第一篇:三角形全等的判定教案(二)
三角形全等的判定
(二)教學目標
1.三角形全等的“邊角邊”的條件.
2.經(jīng)歷探索三角形全等條件的過程,體會利用操作、?歸納獲得數(shù)學結論的過程.
3.能運用“SAS”證明簡單的三角形全等問題.
教學重點
三角形全等的條件.
教學難點
尋求三角形全等的條件.
教學過程
一、復習提問
1.怎樣的兩個三角形是全等三角形?
2.全等三角形的性質?
3.三角形全等的判定Ⅰ的內容是什么?
二、導入新課
1.三角形全等的判定
(二)(1)我們已經(jīng)知道三條邊對應相等的兩個三角形全等,那么除此之外還有沒有其它方法可以判定兩個三角形全等?我們來看下面的問題:
如圖2,AC、BD相交于O,AO、BO、CO、DO的長度如圖所標,△ABO和△CDO是否能完全重合呢?
不難看出,這兩個三角形有三對元素是相等的:
AO=CO,∠AOB=∠COD,BO=DO.
如果把△OAB繞著O點順時針方向旋轉,因為OA=OC,所以可以使OA與OC重合;又因為∠AOB =∠COD,OB=OD,所以點B與點D重合.這樣△ABO與△CDO就完全重合.
從上面的例子可以引起我們猜想:如果兩個三角形有兩邊和它們的夾角對應相等,那么這兩個三角形全等.
2.上述猜想是否正確呢?不妨作如下的實驗:
畫一個△A'B'C',使A'B'= AB,A'C'= AC,∠A'=∠A
①畫∠DAE=∠A;
②在射線A'D上截取 A'B'= AB,在射線A'E上截取A'C'= AC;
③連結B'C'.
把畫好的△A'B'C'剪下后可以發(fā)現(xiàn)它能與ΔABC完全重合,這樣我們就有:
3.邊角邊公理.
有兩邊和它們的夾角對應相等的兩個三角形全等(簡稱“邊角邊”或“SAS”)
三、隨堂練習
1.填空:
(1)如圖3,已知AD∥BC,AD=CB,要用邊角邊公理證明△ABC≌△CDA,需要三個條件,這三個條件中,已具有兩個條件,一是AD=CB(已知),二是___________;還需要一個條件_____________(這個條件可以證得嗎?).
(2)如圖4,已知AB=AC,AD=AE,∠1=∠2,要用邊角邊公理證明△ABD≌ACE,需要滿足的三個條件中,已具有兩個條件:_________________________(這個條件可以證得嗎?).
2、已知:AB=AC、AD=AE、∠1=∠2(圖4).求證:△ABD≌△ACE.
四、探究:
學生討論,教師歸納
可通過畫圖來回答這個問題,如圖,圖中ΔABD與ΔABC滿足兩邊及其中一邊的對角對應相等,但顯然這兩個三角形不全等
這說明有兩邊及其中一邊的對角對應相等的兩個三角形不一定全等
五、小 結:
1.根據(jù)邊角邊公理判定兩個三角形全等,要找出兩邊及夾角對應相等的三個條件.
2.找使結論成立所需條件,要充分利用已知條件(包括給出圖形中的隱含條件,如公共邊、公共角等),并要善于運用學過的定義、公理、定理.
