第一篇:電力電子技術(shù)讀書筆記
關(guān)于《電力電子技術(shù)》的理解及感想
信息技術(shù)系2010級
信息一班
任俊凱
通過閱讀《電力電子技術(shù)》,我認(rèn)識到,電力電子技術(shù)是一門新興的應(yīng)用
于電力領(lǐng)域的電子技術(shù),就是使用電力電子器件(如晶閘管,GTO,IGBT等)對電能進(jìn)行變換和控制的技術(shù)。電力電子技術(shù)所變換的“電力”功率可大到數(shù)百MW甚至GW,也可以小到數(shù)W甚至1W以下,和以信息處理為主的信息電子技術(shù)不同電力電子技術(shù)主要用于電力變換。而電力電子技術(shù)分為電力電子器件制造技術(shù)和交流技術(shù)(整流,逆變,斬波,變頻,變相等)兩個分支。
在模塊《功率技術(shù)》的閱讀中,我了解到,功率電子技術(shù)就是利用
電力電子器件實現(xiàn)工業(yè)規(guī)模電能變換的技術(shù)。一般情況下,它是將一種形式的工業(yè)電能轉(zhuǎn)換成另一種形式的工業(yè)電能。例如,將交流電能變換成直流電能或?qū)⒅绷麟娔茏儞Q成交流電能;將工頻電源變換為設(shè)備所需頻率的電源;在正常交流電源中斷時,用逆變器(見電力變流器)將蓄電池的直流電能變換成工頻交流電能。應(yīng)用電力電子技術(shù)還能實現(xiàn)非電能與電能之間的轉(zhuǎn)換。例如,利用太陽電池將太陽輻射能轉(zhuǎn)換成電能。與電子技術(shù)不同,電力電子技術(shù)變換的電能是作為能源而不是作為信息傳感的載體。因此人們關(guān)注的是所能轉(zhuǎn)換的電功率。
電力電子技術(shù)是建立在電子學(xué)、電工原理和自動控制三大學(xué)科上的新興學(xué)科。因它本身是大功率的電技術(shù),又大多是為應(yīng)用強(qiáng)電的工業(yè)服務(wù)的,故常將它歸屬于電工類。電力電子技術(shù)的內(nèi)容主要包括電力電子器件、電力電子電路和電力電子裝置及其系統(tǒng)。電力電子器件以半導(dǎo)體為基本材料,最常用的材料為單晶硅;它的理論基礎(chǔ)為半導(dǎo)體物理學(xué);它的工藝技術(shù)為半導(dǎo)體器件工藝。近代新型電力電子器件中大量應(yīng)用了微電子學(xué)的技術(shù)。電力電子電路吸收了電子學(xué)的理論基礎(chǔ),根據(jù)器件的特點和電能轉(zhuǎn)換的要求,又開發(fā)出許多電能轉(zhuǎn)換電路。這些電路中還包括各種控制、觸發(fā)、保護(hù)、顯示、信息處理、繼電接觸等二次回路及外圍電路。利用這些電路,根據(jù)應(yīng)用對象的不同,組成了各種用途的整機(jī),稱為電力電子裝置。這些裝置常與負(fù)載、配套設(shè)備等組成一個系統(tǒng)。電子學(xué)、電工學(xué)、自動控制、信號檢測處理等技術(shù)常在這些裝置及其系統(tǒng)中大量應(yīng)用。
而這門技術(shù)的作用有很多,比如:(1)優(yōu)化電能使用。通過電力
電子技術(shù)對電能的處理,使電能的使用達(dá)到合理、高效和節(jié)約,實現(xiàn)了電能使用最佳化。例如,在節(jié)電方面,針對風(fēng)機(jī)水泵、電力牽引、軋機(jī)冶煉、輕工造紙、工業(yè)窯爐、感應(yīng)加熱、電焊、化工、電解等14個方面的調(diào)查,潛在節(jié)電總量相當(dāng)于1990年全國發(fā)電量的16%,所以推廣應(yīng)用電力電子技術(shù)是節(jié)能的一項戰(zhàn)略措施,一般節(jié)能效果可達(dá)10%-40%,我國已將許多裝置列入節(jié)能的推廣應(yīng)用項目。