元法)說課稿
尊敬的各位老師,各位同學:
大家好!我今天說課的題目是《二元一次方程組的解法》,選自滬教版九年義務教育課本六年級下冊第六章第九節(jié),本節(jié)兩個課時,我今天闡述的是第二課時,用加減消元法解二元一次方程組。下面我將從教材分析、教法分析、學法分析、教學過程及教學評價等幾個方面進行闡述。
一、教材分析
1、教材的地位和作用
本節(jié)課是在學生學習了代入法解二元一次方程組的基礎上,繼續(xù)學習另一種消元的方法---加減消元,它是學生系統(tǒng)學習二元一次方程組知識的前提和基礎。教材的編寫目的是通過加減來達到消元的目的,讓學生從中充分體會化未知為已知的轉化過程;理解并掌握解二元一次方程組的最常用的基本方法,為以后函數(shù)等知識的學習打下基礎.2、教學目標
通過對新課程標準的研究與學習,我把本節(jié)課的三維教學目標確定如下: 知識與技能目標:會用加減消元法解簡單的二元一次方程組; 理解加減消元法的基本思想,體會化未知為已知的化歸思想方法。過程與方法目標:
通過經(jīng)歷加減消元法解方程組,讓學生體會消元思想的應用,經(jīng)過引導、討論和交流讓 學生理解根據(jù)加減消元法解二元一次方程組的一般步驟。情感態(tài)度及價值觀:
通過交流、合作、討論獲取成功體驗,感受加減消元法的應用價值,激發(fā)學生的學習興趣,同時體會到數(shù)學與日常生活的密切聯(lián)系,認識到數(shù)學的價值。
3、教學重、難點
由于六年級的學生年齡較小,在學習解二元一次方程組的過程中往往不注意方程組解法的形成過程更無法真正理解消元的思想方法。而大家都知道,數(shù)學的思想與方法才是數(shù)學的精髓,是聯(lián)系各類數(shù)學知識的紐帶,所以我將本節(jié)課的重點和難點確定如下: 重點:用加減消元法解決二元一次方程組
難點:在解題過程中進一步體會“消元”思想和“化未知為已知”的化歸思想 為講清楚重、難點,讓學生達到本節(jié)設定的目標,我再從教法學法上談談。
二、教法分析
考慮到學生已經(jīng)掌握了用代入消元法解二元一次方程組,懂得其基本思路是把二元一次方程組轉化為一元一次方程。所以這節(jié)課我以引導、演示教學法為主,引導學生通過兩式相加減,把二元一次方程組轉化為一元一次方程,通過實例演示讓學生掌握知識。
三、學法分析
六級學生思維比較活躍,喜歡發(fā)表自己的見解,而且具備小組合作學習的經(jīng)驗,根據(jù)這些特征及本節(jié)課的特點,我將采用以學生為主體,教師為主導,保證學生的主體地位,調動學生的積極性,讓學生動手操作,動腦思考,激發(fā)學生學習興趣,在學習知識的同時獲得成功的體驗。
教法學法分析完畢,我來分析一下教學過程,這個環(huán)節(jié)是本次說課的重點。
四、教學過程設計
本節(jié)課整體思路是“復習舊知---講授新課---練習鞏固---歸納小結---作業(yè)布置”幾個基本環(huán)節(jié)來完成。
1、復習舊知這一環(huán)節(jié)我設計了2個問題,目的是幫助學生回憶上節(jié)課所學的主要知識和重要思想。
(1)上節(jié)課利用了什么方法解二元一次方程組?(代入消元法)(2)解二元一次方程組的基本思想是什么?(消元)
2、講授新課
(1)新課引入(注意時間控制)
課程引入這一環(huán)節(jié),我是以解方程組
作為引入的。然后再介紹?x?y?22方程組?
