第一篇:外拿破侖三角形的證明
外拿破侖三角形的證明
設(shè)△ABC,它向外作的正三角形中心分別為D、E、F
設(shè)BC=根號3a,AC=根號3b,AB=根號3c
則AD=BD=c,AE=CE=b,BF=CF=a
易證∠DAE=60+∠BAC
cos∠DAE=cos(60+∠BAC)=cos60*cos∠BAC-sin60*sin∠BAC
cos∠BAC=(b^2+c^2-a^2)/2bc,sin∠BAC=根號3a/2R(R為△ABC外接圓的半徑)cos∠DAE=(b^2+c^2-a^2)/4bc-3a/4R
由余弦定理得
DE^2=AD^2+AE^2-2cos∠DAE*AD*AE
=b^2+c^2-(b^2+c^2-a^2)/2+3abc/2R
=(a^2+b^2+c^2)/2+3abc/2R
同理可得DF^2=EF^2=(a^2+b^2+c^2)/2+3abc/2R
…………
第二篇:三角形的證明
全等三角形的證法
1:(SSS或“邊邊邊”)證明三條邊相等的兩個三角形全等
在兩個三角形中,若三條邊相等,則這兩個三角形全等。
幾何語言:在三角形中因為ab=AB, ac=AC, bc=BC所以三角形abc全等于三角形ABC
2.(SAS或“邊角邊”)證明有兩條邊及其夾角對應(yīng)相等的兩個三角形全等
在兩個三角形中,若有兩條邊及其夾角對應(yīng)相等,則這兩個三角形全等。
幾何語言:在三角形中因為ab=AB,bc=BC, ∠b=∠B,則三角形abc全等于三角形ABC
3.(ASA或“角邊角”)證明有兩角及其夾邊對應(yīng)相等的兩個三角形全等
在兩個三角形中,若有兩角及其夾邊對應(yīng)相等的兩個三角形全等.幾何語言:在三角形中∠a=∠A,∠b=∠B,ab=AB, 則三角形abc全等于三角形ABC
4.(AAS或“角角邊”)證明有兩角及一角的對邊對應(yīng)相等的兩個三角形全等
在兩個三角形中,若兩角及一角的對邊對應(yīng)相等的兩個三角形全等
幾何語言:在三角形中∠a=∠A,∠b=∠Bac=AC則三角形abc全等于三角形ABC
5.(HL或“斜邊,直角邊”)證明斜邊及一直角邊對應(yīng)相等的兩個直角三角形全等 在兩個直角三角形中,若斜邊及一直角邊對應(yīng)相等的兩個直角三角形全等
幾何語言:在三角形中因為ab=AB 直角c=直角C 則三角形abc全等于三角形ABC
所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。
注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的形.提醒:在證明的 圖中 可能出現(xiàn),兩直線平行,內(nèi)錯角相等
兩直線平行,同旁內(nèi)角相等
兩直線平行,對頂角相等
通常在混合題,混合圖,等等
第三篇:全等三角形證明
全等三角形的證明
1.?翻折
如圖(1),?BOC≌?EOD,?BOC可以看成是由?EOD沿直線AO翻折180?得到的;
?旋轉(zhuǎn)
如圖(2),?COD≌?BOA,?COD可以看成是由?BOA繞著點O旋轉(zhuǎn)180?得到的;
?平移
如圖(3),?DEF≌?ACB,?DEF可以看成是由?ACB沿CB方向平行移動而得到的。
2.判定三角形全等的方法:
(1)邊角邊公理、角邊角公理、邊邊邊公理、斜邊直角邊(直角三角形中)公理
(2)推論:角角邊定理
3.注意問題:
(1)在判定兩個三角形全等時,至少有一邊對應(yīng)相等;
(2)不能證明兩個三角形全等的是,a: 三個角對應(yīng)相等,即AAA;b :有兩邊和其中一角對應(yīng)相等,即SSA。
一、全等三角形知識的應(yīng)用
(1)證明線段(或角)相等
例1:如圖,已知AD=AE,AB=AC.求證:BF=FC
(2)證明線段平行
例2:已知:如圖,DE⊥AC,BF⊥AC,垂足分別為E、F,DE=BF,AE=CF.求證:AB∥CD
(3)證明線段的倍半關(guān)系,可利用加倍法或折半法將問題轉(zhuǎn)化為證明兩條線段相等
例3:如圖,在△ ABC中,AB=AC,延長AB到D,使BD=AB,取AB的中點E,連接CD和CE.求證:CD=2CE
例4 如圖,△ABC中,∠C=2∠B,∠1=∠2。求證:AB=AC+CD.
