欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      平面直角坐標(biāo)系中的平行四邊形微教案

      時(shí)間:2019-05-12 16:43:11下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《平面直角坐標(biāo)系中的平行四邊形微教案》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《平面直角坐標(biāo)系中的平行四邊形微教案》。

      第一篇:平面直角坐標(biāo)系中的平行四邊形微教案

      平面直角坐標(biāo)系中的平行四邊形

      東營市勝利第二中學(xué)

      一、設(shè)計(jì)意圖

      平面直角坐標(biāo)系中圖形位置的確定是綜合性較強(qiáng)、難度較大的一類問題,也是中考中的熱點(diǎn)問題。本節(jié)課是從綜合題中抽取出幾何模型,把綜合題分解為若干小綜合題,通過一題多變、由易到難的引申,實(shí)現(xiàn)對常規(guī)方法的歸納和總結(jié)。本節(jié)課還注意對數(shù)學(xué)思想方法的復(fù)習(xí),始終強(qiáng)調(diào)數(shù)形結(jié)合的基本思想,強(qiáng)化分類討論的意識和方法。

      二、教學(xué)目標(biāo)設(shè)計(jì) 1.知識與技能

      ①通過引例求作以不在同一平面內(nèi)的三個(gè)點(diǎn)A、B、C為頂點(diǎn)的平行四邊形復(fù)習(xí)近平行四邊形的判定,進(jìn)一步理解圖形變換;

      ②把幾何圖形放在平面直角坐標(biāo)系中,對圖形頂點(diǎn)的坐標(biāo)求法進(jìn)行歸納和總結(jié),復(fù)習(xí)相關(guān)知識的目的的同時(shí),也為后續(xù)例題的解決作好鋪墊;

      ③通過對復(fù)雜條件的一步步加深,及時(shí)總結(jié),掌握從眾多的條件中確定類型,提高自己的解題能力。2.過程與方法

      ①綜合題中的幾何模型【引例】鋪墊到位,總結(jié)作圖定位的依據(jù)和方法

      ②將專題細(xì)化,一題多變,充分引申,最大限度的發(fā)揮例題的作用。掌握數(shù)學(xué)解題策略,爭取提升小綜合題的解決能力

      ③通過幾何畫板的使用,直觀的展示思維軌跡,提高課堂效率。

      3.情感態(tài)度與價(jià)值觀

      ①通過一題多變活躍思維,學(xué)會傾聽他人的解題思路,理解他人的解法 ②通過題后小結(jié),提高復(fù)習(xí)效果,同時(shí)提高解題能力。三、教學(xué)過程

      1、引例:

      如圖,A、B、C是不在同一直線上的三個(gè)點(diǎn),求作以A、B、C為頂點(diǎn)的平行四邊形。(學(xué)生口答做法,教師演示)

      教師提問:你還能作出其他的平行四邊形嗎?為什么?

      得出結(jié)論:以對角線為分類標(biāo)準(zhǔn),分別以AB、AC、BC為對角線可作一個(gè)平行四邊形,共3個(gè)。

      2、引申

      平行四邊形的性質(zhì)我們已經(jīng)非常熟悉了。如果我們把平行四邊形放在平面直角坐標(biāo)中,又能得到什么新的結(jié)論呢?(出示課題)

      現(xiàn)在我把3個(gè)平行四邊形中的一個(gè)放在平面直角坐標(biāo)中,請大家觀看屏幕:

      (1)如圖,平面直角坐標(biāo)系中,□ABCD的頂點(diǎn)A(0,0),B(4,2),C(9,0),求點(diǎn)D的坐標(biāo);

      (學(xué)生口答)

      (2)如圖,平面直角坐標(biāo)系中,□ABCD的頂點(diǎn)A(0,0),B(4,1),D(9,0),求點(diǎn)C的坐標(biāo);(學(xué)生口答)

      (估計(jì)有三種方法:①構(gòu)造全等三角形②平移③中點(diǎn)坐標(biāo)公式)

      (3)如圖,平面直角坐標(biāo)系中,□ABCD的頂點(diǎn)A(a, b),B(c, d),E(e, f),求點(diǎn)D的坐標(biāo);(學(xué)生口答)

      提問:①A、C兩點(diǎn)的橫坐標(biāo)之和等于多少?B、D兩點(diǎn)的橫坐標(biāo)之和等于多少?可得什么結(jié)論?

      ② A、C兩點(diǎn)的縱坐標(biāo)之和等于多少?B、D兩點(diǎn)的縱坐標(biāo)之和等于多少?可得什么結(jié)論? ③你能用文字簡潔地概括一下剛才的結(jié)論嗎?

      結(jié)論:平行四邊形對角線上的兩個(gè)頂點(diǎn)的橫(縱)坐標(biāo)之和相等。

      從這個(gè)結(jié)論中,我們可以知道:平行四邊形中,如果已知任意三個(gè)頂點(diǎn)的橫坐標(biāo),那么第四個(gè)點(diǎn)的橫坐標(biāo)也隨之可求;如果已知任意三個(gè)頂點(diǎn)的縱坐標(biāo),那么第四個(gè)點(diǎn)的縱坐標(biāo)也可以求出來了。

      3、例題

      如圖,平面直角坐標(biāo)系中,拋物線y=x2+2x-3與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),拋物線的頂點(diǎn)是E。

      (1)請求出點(diǎn)D的坐標(biāo),使得以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形;(學(xué)生口答,教師板演)

      說明:此題實(shí)際上是引例的變式,只不過加入了拋物線的情境。

      (此種類型可視為三個(gè)定點(diǎn)型,可以對角線為分類標(biāo)準(zhǔn)分三種情況討論)(2)設(shè)點(diǎn)P是拋物線上一點(diǎn),作PN⊥x軸于點(diǎn)N,是否存在這樣的點(diǎn)P,使得以O(shè)、C、P、N為頂點(diǎn)的四邊形是平行四邊形。若存在,請求出P點(diǎn)的坐標(biāo),若不存在,請說明理由。(此種類型可視為兩定兩聯(lián)動型,已知線段只能作為平行四邊形的邊,可結(jié)合圖形考慮有幾種情況)

      (3)若點(diǎn)M是對稱軸上一點(diǎn),點(diǎn)N是拋物線上一點(diǎn)。以A、C、M、N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)M、N的坐標(biāo)。

      (此種類型可視為兩定兩動型,可把AC當(dāng)作邊或?qū)蔷€來分情況討論,同時(shí)不要忘記結(jié)合圖形)

      四、小結(jié)

      今天我們學(xué)習(xí)了平面直角坐標(biāo)系中的平行四邊形。這類問題是中考壓軸題中的一種常見類型。解決這類問題我們應(yīng)注意什么呢?