第二篇:全等三角形的判定教案
全等三角形的判定(第4課時)
教學任務分析
一、教學目標
1、知識技能:
1)掌握全等三角形的4種判定方法;
2)利用三角形全等的判定方法證明三角形全等;
3)通過證明三角形的全等,利用全等三角形的性質來證明其他的結果。
2、教學思考
1)在經(jīng)歷尋找證明全等三角形的條件來感受全等三角形的判斷意義;
2)通過觀察、比較、證明,學會運用全等三角形的判斷條件去證明全等三角形;
3、解決問題
1)在經(jīng)歷解決實際問題的過程中,發(fā)展邏輯思維,發(fā)展觀察、抽象的能力,加強邏輯推理能力;
2)通過說、寫,提高解決問題的能力;
4、情感態(tài)度
通過交流,培養(yǎng)主動與他人合作的意識;
二、重點:全等三角形全等的判定
三、難點:對全等三角形全等的判定的應用
教學流程安排
活動
1、復習全等三角形判斷的方法
活動
2、利用全等三角形判斷的方法證明全等三角形,根據(jù)全等三角形的性質得到線段相等或角相等;
活動
3、小結與作業(yè)
活動內容和目的
一、復習已經(jīng)學習過的全等三角形判斷方法: SSS、SAS、ASA、AAS
二、練習
1、如圖:
第三篇:192全等三角形的判定教案
19.2《全等三角形的判定》教案
---------探索由兩個全等三角形構造新的全等三角形的圖形
教學目標: 知識與技能:
通過學生的動手操作,探索由兩個全等三角形構造新的全等三角形的圖形,并進行簡單的推理說明。過程與方法:
1.培養(yǎng)學生的動手能力,認識到復雜的圖形都可以由簡單的圖形組合而成,增強學生的識圖能力。
2.培養(yǎng)學生的空間觀念,推理能力,發(fā)展有條理地表達能力,積累數(shù)學活動經(jīng)驗。
情感與態(tài)度: 激發(fā)學生學習數(shù)學的熱情.教學重難點:
重點:探索由兩個全等三角形構造新的全等三角形的圖形,并進行推理。難點:根據(jù)構造后的圖形準確找出全等三角形。學習過程:
一.挑戰(zhàn)“記憶”:(回顧反思)
1.圖形的三種變換是什么?圖形經(jīng)過變換后有什么特征? 2.全等三角形的判定方法有哪些? 3.全等三角形的性質有哪些?
4.如圖:AE=DB,BC=EF,BC∥EF,求證:△ABC≌△DEF.ABEDCF
5.以下的圖形你們熟悉嗎?我們在證明全等的時候要充分利用哪些條件? BAAACBAE
CD
BCE
BCE
AACBFO
CE
AODAOD
EEBBCCB 二.挑戰(zhàn)“手腦”:(探究交流)
(一)大家觀察以下幾個圖形:
AFOBEBCAODAODC
看看每一個圖形是由兩個完全重合的全等三角形經(jīng)過怎樣的變換形成的?在圖形中又有幾對全等三角形?并選取一對進行證明。
(二)你還能用重合的兩個全等三角形變換出其他出現(xiàn)新的全等三角形的圖形嗎?試一試。(不限對數(shù),可以是一對,也可以是多對,是多對的數(shù)數(shù)一共有多少對,并選取一對進行證明,注意:唯一的條件是原來的兩個三角形全等)三.挑戰(zhàn)“運用”:(反饋練習)1.如圖
(一),在∠AOB的兩邊上截取AO=BO,OC=OD,連結AD、BC交于點P,連結OP,則下列結論:① △APC≌△BPD ② △ADO≌△BCO ③ △AOP≌△BOP ④ △OCP≌△ODP正確的是().A.①②③④ B.①②③ C.②③④ D.①③④ 2.如圖
(二),AD=AE,BD=CE,∠ADB=∠A EC=100°,∠BAE=70°,下列結論錯誤的是()A.△ABE≌△ACD B.△ABD≌△ACE C.∠DAE=40° D.∠C=30°
3.如圖(三),在△ABC中,AB=AC,D是BC的中點,DE⊥AB于E,DF⊥AC于F,則圖中共有全等三角形().A.5對 B.4對 C.3對 D.2對
CB
圖
(一)圖
(二)圖
(三)4.如圖,從下列四個條件:① BC=B'C,② AC=A'C,③ ∠A'CA=∠B'CB,④ AB=A'B'中,任取三個為條件,余下的一個為結論,則最多可以構成正確的結論的個數(shù)是().A.1個 B.2個 C.3個 D.4個