2x?y?40?這個引入設計跟教材的做法正好相反。我的主要依據(jù)是:一是學生做加法要比做減法更容易接受,所以,我先介紹了加法消元,再介紹減法消元;二是把一個用代入消元法解答較復雜而用加法消元解答較簡單的方程組放在開頭,目的是引起學生學習加減消元法的興趣。
有了這個引入后,我們就可以自然的把加減消元法介紹給學生。
對于概念做出兩點說明:一是加減消元法的目的也是消元,由二元化一元,由未知化已知;二是消元的方式不是代入,而是通過兩式適當?shù)募訙p。適當是指同一未知數(shù)的系數(shù)要求相反或相等。
接著,為了加深學生對概念的理解,接下來的教學中,我設計一組較為簡單的口答題(是由課后習題改編的)
?2x?y?3?x?y?2?x?2y?9?3x?2y?6
?????3x?y?1?2x?y?3?3x?2y??1?x?2y??2通過這一組較為簡單的口答題,學生對加減消元法有了直觀上的理解,這時,我們就可以引入課本的例題3,通過例題3的講解,使學生對加減消元法有進一步的理解。
(2)例題講解 例題3 例題3的講解,主要是以老師引導,學生以小組為單位,通過共同探究的方式來完成。
目的:消元,化二元為一元,由已知解未知,方式:加減消元
引導學生如果不做任何改變直接加減,起不到消元的目的,所以看似用加減消元不行。此時可以讓學生回顧加減消元的概念,強調做加減消元的前提條件是要求方程組中的某一個未知數(shù)的系數(shù)相反或相等,而上式并不相等。所以為了加減消元,我們應該通過恰當?shù)姆绞绞沟梅匠探M中的某一未知數(shù)的系數(shù)相反或相等,即在等式兩邊同乘以適當?shù)臄?shù)。
這是本節(jié)課的重點也是難點,所以在教學過程中要給學生充分的時間和空間進行探究討論,教師也要參與到學生的討論之中,及時收集同學們遇到的困難,并給以適當?shù)囊龑?,同時要針對學生的表現(xiàn)及時對學生進行鼓勵性評價,充分肯定學生的探究成果。當學生得出這個方程組的解法之后組織學生全班交流,并選代表發(fā)言。然后教師規(guī)范表達解答過程,為學生做出示范.解答本題后,口算檢驗,讓學生養(yǎng)成檢驗的習慣。
緊接著教師提出問題:如何用加減法消去上面兩個方程組中的另一未知數(shù)解方程?目的是讓學生從不同的角度實現(xiàn)消元,在培養(yǎng)了發(fā)散思維的同時也提高了學生從不同的的角度觀察和分析事物的能力。
(3)根據(jù)上面方程組的解法,引導學生思考下面的兩個問題: A、加減消元法解二元一次方程組的基本思想是什么? B、用加減消元法解二元一次方程組的主要步驟有哪些? 學生分組討論,請學生發(fā)言。
老師根據(jù)學生的回答情況,把加減消元法的思路和步驟進行總結歸納,使學生熟練的用加減法解二元一次方程組并在練習中摸索運算技巧。
『步驟:第一步:在所解的方程組中的兩個方程,如果某個未知數(shù)的系數(shù)互為相反數(shù),?可以把這兩個方程的兩邊分別相加,消去這個未知數(shù);如果未知數(shù)的系數(shù)相等,?可以直接把兩個方程的兩邊相減,消去這個未知數(shù).第二步:如果方程組中不存在某個未知數(shù)的系數(shù)絕對值相等,那么應選出一組系數(shù)(選最小公倍數(shù)較小的一組系數(shù)),求出它們的最小公倍數(shù)(如果一個系數(shù)是另一個系數(shù)的整數(shù)倍,該系數(shù)即為最小公倍數(shù)),然后將原方程組變形,使新方程組的這組系數(shù)的絕對值相等(都等于原系數(shù)的最小公倍數(shù)),再加減消元.第三步:對于較復雜的二元一次方程組,應先化簡(去分母,去括號,?合并同類項等),通常要把每個方程整理成含未知數(shù)的項在方程的左邊,?常數(shù)項在方程的右邊的形式,再作如上加減消元的考慮.』
3、練習鞏固
數(shù)學知識的學習離不開足夠的練習,所以設計了這一環(huán)節(jié),在這個環(huán)節(jié)中主要還是強化學生對加減消元法的理解。同時為了照顧到不同層次的學生,設計難度不同的練習題。最終是達到培養(yǎng)學生獨立思考問題、解決問題的能力,進而使學生對加減消元法解方程組的方法和步驟都有更深的理解。
4、歸納小結: 通過提問“你們今天學會了什么”和學生一起帶著疑問總結出本節(jié)課的收獲,使學生加深對所學知識的理解和鞏固。
5、作業(yè)布置
課本P3習題6.9(2)解下列方程組第1.2.3題 設計說明:
1、作業(yè)布置上設有必做和選做,目的滿足不同層次的學生需求,體現(xiàn)分層教學。
2、在必做題中,第1題屬于加法的直接應用,而第3題要先進行適當變形,體現(xiàn)了難度的遞進性。目的是培養(yǎng)學生獨立的分析解決問題的能力,更好的掌握本節(jié)課所學知識。
五、教學評價分析 本節(jié)課是傳授知識,培養(yǎng)能力的一堂課,教學過程中根據(jù)本節(jié)課的特點通過教師的引導,學生自主學習,教師與學生相互合作共同完成了本節(jié)課的教學。教授過程中充分發(fā)揮學生主觀能動性,激發(fā)學生學習興趣,讓學生成為課堂的主體。
以上是我對本節(jié)課的理解,請老師批評指正,謝謝!