      ①分類:常見類型有三個(gè)定點(diǎn)型、兩定兩聯(lián)動型、兩定兩動型

      可以把固定線段作為邊或?qū)蔷€來分類,同時(shí)不要忘記結(jié)合圖形來討論 ②頂點(diǎn)坐標(biāo)如何計(jì)算

      平行四邊形中,如果已知任意三個(gè)頂點(diǎn)的橫坐標(biāo),那么第四個(gè)點(diǎn)的橫坐標(biāo)也隨之可求; 同樣如果已知任意三個(gè)頂點(diǎn)的縱坐標(biāo),那么第四個(gè)點(diǎn)的縱坐標(biāo)也可以求出來了。

      五、布置作業(yè) 見附頁

      第二篇:平面直角坐標(biāo)系教案

      以下是查字典數(shù)學(xué)網(wǎng)為您推薦的平面直角坐標(biāo)系教案,希望本篇文章對您學(xué)習(xí)有所幫助。平面直角坐標(biāo)系第一課時(shí) 6.1-1 有序數(shù)對

      1、理解有序數(shù)對的概念,了解平面內(nèi)的點(diǎn)與有序數(shù)對的關(guān)系。

      2、利用有序數(shù)對確定物體的位置。重點(diǎn):有序數(shù)對 難點(diǎn):用有序數(shù)對表示具體位置

      一、閱讀教材P39~P40的內(nèi)容,回答下面問題:

      二、獨(dú)立思考:(1)確定直線上某一點(diǎn)的位置一般需要_________個(gè)數(shù)據(jù),確定平面內(nèi)某一點(diǎn)的位置一般需要_________個(gè)數(shù)據(jù)。(2)某賓館第四樓第1個(gè)房間的門牌為4-1,那么第五樓第10個(gè)房間門牌號應(yīng)為_____。(3)七年級3班座位有7排8列,王燕同學(xué)的座位是第3排第4列,簡記作(3,4),張波同學(xué)的座位簡記作(5,2),則張波坐在第______排第______列。(4)如果影劇院的座位10排2號用(10,2)表示,那么(8,3)表示_______________。例1:怪獸吃豆豆是一種計(jì)算機(jī)游戲,如圖所示的標(biāo)志 表示怪獸先后經(jīng)過的幾個(gè)位置,如果用(1,2)表示怪獸按圖中箭頭所指的路線經(jīng)過的第三個(gè)位置,那么請你用同樣的方法表示圖中怪獸經(jīng)過的其他幾個(gè)位置。例2:螞蟻從A點(diǎn)出發(fā),經(jīng)過通道線爬回蟻巢B點(diǎn),若用(0,0)(1,0)(1,1)(2,1)(2,2)表示它的一種爬法,請列出其他所有不同的爬法(必須是最短的線路)。例3:如圖,是某校七年級(1)班的學(xué)生座位的平面圖。(1)請說出小明和小麗的位置;(2)若用(3,2)表示第3排第2列的位置,那么(4,5)表示什么位置?小明和小麗的位置可以怎樣表示?(3)(3,4)與(4,3)表示的位置是否相同?

      一、課堂練習(xí)

      1、課本P40練習(xí)題

      二、作業(yè)布置:

      1、課本P44習(xí)題6.1第1題。

      2、北京位于東經(jīng)116.4、北緯39.9,我們用有序數(shù)對(116.4,39.9)表示。某地的位置用有序數(shù)對(108,19.1)表示,則地理位置位于東經(jīng)____度,北緯_____度。

      3、如圖(3)所示,如果點(diǎn)A的位置為(3,2),那么點(diǎn)B的位置為______, 點(diǎn)C 的位置為______,點(diǎn)D和點(diǎn)E的位置分別為______,_______.4、中心五樓第一個(gè)房間的門牌號是0501,那么六樓第10個(gè)房間的門牌號應(yīng)為_________.三、自我測評(一)選擇題

      1、下列數(shù)據(jù)不能確定物體位置的是()A、4樓8號 B、北偏東30C、希望路25號 D、東經(jīng)118、北緯402、如圖所示,一方隊(duì)正沿箭頭所指的方向前進(jìn),A的位置為三列四行,表示為(3,4),那么B 的位置是()A.(4,5)B.(5,4)C.(4,2)D.(4,3)

      3、如圖所示,B左側(cè)第二個(gè)人的位置是()A.(2,5)B.(5,2)C.(2,2)D.(5,5)

      4、如圖所示,如果隊(duì)伍向西前進(jìn),那么A北側(cè)第二個(gè)人的位置是()A.(4,1)B.(1,4)C.(1,3)D.(3,1)

      5、如圖所示,(4,3)表示的位置是()A.A B.B C.C D.D(二)填空題

      6、如圖所示,是小剛畫的一張臉,他對妹妹說:如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可表示成___________。

      7、如圖,是象棋盤的一部分,一匹馬在點(diǎn)B的位置,規(guī)定列數(shù)在前,排數(shù)在后,則點(diǎn)B可用有序數(shù)對表示為___________,當(dāng)馬從點(diǎn)B躍到點(diǎn)C時(shí),點(diǎn)C的位置可表示為______________;如果按照象棋的規(guī)則,馬還能躍到哪些位置,怎樣表示:_______________________________________(三)解答題

      8、如圖是某教室學(xué)生座位平面圖。(1)請說出王明和張強(qiáng)的座位位置;(2)若用(3,2)表示第3排第2列的位置,那么(4,5)表示什么位置?王明和張強(qiáng)的座位位置可以怎樣表示?(3)請說出(3,3)和(4,8)表示哪兩位同學(xué)的座位位置;(4)(3,4)和(4,3)的位置相同嗎?一般地,若,()與()表示的位置相同嗎?

      9、如圖,點(diǎn)A表示3街與5大道的十字路口,點(diǎn)B表示5街與3大道的十字路口,如果用(3,5)(4,5)(5,5)(5,4)(5,3)表示由A到B的一條路徑,那么你能用同樣的方式寫出由A到B的其他幾條路徑嗎?

