欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      三角形的內(nèi)角和教學(xué)設(shè)計一等獎(實用12篇)

      2023-07-07 09:09:39下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了這篇《三角形的內(nèi)角和教學(xué)設(shè)計一等獎(實用12篇)》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《三角形的內(nèi)角和教學(xué)設(shè)計一等獎(實用12篇)》。

      篇1:《三角形內(nèi)角和》教學(xué)設(shè)計

      教學(xué)目標(biāo):

      1、教會學(xué)生主動探究新識的方法,學(xué)會運(yùn)用轉(zhuǎn)化遷移數(shù)學(xué)思想。

      2、學(xué)生通過量、剪、拼、擺、分割等驗證三角形內(nèi)角和方法的比較,主動掌握三角形內(nèi)角和是1800,并運(yùn)用所學(xué)知識解決簡單的實際問題,發(fā)展學(xué)生的觀察、歸納、概括能力和初步的空間想象力。

      教學(xué)重點(diǎn):理解并掌握三角形的內(nèi)角和是180°。

      教學(xué)難點(diǎn):驗證所有三角形的內(nèi)角之和都是180°。

      教具準(zhǔn)備:多媒體課件。

      學(xué)具準(zhǔn)備:量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

      教學(xué)過程:

      一、導(dǎo)入

      師:知道今天我們學(xué)習(xí)什么內(nèi)容嗎?我們先來解讀一下課題,三角形,你手中有么?舉起來我看看,你拿的什么三角形?你呢?師:三角形按角分類,可分為直角三角形、鈍角三角形和銳角三角形。

      師:什么是內(nèi)角?你能把你手中三角形的三個內(nèi)角用角1、角2、角3標(biāo)出來嗎?

      師:還有一個關(guān)鍵字“和”,什么是三角形的內(nèi)角和?

      師:你認(rèn)為三角形的內(nèi)角和是多少度?你呢?都知道啊?是多少度???看來都知道了,就不用再學(xué)了吧?你還想學(xué)什么?

      師:看來我們不僅要知道三角形的內(nèi)角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?

      生:量一量的方法。

      師:光量就知道了?還要算一算。

      師:這種方法可行嗎?下面咱就來試試,請同學(xué)們4人一組,分工合作,先測量內(nèi)角,再計算求和。小組長把計算的過程記錄下來。開始吧。

      驗證:量角、求和

      小組匯報

      生一:我們組量的是銳角三角形,三個角分別是50度、60度、70度,銳角三角形的內(nèi)角和是180度。

      生二:我們組量的是直角三角形,三個角分別是90度、35度、55度,直角三角形的內(nèi)角和是180度。

      生三:我們組量的是鈍角三角形,三個角分別是120度、40度、20度,鈍角三角形的內(nèi)角和是180度。

      師:從剛才的交流中,你發(fā)現(xiàn)了什么?

      生:不管是銳角三角形、直角三角形,還是鈍角三角形,內(nèi)角和都是180度。

      師:下面同學(xué)測量得出180度的請你舉手,有沒有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時候容易出現(xiàn)誤差,得出的結(jié)論就難以讓人信服??磥硭坪跤昧康姆椒ㄟ€不能充分證明。(劃問號)

      師:還敢接受更大挑戰(zhàn)嗎?把量角器和你的工具都收起來,只借助這張三角形紙片證明出三角形的內(nèi)角和是180度,你有辦法嗎?或許下面的同學(xué)還有別的方法,下面就請同學(xué)們互相交流交流,動手試一試吧!

      師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒有破壞三角形,就這樣輕輕的一折,就解決了問題,真是很巧妙。

      師:你們小組每個同學(xué)都動腦筋了,謝謝你們。

      師:還有那個小組用的這種方法?你們也非常的聰明。還有別的方法嗎?

      師:其實大家能用3種方法證明已經(jīng)很不簡單了,現(xiàn)在我們就能很自信的說三角形的內(nèi)角和是180度。(擦別的)

      師:其實對我來說重要的不是知識的結(jié)論,讓老師感動的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創(chuàng)造性的方法。現(xiàn)在我們再來一塊回顧一下。

      師:這幾種方法都足以說明三角形的內(nèi)角和是180度。(結(jié)論)

      師:剛才同學(xué)們發(fā)揮自己的聰明才智,想了很多方法來證明。王老師也有一種方法能證明。老師這里有一個活動角,借助課本的一邊就構(gòu)成了一個三角形,請你睜大眼睛仔細(xì)觀察,你發(fā)現(xiàn)了什么?

      請你再仔細(xì)觀察,你發(fā)現(xiàn)了什么?其實兩個底角減少的度數(shù),正是頂角增大的度數(shù)。如果我繼續(xù)按下去你覺得會怎樣?我們來看看是不是這樣,三角形呢?兩個底角呢?剛才三角形的動態(tài)過程是不是也能證明三角形的內(nèi)角和是180度?

      師:看來只要大家肯動腦筋,面對同一問題就會有不同的解決方法。

      師:現(xiàn)在我們知道了“三角形的內(nèi)角和是180度”,能不能用這個知識來解決一些問題???

      生:能。

      二、遷移和應(yīng)用

      (一)點(diǎn)將臺:

      下面哪三個角是同一個三角形的內(nèi)角?

      (1)30 °、60 °、45 °、90 °

      (2)52 °、46 °、54 °、80 °

      (3)45 °、46 °、90 °、45 °

      (二)我會算

      1、已知∠1,∠2,∠3是三角形的三個內(nèi)角。

      (1)∠1=38° ∠2=49°求∠3

      (2)∠2=65° ∠3=73° 求∠1

      2、已知∠1和∠2是直角三角形中的兩個銳角

      (1)∠1=50°求∠2

      (2)∠2=48°求∠1

      3、已知等腰三角形的一個底角是70°,它的頂角是多少度?

      (三)。變變變!

      (1)一個三角形中, ∠1 、∠2、∠3。

      (2)如果把∠3剪掉,變成了幾邊形?它的內(nèi)角和變成多少度呢?

      (3)如果再把∠2剪掉,剩下圖形的內(nèi)角和是多少度呢?

      三、全課小結(jié)

      師:通過一節(jié)課的探索,你有什么收獲?

      生答(略)

      我的幾點(diǎn)認(rèn)識:

      結(jié)合《三角形的內(nèi)角和》這節(jié)課,我對空間與圖形這一部分內(nèi)容,簡單的談一下自己的認(rèn)識。

      空間與圖形這一部分內(nèi)容,可以用這幾個字來概括:難理解,難受,難掌握。在本節(jié)課的教學(xué)中,三角形的內(nèi)角和概念比較抽象,學(xué)生比較難理解。尤其是讓學(xué)生探究三角形的內(nèi)角和是180度,對學(xué)生來說更是難上加難。如果光憑在頭腦中想,不動手實踐,對于三角形的內(nèi)角和,學(xué)生也只能機(jī)械記憶是180度。那如何更好的讓學(xué)生掌握和接受呢?針對這些特點(diǎn)我采用了一下幾點(diǎn)做法:

      1、根據(jù)學(xué)生的知識特點(diǎn)和生活經(jīng)驗,在原有基礎(chǔ)上創(chuàng)造性的使用教材。

      在教學(xué)本節(jié)課的內(nèi)容時,學(xué)生在自己的日常生活或大部分都已經(jīng)知道三角形的內(nèi)角和是180。因材在這樣的情況下,我創(chuàng)造性的使用教材。不是讓學(xué)生通過自己動手操作之后才發(fā)現(xiàn)三角形的內(nèi)角和是180,而是直接把問題拋給學(xué)生,你們知道三角形的內(nèi)角和是多少度嗎?

      你們怎么知道的?能自己證明么?這樣學(xué)生從被動學(xué)習(xí)者的角色,

      立刻轉(zhuǎn)入主動學(xué)習(xí)者的角色之中。這樣既能使學(xué)生很好的掌握知識,又能使學(xué)生激發(fā)興趣,提高積極性。

      2、讓學(xué)生在小組交流中進(jìn)行思維的碰撞,在動手操作的實踐過程中得到知識情感價值的升華。

      在探究的過程中,我們采用了小組合作學(xué)習(xí)方式,這樣既能給學(xué)生提供交流的空間,又能在短時間內(nèi)有效學(xué)習(xí)。學(xué)生先交流方法,商定出可行的辦法和方略,然后合作進(jìn)行實踐。學(xué)生會為了一個問題爭的面紅耳赤,在這個過程中我們驚喜的看到生在交流和動手操作過程中得到了提高。通過自己的實踐證明,學(xué)生發(fā)現(xiàn)三角形的內(nèi)角和的確是180度。

      總之,在教學(xué)空間與圖形的內(nèi)容時,一定要讓學(xué)生看到“圖形“,讓學(xué)生想象”空間”。

      篇2:《三角形內(nèi)角和》教學(xué)設(shè)計

      教學(xué)內(nèi)容

      人教版小學(xué)數(shù)學(xué)第八冊第五單元第85頁例5

      任務(wù)分析

      教材分析: 《三角形的內(nèi)角和》是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(數(shù)學(xué))四年級下冊第五單元《三角形》中的一個教學(xué)內(nèi)容。這部分內(nèi)容是在學(xué)生學(xué)習(xí)了角的度量,角的分類,三角形的認(rèn)識,三角形的分類的基上進(jìn)行教學(xué)的。它是三角形的一個重要性質(zhì),有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)的基礎(chǔ)。教材通過實際操作,引導(dǎo)學(xué)生用實驗的方法探索并歸納出這一規(guī)律,即任意一個三角形,它的內(nèi)角和都是180度。教材在編寫上也深刻的體現(xiàn)出了讓學(xué)生探究的特點(diǎn),通過動手操作探究發(fā)現(xiàn)三角形內(nèi)角和為180度。教學(xué)內(nèi)容的核心思想體現(xiàn)在讓學(xué)生經(jīng)歷猜想―驗證―結(jié)論的過程,來認(rèn)識和體驗三角形內(nèi)角和的特點(diǎn)。

      學(xué)情分析:通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎(chǔ)技能。在四年級上冊《角的度量》的學(xué)習(xí)中,學(xué)生有接觸到兩把三角尺的內(nèi)角和是180°;并在相關(guān)的補(bǔ)充習(xí)題和數(shù)學(xué)練習(xí)冊的練習(xí)中,也有要求測量任意三角形的三個內(nèi)角的度數(shù)并求出它們的和的練習(xí),很多學(xué)生已經(jīng)知道了三角形的內(nèi)角和是180°。但是要真正理解和掌握需要進(jìn)行驗證,因此,學(xué)生在這節(jié)課上的主要任務(wù)是通過實驗操作驗證三角形的內(nèi)角和是180°。

      教學(xué)目標(biāo)

      1、通過實驗、操作、推理歸納出三角形內(nèi)角和是180°。

      2、能運(yùn)用三角形的內(nèi)角和是180°這一規(guī)律,求三角形未知角的度數(shù)并運(yùn)用解決實際生活問題。

      3、通過拼擺,感受數(shù)學(xué)的轉(zhuǎn)化思想。

      教學(xué)重點(diǎn)

      探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”。

      教學(xué)難點(diǎn)

      驗證三角形的內(nèi)角和是180度。

      教學(xué)準(zhǔn)備

      多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

      教學(xué)過程

      一、復(fù)習(xí)舊知,學(xué)習(xí)鋪墊

      1、一個平角是多少度?等于幾個直角?

