欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思

      時(shí)間:2019-05-12 19:24:46下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思》。

      第一篇:勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思

      勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思 【教學(xué)目標(biāo)】

      一、知識(shí)與能力目標(biāo)

      1.了解勾股定理的歷史背景,體會(huì)勾股定理的探索過(guò)程.2.掌握直角三角形中的三邊關(guān)系和三個(gè)內(nèi)角之間的關(guān)系。

      二、分析、思考

      在勾股定理的探索過(guò)程中,發(fā)現(xiàn)合理推理能力.體會(huì)數(shù)形結(jié)合的思想.三、過(guò)程與方法目標(biāo)

      1.通過(guò)探究勾股定理(正方形方格中)的過(guò)程,體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。2.在探究活動(dòng)中,學(xué)會(huì)與人合作并能與他人交流思維的過(guò)程和探究的結(jié)果。

      四、情感態(tài)度與價(jià)值觀目標(biāo)

      1.學(xué)生通過(guò)訓(xùn)練,養(yǎng)成數(shù)學(xué)說(shuō)理的習(xí)慣,培養(yǎng)學(xué)生參與的積極性,逐步體驗(yàn)數(shù)學(xué)說(shuō)理的重要性。

      2.在探究活動(dòng)中,體驗(yàn)解決問(wèn)題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識(shí)和探究精神。

      【重點(diǎn)難點(diǎn)】

      重點(diǎn):探索和證明勾股定理。

      難點(diǎn):應(yīng)用勾股定理時(shí)斜邊的平方等于兩直角邊的平方和。

      疑點(diǎn):靈活運(yùn)用勾股定理。

      【設(shè)計(jì)思路】

      本課時(shí)教學(xué)強(qiáng)調(diào)讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過(guò)程,鼓勵(lì)學(xué)生自主探索與合作交流,以學(xué)生自主探索為主,并強(qiáng)調(diào)同桌之間的合作與交流,強(qiáng)化應(yīng)用意識(shí),培養(yǎng)學(xué)生多方面的能力。

      讓學(xué)生通過(guò)動(dòng)手、動(dòng)腦、動(dòng)口自主探索,感受到“無(wú)出不在的數(shù)學(xué)”與數(shù)學(xué)的美,以提高學(xué)習(xí)興趣,進(jìn)一步體會(huì)數(shù)學(xué)的地位與作用?!窘虒W(xué)流程安排】

      活動(dòng)一:了解歷史,探索勾股定理 活動(dòng)二:拼圖驗(yàn)證并證明勾股定理 活動(dòng)三:例題講解,:鞏固練習(xí),活動(dòng)四:反思小結(jié),布置作業(yè)

      活動(dòng)內(nèi)容及目的:①通過(guò)多勾股定理的發(fā)現(xiàn),(國(guó)外、國(guó)內(nèi))了解歷史,激發(fā)學(xué)生對(duì)勾股定理的探索興趣。②觀察、分析方格圖,得到指教三角形的性質(zhì)——勾股定理,發(fā)展學(xué)生分析問(wèn)題的能力。③通過(guò)拼圖驗(yàn)證勾股定理,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性,培養(yǎng)學(xué)生的數(shù)形結(jié)合思想,激發(fā)探究精神,回顧、反思、交流。布置作業(yè),鞏固、發(fā)展提高?!窘虒W(xué)過(guò)程設(shè)計(jì)】 【活動(dòng)一】(一)問(wèn)題與情景

      1、你聽(tīng)說(shuō)過(guò)“勾股定理”嗎?

      (1)勾股定理古希臘數(shù)學(xué)家畢達(dá)哥拉斯發(fā)現(xiàn)的,西方國(guó)家稱勾股定理為“畢達(dá)哥拉斯”定理(2)我國(guó)著名的《算經(jīng)十書(shū)》最早的一部《周髀算經(jīng)》。書(shū)中記載有“勾廣三,股修四,徑隅五?!边@作為勾股定理特例的出現(xiàn)。

      2、畢答哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用的地磚鋪成的地面反映了直角三角形的某寫(xiě)特性。(1)現(xiàn)在請(qǐng)你一觀察一下,你能發(fā)現(xiàn)什么?(2)一般直角三角形是否也有這樣的特點(diǎn)嗎?