      10、如圖是某次海戰(zhàn)中敵我雙方艦艇對峙示意圖,對我方艦艇來說:(1)北偏東方向上有哪些目標(biāo)?要想確定敵艦B的位置,還需要什么數(shù)據(jù)?(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?(3)要確定每艘敵艦的位置,各需要幾個(gè)數(shù)據(jù)?第二課時(shí) 6.1-2平面直角坐標(biāo)系(一)

      1、認(rèn)識平面直角坐標(biāo)系,并會畫平面直角坐標(biāo)系

      2、能在平面直角坐標(biāo)系中,根據(jù)點(diǎn)的坐標(biāo)描點(diǎn)的位置,會由點(diǎn)的位置寫出點(diǎn)的坐標(biāo)。重點(diǎn):平面直角坐標(biāo)系和點(diǎn)的坐標(biāo)。難點(diǎn):平面直角坐標(biāo)系和點(diǎn)的坐標(biāo)

      一、閱讀教材P40-P41。

      二、獨(dú)立思考:

      1、_____________________________________叫平面直角坐標(biāo)系,水平的數(shù)軸叫x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

      2、教材P44習(xí)題6.1第1題。在如圖所示的平面直角坐標(biāo)系中描出A(-1,0),B(5,0),C(2,1),D(0,1)四點(diǎn),并用線段將A、B、C、D四點(diǎn)依次連接起來,得到一個(gè)什么圖形?你能求出它的面積嗎?如圖,寫出其中標(biāo)有字母的各點(diǎn)的坐標(biāo),并指出它們的橫坐標(biāo)和縱坐標(biāo):建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并在平面直角坐標(biāo)系中描出下列各點(diǎn),并將各點(diǎn)用線段依次連接起來;(2,1)(6,1)(6,3)(7,3)(4,6)(1,3)(2,3)

      一、課堂練習(xí):

      1、教材P43練習(xí)第1、2題

      二、作業(yè)布置

      1、教材P45第4、5題;

      2、教材P46第7題

      二、自我測評(一)選擇題

      1、點(diǎn)C在x軸上方,y軸左側(cè),距離x軸2個(gè)單位長度,距離y軸3個(gè)單位長度,則點(diǎn)C的坐標(biāo)為()A、()B、()C、()D、()

      2、若點(diǎn)P(x,y)的坐標(biāo)滿足 =0,則點(diǎn)P 的位置是()A、在x軸上 B、在y軸上 C、是坐標(biāo)原點(diǎn) D、在x軸上或在y軸上(二)填空題

      3、在平面直角坐標(biāo)系上,原點(diǎn)O的坐標(biāo)是(),x軸上的點(diǎn)的坐標(biāo)的特點(diǎn)是_______ 坐標(biāo)為0;y軸上的點(diǎn)的坐標(biāo)的特點(diǎn)是 坐標(biāo)為0。

      4、已知x軸上點(diǎn)P到y(tǒng) 軸的距離是3,則點(diǎn)P坐標(biāo)是_________。

      5、已知點(diǎn)M 在 軸上,則點(diǎn)M的坐標(biāo)為 ___。

      6、若點(diǎn)P到 軸的距離為2,到 軸的距離為3,則點(diǎn)P的坐標(biāo)為 ___(三)解答題

      7、圖中標(biāo)明了李明同學(xué)家附近的一些地方。(1)根據(jù)圖中所建立的平面直角坐標(biāo)系,寫出學(xué)校,郵局的坐標(biāo)。(2)某星期日早晨,李明同學(xué)從家里出發(fā),沿著(-2,-1)、(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路線轉(zhuǎn)了一下,寫出他路上經(jīng)過的地方。(3)連接他在(2)中經(jīng)過的地點(diǎn),你能得到什么圖形?

      8、王霞和爸爸、媽媽到人民公園游玩,回到家后,她利用平面直角坐標(biāo)系畫出了公園的景區(qū)地圖,如圖所示。可是她忘記了在圖中標(biāo)出原點(diǎn)和x軸、y軸。只知道游樂園D的坐標(biāo)為(2,-2),你能幫她求出其他各景點(diǎn)的坐標(biāo)?

      10、如圖,在直角坐標(biāo)系中,第一次將 變換成,第二次將 變成,第三次將 變成,已知。(1)、觀察每次變換前后的三角形有何變化,找出規(guī)律,按此規(guī)律再將 變換成,則 的坐標(biāo)是__,的坐標(biāo)是__。(2)若按第(1)題找到的規(guī)律將 進(jìn)行了n次變換,得到,比較每次變換中三角形頂點(diǎn)坐標(biāo)有何變化,找出規(guī)律,推測 的坐標(biāo)是__,的坐標(biāo)是__。

      11、如圖,建立平面直角坐標(biāo)系,使點(diǎn)B、C的坐標(biāo)分別為(0,0)和(4,0),寫出點(diǎn)A、D、E、F、G的坐標(biāo)。

      12、如圖:左右兩幅圖案關(guān)于軸對稱,左圖案中左右眼睛的坐標(biāo)分別是,嘴角左右端點(diǎn)的坐標(biāo)分別是,⑴試確定右圖案的左右眼睛和嘴角左右端點(diǎn)的坐標(biāo)⑵你是怎樣得到的?與同伴交流。第三課時(shí) 6.1-2平面直角坐標(biāo)系(二)

      1、認(rèn)識坐標(biāo)平面并能判斷各象限內(nèi)點(diǎn)的符號。

      2、能根據(jù)象限內(nèi)點(diǎn)的符號特點(diǎn)做相關(guān)練習(xí)重點(diǎn):認(rèn)識坐標(biāo)平面難點(diǎn):坐標(biāo)平面

      一、閱讀教材P42-P43的內(nèi)容

      二、獨(dú)立思考

      1、點(diǎn)A(3,2)在第________象限,點(diǎn)B(1,-2)在第_______象限,點(diǎn)C(-3,-4)在第________象限,點(diǎn)D(-4,1)在第______ 象限。

      2、點(diǎn)(0,3),(4,0),(2,2),(-1,0)在y軸上的點(diǎn)有_____________________;在第二象限的點(diǎn)是_______.3、點(diǎn)N在第三象限,它到x軸的距離是4,到y(tǒng)軸的距離是3,則N的坐標(biāo)是________.4、已知點(diǎn)P(),若點(diǎn)P在x軸上,則x=_________,若點(diǎn)P在y軸上,則x=_________。