第三篇:《加減消元法解二元一次方程組》聽課心得
用《加減消元法解二元一次方程組》的聽課心得
通過本次的聽課,我收獲很多,了解老師的教學模式優(yōu)秀和老師例題、習題講解的獨到之處。并讓我認識到想要上好一節(jié)課,并不單單是你講得有多好這堂課就會取得成功,教學的好壞,取決于多方面。大致可分為:①專業(yè)知識程度②教學方法的得當③課堂氣氛④語言表達能力等多個方面。
老師善于關注學生的個體差異,尊重不同學生在知識,能力,興趣等方面的需要有針對性的設計不同層次、不同類型的問題,使學生都有機會參與到教學活動和實驗活動中去,讓他們自己有主人翁的感覺,切實與同學真誠合作,體驗完成一項活動任務的成功喜悅。本次教學老師采用習題引入的方式進行,在之前學習的帶入消元法解二元一次方程組的基礎上,進一步凸顯加減消元法的便利之處,隨后給出一個二元一次方程組例題,讓學生用代入消元法解該方程組。學生解答之后老師讓學生觀察每一個未知數(shù)的系數(shù),再根據(jù)系數(shù)研究方程與方程之間的聯(lián)系(系數(shù)上的聯(lián)系)。再逐步的引入加減消元法的知識。這樣的教學設計既能提高班級的學習氛圍,還能增強學生的思考能力,更好的做到了,讓學生多動手、多思考。
總之,這堂課的收獲很多,在此就不一一介紹了。
第四篇:二元一次方程組的解法復習教案
《二元一次方程組的解法復習》教案設計
湖州四中
金志彬
一、教材分析
本課是對七年級下冊的第二章第三節(jié)《解二元一次方程組》加強鞏固,熟練的解二元一次方程組在整個教材中起到了承上啟下的作用,二元一次方程組的解法中不僅體現(xiàn)了“轉化思想”和“整體思想”,而且也是解決后續(xù)——二元一次方程組的應用和三元一次方程組及其解法等學習的基礎,為數(shù)學交流提供了有效的途徑。
二、學情分析
學生已經(jīng)學習了二元一次方程組的解法,包括代入消元法、加減消元法,對于書寫的步驟也有一定的規(guī)范。但是對于不同類型的二元一次方程組不能用恰當?shù)姆椒ń鉀Q,對于復雜一點的二元一次方程組和有點技巧性的二元一次方程組解決方法還不熟練,所以在學習的過程中,教師要對他們進行學法指導,尤其要對他們進行數(shù)學學習方法和數(shù)學思想的培養(yǎng)。
三、教學目標 【知識與能力】
1.熟練的運用代入法和消元法解二元一次方程組; 2.會用整體思想解決二元一次方程組;
3.能根據(jù)具體的二元一次方程組來選擇恰當?shù)姆椒▉斫舛淮畏匠探M?!具^程與方法】 4.通過對二元一次方程組的解法復習鞏固,體驗數(shù)學學習中的轉化思想;
5.在對方程的整體代入和計算中,滲透整體思想?!厩楦袘B(tài)度與價值觀】
6.體會轉化和整體的數(shù)學思想,在探求新知過程中體會小組合作的學習方式。
四、教學重難點
【教學重點】:熟練的運用代入法和加減法解二元一次方程組?!窘虒W難點】:會用整體思想解二元一次方程組。
五、教學過程
(一)創(chuàng)設情境
?3x?y?6 ??x?3y?10
師:這是什么? 生:二元一次方程組.師:那么接下來我們可以做些什么呢? 生:解二元一次方程組.師:那么解二元一次方程組的基本思想是什么呢? 生:消元(教師板書基本思想—消元)師:通過消元,我們可以得到什么? 生:把二元一次方程組轉化成一元一次方程.師:這體現(xiàn)了什么數(shù)學思想? 生:轉化思想(教師板書)師:請大家思考這個方程該怎么解?