      2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?

      二、探究新知,理解規(guī)律

      1、說明三角形的三個內(nèi)角和

      說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?

      師(指出):三角形的這三個角叫做三角形的三個內(nèi)角,這三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。

      板書課題:“三角形的內(nèi)角和”。

      揭示課題:今天我們一起來探究三角形的內(nèi)角和有什么規(guī)律。

      2、探究三角形的內(nèi)角和規(guī)律

      探究1:量一量,算一算

      以小組為單位,用量角器計算出三種三角形的內(nèi)角和各是多少度?

      生討論匯報,并引導(dǎo)學(xué)生發(fā)現(xiàn):三角形的內(nèi)角和接近180°。

      師:三角形的內(nèi)角和接近180°,那它到底與180° 有怎樣的關(guān)系呢?

      學(xué)生預(yù)設(shè):有學(xué)生可能會說出三角形的內(nèi)角和就是180°,這時老師可以提問,為什么就是180°?我們要進(jìn)行驗證,你有什么辦法呢?

      探究2:擺一擺,拼一拼

      引導(dǎo):我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內(nèi)角和有誤差。能不能換一種方法減少度量的次數(shù),減少誤差呢?

      生可能很難想到,可以提示學(xué)生:把三個內(nèi)角拼成一個角就只要量一次角。讓我們一起動手做一做

      如圖:

      (1)

      銳角的三個內(nèi)角拼成了一個平角,引導(dǎo)學(xué)生說出:銳角三角形的內(nèi)角和是180°.

      (2)

      讓學(xué)生小組合作用同樣的方法,發(fā)現(xiàn):直角三角形的內(nèi)角和也是180°.

      (3)

      讓學(xué)生獨(dú)立用同樣的方法,發(fā)現(xiàn):鈍角三角形的內(nèi)角和也是180°.

      引導(dǎo)學(xué)生歸納:三角形的內(nèi)角和是180°。

      是不是所有的三角形的內(nèi)角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)

      板書:三角形的內(nèi)角和是180°

      三、鞏固練習(xí),應(yīng)用規(guī)律

      1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數(shù)嗎?

      學(xué)生獨(dú)立完成,并說出原因:因為三角形的內(nèi)角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

      ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

      = 180°-140°-25° =180°-(140°+25°)

      =40°-25° =180°-165°

      =15° =15°

      2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?

      學(xué)生分析:因為等腰三角形的兩個底角相等,又因為三角形的內(nèi)角和是180°,所以

      (180°-80°)÷2

      =100°÷2

      =50°

      四、拓展練習(xí),深化規(guī)律

      1、求出下面各角的度數(shù)。

      (1) (2)

      2、判斷

      (1)三角形任意兩個內(nèi)角的和大于第三個角。( )

      (2)銳角三角形任意兩個內(nèi)角的和大于直角。( )

      (3)有一個角是60°的等腰三角形不一定是等邊三角形。( )

      3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?

      ( ) ( )

      五、課堂小結(jié),分享提升

      1、談?wù)勥@節(jié)課你有什么收獲?

      2、課后思考題

      三角形的內(nèi)角和是180°,那長方形、正方形的內(nèi)角和呢?(根據(jù)三角形的內(nèi)角和是180°求,參考課本88頁第12題,完成89頁16題)

      板書設(shè)計

      篇3:《三角形內(nèi)角和》教學(xué)設(shè)計

      探索三角形內(nèi)角和的度數(shù)以及已知兩個角度數(shù)求第三個角度數(shù)。

      教學(xué)目標(biāo):

      1、通過測量、撕拼、折疊等探索活動,使學(xué)生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?

      2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。

      3、培養(yǎng)學(xué)生動手實踐,動腦思考的習(xí)慣。

      教學(xué)重點(diǎn):

      了解三角形三個內(nèi)角的度數(shù)。

      教學(xué)難點(diǎn):

      理解三角形三個內(nèi)角大小的關(guān)系。

      教具學(xué)具準(zhǔn)備:

      課件三角形若干量角器剪刀。

      教材與學(xué)生

      教材創(chuàng)設(shè)了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學(xué)生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個活動,通過學(xué)生測量,折疊,撕拼來找到答案。

      學(xué)生在已有的會用量角器來度量一個角的度數(shù)的基礎(chǔ)上,會首先想到這種方法。但測量的誤差會導(dǎo)致測量不同,因此,學(xué)生會想到采取其他更好的辦法,通過親手實踐,得出結(jié)論。

      教學(xué)過程:

      一、呈現(xiàn)真實狀態(tài)。

      師:今天我們來研究三角形內(nèi)角和度數(shù)。這里有兩個三角形,一個是大三角形,一個是小三角形(圖略),到底哪一個三角形的內(nèi)角和比較大呢?

      學(xué)生各抒己見。

      二、提出問題:

      師;剛才我們觀察三角形哪個內(nèi)角和大,同學(xué)們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。

      (1)以小組為單位請同學(xué)們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。

      (2)組內(nèi)交流。

      (3)全班交流。由小組匯報測出結(jié)果(三角形內(nèi)角和)

      (4)師小結(jié):我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結(jié)果接近180。

      三。自主探索、研究問題、歸納總結(jié):

      師引導(dǎo)提問:三角形的內(nèi)角和會不會就是180呢?

      (一)組內(nèi)探索:

      (1)以小組為單位探索更好的辦法。

      (2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結(jié)果。

      (有的小組想不出來,可以安排小組和小組之間進(jìn)行交流,目的是讓學(xué)生通過實踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學(xué)生學(xué)習(xí)到良好的學(xué)習(xí)方法)

      (3)把你沒有想到的方法動手做一次

      (使學(xué)生更直觀地理解三角形的內(nèi)角和是180的證明過程)

      (4)根據(jù)學(xué)生的反饋情況教師進(jìn)行操作演示。

      (二)教師演示

      撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示

      2.師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?

      生:發(fā)現(xiàn)三個內(nèi)角拼成一個平角。

      師:平角是多少度呢?說明什么?

      生:180?說明三個內(nèi)角和剛好等于180。

      師:這種方法是不是適用各種三角形呢?

      3。學(xué)生每人動手實踐,看看是不是不同的三角形是否都有這個特點(diǎn),也能拼出一個平角呢?

      進(jìn)行實驗后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。

      折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個平角,進(jìn)一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。

      你們也來試一試好嗎?

      在學(xué)生完成這一實踐后肯定這一發(fā)現(xiàn)

      三角形三個內(nèi)角和等于180?

      :充分發(fā)揮了學(xué)生的主觀能動性,讓學(xué)生大膽去思考發(fā)言,把課堂交給學(xué)生,最后老師在演示達(dá)成共識,這樣學(xué)生學(xué)到知識印象頗深,也理解最為透徹,提高課堂教學(xué)的效率

      四。鞏固練習(xí),知識升華。

      1.完成課本第28頁的“試一試”第三題。

      2.想一想:鈍角三角形最多有幾個鈍角?為什么?

      銳角三角形中的兩個內(nèi)角和能小于90嗎?

      3.有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?

      試一試,看誰算得快。

      師:誰來說說自己的計算過程?

      角的和叫做三角形的內(nèi)角和。(板書課題)下面請大家認(rèn)真觀察這兩個算式,從結(jié)果上看,你發(fā)現(xiàn)了什么?

      生:它們的內(nèi)角和都是 180 度。

      師:觀察的真仔細(xì)?。c(diǎn)擊課件,出示多種多樣的三角形后提問)同學(xué)們,咱們都知道,這兩個三角形是特殊三角形,在我們的生活中還有許許多多不是這個樣子的三角形,請看大屏幕,這些任意三角形,它們的內(nèi)角和是不是都是 180 度呢?

      [回答可能有二]:

      (一種全部說是:)

      師:請問,你們是怎么想的,為什么這么認(rèn)為?

      生: ……

      師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國,一起去研究它們內(nèi)角和的秘密吧?。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)

      (一種有一部分同學(xué)說是,有一部分同學(xué)說不是:)

      師:看來,大家的意見不一致, 想不想驗證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國,一起去研究它們內(nèi)角和的秘密吧!(師在課題“內(nèi)角和”下面劃上橫線,打上問號)

      (二)動手操作,探究新知

      師:老師看你們有答案了,哪位同學(xué)愿意說一說你的奇思妙想?

      生:我準(zhǔn)備用量的方法。

      師:然后呢?

      生:然后把它們?nèi)齻€內(nèi)角的度數(shù)相加起來,就知道了三角形的內(nèi)角和是多少?

      師:說的真不錯,還有沒有其它的方法?

      生:我是把三角形的三個角剪下來,拼在一起( 師鼓勵: 你的想法很有創(chuàng)意, 等一會兒用你的行動來驗證你的猜想吧?。?/p>

      生:……

      (如生一時想不到,師可引導(dǎo):他是把三個內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個內(nèi)角放在一起進(jìn)行觀察,看看能不能發(fā)現(xiàn)些什么呢?)