      5、已知點(diǎn)P(x,y)在第二象限,且|x|=6,|y|=5,則點(diǎn)P的坐標(biāo)是_____________。在平面直角坐標(biāo)系中描出下列各點(diǎn),并指出各點(diǎn)所在的象限:A(4,5),B(-2,-3),C(-4,-1),D(2.5,-2),E(0,-4)寫出如圖中三角形ABC各頂點(diǎn)的坐標(biāo),并說明點(diǎn)A、B、C所在的象限,且求出此三角形的面積。已知A(),B(),根據(jù)以下要求確定x,y的值。(1)直線AB//x軸;(2)直線AB//y軸;(3)A,B關(guān)于x軸對稱;(4)A、B兩點(diǎn)分別在一、二象限的角平分線上。

      一、課堂練習(xí)

      1、如圖,正方形邊長為2,寫出下各坐標(biāo)系中正方形的頂點(diǎn)的坐標(biāo)。

      二、作業(yè)布置教材P44第2題教材P45第6題

      三、自我檢測(一)選擇題

      1、在平面直角坐標(biāo)系中,點(diǎn)P(-5,8)在()A、第一象限 B、第二象限 C、第三象限 D、第四象限

      2、已知點(diǎn)P(a,-2)在二、四象限的角平分線上,則a的值是()A、2 B、-2 C、D、3、若x軸上的點(diǎn)P到y(tǒng)軸的距離是3,則點(diǎn)P的坐標(biāo)為()A、(3,0)B、(3,0或-3,0)C、(0,3)D、(0,3或0,-3)

      4、平面直角坐標(biāo)系中,點(diǎn)(n,1-n)一定不在第____象限()A、一 B、二 C、三 D、四

      5、在平面直角坐標(biāo)系中,點(diǎn)P(-3,4)到x軸的距離是()A、3 B、-3 C、4 D、-4(二)填空題

      6、已知點(diǎn)P(-3,2),則P在第_______象限內(nèi),點(diǎn)P到x軸的距離是______,到y(tǒng)軸的距離是________。

      7、已知點(diǎn)P(x,y)滿足xy0,則點(diǎn)P在______象限內(nèi)。

      8、如果p(a+b,ab)在第二象限,那么點(diǎn)Q(a,-b)在第 象限.9、如果點(diǎn)M(a,b)第二象限,那么點(diǎn)N(b,a)在第 象限。

      10、已知線段 MN=4,MN∥y軸,若點(diǎn)M坐標(biāo)為(-1,2),則N點(diǎn)坐標(biāo)為。(三)解答題

      11、若P(x,y)的坐標(biāo)滿足方程(x+3)2+|y+4|=0,求點(diǎn)P的坐標(biāo),并回答點(diǎn)P在第幾象限?

      12、在平面直角坐標(biāo)系中,點(diǎn)(-1,m2+1)一定在第幾象限?

      13、在平面直角坐標(biāo)系中,點(diǎn)E(3k-9,1-k)在第三象限內(nèi),且點(diǎn)的坐標(biāo)都為整數(shù),求點(diǎn)E的坐標(biāo)。

      14、已知點(diǎn)B(3a+5,-6a-2)在第二、四象限的平分線上,求a2009-a的值。

      15、在平面直角坐標(biāo)系中分別描出下列點(diǎn)的坐標(biāo),看看這些點(diǎn)在什么位置上?由此你有什么發(fā)現(xiàn)?(1)(2,3),(2,-1),(2,5),(2,0),(2,-5),(2,-4).(2)(3,2),(-1,2),(5,2),(0,2),(-5,2),(-4,2)

      16、如圖,四邊形ABCD各個(gè)頂點(diǎn)的坐標(biāo)分別為(-2,8),(-11,6),(-14,0),(0,0).(1)確定這個(gè)四邊形的面積,你是怎么做的?(2)如果把原來ABCD各個(gè)頂點(diǎn)縱坐標(biāo)保持不變,橫、縱坐標(biāo)都增加2,所得的四邊形面積又是多少?

      17、已知四邊形ABCD各頂點(diǎn)的坐標(biāo)分別是A(0,0),B(3,6),C(14,8),D(16,0);(1)請建立平面直角坐標(biāo)系,并畫出四邊形ABCD。(2)求四邊形ABCD的面積。

      第三篇:平面直角坐標(biāo)系教案

      平面直角坐標(biāo)系

      學(xué)習(xí)目標(biāo):

      (1)理解平面直角坐標(biāo)系的相關(guān)概念.(2)在給定的平面直角坐標(biāo)系中,會由點(diǎn)的位置寫出點(diǎn)的坐標(biāo),由點(diǎn)的坐標(biāo)確定點(diǎn)的位置. 學(xué)習(xí)重難點(diǎn):

      平面直角坐標(biāo)系及相關(guān)概念.

      一、復(fù)習(xí)引入

      問題1

      回顧已學(xué)內(nèi)容,回答下列問題:

      (1)什么是數(shù)軸?請畫出一條數(shù)軸.

      (2)如圖,A,B,C三點(diǎn)所表示的數(shù)分別是什么?在數(shù)軸上描出“-3”表示的點(diǎn).

      問題2

      在數(shù)軸上已知點(diǎn)能說出它的坐標(biāo),由坐標(biāo)能在數(shù)軸上找到對應(yīng)點(diǎn)的位置.那么數(shù)軸上的點(diǎn)與坐標(biāo)有怎樣的關(guān)系?

      二、設(shè)疑自探一:

      類似于利用數(shù)軸確定直線上點(diǎn)的位置,結(jié)合上節(jié)課學(xué)習(xí)的有序數(shù)對,回答問題:如圖,你能找到一種辦法來確定平面內(nèi)點(diǎn)B的位置嗎?

      (1)在圖中,點(diǎn)B記為(1,2),類比點(diǎn)B,你能分別寫出點(diǎn)A、C、D分別記為什么嗎?(2)了解法國數(shù)學(xué)家笛卡兒 解疑合探一:

      學(xué)生展示,其他同學(xué)補(bǔ)充,教師總結(jié)。

      三、設(shè)疑自探二:

      學(xué)生自學(xué)課本本節(jié)課內(nèi)容后,回答下列問題:

      ⑴平面直角坐標(biāo)系 在平面內(nèi)畫兩條互相__、原點(diǎn)重合的數(shù)軸,組成____________.水平的數(shù)軸稱為_____或_____,習(xí)慣上取______為正方向;豎直的數(shù)軸稱為______或_____,取______為正方向;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的_____.(2)如圖寫出點(diǎn)的坐標(biāo):A____;B____;C____;D____ 1

      (3)坐標(biāo)平面被兩條坐標(biāo)軸分成了哪幾個(gè)部分,分別對應(yīng)什么象限?(在上圖中標(biāo)注出象限)

      注意:坐標(biāo)軸上的點(diǎn)不屬于_____.(4)如圖甲,在平面直角坐標(biāo)系中,點(diǎn)B,C,D的坐標(biāo)分別是什么?