.
例5:已知:如圖,A、D、B三點在同一條直線上,CD⊥AB,ΔADC、ΔBDO為等腰Rt三角形,AO、BC的大小關(guān)系和位置關(guān)系分別如何?證明你的結(jié)論。
例6.如圖,已知C為線段AB上的一點,?ACM和?CBN都是等邊三角形,AN和CM相交于F點,BM和CN交于E點。求證:?CEF是等邊三角形。
N
M
FE
C
A B
第四篇:全等三角形證明
全等三角形證明
1、已知CD∥AB,DF∥EB,DF=EB,問AF=CE嗎?說明理由。
CA2、已知∠E=∠F,∠1=∠2,AB=CD,問AE=DF嗎?說明理由。
F3、已知,點C是AB的中點,CD∥BE,且CD=BE,問∠D=∠E嗎?說明理由。
4、已知AB=CD,BE=DF,AE=CF,問AB∥CD嗎?
A B
C
第五篇:全等三角形練習(xí)題(證明)
全等三角形練習(xí)題(8)
一、認認真真選,沉著應(yīng)戰(zhàn)!
1.下列命題中正確的是()
A.全等三角形的高相等B.全等三角形的中線相等
C.全等三角形的角平分線相等D.全等三角形對應(yīng)角的平分線相等 2. 下列各條件中,不能做出惟一三角形的是()
A.已知兩邊和夾角B.已知兩角和夾邊
C.已知兩邊和其中一邊的對角D.已知三邊
4.下列各組條件中,能判定△ABC≌△DEF的是()
A.AB=DE,BC=EF,∠A=∠D
B.∠A=∠D,∠C=∠F,AC=EF
C.AB=DE,BC=EF,△ABC的周長= △DEF的周長
D.∠A=∠D,∠B=∠E,∠C=∠F
5.如圖,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,則∠BCM:∠BCN等于()
A.1:2B.1:3C.2:3D.1:
46.如圖,∠AOB和一條定長線段A,在∠AOB內(nèi)找一點P,使P到OA、OB的距離都等于A,做法如下:(1)作OB的垂線NH,使NH=A,H為垂足.(2)過N作NM∥OB.(3)作∠AOB的平分線OP,與NM交于P.(4)點P即為所求.
其中(3)的依據(jù)是()
A.平行線之間的距離處處相等
B.到角的兩邊距離相等的點在角的平分線上
C.角的平分線上的點到角的兩邊的距離相等
D.到線段的兩個端點距離相等的點在線段的垂直平分線上
7. 如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條 角平分線將△ABC分為三個三角形,則S△ABO︰S△BCO︰S△CAO等于()
A.1︰1︰1B.1︰2︰3C.2︰3︰4D.3︰4︰
58.如圖,從下列四個條件:①BC=B′C,②AC=A′C,③∠A′CB=∠B′CB,④AB=A′B′中,任取三個為條件,ANCA
C F 余下的一個為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個數(shù)是()
A.1個B.2個C.3個D.4個
9.要測量河兩岸相對的兩點A,B的距離,先在AB的垂線BF上 取兩點C,D,使CD=BC,再定出BF的垂線DE,使A,C,E在同 一條直線上,如圖,可以得到?EDC??ABC,所以ED=AB,因
E
此測得ED的長就是AB的長,判定?EDC??ABC的理由是()A.SASB.ASAC.SSSD.HL
10.如圖所示,△ABE和△ADC是△ABC分別沿著AB,AC邊 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,則∠α的度數(shù)為()
A.80°B.100°C.60°D.45°.
二、仔仔細細填,記錄自信!
11.如圖,在△ABC中,AD=DE,AB=BE,∠A=80°,則∠CED=_____.
12.已知△DEF≌△ABC,AB=AC,且△ABC的周長為23cm,BC=4 cm,則△DEF的邊中必有一條邊等于______.
13. 在△ABC中,∠C=90°,BC=4CM,∠BAC的平分線交BC于D,且BD︰DC=5︰3,則D到AB的距離為_____________.
14. 如圖,△ABC是不等邊三角形,DE=BC,以D,E為兩個頂點作位置不同的三角形,使所作的三角形與△ABC全等,這樣的三角形最多可以畫出_____個.
BE
BCDE
?分別是銳角三角形ABC和銳角三角形A?B?C?中BC,B?C?邊上的高,且15. 如圖,AD,A?D?B,?AB?AAD?
?D?若使△ABC≌△A?B?C?,請你補充條件___________.(填寫一個你認為適A.