      (二)師生行為

      教師講故事(勾股定理的發(fā)現(xiàn))、展示圖片,參與小組活動(dòng),指導(dǎo)、傾聽(tīng)學(xué)生交流。針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其用不同的方法得出大正方形的面積等于兩個(gè)小正方形的面積之和。學(xué)生聽(tīng)故事發(fā)表見(jiàn)解,分組交流、在獨(dú)立思考的基礎(chǔ)上以小組為單位,采用分割、拼接、數(shù)格子的個(gè)數(shù)等等方法。闡述自己發(fā)現(xiàn)的觀點(diǎn)。

      (三)設(shè)計(jì)意圖

      ①通過(guò)講故事,讓學(xué)生了解歷史,培育學(xué)生愛(ài)國(guó)主義情操,激發(fā)學(xué)習(xí)的積極性。

      ②滲透從特殊到一般的數(shù)學(xué)思想,為學(xué)生提供參與數(shù)學(xué)活動(dòng)的時(shí)間與空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問(wèn)題的能力,使學(xué)生在相互欣賞、爭(zhēng)辯、互助中得到提高。

      ③鼓勵(lì)學(xué)生用語(yǔ)免得數(shù)學(xué)活動(dòng)的困難,嘗試從不同角度去尋求解決問(wèn)題的有效方法。并通過(guò)方法的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。

      在本次活動(dòng)中教師應(yīng)關(guān)注:

      ① 學(xué)生能否將實(shí)際問(wèn)題(地磚圖形在三個(gè)正方形圍成的一個(gè)直角三角形)轉(zhuǎn)化成數(shù)學(xué)問(wèn)題(探索直角三角形的特性三邊關(guān)系)。② 給學(xué)生足夠的時(shí)間去思考和交流,鼓勵(lì)敘述大膽說(shuō)唱自己的看法。③ 學(xué)生能否準(zhǔn)確挖掘圖形中的隱含條件,技術(shù)各個(gè)正方形的面積

      ④ 是否能用不同的方法(先補(bǔ)全在分割、數(shù)格子的個(gè)數(shù)、拼圖等等),引導(dǎo)學(xué)生正確地得出結(jié)論。

      ⑤ 學(xué)生能否主動(dòng)參與探究活動(dòng),在探究中發(fā)表意見(jiàn),與他人合作的意識(shí)。【活動(dòng)二】

      (一)問(wèn)題與情景

      (1)以直角三角形的兩直角邊a,b拼一個(gè)正方形,你能拼出來(lái)嗎?(2)面積分別怎樣來(lái)表示,它們有什么關(guān)系呢?

      (二)師生行為

      教師提出問(wèn)題,學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動(dòng)手拼接。

      學(xué)生展示分割、拼接的過(guò)程

      學(xué)生通過(guò)圖形的拼接、分割,通過(guò)數(shù)學(xué)的計(jì)算發(fā)現(xiàn)結(jié)論。

      教師通過(guò)(FLASH課件演示拼接動(dòng)畫(huà))圖1生共同來(lái)完成勾股定理的數(shù)學(xué)驗(yàn)證。得出結(jié)論:

      直角三角形的兩條直角邊的平方和等于斜邊的平方

      教師引導(dǎo)學(xué)生通過(guò)圖

      1、圖2的拼接(FLASH課件演示拼接動(dòng)畫(huà))讓學(xué)生發(fā)現(xiàn)結(jié)論。

      (三)設(shè)計(jì)意圖

      通過(guò)探究活動(dòng),調(diào)動(dòng)學(xué)生的積極性,激發(fā)學(xué)生的探求新知的欲望。給學(xué)生充分的時(shí)間與空間討論、交流、推理、發(fā)現(xiàn),鼓勵(lì)學(xué)生發(fā)表自己的見(jiàn)解,感受合作的重要性。同時(shí)培養(yǎng)學(xué)生的操作能力,為以后探究圖形的性質(zhì)積累了經(jīng)驗(yàn)。在本次活動(dòng)中教師用重點(diǎn)關(guān)注:

      ① 學(xué)生對(duì)拼圖的積極性。是否感興趣;

      ② 學(xué)生能否通過(guò)拼圖活動(dòng)獲得數(shù)學(xué)論;是否能通過(guò)合理的分割。③ 學(xué)生能否通過(guò)已有的數(shù)學(xué)經(jīng)驗(yàn)來(lái)嚴(yán)重發(fā)現(xiàn)結(jié)論的正確性。④ 學(xué)生能否用自己的語(yǔ)言正確的表達(dá)自己的觀點(diǎn)?!净顒?dòng)三】

      (一)問(wèn)題與情景

      1、甲船以10海里/小時(shí)的速度從港口向北航行,乙船以20海里/小時(shí)的速度從港口向東航行,同時(shí)行駛3小時(shí)后乙遇險(xiǎn),甲調(diào)轉(zhuǎn)航向前去搶救,船長(zhǎng)想知道兩地間的距離,你能幫忙算一下嗎?

      3、在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多少? 練習(xí)

      在Rt△ABC中,∠A,∠B,∠C的對(duì)邊為a,b,c(1)已知∠C是Rt∠,a=6,b=8.則c=.(2)已知∠C是Rt∠,c=25,b=15.則a= 3)已知∠C是Rt∠,a=3,b=4.則c=(3)已知∠C是Rt∠,a:b=3:4,c=25,則b=

      (二)師生行為

      教師提出問(wèn)題。學(xué)生思考、交流,解答問(wèn)題。教師正確引導(dǎo)學(xué)生正確運(yùn)用勾股定理來(lái)解決實(shí)際問(wèn)題。

      針對(duì)練習(xí)可以通過(guò)讓學(xué)生來(lái)演示結(jié)果,形成共識(shí)。

      (三)設(shè)計(jì)意圖

      使學(xué)生正確地理解勾股定理,并能用它來(lái)解決實(shí)際問(wèn)題。在本次活動(dòng)中教師用重點(diǎn)關(guān)注:

      ① 學(xué)生能否通過(guò)勾股定理來(lái)解決實(shí)際問(wèn)題

      ② 學(xué)生是否能通過(guò)圖形來(lái)活動(dòng)數(shù)學(xué)問(wèn)題(數(shù)形結(jié)合思想)③ 學(xué)生的表達(dá)、語(yǔ)言是否規(guī)范

      ④ 引導(dǎo)有差異的學(xué)生,能讓這部分的學(xué)生基本上能理解勾股定理的實(shí)質(zhì)(直角三角形的兩條直角邊的平方和等于斜邊的平方)【活動(dòng)四】

      (一)問(wèn)題與情景

      1、通過(guò)本節(jié)課你學(xué)到哪些知識(shí)?有什么體會(huì)?

      2、布置作業(yè)

      ①通過(guò)上網(wǎng)收集有關(guān)勾股定理的資料,以及證明方法。② P77復(fù)習(xí)鞏固1、2、3、4題

      (二)師生行為 教師以問(wèn)題的形式提出,讓學(xué)生歸納、總結(jié)所學(xué)知識(shí),進(jìn)行自我評(píng)價(jià),自我總結(jié).學(xué)生把作業(yè)做在作業(yè)本上,教師檢查、批改.(三)設(shè)計(jì)意圖

      通過(guò)回憶本節(jié)課的所學(xué)內(nèi)容,從知識(shí)、技能、數(shù)學(xué)思考等方面加以歸納,有利于學(xué)生掌握、運(yùn)用知識(shí).在本次活動(dòng)中教師用重點(diǎn)關(guān)注: ①鼓勵(lì)學(xué)生認(rèn)真總結(jié),不要流于形式.②不同的學(xué)生對(duì)學(xué)習(xí)過(guò)程的反思,對(duì)知識(shí)的理解程度,有針對(duì)性的給予指導(dǎo).【教學(xué)反思】

      一、教學(xué)的成功體驗(yàn)