      甲 乙

      (5)如圖乙,在平面直角坐標(biāo)系中,你能分別寫出點(diǎn)A,B,C,D的坐標(biāo)嗎?x軸和y軸上的點(diǎn)的坐標(biāo)有什么特點(diǎn)?原點(diǎn)的坐標(biāo)是什么?

      解疑合探二:

      1、學(xué)生展示,其他同學(xué)補(bǔ)充,教師總結(jié)。

      2、教師出示例題,學(xué)生展示:

      例:畫平面直角坐標(biāo)系并描出下列各點(diǎn): A(4,5),B(-2,3),C(-4,-1),D(3,0),K(0,-4).

      四、質(zhì)疑再探:

      數(shù)軸上點(diǎn)與其坐標(biāo)是什么關(guān)系?想一想平面上的點(diǎn)與坐標(biāo)又是什么關(guān)系?

      五、運(yùn)用拓展:

      一、選擇題:

      1.如圖1所示,點(diǎn)A的坐標(biāo)是()A.(3,2);B.(3,3);C.(3,-3);D.(-3,-3)2.如圖1所示,橫坐標(biāo)和縱坐標(biāo)都是負(fù)數(shù)的點(diǎn)是()A.A點(diǎn) B.B點(diǎn) C.C點(diǎn) D.D點(diǎn) 3.如圖1所示,坐標(biāo)是(-2,2)的點(diǎn)是()A.點(diǎn)A B.點(diǎn)B C.點(diǎn)C D.點(diǎn)D 4.若點(diǎn)M的坐標(biāo)是(a,b),且a>0,b<0,則點(diǎn)M在()A.第一象限;B.第二象限;C.第三象限;D.第四象限

      二、填空題: 1.點(diǎn)A(-3,2)在第_______象限,點(diǎn)D(-3,-2)在第_______象限,點(diǎn)C(3, 2)在第______象限,點(diǎn)D(-3,-2)在第_______象限,點(diǎn)E(0,2)在______軸上, 點(diǎn)F(2, 0)在______軸上.2.已知點(diǎn)M(a,b),當(dāng)a>0,b>0時(shí),M在第_______象限;當(dāng)a____,b______時(shí),M 在第二象限;當(dāng)a_____,b_______時(shí),M在第四象限;當(dāng)a<0,b<0時(shí),M在第______象限.三、提高訓(xùn)練:: 1.如果點(diǎn)A的坐標(biāo)為(a+1,-1-b),那么點(diǎn)A在第幾象限?為什么? 2.已知點(diǎn)P(a,b)在第四象限,則點(diǎn)Q(b-1,-a)在第 象限。

      第四篇:《平面直角坐標(biāo)系》參考教案

      7.1.2平面直角坐標(biāo)系

      教學(xué)目標(biāo)

      1.在復(fù)習(xí)數(shù)軸有關(guān)知識的基礎(chǔ)上,使學(xué)生理解平面直角坐標(biāo)系的有關(guān)概念,并會正確地畫出直角坐標(biāo)系.

      2.使學(xué)生能在建立在平面直角坐標(biāo)系中,由點(diǎn)的位置寫出它的坐標(biāo).

      3.讓學(xué)生在活動中形成形數(shù)結(jié)合的意識后合作交流的意識.

      重點(diǎn)、難點(diǎn)

      重點(diǎn):理解平面直角坐標(biāo)系的有關(guān)概念,能由點(diǎn)位置寫出坐標(biāo),由坐標(biāo)描出點(diǎn)的位置.

      難點(diǎn):解決實(shí)際問題,及概念理解;讓學(xué)生形成形數(shù)結(jié)合的意識.

      教學(xué)過程

      一、復(fù)習(xí)舊知識,引入新課

      問題:(1)什么是數(shù)軸,畫出數(shù)軸.

      (2)指出課本圖7.1?2中A、B點(diǎn)所表示的數(shù)是什么?并在數(shù)軸上描出“? 3”表示的點(diǎn)在數(shù)軸上的位置.

      由學(xué)生回答問題后教師引導(dǎo)學(xué)生得出:數(shù)軸上的點(diǎn)可以用一個(gè)數(shù)表示,這個(gè)數(shù)叫做這個(gè)點(diǎn)的坐標(biāo).反之,知道數(shù)軸上點(diǎn)的坐標(biāo),這個(gè)點(diǎn)就確定了.

      二、師生共同參于教學(xué)活動

      思考:類似于利用數(shù)軸確定直線上點(diǎn)的位置,能不能找到一種辦法來確定平面點(diǎn)的位置呢?

      我們可以在平面內(nèi)畫出兩條互相垂直,原點(diǎn)重合的數(shù)軸來表示.

      / 4

      教師進(jìn)一步指出:我們用平面內(nèi)兩條互相垂直、原點(diǎn)重合的數(shù)軸組成平面直角坐標(biāo)系.水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y 軸或縱軸,取向上方向?yàn)檎较?,兩坐?biāo)的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn).

      有了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一個(gè)有序數(shù)對來表示了,例如:由點(diǎn)M分別向x軸y軸作垂線,垂足在x軸上的坐標(biāo)是?2,垂足在y 軸上的坐標(biāo)是3,我們說A點(diǎn)的橫坐標(biāo)是?2,縱坐標(biāo)是3,有序數(shù)對(?2,3)就叫做點(diǎn)M的坐標(biāo),記作M(?2,3).

      思考:原點(diǎn)O的坐標(biāo)是什么?x軸和y軸上的點(diǎn)的坐標(biāo)有什么特點(diǎn).

      由學(xué)生討論、交流后得到共識:

      原點(diǎn)O的橫、縱坐標(biāo)都是0,x軸上的點(diǎn)的縱坐標(biāo)為0,y軸上的點(diǎn)的橫坐標(biāo)為0.

      建立了平面直角坐系以后,坐標(biāo)平面就被兩條坐標(biāo)軸分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四個(gè)部分,分別叫第一象限、第二象限、第三象限、第四象限.坐標(biāo)上的點(diǎn)不屬于任何象限.