(2)改造傳統(tǒng)產(chǎn)業(yè)和發(fā)展機(jī)電一體化等新興產(chǎn)業(yè)。據(jù)發(fā)達(dá)國家預(yù)測,今后將有95%的電能要經(jīng)電力電子技術(shù)處理后再使用,即工業(yè)和民用的各種機(jī)電設(shè)備中,有95%與電力電子產(chǎn)業(yè)有關(guān),特別是,電力電子技術(shù)是弱電控制強(qiáng)電的媒體,是機(jī)電設(shè)備與計算機(jī)之間的重要接口,它為傳統(tǒng)產(chǎn)業(yè)和新興產(chǎn)業(yè)采用微電子技術(shù)創(chuàng)造了條件,成為發(fā)揮計算機(jī)作用的保證和基礎(chǔ)。(3)電力電子技術(shù)高頻化和變頻技術(shù)的發(fā)展,將使機(jī)電設(shè)備突破工頻傳統(tǒng),向高頻化方向發(fā)展。實現(xiàn)最佳工作效率,將使機(jī)電設(shè)備的體積減小幾倍、幾十倍,響應(yīng)速度達(dá)到高速化,并能適應(yīng)任何基準(zhǔn)信號、實現(xiàn)無噪音且具有全新的功能和用途。(4)電力電子智能化的進(jìn)展,在一定程度上將信息處理與功率處理合一,使微電子技術(shù)與電力電子技術(shù)一體化,其發(fā)展有可能引起電子技術(shù)的重大改革。有人甚至提出,電子學(xué)的下一項革命將發(fā)生在以工業(yè)設(shè)備和電網(wǎng)為對象的電子技術(shù)應(yīng)用領(lǐng)域,電力電子技術(shù)將把人們帶到第二次電子革命的邊緣。
通過閱讀這本書,我對電子技術(shù)的興趣愈發(fā)濃厚。我明白了電力電
子技術(shù)的基本原理和方法及作用。我將會繼續(xù)深入了解和學(xué)習(xí)這項技術(shù)。希望自己可以在電子技術(shù)方面學(xué)到更多更深的知識。
第二篇:電力電子技術(shù)報告
電力電子技術(shù)調(diào)查報告電力電子技術(shù)是一門新興的應(yīng)用于電力領(lǐng)域的電子技術(shù),就是使用電力電子器件(如晶閘管,GTO,IGBT等)對電能進(jìn)行變換和控制的技術(shù)。電力電子技術(shù)所變換的“電力”功率可大到數(shù)百MW甚至GW,也可以小到數(shù)W甚至1W以下,和以信息處理為主的信息電子技術(shù)不同電力電子技術(shù)主要用于電力變換。
電力電子技術(shù)分為電力電子器件制造技術(shù)和交流技術(shù)(整流,逆變,斬波,變頻,變相等)兩個分支。
電力電子及開關(guān)電源技術(shù)因應(yīng)用需求不斷向前發(fā)展,新技術(shù)的出現(xiàn)又會使許多應(yīng)用產(chǎn)品更新?lián)Q代,還會開拓更多更新的應(yīng)用領(lǐng)域。開關(guān)電源高頻化、模塊化、數(shù)字化、綠色化等的實現(xiàn),將標(biāo)志著這些技術(shù)的成熟,實現(xiàn)高效率用電和高品質(zhì)用電相結(jié)合。這幾年,隨著通信行業(yè)的發(fā)展,以開關(guān)電源技術(shù)為核心的通信用開關(guān)電源,僅國內(nèi)有20多億人民幣的市場需求,吸引了國內(nèi)外一大批科技人員對其進(jìn)行開發(fā)研究。開關(guān)電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產(chǎn)值需求的電力操作電源系統(tǒng)的國內(nèi)市場正在啟動,并將很快發(fā)展起來。還有其它許多以開關(guān)電源技術(shù)為核心的專用電源、工業(yè)電源正在等待著人們?nèi)ラ_發(fā)。電力電子技術(shù)現(xiàn)階段在各方面的應(yīng)用都非常的廣泛!