四.挑戰(zhàn)“反思”:(歸納總結)本節(jié)課,你對自己的表現(xiàn)滿意嗎?你有哪些收獲呢?大膽說一說,談一談。五.再上高峰:(拓展提高)
1.如圖:△ABC中,AB=AC,過點A作一直線MN平行于BC,角平分線BD、CF相交于點H,它們延長線分別交MN于點E、G,試在圖中找出三對全等三角形,并對其中一對給出證明。
AMGFHBC
END2.如圖:在△ABC中,∠C=90°,BC=AC,過C在△ABC外作直線AM⊥MN于M, BN⊥MN于N,(1)求證:MN=AM+BN;(2)若過點C作直線MN與AB邊相交,AM⊥MN于M,BN⊥MN于N,(1)中的結論還成立嗎?請說明理由。
MCNAB
第四篇:全等三角形判定一教案
《全等三角形判定一》教案設計
教學目標
一、知識目標
1、熟記邊角邊公理的內容
2、能用邊角邊公理證明兩個三角形全等
二、能力目標
1、通過邊角邊公理的運用,提高學生的邏輯思維能力。
2、通過觀察幾何圖形,培養(yǎng)學生的識圖能力。
三、情感目標
1、通過幾何證明的教學,使學生養(yǎng)成尊重客觀事實和形式質疑的習慣。
2、通過自主學習的發(fā)展,體驗獲取教學知識的感受,培養(yǎng)學生勇于創(chuàng)新,多方位審視問題的技巧。
教學重點:學會運用公理證明兩個全等三角形。
教學難點:在較復雜的圖形中,找出證明兩個三角形全等的條件。教學用具:剪刀、直尺、量角器、多媒體 教學方法:自學、探究、輔導式 教學過程:
1、復習提問
什么樣的兩個圖形叫全等圖形?
2、公理的發(fā)現(xiàn) ①圖
②實驗:讓學生把所畫的三角形剪下來,同桌之間相互重疊,有什么發(fā)現(xiàn)?
得出初步結論。
3、針對得出的結論:學生思考并回答多媒體所出示的三角形,經(jīng)過
怎樣的位似變換后重合,并說明理由。
4、總結邊角邊公理——學生分析邊角邊的位置。
講解:例:
1、引導學生把圖形與條件有效的結合起來,強調證明的格式。
概括總結證明的步驟。學生練習P74:
P75:
1、2
第五篇:三角形全等的判定教案
三角形全等的判定教案
第3課時 11.2.3三角形全等的判定(3)
【教學目標】:
1、知識與技能:
1.三角形全等的條件:角邊角、角角邊.
2.三角形全等條件小結.
3.掌握三角形全等的“角邊角”“角角邊”條件.
4.能運用全等三角形的條件,解決簡單的推理證明問題.
2、過程與方法:
1.經(jīng)歷探究全等三角形條件的過程,進一步體會操作、?歸納獲得數(shù)學規(guī)律的過程.
2.掌握三角形全等的“角邊角”“角角邊”條件.
3.能運用全等三角形的條件,解決簡單的推理證明問題.
3、情感態(tài)度與價值觀:
通過畫圖、探究、歸納、交流,使學生獲得一些研究問題的經(jīng)驗和方法,發(fā)展實踐能力和創(chuàng)新精神
【教學情景導入】:
提出問題,創(chuàng)設情境
1.復習:(1)三角形中已知三個元素,包括哪幾種情況?
三個角、三個邊、兩邊一角、兩角一邊.
(2)到目前為止,可以作為判別兩三角形全等的方法有幾種?各是什么?
三種:①定義;②SSS;③SAS.
2.[師]在三角形中,已知三個元素的四種情況中,我們研究了三種,今天我們接著探究已知兩角一邊是否可以判斷兩三角形全等呢?
導入新課
[師]三角形中已知兩角一邊有幾種可能?
[生]1.兩角和它們的夾邊.
2.兩角和其中一角的對邊.
做一做:
三角形的兩個內角分別是60°和80°,它們的夾邊為4cm,?你能畫一個三角形同時滿足這些條件嗎?將你畫的三角形剪下,與同伴比較,觀察它們是不是全等,你能得出什么規(guī)律?
學生活動:自己動手操作,然后與同伴交流,發(fā)現(xiàn)規(guī)律.
教師活動:檢查指導,幫助有困難的同學.
活動結果展示:
以小組為單位將所得三角形重疊在一起,發(fā)現(xiàn)完全重合,這說明這些三角形全等.