      讓學(xué)生完成以下問題:

      / 4

      各象限上的點(diǎn)有何特點(diǎn)?

      學(xué)生交流后得到共識:

      第一象限上的點(diǎn),橫坐標(biāo)為正數(shù),縱坐標(biāo)為正數(shù);

      第二象限上的點(diǎn),橫坐標(biāo)為負(fù)數(shù),縱坐標(biāo)為正數(shù);

      第三象限上的點(diǎn),橫坐標(biāo)為負(fù)數(shù),縱坐標(biāo)為負(fù)數(shù);

      第四象限上的點(diǎn),橫坐標(biāo)為正數(shù),縱坐標(biāo)為負(fù)數(shù).

      三、鞏固練習(xí)

      P68,練習(xí)

      四、作業(yè)

      1.教科書P68 3,6

      2.補(bǔ)充作業(yè):

      一、填空題.

      1.如果點(diǎn)P(a+5,a?2)在x軸上,那么P點(diǎn)坐標(biāo)為________.

      2.點(diǎn)A(?2,?1)與x軸的距離是________;與y軸的距離是________.

      3.點(diǎn)M(a,b)在第二象限,則點(diǎn)N(?b,b?a)在________象限.

      4.點(diǎn)A(3,a)在x軸上,點(diǎn)B(b,4)在y軸上,則a=______,b=______,S△AOB=_____.

      二、選擇題:

      1.已知的平面直角坐標(biāo)系中A(?3,0)在()A.x軸正半軸上 B.x軸負(fù)半軸上;

      C.y軸正半軸上 D.y軸負(fù)半軸上

      2.點(diǎn)M(a,b)的坐標(biāo)ab=0,那么M(a,b)位置在()

      A.y軸上 B.x軸上

      C.x軸或y軸上

      D.原點(diǎn)

      / 4

      答案:

      一、1.(7,0)2.2,1 3.第二象限 4.0,0,6

      二、1.B 2.C

      / 4

      第五篇:平面直角坐標(biāo)系2 教案

      平面直角坐標(biāo)系2 一.教學(xué)目標(biāo)

      (一)教學(xué)知識點(diǎn)

      1.理解平面直角坐標(biāo)系,以及橫軸、縱軸、原點(diǎn)、坐標(biāo)等的概念.2.認(rèn)識并能畫出平面直角坐標(biāo)系.3.能在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫出它的坐標(biāo).(二)能力訓(xùn)練要求

      1.通過畫坐標(biāo)系,由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合意識,合作交流意識.2.通過對一些點(diǎn)的坐標(biāo)進(jìn)行觀察,探索坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn),縱坐標(biāo)或橫坐標(biāo)相同的點(diǎn)所連成的線段與兩坐標(biāo)軸之間的關(guān)系,培養(yǎng)學(xué)生的探索意識和能力.(三)情感與價(jià)值觀要求

      由平面直角坐標(biāo)系的有關(guān)內(nèi)容,以及由點(diǎn)找坐標(biāo),反映平面直角坐標(biāo)系與現(xiàn)實(shí)世界的密切聯(lián)系,讓學(xué)生認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系和對人類歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動的積極性和好奇心.二.教學(xué)重點(diǎn)

      1.理解平面直角坐標(biāo)系的有關(guān)知識.2.在給定的平面直角坐標(biāo)系中,會根據(jù)點(diǎn)的位置寫出它的坐標(biāo).3.由點(diǎn)的坐標(biāo)觀察,橫坐標(biāo)相同的點(diǎn)或縱坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系.說明坐標(biāo)軸上的點(diǎn)的坐標(biāo)有什么特點(diǎn).三.教學(xué)難點(diǎn)

      1.橫(或縱)坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系的探究.2.坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)的總結(jié).四.教學(xué)方法

      討論式學(xué)習(xí)法.五.教具準(zhǔn)備

      方格紙若干張.投影片四張: 第一張:例題(記作§5.2.1 A);第二張:例題(記作§5.2.1 B);第三張:做一做(記作§5.2.1 C);第四張:練習(xí)(記作§5.2.1 D).六.教學(xué)過程

      Ⅰ.導(dǎo)入新課

      [師]隨著改革開放的逐步深化,我們中國發(fā)生了翻天覆地的變化,人民的生活水平在不斷提高,消費(fèi)水平也相應(yīng)提高,旅游業(yè)空前高漲.假如你到了某一個(gè)城市旅游,那么你應(yīng)怎樣確定旅游景點(diǎn)的位置呢?下面給出一張某市旅游景點(diǎn)的示意圖.根據(jù)示意圖回答以下問題.(1)你是怎樣確定各個(gè)景點(diǎn)位置的?(2)“大成殿”在“中心廣場”南、西各多少個(gè)格?“碑林”在“中心廣場”北、東各多少個(gè)格?(3)如果以“中心廣場”為原點(diǎn)作兩條相互垂直的數(shù)軸、分別取向右和向上的方向?yàn)閿?shù)軸的正方向,一個(gè)方格的邊長看做一個(gè)單位長度,那么你能表示“碑林”的位置嗎?“大成殿”的位置呢? 在上一節(jié)課我們已經(jīng)學(xué)習(xí)了許多確定位置的方法,主要學(xué)習(xí)用反映極坐標(biāo)思想的定位方式,和用反映直角坐標(biāo)思想的定位方式.在這個(gè)問題中大家看用哪種方法比較適合? [生]用反映直角坐標(biāo)思想的定位方式.[師]在上一節(jié)課中我們已經(jīng)做過這方面的練習(xí),現(xiàn)在應(yīng)怎樣表示呢?這就是本節(jié)課的任務(wù).Ⅱ.講授新課