      《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:“有效的數(shù)學(xué)活動(dòng)不能單純地依賴于模仿與記憶,學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式是動(dòng)手實(shí)踐、自主探索與合作交流,以促進(jìn)學(xué)生自主、全面、可持續(xù)發(fā)展”.數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間相互交往、積極互動(dòng)、共同發(fā)展的過(guò)程,是“溝通”與“合作”的過(guò)程.本節(jié)課我結(jié)合勾股定理的歷史和畢答哥拉斯的發(fā)現(xiàn)直角三角形的特性自然地引入了課題,讓學(xué)生親身體驗(yàn)到數(shù)學(xué)知識(shí)來(lái)源于實(shí)踐,從而激發(fā)學(xué)生的學(xué)習(xí)積極性.為學(xué)生提供了大量的操作、思考和交流的學(xué)習(xí)機(jī)會(huì),通過(guò)“觀察“——“操作”——“交流”發(fā)現(xiàn)勾股定理。層層深入,逐步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成、發(fā)展與應(yīng)用過(guò)程.通過(guò)引導(dǎo)學(xué)生在具體操作活動(dòng)中進(jìn)行獨(dú)立思考,鼓勵(lì)學(xué)生發(fā)表自己的見(jiàn)解,學(xué)生自主地發(fā)現(xiàn)問(wèn)題、探索問(wèn)題、獲得結(jié)論的學(xué)習(xí)方式,有利于學(xué)生在活動(dòng)中思考,在思考中活動(dòng).二、信息技術(shù)與學(xué)科的整合

      在信息社會(huì),信息技術(shù)與課程的整合必將帶來(lái)教育者的深刻變化.我充分地利用多媒體教學(xué),為學(xué)生創(chuàng)設(shè)了生動(dòng)、直觀的現(xiàn)實(shí)情景,具有強(qiáng)烈的吸引力,能激發(fā)學(xué)生的學(xué)習(xí)欲望.心理學(xué)專家研究表明:運(yùn)動(dòng)的圖形比靜止的圖形更能引起學(xué)生的注意力.在傳統(tǒng)教學(xué)中,用筆、尺和圓規(guī)在紙上或黑板上畫(huà)出的圖形都是靜止圖形,同時(shí)圖形一旦畫(huà)出就被固定下來(lái),也就是失去了一般性,所以,其中的數(shù)學(xué)規(guī)律也被掩蓋了,呈現(xiàn)給學(xué)生的數(shù)學(xué)知識(shí)也只能停留在感性認(rèn)識(shí)上.本節(jié)課我通過(guò)Flash動(dòng)畫(huà)演示結(jié)果和拼圖程以及呈現(xiàn)教學(xué)內(nèi)容。真正體現(xiàn)數(shù)學(xué)規(guī)律的應(yīng)用價(jià)值.把呈現(xiàn)給學(xué)生的數(shù)學(xué)知識(shí)從感性認(rèn)識(shí)提升到理性認(rèn)識(shí),實(shí)現(xiàn)一種質(zhì)的飛躍。

      第二篇:勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思

      勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思

      【教學(xué)目標(biāo)】

      一、知識(shí)目標(biāo)

      1.了解勾股定理的歷史背景,體會(huì)勾股定理的探索過(guò)程.2.掌握直角三角形中的三邊關(guān)系和三角之間的關(guān)系。

      二、數(shù)學(xué)思考

      在勾股定理的探索過(guò)程中,發(fā)現(xiàn)合理推理能力.體會(huì)數(shù)形結(jié)合的思想.三、解決問(wèn)題

      1.通過(guò)探究勾股定理(正方形方格中)的過(guò)程,體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。2.在探究活動(dòng)中,學(xué)會(huì)與人合作并能與他人交流思維的過(guò)程和探究的結(jié)果。

      四、情感態(tài)度目標(biāo)

      1.學(xué)生通過(guò)適當(dāng)訓(xùn)練,養(yǎng)成數(shù)學(xué)說(shuō)理的習(xí)慣,培養(yǎng)學(xué)生參與的積極性,逐步體驗(yàn)數(shù)學(xué)說(shuō)理的重要性。

      2.在探究活動(dòng)中,體驗(yàn)解決問(wèn)題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識(shí)和探究精神。