      師: 好啦, 老師相信咱們班的同學(xué)個個都是小數(shù)學(xué)家, 一定能找出更多的方法的, 請你們在研究之前,也像老師一樣,在三個內(nèi)角上編上序號,角一、角二、角三,現(xiàn)在就請同學(xué)們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進(jìn)行研究,看看它們的內(nèi)角和各有什么特點(diǎn)。咱們比一比,看一看,哪個小組的方法多,方法好!

      開始吧!(學(xué)生研究,師巡回指導(dǎo))預(yù)設(shè)時間:5 分鐘

      師:老師看各小組已經(jīng)研究好了,哪位同學(xué)愿意上來交流一下?

      師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結(jié)果?

      ( 預(yù)設(shè): 如果第一類同學(xué)說的是量的方法)

      師:你是用什么來研究的?

      生:量角器。

      師: 那請你說一下你度量的結(jié)果好嗎?

      ( 生匯報度量結(jié)果)

      師: 剛才有的同學(xué)測量的結(jié)果是180 度,有的同學(xué)測量的結(jié)果是179 度,有的同學(xué)測量的結(jié)果是182 度,各不相同,但是這些結(jié)果都比較接近于多少?

      生:180 度。

      師:那到底三角形的內(nèi)角和是不是180 度呢?還有哪位同學(xué)有其它的方法進(jìn)行驗證嗎?

      生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們?nèi)齻€角組成的度數(shù)。

      師:他演示的真好,你們聽明白了嗎? 李 老師把他的過程給大家在大屏幕上演示一下。

      (師邊講解邊點(diǎn)擊 FLASH :把三角形按照三個內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個頭,插在角一角二的中間,這樣它們?nèi)齻€內(nèi)角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學(xué)生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)

      師:好極了,剛才這個小組的同學(xué)用拼的方法得到XX 三角形的內(nèi)角和是180 度,你們還有別的方法嗎?

      生:我們還用了折的方法(生介紹方法)

      師: 你們聽明白了嗎? 李老師把他的過程給大家在大屏幕上演示一下。

      (師邊講解邊點(diǎn)擊 FLASH :先找到兩條邊的中點(diǎn),把它連起來,把角一沿著中間的這條線向?qū)厡φ?,再把角二向里對折,使它的頂點(diǎn)與角一對齊,最后把角三也用同樣的方法對折,這樣它們?nèi)齻€內(nèi)角就形成了一個大角,這個大角是個什么角呢?)

      生:是個平角。180 度。

      師:除了用了量、拼、折的方法來研究以外,剛才在操作的過程中老師還發(fā)現(xiàn)了一個同學(xué)用了一種方法來進(jìn)行研究,大家想知道嗎?

      師:請這位同學(xué)來說給大家聽聽吧!

      生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內(nèi)角和是360 度,那么一個三角形的內(nèi)角和就是180 度。

      師:剛才我們用量、拼、折、推理的方法都得到了三角形的內(nèi)角和是 180 度,同學(xué)們,現(xiàn)在我們回想一下,剛才測量的不同結(jié)果是一個準(zhǔn)確數(shù)還是一個近似數(shù)?為什么會出現(xiàn)這種情況呢?

      生 1 :量的不準(zhǔn)。

      生 2 :有的量角器有誤差。

      師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準(zhǔn)確一些,那么任意一個三角形的內(nèi)角和也將是 180 度。

      師:同學(xué)們,我們剛才用不同的方法,不同的三角形研究了三角形的內(nèi)角和,得到了一個相同的發(fā)現(xiàn),這個發(fā)現(xiàn)就是?

      生:三角形的內(nèi)角和是180 度。(師板書)

      師:把你們偉大的發(fā)現(xiàn)讀一讀吧!

      (三)拓展應(yīng)用,深化認(rèn)識

      師:請看老師手上的這兩個三角形,左邊這個內(nèi)角和是多少度?(生: 180 度)右邊呢(生:也是 180 度)

      師:現(xiàn)在老師把它們拼在一起,這個大三角形的內(nèi)角和又是多少度呢?

      (生答后師引導(dǎo)歸納得出:三角形的內(nèi)角和與形狀大小無關(guān),組成的大三角形的內(nèi)角和依然是 180 度。)

      師:剛才我們在討論學(xué)習(xí)三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧!(出示課件,課件內(nèi)容:一個大一些的直角三角形說:“我的個頭比你大,我的內(nèi)角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)

      師:到底誰說的對呢?今天我們就用我們今天學(xué)到的知識來為它們解決解決吧!

      師:真不錯,你們當(dāng)了一回小法官,幫助三角形兄弟解決了問題,它倆很感謝你們,三角形王國中還有很多生活中的問題,小博士們,你們愿意解答嗎?

      師:好,請看大屏幕!

      (出示基礎(chǔ)練習(xí))在一個三角形中角一是 140 度,角三是 25 度,求角二的度數(shù)。

      生答后,師提問:你是怎樣想的?

      生陳述后,師鼓勵:說的真好!

      出示自行車、等邊三角形的路標(biāo)牌、告訴頂角求底角的房頂、直角三角形的電線桿架進(jìn)行練習(xí)。

      (出示)小紅的爸爸給小紅買了一個等腰三角形的風(fēng)箏,它的一個底角是 70 度,它的頂角是多少度?

      師:看來啊,三角形的知識在咱們生活中還有著這么廣泛的運(yùn)用呢!昨天,我們班發(fā)生了一件事情,小明不小心將鏡框上的一塊三角形玻璃摔破了,(課件呈現(xiàn)情境)他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?

      (預(yù)設(shè):師:根據(jù)三角形的內(nèi)角和是180 度,你能求出下面四邊形、五邊形、六邊形的內(nèi)角和嗎?

      師:太棒了,這位同學(xué)把這個四邊形分割成了二個三角形求出了它的內(nèi)角和,你能像他一樣棒求出五邊形和六邊形的內(nèi)角和嗎?

      師: 同學(xué)們,今天我們一起學(xué)習(xí)了三角形的內(nèi)角和,你有哪些收獲呢?

      師:嗯,真不錯, 你們知道嗎? 三角形的內(nèi)角和等于 180 度是 法國著名的數(shù)學(xué)家帕斯卡 在 1635 年他 12 歲時獨(dú)自發(fā)現(xiàn)的, 今天憑著同學(xué)們的聰明智慧也研究出了三角形的內(nèi)角和是180 度,老師為你們感到驕傲,老師相信在你們的勤奮學(xué)習(xí)和刻苦鉆研下,你們就是下一個“帕斯卡”!

      師:好,下課!同學(xué)們再見!

      篇4:《三角形內(nèi)角和》教學(xué)設(shè)計

      教學(xué)內(nèi)容:

      教材第67頁例6、“做一做”及教材第69頁練習(xí)十六第1~3題。

      教學(xué)目標(biāo):

      1.通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。

      2.能運(yùn)用三角形的內(nèi)角和是180°這一結(jié)論,求三角形中未知角的度數(shù)。

      3.培養(yǎng)學(xué)生動手動腦及分析推理能力。

      重點(diǎn)難點(diǎn):

      掌握三角形的內(nèi)角和是180°。

      教學(xué)準(zhǔn)備:

      三角形卡片、量角器、直尺。

      導(dǎo)學(xué)過程

      一、復(fù)習(xí)

      1、什么是平角?平角是多少度?

      2、計算角的度數(shù)。

      3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)

      二、新知

      (設(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知” 的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))

      1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。

      2、揭題:課件演示什么是三角形的內(nèi)角和。

      3、猜想:三角形的內(nèi)角和是多少度。

      4、驗證:

      (1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。

      (2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

      (3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內(nèi)角和 是180°(師巡視)

      (4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)

      5、結(jié)論:修改板書,把“?”去掉,寫“是”。

      6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)

      7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)

      三、知識運(yùn)用(課件出示練習(xí)題,生解答)

      1、填空

      (1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110 ,第三個內(nèi)角是( ).

      (2)一個直角三角形的一個銳角是50,則另一個銳角是( )。

      (3)等邊三角形的3個內(nèi)角都是( )。

      (4)一個等腰三角形,它的一個底角是50,那么它的頂角是( )。

      (5)一個等腰三角形的頂角是60,這個三角形也是( )三角形。

      2、判斷

      (1)一個三角形中最多有兩個直角。 ( )

      (2)銳角三角形任意兩個內(nèi)角的和大于90。 ( )

      (3)有一個角是60的等腰三角形不一定是等邊三角形。 ( )

      (4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。 ( )

      (5)直角三角形中的兩個銳角的和等于90。 ( )

      四、拓展探究

      根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?