當(dāng)?shù)臈l件即可)
C
'
'
B D D
17. 如果兩個三角形的兩條邊和其中一條邊上的高對應(yīng)相等,那么這兩個三角形的第三邊所對的角的關(guān)
'
C
'
系是__________.
19. 如右圖,已知在?ABC中,?A?90?,AB?AC,CD平
分?ACB,DE?BC于E,若BC?15cm,則△DEB 的周長為cm.
E
C
20.在數(shù)學(xué)活動課上,小明提出這樣一個問題:∠B=∠C=900,E是
BC的中點,DE平分∠ADC,∠CED=350,如圖,則∠EAB是多少 度?大家一起熱烈地討論交流,小英第一個得出正確答案,是______.
三、平心靜氣做,展示智慧!
21.如圖,公園有一條“Z”字形道路ABCD,其中
AB∥CD,在E,M,F處各有一個小石凳,且BE?CF,M為BC的中點,請問三個小石凳是否在一條直線上?說出你推斷的理由.
22.如圖,給出五個等量關(guān)系:①AD?BC ②AC?BD ③CE?DE ④?D??C⑤?DAB??CBA.請你以其中兩個為條件,另三個中的一個為結(jié)論,推出一個正確 的結(jié)論(只需寫出一種情況),并加以證明.
已知:
求證:
證明:
23.如圖,在∠AOB的兩邊OA,OB上分別取OM=ON,OD=OE,DN和EM相交于點C. 求證:點C在∠AOB的平分線上.
A
B
B
如圖,已知△ABC和△DEC都是等邊三角形,∠ACB=∠DCE=60°,B、C、E在同一直線上,連結(jié)BD和AE.求證:BD=AE.2.已知:如圖點C是AB的中點,CD∥BE,且CD=BE.求證:∠D=∠E.3.已知:E、F是AB上的兩點,AE=BF,又AC∥DB,且AC=DB.求證:CF=DE。
4.如圖,D、E、F、B在一條直線上,AB=CD,∠B=∠D,BF=DE。求證:⑴AE=CF;⑵AE∥CF;⑶∠AFE=∠CEF。
1、已知:如圖,∠1=∠2,∠B=∠D。求證:△AFC≌△DEB4、已知:AD為△ABC中BC邊上的中線,CE∥AB交AD的延長線于E。
求證:(1)AB=CE; 5、已知:AB=AC,BD=CD
求證:(1)∠B=∠C
(2)DE=DF
6.已知:AD為△ABC中BC邊上的中線,CE∥AB交AD的延長線于E。7.已知:如圖,AB=CD,DA⊥CA,AC⊥BC。
求證:△ADC≌△CBA
求證:(1)AB=CE;
參考答案
一、1—5:DCDCD6—10:BCBBA
二、11.100° 12.4cm或9.5cm 13.1.5cm 14.4 15.略
16.1?AD?5 17. 互補或相等 18. 180 19.15 20.350
三、21.在一條直線上.連結(jié)EM并延長交CD于F' 證CF?CF'. 22.情況一:已知:AD?BC,AC?BD
求證:CE?DE(或?D??C或?DAB??CBA)
證明:在△ABD和△BAC中 ∵AD?BC,AC?BD
AB?BA
∴△ABD≌△BAC
∴?CAB??DBA∴AE?BE
∴AC?AE?BD?BE
即CE?ED
情況二:已知:?D??C,?DAB??CBA
求證:AD?BC(或AC?BD或CE?DE)證明:在△ABD和△BAC中?D??C,?DAB??CBA∵AB?A B
∴△ABD≌△BAC
∴AD?B C
23.提示:OM=ON,OE=OD,∠MOE=∠NOD,∴△MOE≌△NOD,∴∠OME=∠OND,又DM=EN,∠DCM=∠ECN,∴△MDC≌△NEC,∴MC=NC,易得△OMC≌△ONC(SSS)∴∠MOC=∠NOC,∴點C在∠AOB的平分線上.
四、24.(1)解:△ABC與△AEG面積相等
過點C作CM⊥AB于M,過點G作GN⊥EA交EA延長線于N,則
?AMC??ANG?90?
?四邊形ABDE和四邊形ACFG都是正方形
??BAE??CAG?90,AB?AE,AC?AG??BAC??EAG?180
??
??EAG??GAN?180??BAC??GAN?△ACM≌△AGN
?
D
?CM?GN?S△ABC?
AB?CM,S△AEG?
12AE?GN
?S△ABC?S△AEG
(2)解:由(1)知外圈的所有三角形的面積之和等于內(nèi)圈的所有三角形的面積之和
?這條小路的面積為(a?2b)平方米.