      【重點(diǎn)難點(diǎn)】

      重點(diǎn):探索和證明勾股定理。

      難點(diǎn):應(yīng)用勾股定理時(shí)斜邊的平方等于兩直角邊的平方和。

      疑點(diǎn):靈活運(yùn)用勾股定理。

      【設(shè)計(jì)思路】

      本課時(shí)教學(xué)強(qiáng)調(diào)讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過(guò)程,鼓勵(lì)學(xué)生自主探索與合作交流,以學(xué)生自主探索為主,并強(qiáng)調(diào)同桌之間的合作與交流,強(qiáng)化應(yīng)用意識(shí),培養(yǎng)學(xué)生多方面的能力。

      讓學(xué)生通過(guò)動(dòng)手、動(dòng)腦、動(dòng)口自主探索,感受到“無(wú)出不在的數(shù)學(xué)”與數(shù)學(xué)的美,以提高學(xué)習(xí)興趣,進(jìn)一步體會(huì)數(shù)學(xué)的地位與作用?!窘虒W(xué)流程安排】 活動(dòng)一:了解歷史,探索勾股定理 活動(dòng)二:拼圖驗(yàn)證并證明勾股定理 活動(dòng)三:例題講解,:鞏固練習(xí),活動(dòng)四:反思小結(jié),布置作業(yè)

      活動(dòng)內(nèi)容及目的:①通過(guò)多勾股定理的發(fā)現(xiàn),(國(guó)外、國(guó)內(nèi))了解歷史,激發(fā)學(xué)生對(duì)勾股定理的探索興趣。②觀察、分析方格圖,得到指教三角形的性質(zhì)——勾股定理,發(fā)展學(xué)生分析問(wèn)題的能力。③通過(guò)拼圖驗(yàn)證勾股定理,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性,培養(yǎng)學(xué)生的數(shù)形結(jié)合思想,激發(fā)探究精神,回顧、反思、交流。布置作業(yè),鞏固、發(fā)展提高。【教學(xué)過(guò)程設(shè)計(jì)】 【活動(dòng)一】

      (一)問(wèn)題與情景

      1、你聽(tīng)說(shuō)過(guò)“勾股定理”嗎?

      (1)勾股定理古希臘數(shù)學(xué)家畢達(dá)哥拉斯發(fā)現(xiàn)的,西方國(guó)家稱勾股定理為“畢達(dá)哥拉斯”定理(2)我國(guó)著名的《算經(jīng)十書(shū)》最早的一部《周髀算經(jīng)》。書(shū)中記載有“勾廣三,股修四,徑隅五?!边@作為勾股定理特例的出現(xiàn)。

      2、畢答哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用的地磚鋪成的地面反映了直角三角形的某寫(xiě)特性。(1)現(xiàn)在請(qǐng)你一觀察一下,你能發(fā)現(xiàn)什么?(2)一般直角三角形是否也有這樣的特點(diǎn)嗎?

      (二)師生行為

      教師講故事(勾股定理的發(fā)現(xiàn))、展示圖片,參與小組活動(dòng),指導(dǎo)、傾聽(tīng)學(xué)生交流。針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其用不同的方法得出大正方形的面積等于兩個(gè)小正方形的面積之和。

      學(xué)生聽(tīng)故事發(fā)表見(jiàn)解,分組交流、在獨(dú)立思考的基礎(chǔ)上以小組為單位,采用分割、拼接、數(shù)格子的個(gè)數(shù)等等方法。闡述自己發(fā)現(xiàn)的結(jié)論。

      (三)設(shè)計(jì)意圖

      ①通過(guò)講故事,讓學(xué)生了解歷史,培育學(xué)生愛(ài)國(guó)主義情操,激發(fā)學(xué)習(xí)的積極性。

      ②滲透從特殊到一般的數(shù)學(xué)思想,為學(xué)生提供參與數(shù)學(xué)活動(dòng)的時(shí)間與空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問(wèn)題的能力,使學(xué)生在相互欣賞、爭(zhēng)辯、互助中得到提高。

      ③鼓勵(lì)學(xué)生用語(yǔ)免得數(shù)學(xué)活動(dòng)的困難,嘗試從不同角度去尋求解決問(wèn)題的有效方法。并通過(guò)方法的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。

      在本次活動(dòng)中教師用重點(diǎn)關(guān)注:

      ① 學(xué)生能否將實(shí)際問(wèn)題(地磚圖形在三個(gè)正方形圍成的一個(gè)直角三角形)轉(zhuǎn)化成數(shù)學(xué)問(wèn)題(探索直角三角形的特性三邊關(guān)系)。

      ② 給學(xué)生足夠的時(shí)間去思考和交流,鼓勵(lì)敘述大膽說(shuō)唱自己的看法。③ 學(xué)生能否準(zhǔn)確挖掘圖形中的隱含條件,技術(shù)各個(gè)正方形的面積

      ④ 是否能用不同的方法(先補(bǔ)全在分割、數(shù)格子的個(gè)數(shù)、拼圖等等),引導(dǎo)學(xué)生正確地得出結(jié)論。

      ⑤ 學(xué)生能否主動(dòng)參與探究活動(dòng),在探究中發(fā)表意見(jiàn),與他人合作的意識(shí)?!净顒?dòng)二】

      (一)問(wèn)題與情景

      (1)以直角三角形的兩直角邊a,b拼一個(gè)正方形,你能拼出來(lái)嗎?(2)面積分別怎樣來(lái)表示,它們有什么關(guān)系呢?

      (二)師生行為

      教師提出問(wèn)題,學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動(dòng)手拼接。

      學(xué)生展示分割、拼接的過(guò)程

      學(xué)生通過(guò)圖形的拼接、分割,通過(guò)數(shù)學(xué)的計(jì)算發(fā)現(xiàn)結(jié)論。

      教師通過(guò)(FLASH課件演示拼接動(dòng)畫(huà))圖1生共同來(lái)完成勾股定理的數(shù)學(xué)驗(yàn)證。得出結(jié)論:

      直角三角形的兩條直角邊的平方和等于斜邊的平方

      教師引導(dǎo)學(xué)生通過(guò)圖

      1、圖2的拼接(FLASH課件演示拼接動(dòng)畫(huà))讓學(xué)生發(fā)現(xiàn)結(jié)論。

      (三)設(shè)計(jì)意圖 通過(guò)探究活動(dòng),調(diào)動(dòng)學(xué)生的積極性,激發(fā)學(xué)生的探求新知的欲望。給學(xué)生充分的時(shí)間與空間討論、交流、推理、發(fā)現(xiàn),鼓勵(lì)學(xué)生發(fā)表自己的見(jiàn)解,感受合作的重要性。同時(shí)培養(yǎng)學(xué)生的操作能力,為以后探究圖形的性質(zhì)積累了經(jīng)驗(yàn)。在本次活動(dòng)中教師用重點(diǎn)關(guān)注: ① 學(xué)生對(duì)拼圖的積極性。是否感興趣;

      ② 學(xué)生能否通過(guò)拼圖活動(dòng)獲得數(shù)學(xué)論;是否能通過(guò)合理的分割。③ 學(xué)生能否通過(guò)已有的數(shù)學(xué)經(jīng)驗(yàn)來(lái)嚴(yán)重發(fā)現(xiàn)結(jié)論的正確性。④ 學(xué)生能否用自己的語(yǔ)言正確的表達(dá)自己的觀點(diǎn)?!净顒?dòng)三】

      (一)問(wèn)題與情景 例題

      1、甲船以10海里/小時(shí)的速度從港口向北航行,乙船以20海里/小時(shí)的速度從港口向東航行,同時(shí)行駛3小時(shí)后乙遇險(xiǎn),甲調(diào)轉(zhuǎn)航向前去搶救,船長(zhǎng)想知道兩地間的距離,你能幫忙算一下嗎?