      1.平面直角坐標(biāo)系、橫軸、縱軸、橫坐標(biāo)、縱坐標(biāo)、原點(diǎn)的定義.[師]大家通過預(yù)習(xí)肯定對這部分內(nèi)容已經(jīng)掌握,下面請一位同學(xué)加以敘述.[生]在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系.通常,兩條數(shù)軸分別置于水平位置與鉛直位置、取向右與向上的方向分別為兩條數(shù)軸的正方向.水平的數(shù)軸叫做x軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,兩條數(shù)軸的交點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn).對于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別向x軸、y軸作垂線,垂足在x軸、y軸上對應(yīng)的數(shù)a、b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)P的坐標(biāo).[師]好,在了解了有關(guān)直角坐標(biāo)系的知識后,我們再返回到剛才討論的問題中,請大家思考后回答.[生](2)“大成殿”在“中心廣場”南兩格,西兩格.“碑林”在“中心廣場”北一格,東三格.(3)如果以“中心廣場”為原點(diǎn)作兩條相互垂直的數(shù)軸,分別取向右和向上的方向?yàn)閿?shù)軸的正方向,一個(gè)方格的邊長看做一個(gè)單位長度,則“碑林”的位置是(3,1).[師]很好,在(3)的條件下,你能把其他景點(diǎn)的位置表示出來嗎? [生]能,鐘樓的位置是(-2,1);雁塔的位置是(0,3);大成殿的位置是(-2,-2);影月湖的位置是(0,-5);科技大學(xué)的位置是(-5,-7).2.例題講解

      投影片(§5.2.1 A)[例1]寫出圖中的多邊形ABCDEF各個(gè)頂點(diǎn)的坐標(biāo).[生]解:各個(gè)頂點(diǎn)的坐標(biāo)分別為: A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).[師]上圖中各頂點(diǎn)的坐標(biāo)是否永遠(yuǎn)不變? [生甲]是.[生乙]不是.當(dāng)坐標(biāo)軸的位置發(fā)生變動時(shí),各點(diǎn)的坐標(biāo)相應(yīng)地變化.[師]你能舉個(gè)例子嗎? [生]可以,若以線段BC所在的直線為x軸,縱軸(y軸)位置不變,則六個(gè)頂點(diǎn)的坐標(biāo)分別為: A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).[師]那大家再思考這位同學(xué)的結(jié)論是否是永恒的呢? [生]不是.還能再改變坐標(biāo)軸的位置,得出不同的坐標(biāo).[師]請大家在課后繼續(xù)進(jìn)行坐標(biāo)軸的變換,總結(jié)一下共有多少種.投影片(§5.2.1 B)在下圖中,確定A、B、C、D、E、F、G的坐標(biāo).[生]A(-4,4),B(-3,0),C(-2,-2),D(1,-4),E(1,-1),F(3,0),G(2,3).3.想一想

      在例1中,(1)點(diǎn)B與點(diǎn)C的縱坐標(biāo)相同,線段BC的位置有什么特點(diǎn)?(2)線段CE的位置有什么特點(diǎn)?(3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)? [師]由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B、C兩點(diǎn)到x軸的距離相等,所以線段BC平行于橫軸(即x軸),垂直于縱軸(即y軸).請大家討論第(2)題.[生]由C(3,-3),E(3,3)可知,它們的橫坐標(biāo)相同,即C、E兩點(diǎn)到y(tǒng)軸的距離相等,所以線段CE平行于縱軸(即y軸),垂直于橫軸(即x軸).[師]請大家先找出坐標(biāo)軸上的點(diǎn).[生]B(0,-3),A(-2,0),D(4,0),F(0,3)[師]這些點(diǎn)的坐標(biāo)中有什么特點(diǎn)呢? [生]坐標(biāo)中都有一個(gè)數(shù)字是0.[師]從剛才的分析中可知,在坐標(biāo)中只要有一個(gè)數(shù)字為0,則這個(gè)點(diǎn)一定在坐標(biāo)軸上.當(dāng)兩個(gè)數(shù)字都為0時(shí),這個(gè)點(diǎn)是否在坐標(biāo)軸上? [生]當(dāng)兩個(gè)數(shù)字都為0時(shí),就是坐標(biāo)原點(diǎn)(0,0),原點(diǎn)既在x軸上,又在y軸上.[師]那如何確定在哪個(gè)坐標(biāo)軸上呢? [生]A(-2,0),D(4,0)在x軸上,可以看出這兩個(gè)點(diǎn)的縱坐標(biāo)為0,橫坐標(biāo)不為0;B(0,-3),F(0,3)在y軸上,可知它們的橫坐標(biāo)為0,縱坐標(biāo)不為0.[師]經(jīng)過大家的共同探討,我們可以總結(jié)出:坐標(biāo)軸上的點(diǎn)的坐標(biāo)中至少有一個(gè)是0:橫軸上的點(diǎn)的縱坐標(biāo)為0,縱軸上的點(diǎn)的橫坐標(biāo)為0.4.做一做

      投影片(§5.2.1 C)(1)寫出下圖中的平行四邊形各個(gè)頂點(diǎn)的坐標(biāo),這種表示惟一嗎?(2)在圖中,A與D,B與C的縱坐標(biāo)相同嗎?為什么?A與B,C與D的橫坐標(biāo)相同嗎?為什么? [師]請大家先獨(dú)立思考,然后再進(jìn)行交流.[生甲]A(-5,3),B(-5,-3),C(7,-3),D(7,3).[生乙]不對.A、B、C、D四點(diǎn)的橫坐標(biāo)不對,應(yīng)該是這四點(diǎn)向x軸作垂線,垂足對應(yīng)的數(shù)字即為橫坐標(biāo),從方格紙上可以看出豎直方向的線都垂直于x軸,過A點(diǎn)的豎線對應(yīng)x軸上的數(shù)字-4,過B點(diǎn)的豎線對應(yīng)x軸上的數(shù)字-6,同理可知過C、D兩點(diǎn)的豎線對應(yīng)x軸上的數(shù)字6,8,所以A、B、C、D四點(diǎn)的坐標(biāo)分別為A(-4,3),B(-6,-3),C(6,-3),D(8,3).[師]這位同學(xué)分析得非常透徹,并指出了常見的錯(cuò)誤,應(yīng)引起大家的高度重視,避免發(fā)生類似的錯(cuò)誤.若以BC所在的直線為x軸,BC的中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系,請大家在這樣的坐標(biāo)系下寫出A、B、C、D四點(diǎn)的坐標(biāo),下面大家拿出準(zhǔn)備好的方格紙,按要求畫圖并建立直角坐標(biāo)系.[師]先互相對照圖畫的是否正確,然后口述四點(diǎn)的坐標(biāo).[生]A(-4,6),B(-6,0),C(6,0),D(8,6).[師]由此看來表示方法不惟一,請同學(xué)們看書上建立的直角坐標(biāo)系寫出四點(diǎn)的坐標(biāo).[生]A(-3,4),B(-6,-2),C(6,-2),D(9,4).[師]下面做第(2)題.[生]A與D兩點(diǎn)的縱坐標(biāo),B與C兩點(diǎn)的縱坐標(biāo)相同,因?yàn)锳D、BC分別平行于橫軸,A與B,C與D的橫坐標(biāo)不同,因?yàn)锳B與CD是與x軸斜交,它們向橫軸作垂線,垂足不同.Ⅲ.課堂練習(xí)