      1、小組討論。2、匯報結(jié)果。3、課件提示幫助理解。

      五、自我評價根據(jù)學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。

      六、談?wù)勛约罕竟?jié)課的收獲。

      教學(xué)反思

      今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點(diǎn)就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識解決問題就算是達(dá)到這節(jié)課的教學(xué)目標(biāo)了呢?我想研究的過程,學(xué)生對于這一內(nèi)容的認(rèn)識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實踐操作得出結(jié)論。所以最終我把本課定為一個實踐探究課。

      如何開篇點(diǎn)題,是我這次要解決的第一個問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角?,怎樣直接轉(zhuǎn)向研究三個角的“和”的問題呢?因此我只設(shè)計了三個簡單的問題然學(xué)生快速進(jìn)入主題。

      如何驗證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識背景有限,無法利用證明給予嚴(yán)格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點(diǎn),那么就都會有誤差,其實都無法嚴(yán)格的證明。但是這節(jié)課我們除了要尊重知識的嚴(yán)謹(jǐn)還應(yīng)該尊重孩子的認(rèn)知。如果通過剪拼、折疊、想象后,還有的孩子認(rèn)為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴(yán)謹(jǐn),同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認(rèn)同了內(nèi)角和是180°。

      本節(jié)課的練習(xí)的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關(guān)、跟形狀無關(guān),到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學(xué)生的認(rèn)知發(fā)生沖突,提出挑戰(zhàn)。

      給學(xué)生一個平臺,她會給你一片精彩。通過動手操作來驗證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當(dāng)有了空間,孩子才會施展他們的才華。這是我的一大收獲。

      前邊驗證時間過多,到練習(xí)時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學(xué)生沒有充分思維。

      總而言之,這次的公開課,給了我一次學(xué)習(xí)和鍛煉的機(jī)會。在教案設(shè)計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預(yù)設(shè)好每一個環(huán)節(jié),在教研中聽取各位教師的點(diǎn)評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團(tuán)隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻(xiàn)自己的想法,讓我在教學(xué)中,能夠在一個輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習(xí)。

      篇5:《三角形內(nèi)角和》教學(xué)設(shè)計

      【教材內(nèi)容】:

      北師大版四年級數(shù)學(xué)下冊。

      【教學(xué)目標(biāo)】:

      1、探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。

      2、培養(yǎng)學(xué)生動手操作和合作交流的能力,促進(jìn)掌握學(xué)習(xí)數(shù)學(xué)的方法。

      3、培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。

      【教學(xué)重點(diǎn)和難點(diǎn)】:

      重點(diǎn)掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實際問題;難點(diǎn)是探索性質(zhì)的過程。

      【教材分析】

      《三角形內(nèi)角和》屬于空間與圖形的范疇,是在學(xué)生已經(jīng)接觸了三角形的穩(wěn)定性和三角形的分類相關(guān)知識后對三角形的進(jìn)一步研究,探索三個內(nèi)角的和。教材中安排了學(xué)生對不同形狀的、大小的三角形進(jìn)行進(jìn)行度量,運(yùn)用折疊、拼湊等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。擴(kuò)充了學(xué)生認(rèn)識圖形的一般規(guī)律從直觀感性的認(rèn)識到具體的性質(zhì)探索,更加深入的培養(yǎng)了學(xué)生的空間觀念。

      【教學(xué)過程】

      一、創(chuàng)設(shè)情境,激發(fā)興趣。

      出示課件,提出兩個兩個疑問:

      1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內(nèi)角和比你大,是這樣的嗎?

      2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內(nèi)角和各不相同,是這樣的嗎?老師發(fā)現(xiàn)它們爭論的焦點(diǎn)是三角形的內(nèi)角和的問題,那什么是三角形的內(nèi)角?什么又是三角形的內(nèi)角和呢?

      二、初建模型,實際驗證自己的猜想

      在第一步的基礎(chǔ)上學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。這時教師要組織學(xué)生進(jìn)行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內(nèi)角,并計算出它們的總和是多少?把小組的測量結(jié)果和討論結(jié)果記錄下來以便全班進(jìn)行交流。

      三、再建模型,徹底的得出正確的結(jié)論

      因為在上一環(huán)節(jié)學(xué)生已經(jīng)得出三角形的內(nèi)角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學(xué)難免可能猜想三角形的內(nèi)角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內(nèi)角和都是180度呢?教師放手讓學(xué)生去思考、去動手操作,對有困難和有疑問的同學(xué)進(jìn)行提示和指導(dǎo)。然后讓學(xué)生到前面演示驗證的方法,教師借助多媒體進(jìn)行演示。

      四、應(yīng)用新知,鞏固練習(xí)

      1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習(xí))

      2、試一試,在直角三角形中已知其中的一個角求另一個角的度數(shù)

      3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。

      4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內(nèi)角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內(nèi)角和是360度,對嗎?

      五、拓展與延伸

      通過三角形的內(nèi)角和是180度的事實來探討四邊形、五邊行的內(nèi)角和。

      篇6:《三角形內(nèi)角和》教學(xué)設(shè)計

      教學(xué)目標(biāo):

      1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

      2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

      3、經(jīng)歷三角形內(nèi)角和的研究方法,感受數(shù)學(xué)研究方法。

      教學(xué)重點(diǎn):

      1、探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

      2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

      教學(xué)難點(diǎn):

      掌握探究方法(猜想-驗證-歸納總結(jié)),學(xué)會用“轉(zhuǎn)化”的數(shù)學(xué)思想探究三角形內(nèi)角和。

      教學(xué)用具:

      表格、課件。

      學(xué)具準(zhǔn)備:

      各種三角形、剪刀、量角器。

      一、創(chuàng)設(shè)情境揭示課題。

      1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內(nèi)角和一定比你大。”小三角形很不甘心地說:“我有一個鈍角,我的內(nèi)角和一定比你大?!薄Ul說得有道理呢?今天讓我們來做一回裁判吧。

      生1:大三角形大(個子大)

      生2:小三角形大(有鈍角)

      (教師不做判斷,讓學(xué)生帶著問題進(jìn)入新課)

      2、什么是三角形的內(nèi)角和?(板書:內(nèi)角和)

      講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。

      二、自主探究,合作交流。

      (一)提出問題:

      1、你認(rèn)為誰說得對?你是怎么想的?

      2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?

      生1:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。

      生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。

      生3:用折一折的辦法把三個角折到一起看它們能不能組成平角

      (二)探索與發(fā)現(xiàn)

      活動一:量一量

      (1)①了解活動要求:(屏幕顯示)

      A、在練習(xí)本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標(biāo)注。(測量時要認(rèn)真,力求準(zhǔn)確)

      B、把測量結(jié)果記錄在表格中,并計算三角形內(nèi)角和。

      C、討論:從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?

      (引導(dǎo)生回顧活動要求)

      ②小組合作。

      ③匯報交流。

      你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結(jié)果中你們發(fā)現(xiàn)了什么?

      (引導(dǎo)學(xué)生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°,左右。)

      (2)提出猜想

      剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)

      活動二:拼一拼,驗證猜想

      這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

      引導(dǎo):180°,跟我們學(xué)過的什么角有關(guān)?我們課前準(zhǔn)備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉(zhuǎn)換成一個平角呢?

      (1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內(nèi)角和就是180°)。

      (2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?

      (3)分組匯報,討論質(zhì)疑

      (4)課件演示,驗證結(jié)果

      活動三:折一折

      師生一起活動,教師先讓學(xué)生看課件演示,然后拿出準(zhǔn)備好的三角形紙艮老師一起折一折。

      (把三角形的角1折向它的對邊,使頂點(diǎn)落在對邊上,然后另外兩個角相向?qū)φ郏顾鼈兊捻旤c(diǎn)與角1的頂點(diǎn)互相重合,也證明了三角形內(nèi)角和等于180°,)。

      討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結(jié)論?

      提問:還有沒有其它的方法?

      3、回顧兩種方法,歸納總結(jié),得出結(jié)論。

      (1)引導(dǎo)學(xué)生得出結(jié)論。

      孩子們,三角形內(nèi)角和到底等于多少度呢?”

      學(xué)生答:“180°!”

      (2)總結(jié)方法,齊讀結(jié)論

      我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼?!齊讀結(jié)論。(板書:得到結(jié)論)

      (3)解釋測量誤差

      為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是180°,呢?

      那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,三角形內(nèi)角和就等于180°

      (三)回顧問題:

      現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對!)

      為什么?請大家一起,自信肯定的告訴我。

      生:因為三角形內(nèi)角和等于1800180°。(齊讀)

      三、鞏固深化,加深理解。

      1、試一試:數(shù)學(xué)書28頁第3題

      ∠A=180°—90°—30°

      2、練一練:數(shù)學(xué)書29頁第一題(生獨(dú)立解決)

      ∠A=180°—75°—28°

      3、小法官:數(shù)學(xué)書29頁第二題

      四、回顧課堂,滲透數(shù)學(xué)方法。

      1、總結(jié):猜想—驗證—?dú)w納—應(yīng)用的數(shù)學(xué)方法。

      2、介紹:三角形內(nèi)角和等于180度這個結(jié)論的由來;數(shù)學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

      篇7:《三角形內(nèi)角和》教學(xué)設(shè)計

      教材內(nèi)容:

      北師大版義務(wù)教育課程標(biāo)準(zhǔn)實驗教材四年級下冊。

      教學(xué)目標(biāo):

      1、經(jīng)歷觀察、猜想、實驗、驗證等數(shù)學(xué)活動,探索并發(fā)現(xiàn)三角形的內(nèi)角和180°。在實驗活動中,體驗探索的過程和方法。

      2、掌握三角形內(nèi)角和是180°這一性質(zhì),并能應(yīng)用這一性質(zhì)解決一些簡單的問題。

      3、經(jīng)歷探究過程,發(fā)展推理能力,感受數(shù)學(xué)的邏輯美。

      教學(xué)難點(diǎn)、重點(diǎn):

      經(jīng)歷觀察、猜想、實驗、驗證等數(shù)學(xué)活動,探索并發(fā)現(xiàn)三角形的內(nèi)角和規(guī)律。

      教具準(zhǔn)備:

      直角三角形、銳角三角形、鈍角三角形各3個,大三角形、小三角形各1個。

      學(xué)具準(zhǔn)備:

      直角三角形、銳角三角形、鈍角三角形各3個。

      教學(xué)設(shè)計意圖:

      “三角形的內(nèi)角和180°”是三角形的一個重要性質(zhì),教材通過多種方法的操作實驗,讓學(xué)生確信這一個性質(zhì)的正確性。根據(jù)學(xué)生已有的知識經(jīng)驗和教材的內(nèi)容特點(diǎn),本著“學(xué)生的數(shù)學(xué)學(xué)習(xí)過程是一個自主構(gòu)建自己對數(shù)學(xué)知識的理解過程”的教學(xué)理念,采用探究式教學(xué)方式,讓學(xué)生經(jīng)歷觀察、猜想、實驗、反思等數(shù)學(xué)活動,體驗知識的形成過程。整個教學(xué)設(shè)計力求改變學(xué)生的學(xué)習(xí)方式,突出學(xué)生的主體性。在教師的組織引導(dǎo)下,讓學(xué)生在開放的學(xué)習(xí)過程中,自始至終處于積極狀態(tài),主動參與學(xué)習(xí)過程,自主地進(jìn)行探索與發(fā)現(xiàn),多角度和多樣化地解決問題,從而實現(xiàn)知識的自我建構(gòu),掌握科學(xué)研究的方法,形成實事求事的科學(xué)探究精神。

      教學(xué)過程:

      活動一:設(shè)疑激趣

      師:我們已經(jīng)認(rèn)識了三角形,關(guān)于三角形你知道了什么?