      2、在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多少? 練習(xí)

      在Rt△ABC中,∠A,∠B,∠C的對(duì)邊為a,b,c(1)已知∠C是Rt∠,a=6,b=8.則c=

      .(2)已知∠C是Rt∠,c=25,b=15.則a=

      3)已知∠C是Rt∠,a=3,b=4.則c=

      (3)已知∠C是Rt∠,a:b=3:4,c=25,則b=

      (二)師生行為

      教師提出問(wèn)題。學(xué)生思考、交流,解答問(wèn)題。教師正確引導(dǎo)學(xué)生正確運(yùn)用勾股定理來(lái)解決實(shí)際問(wèn)題。

      針對(duì)練習(xí)可以通過(guò)讓學(xué)生來(lái)演示結(jié)果,形成共識(shí)。

      (三)設(shè)計(jì)意圖

      使學(xué)生正確地理解勾股定理,并能用它來(lái)解決實(shí)際問(wèn)題。在本次活動(dòng)中教師用重點(diǎn)關(guān)注:

      ① 學(xué)生能否通過(guò)勾股定理來(lái)解決實(shí)際問(wèn)題

      ② 學(xué)生是否能通過(guò)圖形來(lái)活動(dòng)數(shù)學(xué)問(wèn)題(數(shù)形結(jié)合思想)③ 學(xué)生的表達(dá)、語(yǔ)言是否規(guī)范

      ④ 引導(dǎo)有差異的學(xué)生,能讓這部分的學(xué)生基本上能理解勾股定理的實(shí)質(zhì)(直角三角形的兩條直角邊的平方和等于斜邊的平方)【活動(dòng)四】

      (一)問(wèn)題與情景

      1、通過(guò)本節(jié)課你學(xué)到哪些知識(shí)?有什么體會(huì)?

      2、布置作業(yè)

      ①通過(guò)上網(wǎng)收集有關(guān)勾股定理的資料,以及證明方法。② P77復(fù)習(xí)鞏固1、2、3、4題

      (二)師生行為

      教師以問(wèn)題的形式提出,讓學(xué)生歸納、總結(jié)所學(xué)知識(shí),進(jìn)行自我評(píng)價(jià),自我總結(jié).學(xué)生把作業(yè)做在作業(yè)本上,教師檢查、批改.(三)設(shè)計(jì)意圖

      通過(guò)回憶本節(jié)課的所學(xué)內(nèi)容,從知識(shí)、技能、數(shù)學(xué)思考等方面加以歸納,有利于學(xué)生掌握、運(yùn)用知識(shí).在本次活動(dòng)中教師用重點(diǎn)關(guān)注: ①鼓勵(lì)學(xué)生認(rèn)真總結(jié),不要流于形式.②不同的學(xué)生對(duì)學(xué)習(xí)過(guò)程的反思,對(duì)知識(shí)的理解程度,有針對(duì)性的給予指導(dǎo).【教學(xué)反思】

      教學(xué)的成功體驗(yàn):《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:“有效的數(shù)學(xué)活動(dòng)不能單純地依賴于模仿與記憶,學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式是動(dòng)手實(shí)踐、自主探索與合作交流,以促進(jìn)學(xué)生自主、全面、可持續(xù)發(fā)展”.數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間相互交往、積極互動(dòng)、共同發(fā)展的過(guò)程,是“溝通”與“合作”的過(guò)程.本節(jié)課我結(jié)合勾股定理的歷史和畢答哥拉斯的發(fā)現(xiàn)直角三角形的特性自然地引入了課題,讓學(xué)生親身體驗(yàn)到數(shù)學(xué)知識(shí)來(lái)源于實(shí)踐,從而激發(fā)學(xué)生的學(xué)習(xí)積極性.為學(xué)生提供了大量的操作、思考和交流的學(xué)習(xí)機(jī)會(huì),通過(guò) “觀察“——“操作”——“交流”發(fā)現(xiàn)勾股定理。層層深入,逐步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成、發(fā)展與應(yīng)用過(guò)程.通過(guò)引導(dǎo)學(xué)生在具體操作活動(dòng)中進(jìn)行獨(dú)立思考,鼓勵(lì)學(xué)生發(fā)表自己的見(jiàn)解,學(xué)生自主地發(fā)現(xiàn)問(wèn)題、探索問(wèn)題、獲得結(jié)論的學(xué)習(xí)方式,有利于學(xué)生在活動(dòng)中思考,在思考中活動(dòng).