高速發(fā)展的計算機(jī)技術(shù)帶領(lǐng)人類進(jìn)入了信息社會,同時也促進(jìn)了電源技術(shù)的迅速發(fā)展。八十年代,計算機(jī)全面采用了開關(guān)電源,率先完成計算機(jī)電源換代。接著開關(guān)電源技術(shù)相繼進(jìn)人了電子、電器設(shè)備領(lǐng)域。
通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標(biāo)稱值為48V的直流電源。目前在程控交換機(jī)用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴(kuò)大,單機(jī)容量己從48V/12.5A、48V/20A擴(kuò)大到48V/200A、48V/400A。
因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護(hù),且安裝、增加非常方便。一般都可直接裝在標(biāo)準(zhǔn)控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。
DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源), 同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓?fù)浣Y(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。
不間斷電源(UPS)是計算機(jī)、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負(fù)載。為了在逆變器故障時仍能向負(fù)載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。
現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進(jìn)行遠(yuǎn)程維護(hù)和遠(yuǎn)程診斷。
目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。
變頻器電源主要用于交流電機(jī)的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器, 將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機(jī)實現(xiàn)無級調(diào)速。
國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達(dá)到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進(jìn)生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成高潮。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機(jī)電機(jī)。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進(jìn)一步發(fā)展方向。
高頻逆變式整流焊機(jī)電源是一種高性能、高效、省材的新型焊機(jī)電源,代表了當(dāng)今焊機(jī)電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。
逆變焊機(jī)電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合, 整流濾波后成為穩(wěn)定的直流,供電弧使用。
由于焊機(jī)電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機(jī)電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達(dá)到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進(jìn)而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。
國外逆變焊機(jī)已可做到額定焊接電流300A,負(fù)載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。