      生1:三角形有3條邊、3個角。

      生2:三角形按角分可以分為銳角三角形、直角三角形、鈍角三角形;三角形按邊分可以分為等腰三角形和不等邊三角形。

      生3:每種三角形都至少有兩個銳角。

      師:三角形有3個角,這3個角又叫三角形的內(nèi)角。三角形按內(nèi)角的不同分為銳角三角形、直角三角形、鈍角三角形。

      師:能不能畫一個含有兩個直角或兩個鈍角的三角形呢?為什么?

      生1:我試著畫過,畫不出來。

      生2:因為每個三角形至少有兩個銳角,所以不可能畫出含有兩個直角或兩個鈍角的三角形。

      生3:三角形的內(nèi)角和是180°,兩個直角的和已經(jīng)是180°,所以不可能。

      師:你能解釋一下什么是“三角形的內(nèi)角和”嗎?你是怎樣知道“三角形的內(nèi)角和是180°”的?

      生:把三角形的三個內(nèi)角的度數(shù)相加就是三角形的內(nèi)角和?!叭切蔚膬?nèi)角和是180°”我是從書上看到的。

      師:你驗證過了嗎?

      生:沒有。

      師:三角形的內(nèi)角和是不是180°?咱們還沒有認(rèn)真地研究過,接下來,我們就一起來研究三角形的內(nèi)角和。

      設(shè)計意圖:“我們已經(jīng)認(rèn)識了三角形,關(guān)于三角形你知道什么?”課一開始,教師就設(shè)計了一個空間容量比較大的問題,旨在讓學(xué)生自主復(fù)習(xí)三角形的有關(guān)知識,引出三角形的內(nèi)角概念。然后創(chuàng)設(shè)一個能激發(fā)學(xué)生探究欲望的問題:“能不能畫出一個含有兩個直角或兩個鈍角的三角形呢?”有的學(xué)生通過動手畫,發(fā)現(xiàn)一個三角形中不可能有兩個直角或兩個鈍角;有的學(xué)生認(rèn)為三角形的內(nèi)角和是180°,兩個直角的和已是180°,所以不可能。這種認(rèn)識可能來自于書本,也可能來自于家長的輔導(dǎo),但學(xué)生對于“三角形的內(nèi)角和是180°”的體驗是沒有的,學(xué)生對所學(xué)的知識僅僅還是一種機(jī)械的識記,因此“三角形的內(nèi)角和是否為180°”就成了學(xué)生急切需要探究的問題。

      活動二:自主探究

      師:請同學(xué)們拿出課前準(zhǔn)備的材料,自己想辦法驗證三角形的內(nèi)角和是不是180°?

      學(xué)生動手操作驗證。

      師:請大家靜靜地思考1分鐘,將剛才的實驗過程在腦中梳理一下?,F(xiàn)在請把自己的研究過程、結(jié)果跟大家交流一下。

      生1:我是用量角器測量的,我量的是直角三角形:

      90°+42°+47°=179°

      生2:我量的也是直角三角形:

      90°+43°+48°=181°

      生3:我量的是銳角三角形:

      32°+65°+83°=180°

      生4:我量的是鈍角三角形:

      120°+32°+30°=182°

      生5:……

      師:看到這些度量結(jié)果,你有什么想法?

      生1:為什么他們測量的結(jié)果會不相同?

      生2:也許我們測量的方法不精確。

      生3:也許我們的量角器不標(biāo)準(zhǔn)。

      生4:也可能三角形的內(nèi)角和不一定都是180°。

      師:是呀,用量角器度量容易出現(xiàn)誤差,但這些度量的結(jié)果還是比較接近的,都在180°左右。

      師:有沒有沒使用量角器來驗證的呢?

      生:我是用三個相同的三角形來接的(如圖)。∠1、∠2、∠3剛好拼成一個平角,所以三角形的內(nèi)角和是180°。

      師:你怎么知道這三個角拼成的大角剛好是一個平角呢?有辦法驗證嗎?

      生1:用量角器測量不就知道了嗎?

      生2:用三角板的兩個直角去拼來驗證。

      生3:因為平角的兩條邊成一條直線,所以可用直尺來檢驗。

      生4:再拿三個相同的三角形按上面的方法進(jìn)行拼,這樣6個相同的三角形,中間就可以拼出一個周角(如圖),周角的一半剛好是平角。

      師:通過剛才的驗證,可以說明∠1、∠2、∠3拼成的角是平角,那么銳角三角形的三個內(nèi)角能拼成一個平角嗎?鈍角三角形呢?請大家試一試。師:如果現(xiàn)在只有一個三角形怎么辦?

      生:我是將銳角三角形的三個角分別撕下來,拼成一個平角,平角是180°所以銳角三角形的內(nèi)角和是180°。

      師:直角三角形、鈍角三角形行嗎?來試一試。

      生1:老師,不剪下三角形的三個內(nèi)角也可以驗證。只要將三角形的三個內(nèi)角折拼在一起,看看是不是拼成一個平角就可以了。

      師:大家就用折拼的方法試一試。

      學(xué)生操作驗證。

      師:剛才我們除了用量角器度量的方法,同學(xué)們還想出了其他一些方法:用三個相同的三角形拼、剪拼、折拼等方法,這些方法形式上看起來不一樣,其實有共同點(diǎn)嗎?

      生:都是將三角形的三個內(nèi)角拼在一起,組成一個平角來驗證三角形的內(nèi)角和是不是180°。

      師:通過上面的實驗,你可以得出什么結(jié)論?

      生:三角形的內(nèi)角和是180°

      師:是任意三角形嗎?剛才我們才驗證了幾個三角形呀?怎么就可以說是任意三角形呢?

      生:三角形按角分只有銳角三角形、直角三角形、鈍角三角形三種,剛才我們都驗證過了。

      師:(出示一個大三角形)它的內(nèi)角和是多少度?如果將這個三角形縮?。ǔ鍪疽粋€小三角形),它的內(nèi)角和又是多少度?為什么?

      生:三角形的三條邊縮短了,可它的三個角的大小沒變,所以它的內(nèi)角和還是180。

      師生小結(jié):三角形不論形狀、大小,它的內(nèi)角和總是180。

      設(shè)計意圖:學(xué)生明確探究主題后,教師只為學(xué)生提供探究所需的材料,而不直接給出實驗的方法和程序,激勵學(xué)生自己想辦法實驗驗證,獲得結(jié)論。然后引導(dǎo)學(xué)生交流、評價、反思與提升。驗證過程中較好地體現(xiàn)了解決同一問題思維方法,驗證策略的多樣性。促進(jìn)了學(xué)生發(fā)散思維能力的提高,提升了思維品質(zhì)。

      活動三:應(yīng)用拓展

      1、計算下面各個三角形中的∠B的度數(shù)。

      師:(圖2)怎樣求∠B?

      生:180°―90°―55°=35°

      師:還有不同的解法嗎?

      生:180°÷2―55°=35°,因為三角形的內(nèi)角和是180°,其中一個直角是90°,另外兩個銳角的和剛好是90。

      師:是不是任意一個直角三角形的兩銳角和都是90°呢?能驗證一下嗎?

      生:因為任意三角形的內(nèi)角和是180°,其中一個直角是90°,所以其他兩個銳角的和肯定是90。

      師:有沒有反對意見或表示懷疑的?從中我們可以發(fā)現(xiàn)一條什么規(guī)律?

      生:直角三角形的兩個銳角和是90°

      2、一個等腰三角形頂角是90°,兩個底角分別是多少度?

      3、等邊三角形的每個內(nèi)角是多少度?

      師:現(xiàn)在你能解決為什么一個三角形里不能有兩個直角或兩個鈍角嗎?

      生:略。

      師:通過這節(jié)課的學(xué)習(xí),你還有什么疑問或還想研究什么問題?

      生:三角形有內(nèi)角和,三角形有外角和嗎?

      師:你知道三角形的外角在哪兒嗎?三角形有外角和,它的外角和是多少度呢?有興趣的同學(xué)請課后研究。

      課末,教師激勵學(xué)生提出新的問題:通過這節(jié)課的學(xué)習(xí),你還有什么疑問或者還想研究什么問題?培養(yǎng)學(xué)生的問題意識,同時讓學(xué)生帶著問題走出教室,拓展學(xué)生數(shù)學(xué)學(xué)習(xí)的時間和空間。

      篇8:《三角形內(nèi)角和》的教學(xué)設(shè)計

      【設(shè)計理念】

      新課標(biāo)重視讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成過程,要求教師創(chuàng)設(shè)有效的問題情境激發(fā)學(xué)生的參與欲望,提供足夠的時間和空間讓學(xué)生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學(xué)生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學(xué)生不僅可以掌握知識,而且可以積累探究數(shù)學(xué)問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。

      【教材內(nèi)容】新人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書四年級下冊數(shù)學(xué)第67頁例6、“做一做”及練習(xí)十六的第1、2、3題。

      【教材分析】

      三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學(xué)的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間和時間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、拼等活動,讓學(xué)生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。

      【學(xué)情分析】

      1、在學(xué)習(xí)本課時,學(xué)生已經(jīng)有了探索三角形內(nèi)角和的知識基礎(chǔ):知道直角和平角的度數(shù),會用量角器度量角的度數(shù);認(rèn)識長方形、正方形,知道他們的四個角都是直角;認(rèn)識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

      2、已經(jīng)有一部分學(xué)生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。

      【教學(xué)目標(biāo)】

      1、通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運(yùn)用這個知識解決一些簡單的問題。

      2、在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。

      3、在參與數(shù)學(xué)學(xué)習(xí)活動的過程中,獲得成功的體驗,感受數(shù)學(xué)探究的嚴(yán)謹(jǐn)與樂趣。

      【教學(xué)重點(diǎn)】

      探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運(yùn)用這個知識解決實際問題。

      【教學(xué)難點(diǎn)】驗證“三角形的內(nèi)角和是180°”。

      【教(學(xué))具準(zhǔn)備】

      多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

      【教學(xué)步驟】

      一、復(fù)習(xí)舊知 引出課題

      1、你已經(jīng)知道有關(guān)三角形的哪些知識?