提煉規(guī)律:兩角和它們的夾邊對應相等的兩個三角形全等(可以簡寫成“角邊角”或“ASA”).
[師]我們剛才做的三角形是一個特殊三角形,隨意畫一個三角形ABC,?能不能作一個△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?
[生]能.
學生口述畫法,教師進行多媒體課件演示,使學生加深對“ASA”的理解.
[生]①先用量角器量出∠A與∠B的度數(shù),再用直尺量出AB的邊長.
②畫線段A′B′,使A′B′=AB.
③分別以A′、B′為頂點,A′B′為一邊作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.
④射線A′D與B′E交于一點,記為C′ 即可得到△A′B′C′.
將△A′B′C′與△ABC重疊,發(fā)現(xiàn)兩三角形全等.
[師]
于是我們發(fā)現(xiàn)規(guī)律:
兩角和它們的夾邊對應相等的兩三角形全等(可以簡寫成“角邊角”或“ASA”).
這又是一個判定三角形全等的條件. [生]在一個三角形中兩角確定,第三個角一定確定.我們是不是可以不作圖,用“ASA”推出“兩角和其中一角的對邊對應相等的兩三角形全等”呢?
[師]你提出的問題很好.溫故而知新嘛,請同學們來驗證這種想法.
【教學過程設計】:
如圖,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC與△DEF全等嗎?能利用角邊角條件證明你的結論嗎?
證明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°
∠A=∠D,∠B=∠E
∴∠A+∠B=∠D+∠E
∴∠C=∠F
在△ABC和△DEF中
∴△ABC≌△DEF(ASA).
于是得規(guī)律:
兩個角和其中一角的對邊對應相等的兩個三角形全等(可以簡寫成“角角邊”或“AAS”).
[例]如下圖,D在AB上,E在AC上,AB=AC,∠B=∠C.
求證:AD=AE.
[師生共析]AD和AE分別在△ADC和△AEB中,所以要證AD=AE,只需證明△ADC≌△AEB即可.
學生寫出證明過程.
證明:在△ADC和△AEB中
所以△ADC≌△AEB(ASA)
所以AD=AE.
[師]到此為止,在三角形中已知三個條件探索三角形全等問題已全部結束.請同學們把三角形全等的判定方法做一個小結.
學生活動:自我回憶總結,然后小組討論交流、補充.
有五種判定三角形全等的條件.
1.全等三角形的定義
2.邊邊邊(SSS)
3.邊角邊(SAS)
4.角邊角(ASA)
5.角角邊(AAS)
推證兩三角形全等,要學會聯(lián)系思考其條件,找它們對應相等的元素,這樣有利于獲得解題途徑.
練習:圖中的兩個三角形全等嗎?請說明理由.
答案:圖(1)中由“ASA”可證得△ACD≌△ACB.圖(2)由“AAS”可證得△ACE≌△BDC.
【課堂作業(yè)】 1.如圖,BO=OC,AO=DO,則△AOB與△DOC全等嗎?
小亮的思考過程如下.
△AOB≌△DOC
2、已知△ABC和△A′B′C′,下列條件中,不能保證△ABC和△A′B′C?′全等的是()
A.AB=A′B′ AC=A′C′ BC=B′C′
B.∠A=∠A′ ∠B=∠B′ AC=A′C′
C.AB=A′B′ AC=A′C′ ∠A=∠A′
D.AB=A′B′ BC=B′C′ ∠C=∠C′
3、要說明△ABC和△A′B′C′全等,已知條件為AB=A′B′,∠A=∠A′,不需要的條件為()
A.∠B=∠B′ B.∠C=∠C′; C.AC=A′C′ D.BC=B′C′
4、要說明△ABC和△A′B′C′全等,已知∠A=∠A′,∠B=∠B′,則不需要的條件是(A.∠C=∠C′ B.AB=A′B′; C.AC=A′C′ D.BC=B′C′
5、兩個三角形全等,那么下列說法錯誤的是()
A.對應邊上的三條高分別相等; B.對應邊的三條中線分別相等
C.兩個三角形的面積相等; D.兩個三角形的任何線段相等
6、如圖,已知∠A=∠D,AB=DE,AF=CD,BC=EF.
求證:BC∥EF.)