請學生回答,引出二元一次方程組的解法有①代入法②消元法(教師板書)
師:聽起來大家掌握的都不錯,實踐是檢驗真理的唯一標準,接下來練一練.【你會用恰當?shù)姆椒ń庀铝卸淮畏匠探M嗎?】
?2x?3y?7(1)? ?3x?2y?
4?xy??1??26(2)??x?3y?1??1010一、二大組做第1道,三、四大組做第2道.①請學生板演 ②板演完畢針對性點評
師:什么時候用代入法方便?解二元一次方程組時第一步要做什么? 學生回答教師引導總結如下: 【解二元一次方程組不要急】
先觀察根據(jù)方程組的數(shù)和式的特點,然后選擇恰當?shù)姆椒?代入法:當未知數(shù)前面的系數(shù)為1或-1的.加減法:用代入法不方便的.用恰當?shù)姆椒ń忸}會有事半功倍的效果.(二)靈活運用
?3x?y?6??x?3y?101、已知二元一次方程組
求①x+y=________②x-y=__________
③2(x+3y)-(3x+y)=____________(引出整體思想并板書)
2.若方程組
?3x?y?6??x?3y?10的解是??x?1?3(a?b)?(a?b)?6,則方程組?的解是_________.?y?3?(a?b)?3(a?b)?10?x?2?2(y?1)3.解方程組?.?2(x?2)?(y?1)?5?3x?y?a?54.方程組?.2x?y?4a?(1)其中x、y的值相等,求a的值.(2)①x=________(用a表示x)
②y=________(用a表示y)
③其中x是y的兩倍,求a的值.(三)拓展提高
?x?y?3?.1、已知?y?z?4,則x?y?z?________?x?z?5??x?4y?0x2、已知?(y?0),求的值.z?y?2z?0
(四)、課堂小結
通過本節(jié)課你有哪些收獲?(請學生自由回答)
六、教學反思
本節(jié)課的目的是讓學生熟練的用代入法和消元法解二元一次方程組并能用整體思想解決相關的二元一次方程組,整堂課完成了教學目標與教學重難點,課堂紀律也較好,個別學生上課積極舉手發(fā)言。
當然不足之處也有許多,學生在錄播教室很拘謹,氣氛比較沉悶,我沒能及時調動學生的積極性.此外,二元一次方程組的解法復習中應多總結解題規(guī)律以及在解方程組時易出現(xiàn)的錯誤。結束時的課堂的提問讓學生談收獲的時候問的太寬泛了,導致學生不知如何回答.在以后的教學和學習中我會及時改正以上不足,多去請教老教師.
第五篇:二元一次方程組及解法復習課教案
教學目標
知識與技能
掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。
過程與方法
能根據(jù)方程組的特點選擇合適的方法解方程組;并能把相應問題轉化為解方程組
情感、態(tài)度與價值觀
培養(yǎng)學生分析問題,解決問題的能力,體驗學習數(shù)學的快樂。
重點:
掌握二元一次方程和二元一次方程組及它們的解的概念,會用消元法解方程組。
難點:
選擇合適的方法解方程組;并能把相應問題轉化為解方程組。
教學手段
多媒體,小組評比。
教學過程
一、知識梳理
以小組為單位討論二元一次方程組已經(jīng)學了哪些知識?
1、什么是二元一次方程?什么是二元一次方程的解?
2、什么是二元一次方程組?什么是二元一次方程組的解?
3、解二元一次方程組的基本思想是什么?消元的方法有哪些?
設計意圖:知識回顧,掌握知識要點,為順利完成練習打下基礎
二、基礎訓練
教學手段與方法:每小組必答題,答對為小組的一分,調動學習的積極性。
設計意圖:
基礎知識達標訓練。
教學手段與方法:
毎小組選代表講解為小組加分,充分調動學生的積極性。學生講解不到位的老師補充。
設計意圖:對二元一次方程組解法的靈活應用。