      2、出示課題:三角形的內(nèi)角和

      設(shè)計意圖:也自然導(dǎo)入新課。

      二、提出問題 引發(fā)猜想

      1、提出問題:看到這個課題,你有什么問題想問的?

      預(yù)設(shè):

      (1)三角形的內(nèi)角指的是哪些角?

      (2)三角形的內(nèi)角和是什么意思?

      (3)三角形的內(nèi)角一共是多少度?

      2、引發(fā)猜想

      猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?

      設(shè)計意圖:提出一個問題比解決一個問題更重要。課始在復(fù)習(xí)三角形已學(xué)知識后,引導(dǎo)學(xué)生提出有關(guān)三角形的新問題,讓學(xué)生學(xué)習(xí)自己想研究的內(nèi)容,無疑激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的問題意識。由于學(xué)生在平時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學(xué)生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。

      三、操作驗證 形成結(jié)論

      1、交流驗證方法:

      (1)用什么方法證明三角形的內(nèi)角和是180度呢?

      預(yù)設(shè): ①量算法 ②剪拼法 ③折拼法等

      (2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

      2、動手驗證

      3、全班匯報交流

      4、小結(jié):剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180°度。但動手操作會存在一定的誤差,我們的結(jié)論也可能存在偏差。

      5、方法拓展

      推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180°的方法。

      6、形成結(jié)論:任意三角形的內(nèi)角和是180°。

      設(shè)計意圖:《標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的`機(jī)會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。”猜測后先獨(dú)立思考驗證的方法,再進(jìn)行全班交流,給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結(jié)論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動中積累基本的數(shù)學(xué)活動經(jīng)驗,為后續(xù)的學(xué)習(xí)提供了經(jīng)驗支撐。

      四、應(yīng)用結(jié)論 解決問題

      1、鞏固新知:想一想,算一算。

      2、解決問題:等腰三角形風(fēng)箏的頂角是多少度?

      3、辨析訓(xùn)練,完善結(jié)論。

      五、課堂總結(jié),歸納研究方法

      今天這節(jié)課你學(xué)到了哪些知識?你是怎樣得到這些知識的?

      六、課后延伸:用今天所學(xué)的方法繼續(xù)研究四邊形的內(nèi)角和。

      七、板書設(shè)計:

      三角形的內(nèi)角和

      猜測: 三角形的內(nèi)角和是180°?

      驗證: 量 拼

      結(jié)論: 任意三角形的內(nèi)角和是180°

      篇9:《三角形內(nèi)角和》的教學(xué)設(shè)計

      教學(xué)目標(biāo):

      1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

      2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

      3、經(jīng)歷三角形內(nèi)角和的研究方法,感受數(shù)學(xué)研究方法。

      教學(xué)重點(diǎn):

      1、探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。

      2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。

      教學(xué)難點(diǎn):掌握探究方法(猜想-驗證-歸納總結(jié)),學(xué)會用“轉(zhuǎn)化”的數(shù)學(xué)思想探究三角形內(nèi)角和。

      教學(xué)用具:表格、課件。

      學(xué)具準(zhǔn)備:各種三角形、剪刀、量角器。

      一、創(chuàng)設(shè)情境揭示課題。

      1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內(nèi)角和一定比你大?!毙∪切魏懿桓市牡卣f:“我有一個鈍角,我的內(nèi)角和一定比你大?!薄Ul說得有道理呢?今天讓我們來做一回裁判吧。

      生1:大三角形大(個子大)

      生2:小三角形大(有鈍角)

      (教師不做判斷,讓學(xué)生帶著問題進(jìn)入新課)

      2、什么是三角形的內(nèi)角和?(板書:內(nèi)角和)

      講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。

      二、自主探究,合作交流。

      (一)提出問題:

      1、你認(rèn)為誰說得對?你是怎么想的?

      2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?

      生1:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。

      生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。

      生3:用折一折的辦法把三個角折到一起看它們能不能組成平角

      (二)探索與發(fā)現(xiàn)

      活動一:量一量

      (1)①了解活動要求:(屏幕顯示)

      A、在練習(xí)本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標(biāo)注。(測量時要認(rèn)真,力求準(zhǔn)確)

      B、把測量結(jié)果記錄在表格中,并計算三角形內(nèi)角和。

      C、討論:從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?

      (引導(dǎo)生回顧活動要求)

      ②小組合作。

      ③匯報交流。

      你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結(jié)果中你們發(fā)現(xiàn)了什么?

      (引導(dǎo)學(xué)生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°,左右。)

      (2)提出猜想

      剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)

      活動二:拼一拼,驗證猜想

      這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)

      引導(dǎo):180°,跟我們學(xué)過的什么角有關(guān)?我們課前準(zhǔn)備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉(zhuǎn)換成一個平角呢?

      (1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內(nèi)角和就是180°)。

      (2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?

      (3)分組匯報,討論質(zhì)疑

      (4)課件演示,驗證結(jié)果

      活動三:折一折

      師生一起活動,教師先讓學(xué)生看課件演示,然后拿出準(zhǔn)備好的三角形紙艮老師一起折一折。

      (把三角形的角1折向它的對邊,使頂點(diǎn)落在對邊上,然后另外兩個角相向?qū)φ?,使它們的頂點(diǎn)與角1的頂點(diǎn)互相重合,也證明了三角形內(nèi)角和等于180°,)。

      討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結(jié)論?

      提問:還有沒有其它的方法?

      3、回顧兩種方法,歸納總結(jié),得出結(jié)論。

      (1)引導(dǎo)學(xué)生得出結(jié)論。

      孩子們,三角形內(nèi)角和到底等于多少度呢?”

      學(xué)生答:“180°!”

      (2)總結(jié)方法,齊讀結(jié)論

      我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼?!齊讀結(jié)論。(板書:得到結(jié)論)

      (3)解釋測量誤差

      為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是180°,呢?

      那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,三角形內(nèi)角和就等于180°

      (三)回顧問題:

      現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對?。?/p>

      為什么?請大家一起,自信肯定的告訴我。

      生:因為三角形內(nèi)角和等于1800180°。(齊讀)

      三、鞏固深化,加深理解。

      1、試一試:數(shù)學(xué)書28頁第3題

      ∠A=180°-90°-30°

      2、練一練:數(shù)學(xué)書29頁第一題(生獨(dú)立解決)

      ∠A=180°-75°-28°

      3、小法官:數(shù)學(xué)書29頁第二題

      四、回顧課堂,滲透數(shù)學(xué)方法。

      1、總結(jié):猜想—驗證—?dú)w納—應(yīng)用的數(shù)學(xué)方法。

      2、介紹:三角形內(nèi)角和等于180度這個結(jié)論的由來;數(shù)學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

      3、課堂延伸活動:探索——多邊形內(nèi)角和

      板書設(shè)計:

      探索與發(fā)現(xiàn)(一)

      三角形內(nèi)角和等于180°

      篇10:《三角形內(nèi)角和》的教學(xué)設(shè)計

      教學(xué)目標(biāo):

      1、通過量、剪、拼、擺等直觀操作的方法,讓學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。

      2、在活動交流中培養(yǎng)學(xué)生合作學(xué)習(xí)的意識和能力,讓學(xué)生經(jīng)歷猜測探索總結(jié)的數(shù)學(xué)學(xué)習(xí)過程,在實驗活動中體驗探索的過程和方法。

      3、通過運(yùn)用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學(xué)生體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,體會到數(shù)學(xué)的價值,增加學(xué)生學(xué)數(shù)學(xué)的信心和興趣。

      教學(xué)重點(diǎn):

      探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應(yīng)用。

      教學(xué)難點(diǎn):

      三角形內(nèi)角和是180的探索和驗證。

      教學(xué)過程:

      一、創(chuàng)設(shè)情境,提出問題

      師:大家喜歡猜謎語嗎?

      生:喜歡。

      師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。

      (打一幾何圖形))

      生:三角形。

      師:三角形中都有哪些學(xué)問?

      生:三角形有三條邊,三個角,具有穩(wěn)定性。

      生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

      生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

      生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。

      生:三角形的內(nèi)有和是180。

      生:(一臉疑惑)

      師:(板書:三角形的內(nèi)角和是180),你有什么疑惑?生:什么是內(nèi)角?

      生:每個三角形的內(nèi)角和都是180嗎?

      (根據(jù)學(xué)生的問題,在三角形的內(nèi)角和是180后面加上一個?)

      二、自主探索,實踐驗證

      1、理解內(nèi)角師:什么是內(nèi)角?

      生:我認(rèn)為三角形的內(nèi)角就是指三角形的三個角。

      師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。

      2、理解內(nèi)角和。

      師:那三角形的內(nèi)角和又是指什么?

      生:我認(rèn)為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。

      師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。

      3、實踐驗證

      師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?

      生:量一量每個角的度數(shù),然后加起來看看是不是180。

      師:請大家拿出課前準(zhǔn)備的三角形,親自量一量,算一算。(學(xué)生動手量一量)

      師:誰愿意把你的勞動成果和大家分享一下?

      生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。

      師:這位同學(xué)量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。

      生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。

      師:這是我們?nèi)浅咧械囊粋€,也比較特殊,是一個等腰直角三角形。

      生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。

      師:你發(fā)現(xiàn)了什么?

      生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。

      師:看來三角形的內(nèi)角和不一定是180。

      生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結(jié)果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。

      生:都接近180就能說一定是180嗎?

      師:科學(xué)來不得半點(diǎn)虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學(xué)們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學(xué)具進(jìn)行驗證,比一比哪些組的方法富有新意,開始!

      (學(xué)生在小組內(nèi)進(jìn)行探索驗證。教師巡視,參與到學(xué)生的研究中)

      師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。

      生:(邊展示邊交流)我們小組運(yùn)用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個平角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。

      師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?