大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機(jī)和CT機(jī)等大型設(shè)備。電壓高達(dá)50~l59kV,電流達(dá)到0.5A以上,功率可達(dá)100kW。
自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進(jìn)入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進(jìn)一步減小。
國內(nèi)對靜電除塵高壓直流電源進(jìn)行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負(fù)載條件下,輸出直流電壓達(dá)到55kV,電流達(dá)到15mA,工作頻率為25.6kHz。
傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(dá)(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。
電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;
分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)??刂萍呻娐纷骰静考?利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強(qiáng)電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。
八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓?fù)浣Y(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴(kuò)大。
分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟(jì)和維護(hù)方便等優(yōu)點。已被大型計算機(jī)、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機(jī)車牽引電源、中頻感應(yīng)加熱電源、電動機(jī)驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。
第三篇:電力電子技術(shù)總結(jié)報告
《電力電子應(yīng)用設(shè)計》課程學(xué)習(xí)總結(jié)報告
14001203nn 馬云
1. 理論方面:
本課程主要以人造金剛石液壓機(jī)合成加熱調(diào)功控制系統(tǒng)為案例,主要學(xué)習(xí)了單相交流調(diào)壓電路、觸發(fā)脈沖發(fā)生電路、電壓檢測電路、電流檢測轉(zhuǎn)換電路、相位失衡檢測電路、相位失衡保護(hù)電路、過壓-過流保護(hù)電路、電源電路、比較與比例-積分電路等。
我們先將總圖分解成三個部分,我所負(fù)責(zé)的是觸發(fā)脈沖發(fā)生電路和電壓檢測電路(總圖的左上方部分),我先通過DXP軟件畫出這兩個電路的原理圖,再通過SIM軟件對觸發(fā)脈沖發(fā)生電路和電壓檢測電路進(jìn)行仿真,確認(rèn)無誤后用DXP開始PCB圖的繪制,因為實際原因(銅板的大?。┍M量將元器件安排的緊湊一些,最后將各個成員的PCB圖匯總。打印出PCB圖后去實驗室進(jìn)行板子的印刷、腐蝕、打孔、焊接,最后用實驗室的儀器進(jìn)行調(diào)試。
1.1 主電路及其工作原理
在電路中,要使晶閘管正常導(dǎo)通,必須同時滿足下面兩個條件:
(1)陽極對陰極加正向電壓;
(2)控制極對陰極加正向電壓(或正向脈沖)。
而且,晶閘管還有一個重要特點,就是它一旦導(dǎo)通后控制極即失去控制作用,器件始終處于導(dǎo)通狀態(tài),除非陽極對陰極電壓降低到很小,致使陽極電流降到某一數(shù)值之下。
1.2 閉環(huán)控制系統(tǒng)主回路及其工作原理
1.3 電源電路及其工作原理
本系統(tǒng)電路工作需要的電源有5V、15V兩個 1.3.1 正、負(fù)15V電路及其工作原理
橋式整流:用 4個二極管組成的橋式整流電路可以使用只有單個次級線圈的變壓器。負(fù)載上的電流波形和輸出電壓值與全波整流電路相同。7815、7915芯片:7815、7915是一種三端正穩(wěn)壓器電路,TO-220F封裝,能提供多種固定的輸出電壓,應(yīng)用范圍廣,內(nèi)含過流、過熱和過載保護(hù)電路。
芯片前面兩個電容成緩沖,后面兩個芯片起濾波作用,使電壓更穩(wěn)定,二級管指示作用。