      投影片(§5.2.1 D)如下圖,求出A、B、C、D、E、F、O點(diǎn)的坐標(biāo).[生]A(-2,0),B(2,0),C(1,2),D(0,4),E(-1,2),F(0,2).Ⅳ.課時(shí)小結(jié)

      1.認(rèn)識并能畫出平面直角坐標(biāo)系.2.在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫出它的坐標(biāo).3.能適當(dāng)建立直角坐標(biāo)系,寫出直角坐標(biāo)系中有關(guān)點(diǎn)的坐標(biāo).4.橫(縱)坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系.連接橫坐標(biāo)相同的點(diǎn)的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點(diǎn)的直線平行于x軸、垂直于y軸.5.坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)? 橫坐標(biāo)軸上點(diǎn)的縱坐標(biāo)為0;縱坐標(biāo)軸上點(diǎn)的橫坐標(biāo)為0.Ⅴ.課后作業(yè)

      習(xí)題5.3 1.在下圖中,分別寫出八邊形各個(gè)頂點(diǎn)的坐標(biāo).解:A(-5,3),B(-5,-2),C(-2,-5),D(3,-5),E(6,-2),F(6,3),G(3,6),H(-2,6)2.下圖是畫在方格紙上的某島簡圖.(1)分別寫出地點(diǎn)A,L,O,P,E的坐標(biāo);(2)(4,7)(5,5)(2,5)所代表的地點(diǎn)分別是什么? 解:(1)A(3,8),L(6,7),O′(9,5),P(9,1),E(3,5).(2)(4,7)所代表的地點(diǎn)是C,(5,5)所代表的地點(diǎn)是F,(2,5)所代表的地點(diǎn)是D.Ⅵ.活動與探究

      如下圖,已知A(0,4),B(-3,0),C(3,0).要畫平行四邊形ABCD,根據(jù)A、B、C三點(diǎn)的坐標(biāo),試寫出第四個(gè)頂點(diǎn)D的坐標(biāo).你的答案惟一嗎? 解:如上圖當(dāng)D點(diǎn)的坐標(biāo)為(6,4)時(shí),四邊形ABCD是平行四邊形.(2)當(dāng)D點(diǎn)的坐標(biāo)為(-6,4)時(shí),四邊形ABCD是平行四邊形.(3)當(dāng)D點(diǎn)的坐標(biāo)為(0,-4)時(shí),四邊形ABCD是平行四邊形.所以答案不惟一.七.板書設(shè)計(jì)

      下載平面直角坐標(biāo)系中的平行四邊形微教案word格式文檔
      下載平面直角坐標(biāo)系中的平行四邊形微教案.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        6.1.2平面直角坐標(biāo)系教案

        DHTSSJ6.1.2 對話探索設(shè)計(jì)義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教版)七年級下冊 6.1.2平面直角坐標(biāo)系 〖教學(xué)目標(biāo)〗 1.會用坐標(biāo)表示坐標(biāo)平面上的點(diǎn); 2.會根據(jù)坐標(biāo)找到坐標(biāo)平面......

        6.1.2平面直角坐標(biāo)系教案

        6.1.2平面直角坐標(biāo)系(20號) 教學(xué)目標(biāo): 1.認(rèn)識平面直角坐標(biāo)系,了解點(diǎn)與坐標(biāo)的對應(yīng)關(guān)系; 2.會用坐標(biāo)表示點(diǎn),能在給定的直角坐標(biāo)系中由點(diǎn)的位置寫出點(diǎn)的坐標(biāo); 3.初步感知對應(yīng)關(guān)系.......

        第六章平面直角坐標(biāo)系教案[定稿]

        第六章平面直角坐標(biāo)系 6.1.1 《有序數(shù)對》教案 教學(xué)目標(biāo): 1、通過現(xiàn)實(shí)情景感受利用有序數(shù)對表示位置的廣泛性,能利用有序數(shù)對來表示位置。 2、讓學(xué)生感受到可以用數(shù)量表示圖形......

        初二《平面直角坐標(biāo)系》教案

        《平面直角坐標(biāo)系第二課時(shí)》教案 覺民中學(xué) 陳美虹 一、教材: 1、教學(xué)內(nèi)容: 本章內(nèi)容包括平面直角坐標(biāo)系及有關(guān)概念,點(diǎn)的坐標(biāo)等。實(shí)際生活中常用有序?qū)崝?shù)對表示位置,由此引出平面......

        平面直角坐標(biāo)系復(fù)習(xí)教案[范文]

        平面直角坐標(biāo)系 知識歸納梳理 1 題型一平面直角坐標(biāo)系的概念問題 1、已知Q(2x+4,xo﹣1)在y軸上,則點(diǎn)Q的坐標(biāo)為( )。 A、(0,4) B、(4,0) C、(0,3) D、(3,0) 2、平面直角坐標(biāo)系中,若點(diǎn)M......

        《平面直角坐標(biāo)系》說課稿

        《平面直角坐標(biāo)系》說課稿 《平面直角坐標(biāo)系》說課稿1 一、教材分析“平面直角坐標(biāo)系”是“數(shù)軸”的發(fā)展,它的建立,使代數(shù)的基本元素(數(shù)對)與幾何的基本元素(點(diǎn))之間產(chǎn)生一一對應(yīng),......

        人教版6.1.2《平面直角坐標(biāo)系》教案

        《 6.1. 2 平面直角坐標(biāo)系》教案 《人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書 數(shù)學(xué)》 七年級 下冊 第六章《平面直角坐標(biāo)系》 第一節(jié) 第二課時(shí) 一、教學(xué)目標(biāo): 1、知識與技能:(1)認(rèn)識......

        初中數(shù)學(xué)《平面直角坐標(biāo)系》教案

        初中數(shù)學(xué)《平面直角坐標(biāo)系》教案 一、教學(xué)目標(biāo) 【知識與技能】 掌握什么是平面直角坐標(biāo)系,會通過點(diǎn)的坐標(biāo)找到位置以及通過位置寫出點(diǎn)的坐標(biāo)。 【過程與方法】 在探索平面直......