      生:我們小組也有折的直角三角形,鈍角三角形。

      (其它的成員展示不同的三角形)

      師:看這個小組的同學(xué)想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進(jìn)行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!

      師:哪個小組和他們的方法不一樣?

      生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成平角,所以我們小組得出結(jié)論,三角形的內(nèi)角和是180。

      師:這個小組的方法簡便,易操作,很好。

      生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!

      4、小結(jié)

      師:剛才同學(xué)們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?

      生:沒有。

      師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。

      三、鞏固應(yīng)用,加深理解

      1、說一說每個三角形的內(nèi)角和是多少度

      師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?

      生:180

      師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?

      生:180

      師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?

      生:180

      師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?

      生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180

      師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?

      生:180

      2、求下面各角的度數(shù)

      師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?

      (出)

      生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77

      生:用180-90-35,C=55。

      生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。

      生:第三個三角形中,用180-20-45,B=115。

      3、一個等腰三角形的風(fēng)箏,它的一個底角是70,它的頂角是多少度?

      生:等腰三角形的兩個底角相等,所以用180-70-704、

      師:三角形的內(nèi)角和在我們的生活中應(yīng)用很廣泛,老師給大家?guī)硪粋€在建筑中應(yīng)用的例子。

      在設(shè)計這座大橋時,如果設(shè)計師將斜拉的鋼索與橋柱形成的夾角設(shè)計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?

      生:用量角器量一量

      師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

      生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

      師:你真是個善于觀察、善于思考的孩子,努力學(xué)習(xí),將來一定會成為一名優(yōu)秀的建筑師。

      四、回顧總結(jié),拓展延伸

      師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?

      生:我知道了三角形的內(nèi)角和是180。

      生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。

      生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。

      生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。

      師:這個同學(xué)不僅學(xué)會了知識,而且學(xué)會了方法,我們只有學(xué)會了方法,才能更好地去探究更多的知識。

      師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?

      生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。

      生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。

      師:我們學(xué)習(xí)知識,必須知其然并知其所以然。

      師:三角形中還有許許多多的學(xué)問,讓我們在以后的學(xué)習(xí)中繼續(xù)去研究。

      篇11:《三角形內(nèi)角和》的教學(xué)設(shè)計

      本節(jié)微課視頻是蘇教版數(shù)學(xué)教科書四年級下冊第78~79頁的教學(xué)內(nèi)容。在教學(xué)之前,學(xué)生已經(jīng)掌握了角的概念、角的分類和角的測量;認(rèn)識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點(diǎn)、三條邊和三個角。這些已經(jīng)構(gòu)成學(xué)生進(jìn)一步學(xué)習(xí)的認(rèn)知基礎(chǔ)?!度切蔚膬?nèi)角和》是三角形的一個重要性質(zhì)。學(xué)生在學(xué)習(xí)四年級上冊“角的度量”時,通過測量三角尺三個角的度數(shù),知道三角尺三個角加起來的和是180度,再加上課前的預(yù)習(xí),大部分的學(xué)生已經(jīng)能得出結(jié)論:三角形的內(nèi)角和是180度,只不過他們不清楚其中的道理,只是機(jī)械性的記憶。因此,本節(jié)課的重點(diǎn)不是結(jié)論,而是驗證結(jié)論的過程。教材組織學(xué)生對不同形狀、不同大小的三角形的內(nèi)角和進(jìn)行探索,通過轉(zhuǎn)化、推理、比較、操作和驗證,總結(jié)概括出“所有三角形的內(nèi)角和都是180度”的規(guī)律,從而進(jìn)一步發(fā)展學(xué)生的空間觀念,提高學(xué)生的自主學(xué)習(xí)能力和推理能力。

      下面就具體談?wù)勎⒄n的教學(xué)設(shè)計:

      一、教學(xué)目標(biāo)

      1、通過測量、轉(zhuǎn)化、觀察和比較等活動探索發(fā)現(xiàn)并驗證“三角形的內(nèi)角和是180度”的規(guī)律,并且能利用這一結(jié)論解決求三角形中未知角的度數(shù)等實際問題。

      2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養(yǎng)學(xué)生的'聯(lián)想意識和動手操作能力。體驗驗證結(jié)論的過程與方法,提高學(xué)生分析和解決問題的能力。

      3、使學(xué)生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學(xué)生積極主動學(xué)習(xí)數(shù)學(xué)的興趣。

      二、教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn):讓學(xué)生親自驗證并總結(jié)出三角形的內(nèi)角和是180度的結(jié)論

      難點(diǎn):對不同驗證方法的理解和掌握。

      三、教學(xué)過程

      (一)質(zhì)疑――發(fā)現(xiàn)問題,提出問題

      出示學(xué)生熟悉的一副三角尺,讓學(xué)生說說每塊三角尺中各個內(nèi)角的度數(shù)。試著計算每塊三角尺的三個內(nèi)角的度數(shù)加起來的和是多少度?

      交流:不同三角尺的內(nèi)角和都是一樣的嗎?三角尺的內(nèi)角和有什么特征?

      引導(dǎo)學(xué)生得出三角尺的三個內(nèi)角的度數(shù)和是180度。

      提問:三角尺的形狀是什么三角形?三角尺的內(nèi)角和是180度,我們還可以說成是什么?(得出結(jié)論:直角三角形的內(nèi)角和是180度。)

      你有什么辦法驗證這一結(jié)論呢?(動手操作,尋找答案)

      方法一:拿出不同的直角三角形,分別測量三個內(nèi)角的度數(shù),再求和。(提示存在誤差,但三個內(nèi)角的和都在180度左右)

      方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內(nèi)角和是360度,因此能得出一個直角三角形的三個內(nèi)角和是180度。

      啟發(fā):直角三角形的內(nèi)角和是180度,這一結(jié)論讓你聯(lián)想到了什么?你能提出什么新的數(shù)學(xué)問題呢?

      引導(dǎo):從直角三角形的內(nèi)角和聯(lián)想到所有三角形的內(nèi)角和,提出問題:所有三角形的內(nèi)角和都是180度嗎?

      (二)探究――分析問題,解決問題

      出示三個三角形:直角三角形、銳角三角形和鈍角三角形。

      引導(dǎo):直角三角形的內(nèi)角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內(nèi)角和也有可能是180度。

      提問:你有什么辦法來驗證這一猜想呢?

      拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發(fā)現(xiàn)規(guī)律。

      方法一:可以像上面那樣先測量每個三角形的三個內(nèi)角的度數(shù),再計算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學(xué)生測量計算,教師巡視指導(dǎo)。

      引導(dǎo):測量時要盡量做到準(zhǔn)確,測量是存在誤差的,對于測量的不準(zhǔn)的同學(xué)要重新測定和確認(rèn),計算出它們的和,發(fā)現(xiàn)其中的規(guī)律。

      方法二:既然是求三角形的內(nèi)角和,我們就可以想辦法把三角形的3個內(nèi)角拼在一起,看看拼成了什么角。那怎樣才能把3個內(nèi)角拼在一起呢?我們可以將三角形中的3個內(nèi)角撕下來,再拼在一起,會發(fā)現(xiàn)拼成了一個平角,是180度。

      方法三:把三角形的三個內(nèi)角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內(nèi)角折過來拼在一起,同樣會發(fā)現(xiàn)拼成一個平角,是180度。

      方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內(nèi)角和是180度進(jìn)行推理。180+180=360度,360-90-90=180度。

      (三)歸納――獲得結(jié)論

      交流:回顧以上3個三角形的內(nèi)角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?

      總結(jié):通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內(nèi)角和都是180度這一結(jié)論。

      (四)拓展――鞏固練習(xí)

      1、將一個大三角形剪成兩個小三角形,每個小三角形的內(nèi)角和是多少度?

      2、在一個三角形中,根據(jù)兩個內(nèi)角的度數(shù),求第三個內(nèi)角的度數(shù)?

      篇12:《三角形的內(nèi)角和》教學(xué)設(shè)計

      《三角形的內(nèi)角和》教學(xué)設(shè)計

      學(xué)情分析:

      學(xué)生已經(jīng)掌握了角的概念、角的分類和角的度量等知識。在本課之前,學(xué)生又掌握了三角形的穩(wěn)定性研究了三角形的分類。這些都為進(jìn)一步研究三角形內(nèi)角和作了知識儲備和心理準(zhǔn)備,為本課內(nèi)容的教學(xué)作了鋪墊。三角形的內(nèi)角和是三角形的一個重要性質(zhì)。它有助于理解三角形的三個內(nèi)角之間的關(guān)系,是進(jìn)一步學(xué)習(xí)、研究幾何問題的基礎(chǔ)。

      教學(xué)目標(biāo):

      1、知識與技能:通過操作活動探索發(fā)現(xiàn)和驗證“三角形的內(nèi)角和是180度”的規(guī)律。

      2、過程與方法:通過量一量、剪一剪、拼一拼,培養(yǎng)學(xué)生的合作能力、動手實踐能力,并運(yùn)用新知識解決問題的能力。

      3、情感態(tài)度:使學(xué)生體驗數(shù)學(xué)學(xué)習(xí)成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。

      教學(xué)重點(diǎn):

      探索發(fā)現(xiàn)和驗證三角形的內(nèi)角和是180度。

      教學(xué)難點(diǎn):

      對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。

      教具準(zhǔn)備:

      教師準(zhǔn)備:多媒體課件、不同類形大小不一的三角形若干個、記錄表

      學(xué)生準(zhǔn)備:量角器、直尺、剪刀

      教學(xué)過程:

      一、激趣導(dǎo)入

      多媒體展示三角形

      出示謎語:形狀似座山,穩(wěn)定性能堅

      三竿首尾連,學(xué)問不簡單?????(打一圖形名稱)

      (預(yù)設(shè):三角形)

      師:誰能介紹介紹三角形?