1.3.2 正5V電路及其工作原理
橋式整流:用 4個二極管組成的橋式整流電路可以使用只有單個次級線圈的變壓器。負(fù)載上的電流波形和輸出電壓值與全波整流電路相同。
集成穩(wěn)壓器7805;固定式的三端繼承穩(wěn)壓器,它可以在滿足一定條件下輸出5V電壓。
C1、C2分別為輸入端和輸出端濾波電容。1.4 保護(hù)電路工作原理
1.4.1 相位失衡保護(hù)電路及其工作原理
通過LM324運算放大器將電路中的運算信號放大進(jìn)入到“或”非門和“與”非門中進(jìn)行比較來判斷主電路相位是否失衡。
1.4.2 電壓檢測與過電壓保護(hù)電路及其工作原理
電壓檢測電路:LM324和周圍幾個電阻組成一個放大運算器用于檢測電壓。過電壓保護(hù)電路:電壓通過LM324放大再通過與非門和或非門進(jìn)行比較,當(dāng)電壓過大時斷開電路。
1.4.3 電流檢測與過電流保護(hù)電路及其工作原理
過電流保護(hù)電路:電壓通過LM324放大再產(chǎn)生電流再通過與非門和或非門進(jìn)行比較,當(dāng)電過大時斷開電路。2. 電路仿真
運用SIM軟件進(jìn)行仿真。
1、建立仿真文件。
2、繪制原理圖。
3、原理圖仿真。(一、放置探針。
二、仿真設(shè)置。
三、RUN。)3. 實驗內(nèi)容及方法步驟
3.1 實驗?zāi)康?/p>
實現(xiàn)實驗電路功能,在此過程中實踐電力電子技術(shù)課程上所學(xué)的知識點。3.2 實驗電路
3.3 排版布線
1、焊盤按照板子大小盡可能的大一些。
2、線寬線距盡可能大些一般0.8mm,電源、地線盡可能加粗(根據(jù)工作電流而定)。
3、走線一般大于120度,不可以出現(xiàn)90度角走線。
4、走線盡量不要兜圈子、少拐彎,輸入輸出避免相鄰平行走線防止反射干擾、自激。
5、高頻電路和主控單片機(jī)拉開一定的距離,防止高頻干擾,振蕩線圈、電容、晶振布線盡可能短,避免分布電容、電感的影響。
3.4 元器件的安裝和焊接
1、印刷前先用砂紙去除板子表面氧化銅。
2、腐蝕時注意搖晃和時間,不要腐蝕過度或未腐蝕完全。
3、低發(fā)熱元件貼板
4、發(fā)熱較大的元器件離板一定距離或作專門處理,甚至加裝散熱器,但要固定好
5、電焊工藝要標(biāo)準(zhǔn)。
4. 硬件電路調(diào)試方法和過程(此部分不得少于300字)
如按功能分為多個模塊,各模塊可單獨先調(diào),再進(jìn)行2個或3個模塊聯(lián)調(diào)……,最后進(jìn)行總體聯(lián)調(diào)。5. 心得體會:
5.1學(xué)習(xí)本課程的收獲
在我們完成課設(shè)的過程中,我們分工合作通過原理圖的繪制以及PCB圖的繪制、布線,我們加深了對DXP軟件的運用,通過對電路的仿真我們有學(xué)會了使用SIM軟件。同時在電路板的手工印刷、腐蝕、打孔、焊接中加強(qiáng)了我們的實際動手能力??简灹宋覀兊哪托暮图?xì)心,最后通過對板子的各種調(diào)試,了解板子的各種性能及完成度,又是考驗我們對實驗室中各種調(diào)試儀器比如示波器、電源、變壓器等的運用。
5.2本課程內(nèi)容優(yōu)點與不足
課程內(nèi)容豐富,偏向于實際動手操作,老師手把手教我們SIM、DXP等等軟件的應(yīng)用,在課堂上抽出時間給我們的pcb圖驗錯以便我們少走歪路,更快更好的完成自己的課堂任務(wù)。PPT生動形象的介紹了一個板子從設(shè)計要制作的所有流程。
5.3意見和建議
希望老師能夠多給一些時間讓我們完善我們的課設(shè)作品,時間過于緊湊失誤也有很多。
5.4你對那些上課遲到、早退、曠課、玩手機(jī)、做其它與課程學(xué)習(xí)無關(guān)的事情以及抄襲作業(yè)的同學(xué)有什么看法?如果你是老師,你會采取怎樣的應(yīng)對措施?
這是對老師勞動成果的不尊重,一次警告,第二次就扣平時分,扣完為止。6.附錄
6.1 附錄1 布線圖 6.2 附錄2 裝配圖
6.3 附錄3 實物圖
第四篇:《電力電子技術(shù)》學(xué)習(xí)
《電力電子技術(shù)》學(xué)習(xí)總結(jié)
班 級:2015級電氣工程及其自動化3班
姓 名:陳懷琪 學(xué) 號:*** 指導(dǎo)老師:劉康
2017年12月
一、學(xué)習(xí)內(nèi)容:
通過一學(xué)期的學(xué)習(xí),在劉康老師的細(xì)心指導(dǎo)下,明白電力電子技術(shù)這門課程大體是以電路和控制理論對電能進(jìn)行變換和控制的技術(shù),在電力電子領(lǐng)域的地位是十分重要。重點可看作電力的一個變換,交流—直流(整流)、直流—交流(逆變)、交流--交流(交流調(diào)壓、交流變頻)、直流—直流(直流斬波)。通過第一章對之前學(xué)過的知識進(jìn)行一個梳理,為后面的章節(jié)作下鋪墊,在第二章主要向我們介紹常用電力電子器件的基本結(jié)構(gòu)、工作原理和特性、主要技術(shù)參數(shù)與選用,介紹是從應(yīng)用的角度出發(fā),并對各種器件驅(qū)動和保護(hù)及串并聯(lián)做了簡單介紹。其中劉康老師具體向我們介紹電力二極管主要類型,分別有普通二極管,快恢復(fù)二極管、肖特基二極管,晶閘管的靜態(tài)、動態(tài)特性,重點是懂得分辨和了解GTO、GTR(電力晶體管)、MOSFET(電力場效應(yīng)晶體管)、IGBT的優(yōu)缺點及應(yīng)用場合。
在第三章中,其實是本人覺得既是重點也是難點的一章,重點討論了單相和三相整流電路的幾種主要形式,它們是:單相半波可控整流電路、單相橋式全控整流電路、單相全波可控整流電路、單相橋式半控整流電路、三相半波可控整流電路、三相橋式全控整流電路和三相橋式半控整流電路。內(nèi)容看似很多,其實像劉康老師說得要舉一反三,單相半波可控整流電路具體可分為阻性負(fù)載、感性負(fù)載,并且在理解的基礎(chǔ)上能夠畫出相對應(yīng)的工作波形,本章還分析了晶閘管整流裝置在不同工作狀態(tài)下電動機(jī)的機(jī)械特性及簡單介紹諧波抑制和PWM整流技術(shù)。第四章向我們介紹直流斬波電路有多種拓?fù)浣Y(jié)構(gòu),通常根據(jù)輸入輸出是否隔離分為非隔離型斬波電路和隔離型斬波電路,根據(jù)電路形式不同,非隔離型斬波電路可分為降壓型斬波電路、升壓型斬波電路、升降壓型斬波電路、Cuk斬波電路等,學(xué)習(xí)了他們的工作原理,其主要通過控制觸發(fā)角占空比間接控制升降壓。在第五章學(xué)習(xí)了交流—交流變換電路,包括交流調(diào)壓、交流電子開關(guān)、交流調(diào)功和交—交變頻電路。單相交流調(diào)壓電路通過改變晶閘管的觸發(fā)延遲角a就可方便地實現(xiàn)對交流輸出電壓的調(diào)節(jié)。單相斬波調(diào)壓電路一般采用全控型器件做交流開關(guān),控制開關(guān)的導(dǎo)通時間,從而調(diào)節(jié)電路輸出電壓大小。第六章則是學(xué)習(xí)常用的換流方式,包括全控型器件的控制極關(guān)斷方式的電網(wǎng)換流、負(fù)載換流和強(qiáng)迫換流三種方式,向我們介紹了目前應(yīng)用最多的PWM逆變電路,及其控制方法。
二、學(xué)習(xí)收獲:
總得下來,要想學(xué)會、學(xué)號電力電子技術(shù)這門課程,必須要學(xué)會對圖形的分析,和對各種電路波形的分析,在這個過程中,鍛煉自己對于電路圖形、波形的邏輯性表達(dá)能力,在分析電路波形的過程中,要懂得分為細(xì)的階段去分析,而不是一味地看圖,明白縱橫坐標(biāo)的物理意義,各個階段的各個元器件開關(guān)是怎么去動作,最重要的是電力變換的過程,明白其變換過程既可分析出各階段的物理意義及量的關(guān)系,再到最后對圖形的數(shù)學(xué)上的運算,有平均值、有效值、周期、峰值等的整定計算。更是要對各個元器件的工作原理、工作特性、優(yōu)缺點以及其應(yīng)用場合了解,這樣在對圖形分析,在對一個項目選用器件型號的時候不會忙手忙腳。
三、學(xué)習(xí)心得體會:
學(xué)完這門課程,明白電力電子技術(shù)在整個電子行業(yè)的地位重要性,在對電力電子器件分析的過程中,數(shù)學(xué)模型及圖像是必不可少的工具,通過課程安排的實驗課,將理論聯(lián)系至實際,加深我對電力變換過程的理解,恍然明白其應(yīng)用在我們生活中隨處可見,小到我們可見的電動車,大到高樓大廈的電梯,幾乎無處不在,可見這門課在電氣工程是必修的一門,同時讓我產(chǎn)生困惑的一門課,經(jīng)?;煜龁蜗喟氩煽卣麟娐芳皢蜗鄻蚴桨肟卣鞯入娐返碾娐方Y(jié)構(gòu)與原理,相對應(yīng)的圖形分析也是需要常常去復(fù)習(xí),我認(rèn)為如果自己能夠根據(jù)課本內(nèi)容親身動手做個小項目,關(guān)于可控整流及有源逆變電路這章重難點內(nèi)容,一定可以很好地掌握,并在以后工作有這方面需求時能夠得心應(yīng)手,在此最后也非常感謝劉康老師對我們班級的細(xì)心指導(dǎo),也在講課的過程中慢慢可以跟得上老師的節(jié)奏,希望能在期末不負(fù)老師所望取得好成績!
第五篇:電力電子技術(shù)總結(jié)
電力電子技術(shù)總結(jié)
1晶閘管是三端器件,三個引出電極分別是陽極,門極和陰極。2單向半波可控整流電路中,控制角α最大移相范圍是0~180°
3單相半波可控整流電路中,從晶閘管開始導(dǎo)通到關(guān)斷之間的角度是導(dǎo)通角 4在電感性負(fù)載三相半波可控整流電路中,晶閘管承受的最大正向電壓為√6U2 5在輸入相同幅度的交流電壓和相同控制角的條件下,三相可控整流電路與單相可控整流電路比較,三相可控可獲得較高的輸出電壓
6直流斬波電路是將交流電能轉(zhuǎn)化為直流電能的電路
7逆變器分為有源逆變器和無源逆變器8大型同步發(fā)電機(jī)勵磁系統(tǒng)處于滅磁運行時,三相全控橋式變流器工作于有源逆變
9斬波器的時間比控制方式分為點寬調(diào)頻,定頻調(diào)寬,調(diào)寬調(diào)頻三種 10 DC/DC變換的兩種主要形式為斬波電路控制型和直交直電路 11在三相全控橋式變流電路中,控制角和逆變角的關(guān)系為α+β=π
12三相橋式可控整流電路中,整流二極管在每個輸入電壓基波周期內(nèi)環(huán)流次數(shù)為6次 13在三相全控橋式整流逆變電路中,直流側(cè)輸出電壓Ud=-2.34U2cosβ 14在大多數(shù)工程應(yīng)用中,一般取最小逆變角β的范圍是β=30° 15在橋式全控有源逆變電路中,理論上你逆變角β的范圍是0~30° 16單相橋式整流電路能否用于有源逆變電路中 是
17改變SPWM逆變器中的調(diào)制比,可以改變輸出電壓的幅值 電流型逆變器中間直流環(huán)節(jié)貯能元件是大電感
19三相半波可控整流電路能否用于有源逆變電路中? 能
20在三相全控整流電路中交流非線性壓敏電阻過電壓保護(hù)電路的連接方式有星型和三角形 21抑制過電壓的方法之一是用儲能元件吸收可能產(chǎn)生過電壓的能量,并用電阻將其消耗 22為了利用功率晶閘管的關(guān)斷,驅(qū)動電流后延應(yīng)是一個負(fù)脈沖 180°導(dǎo)電型電壓源型三相橋式逆變電路,其換相是在同一橋臂的上下兩個開關(guān)元件之間進(jìn)行
24改變SPWM逆變器的調(diào)制波頻率,可以改變輸出電壓的基波頻率。
25恒流驅(qū)動電路中抗飽和電路的主要作用是減小器件的存儲時間,從而加快關(guān)斷時間。26在三相全控橋式整流電路單脈沖觸發(fā)方式中,要求脈沖寬度大于60° 27整流電路的總的功率因數(shù)P/S 28 PWM跟蹤控制法的常用的有滯環(huán)比較方式和三角波比較方式
29單相PWM控制整流電路中,電源IsY與Us完全相位時,該電路工作在整流狀態(tài) 30 PWM控制電路中載波比為載波頻率與調(diào)制信號之比 Fc/Fr 31電力電子就是使用電力電子器件對電能進(jìn)行變換和控制的技術(shù),是應(yīng)用于電力領(lǐng)域的電子技術(shù),主要用于電力變換。分為電力電子器件制造技術(shù)和變流技術(shù)
32電力電子系統(tǒng)由主電路,控制電路,檢測電路,驅(qū)動電路和保護(hù)電路組成。33整流電路:將交流電能變成直流電能供給直流用電設(shè)備的變流裝置。34逆變電路定義:把直流電逆變?yōu)榻涣麟姷碾娐?/p>
35有源逆變電路:將交流側(cè)和電網(wǎng)連接時的逆變電路,實質(zhì)是整流電路形式。36無源逆變電路:將交流側(cè)不與電網(wǎng)連接,而直接接到負(fù)載的電路。逆變電路分類:為電壓型逆變電路(直流側(cè)為電壓源)和電源型逆變電路(直流側(cè)為電流源)38 PWM控制定義:脈沖寬度控制技術(shù)39 SPWM波形:PWM波形脈沖寬度按正弦規(guī)律變化,與正弦波等效時。40異步調(diào)制:載波信號和調(diào)制信號不保持同步的調(diào)制方式,即N值不斷變化。
41控制方式:保持載波頻率Fc固定不變,這樣當(dāng)調(diào)制信號頻率Fr變化時,載波比N試變化的
42同步調(diào)制:在逆變器輸出變頻工作時,使載波與調(diào)制信號波保持同步的調(diào)制方式,即改變調(diào)制信號波頻率的同時成正比的改變載波頻率,保持載波比N等于常數(shù)。
43分段同步調(diào)制:把逆變電路的輸出頻率范圍劃分成若干個頻段,每個頻段內(nèi)保持載波比N為恒定,不同頻段內(nèi)的載波比不同。