      (生1:三角形有三條邊、三個頂點(diǎn)、三個角。

      生2:三角形按角分類,分為鈍角三角形、銳角三角形、直角三角形。)

      師:你喜歡哪種三角形?(鈍角三角形、銳角三角形、直角三角形)

      師:同學(xué)們會畫三角形嗎?請你在練習(xí)本上畫一個你喜歡的三角形。

      師:鈍角、直角、銳角三角形三兄弟吵起來了?我們快去看一看。

      師:今天我們就來研究一下三角形的內(nèi)角和。

      二、學(xué)習(xí)目標(biāo)

      1、通過動手操作,使學(xué)生理解并掌握三角形內(nèi)角和是180度的結(jié)論。

      2、能運(yùn)用三角形的內(nèi)角和是180度這一規(guī)律,求三角形中未知角的'度數(shù)。

      3、培養(yǎng)動手動腦及分析推理能力。

      三、自主學(xué)習(xí)(展示量角法)

      1.理解三角形的內(nèi)角、內(nèi)角和

      (1)板書展示三角形

      師:要想知道什么是三角形的內(nèi)角和,我們得先知道什么是三角形的內(nèi)角?(三角形里面的三個角都是三角形的內(nèi)角。)

      師:你能過來指指嗎?同意嗎?內(nèi)角有幾個?

      師:為了研究方便,我們把三角形的三個內(nèi)角分別標(biāo)上∠1、∠2、∠3。

      師:你能像老師一樣把你的三角形標(biāo)上∠1、∠2、∠3嗎?

      (2)三角形的內(nèi)角和

      師:什么是三角形的內(nèi)角和?

      (三角形三個角的度數(shù)的和,就是三角形的內(nèi)角和,即:∠1+∠2+∠3)

      師:就是把∠1+∠2+∠3加起來。

      師:根據(jù)我們以前的經(jīng)驗,我們怎么知道∠1、∠2、∠3的度數(shù)呢?(預(yù)設(shè):用量角器量)

      師:請同學(xué)們拿出量角器,量一量你畫的三角形的三個內(nèi)角,并算出他們的和。(4分鐘)

      學(xué)生測量(1分40)匯報結(jié)果(5人)。

      教師填寫測量匯報單。

      師:觀察匯報的結(jié)果,你有什么發(fā)現(xiàn)?(所有三角形內(nèi)角和度數(shù)不一樣、三角形內(nèi)角和都在180度左右)

      四、合作探究

      師:這是同學(xué)們親自測量發(fā)現(xiàn)的,沒有得到統(tǒng)一的結(jié)果,這個辦法不能使人信服,有沒有別的方法驗證?老師給每個小組都提供了很多個三角形,現(xiàn)在請你們以小組為單位,拿出三角形來研究研究三角形的內(nèi)角和到底是多少度。?(8分鐘)(剪拼法)

      1、操作驗證探索三角形內(nèi)角和的規(guī)律(6分鐘)

      (1)操作驗證:小組合作

      拿出裝有學(xué)具的信封[信封里面有老師為學(xué)生事先準(zhǔn)備的各種類型的三角形若干個(小組之間的三角形大小都不同)];拿出自備的直尺?剪刀

      (老師要給學(xué)生充裕的時間,保證學(xué)生能真正地試驗,操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)

      2、學(xué)生匯報

      (1)轉(zhuǎn)化法:

      生:兩個同樣的直角三角形可以拼成一個長方形,長方形每個直角都是90度,內(nèi)角和就是360度,所以三角形的內(nèi)角和就是360度的一半180度。

      師:他們用長方形的內(nèi)角和來研究今天所學(xué)的知識,得到三角形的內(nèi)角和是180度。

      (2)折拼法

      生:把三角形三個內(nèi)角分別向下邊折疊,拼成了一個平角,平角是180度,所以三角形的內(nèi)角和是180度。

      師:他們是用折拼法驗證三角形的內(nèi)角和是180度(動手能力真強(qiáng))

      (3)剪拼法

      生:把三角形三個內(nèi)角撕下來,拼成一個平角,平角是180,所以三角形的內(nèi)角和是180度。(師:提問怎樣能很快的找到三個角?把他們做上標(biāo)記。)

      標(biāo)記上之后再拼一拼,可見標(biāo)記的方法很科學(xué)。(20分鐘)

      3、教師演示

      師:我們再來感受一下怎么驗證三角形的內(nèi)角和的?

      師:這是什么三角形?把他折一折。

      師:這是什么三角形?我們也可以把他折一折。你有什么發(fā)現(xiàn)?(折完以后都有一個平角,平角是180度,所以三角形的內(nèi)角和是180度)

      師分別通過剪拼法驗證直角三角形、鈍角三角形、銳角三角形內(nèi)角和。

      師:注意觀察。

      師:演示完畢有什么發(fā)現(xiàn)?(預(yù)設(shè)這些三角形剪接后都拼成了平角)平角是180度,所以三角形的內(nèi)角和是180度。

      師:剛剛我們研究了什么三角形。他們的內(nèi)角和都是180度,那我們研究的這些三角形能不能代表所有的三角形,能。(因為三角形按角分類只能分成這三種。)(22分鐘)

      4、演示任意一個三角形的內(nèi)角和都是180度。

      出示一些三角形,讓學(xué)生指出內(nèi)角和。

      師:你有什么發(fā)現(xiàn)?(無論是什么樣的三角形他的內(nèi)角和都是180度,與三角形的形狀大小沒有關(guān)系。)(板書三角形的內(nèi)角和是180度。)

      師:那我們再看看剛剛匯報的結(jié)果。為什么之前測量的時候并沒有得到這樣得到結(jié)果呢?(測量的不夠精確,存在誤差)

      師:如果測量儀器再精密一些,測量的更準(zhǔn)確一些都可以得到三角形內(nèi)角和是180度?,F(xiàn)在確定這個結(jié)論了嗎?(25分鐘)

      師:除了這節(jié)課大家想到的方法,還有很多方法也能證明三角形的內(nèi)角和是180°到初中我們還有更嚴(yán)密的方法證明三角形的內(nèi)角和是180°。早在300多年前就有一位法國著名的科學(xué)家帕斯卡,他在12歲時就驗證了任何三角形的內(nèi)角和都是180°

      師:你們能用今天的發(fā)現(xiàn)做一些練習(xí)嗎?

      五、測評反饋

      1、判斷。

      (1)直角三角形的兩個銳角的和是90°。

      (2)一個等腰三角形的底角可能是鈍角。

      (3)三角形的內(nèi)角和都是180°,與三角形的大小無關(guān)。

      4、剪一剪。

      把一個三角形紙板沿直線剪一刀,剩下的紙板的內(nèi)角和是多少度?

      六、課后作業(yè)

      69頁第1題、第3題。

      七、板書設(shè)計

      下載三角形的內(nèi)角和教學(xué)設(shè)計一等獎(實用12篇)word格式文檔
      下載三角形的內(nèi)角和教學(xué)設(shè)計一等獎(實用12篇).doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        三角形內(nèi)角和教學(xué)設(shè)計

        三角形內(nèi)角和教學(xué)設(shè)計 一、教學(xué)目標(biāo): 1、通過小組猜想、探索、驗證三角形的內(nèi)角和等于180°,并能運(yùn)用知識解決簡單問題。 2、經(jīng)歷三角形內(nèi)角和的探究過程,體驗“猜想——驗證......

        《三角形內(nèi)角和》教學(xué)設(shè)計

        《三角形的內(nèi)角和是180°》教學(xué)設(shè)計 教學(xué)思路: 由在數(shù)學(xué)王國里,銳角、直角、鈍角三角形內(nèi)角和大小的爭論,引出什么是內(nèi)角與內(nèi)角和,并開始討論內(nèi)角和的大小。引導(dǎo)學(xué)生經(jīng)歷對三個......

        三角形內(nèi)角和教學(xué)設(shè)計

        冀教版教材小學(xué)數(shù)學(xué)四年級下冊 《三角形內(nèi)角和》4+4N教學(xué)模式講析課 ——承德縣上谷學(xué)區(qū)中心校 一、創(chuàng)設(shè)情境 創(chuàng)設(shè)情境的目的:是以情境問題的解決為需求,激發(fā)學(xué)生在情境中發(fā)......

        三角形內(nèi)角和教學(xué)設(shè)計[★]

        《三角形的內(nèi)角和》教學(xué)設(shè)計 沈蕓 教學(xué)內(nèi)容 義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(蘇教版)四年級數(shù)學(xué)(下)第28-29頁 教學(xué)目標(biāo) 認(rèn)知目標(biāo) 1. 讓學(xué)生運(yùn)用量、拼、擺等方法,主動探索并掌......

        三角形內(nèi)角和教學(xué)設(shè)計

        《三角形的內(nèi)角和》教學(xué)設(shè)計 新華實驗小學(xué)安利 教材內(nèi)容:人教版四年級下冊數(shù)學(xué)第85頁例6 教學(xué)目標(biāo): 1、通過“量一量”“算一算”“拼一拼”“折一折”的方法,讓學(xué)生推理歸納三......

        《三角形內(nèi)角和》教學(xué)設(shè)計

        《三角形內(nèi)角和》教學(xué)設(shè)計 【教材內(nèi)容】 北京市義務(wù)教育程改革實驗教材(北京版)第九冊數(shù)學(xué) 【教材分析】 《三角形內(nèi)角和》是北京市義務(wù)教育程改革實驗教材(北京版)第九冊第三單......

        《三角形內(nèi)角和》 教學(xué)設(shè)計

        《三角形內(nèi)角和》 教學(xué)設(shè)計 【教學(xué)內(nèi)容】四年級下冊教科書第24頁“探索與發(fā)現(xiàn):三角形內(nèi)角和?!?【學(xué)習(xí)目標(biāo)】 1.讓學(xué)生親自動手,通過量、剪、拼等直觀操作活動,探索、發(fā)現(xiàn)并證......

        三角形內(nèi)角和教學(xué)設(shè)計

        三角形內(nèi)角和教學(xué)設(shè)計 一、教材分析: 教材的小標(biāo)題為“探索與發(fā)現(xiàn)”,說明這部分內(nèi)容要求學(xué)生自主探索,并發(fā)現(xiàn)有關(guān)三角形內(nèi)角和性質(zhì)。 教材創(chuàng)設(shè)了一個有趣的問題情境,以此激發(fā)學(xué)......