      第三篇:勾股定理教學(xué)反思

      勾股定理教學(xué)反思

      數(shù)學(xué)組 李杰

      勾股定理是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,它緊密聯(lián)系了數(shù)學(xué)中兩個(gè)最基本的量——數(shù)與形,能夠把形的特征(三角形中一個(gè)角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(兩條直角邊的平方和等于斜邊的平方)勾股定理是一壇陳年佳釀,品之芬芳,余味無(wú)窮,堪稱數(shù)形結(jié)合的典范,在理論上占有重要地位.。同時(shí)勾股定理的探索和證明蘊(yùn)含著豐富的數(shù)學(xué)思想和研究方法,是培養(yǎng)學(xué)生思維品質(zhì)的載體。它對(duì)數(shù)學(xué)發(fā)展具有重要作用。

      本節(jié)課的基本教學(xué)思路:情境導(dǎo)入-探索結(jié)論-驗(yàn)證結(jié)論-初步應(yīng)用結(jié)論-應(yīng)用結(jié)論解決實(shí)際問(wèn)題.具體而言:

      利用愉快的拼圖游戲、創(chuàng)設(shè)出一種愉悅的學(xué)習(xí)情境,誘發(fā)學(xué)生的學(xué)習(xí)情趣;讓學(xué)生時(shí)常感受到“數(shù)學(xué)真奇妙!”,從而產(chǎn)生“我也想試一試!”的心理。讓學(xué)生享受數(shù)學(xué)的有趣。

      借助生活情境,使學(xué)生體會(huì)到我們的生活中蘊(yùn)涵著豐富的數(shù)學(xué)問(wèn)題,感受數(shù)學(xué)學(xué)習(xí)在生活中的作用。讓學(xué)生享受數(shù)學(xué)的有用。

      讓學(xué)生享受數(shù)學(xué)的精彩:創(chuàng)設(shè)一切機(jī)會(huì)讓學(xué)生學(xué)會(huì)思考,樂(lè)于思考、善于思考,在教學(xué)中有意識(shí)地安排一些問(wèn)題讓學(xué)生多途徑思考,發(fā)現(xiàn)答案有多種多樣;讓他們體味出更多的精彩!享受數(shù)學(xué)的成功:“教育教學(xué)的本質(zhì)就是幫助學(xué)生成功。”一次成功的機(jī)會(huì)卻可以十倍地增強(qiáng)學(xué)生的信心;因此,課堂上教師應(yīng)毫不吝嗇自己鼓勵(lì)的眼神、贊許的話語(yǔ)。

      教學(xué)重點(diǎn)

      勾股定理的探索過(guò)程.

      教學(xué)難點(diǎn)

      將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,為便于計(jì)算圖形面積.采用拼接,割補(bǔ),平移的方法突破難點(diǎn)。學(xué)生易于接受,體現(xiàn)轉(zhuǎn)化劃歸解決問(wèn)題的思想。

      導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)?!昂玫拈_(kāi)始是成功的一半”,在課的起始階段,迅速集中學(xué)生的注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,為激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲,我創(chuàng)設(shè)了一個(gè)大樹(shù)被臺(tái)風(fēng)吹斷的情景。

      在探究直角三角形三邊關(guān)系時(shí),通過(guò)網(wǎng)格中的直角邊長(zhǎng)為1的等腰直角三角形來(lái)分析,分析以邊為邊長(zhǎng)的正方形面積之間的關(guān)系,因?yàn)閳D形特殊,學(xué)生容易從中得出關(guān)系。然后在將圖形換為直角邊長(zhǎng)為3、4的情形,引導(dǎo)分析關(guān)系,再推廣到一般的情形,最終得到結(jié)論。這里的做法由特殊到一般。步步推進(jìn),使學(xué)生易于接受。教學(xué)中我以教師為主導(dǎo),以學(xué)生為主體,以知識(shí)為載體,以培養(yǎng)能力為重點(diǎn)。為學(xué)生創(chuàng)設(shè)“做數(shù)學(xué)、玩數(shù)學(xué)”的教學(xué)情境,讓學(xué)生從“學(xué)會(huì)”到“會(huì)學(xué)”,從“會(huì)學(xué)”到“樂(lè)學(xué)”。、轉(zhuǎn)變教學(xué)方式,讓學(xué)生探索、研究、體會(huì)學(xué)習(xí)過(guò)程。

      除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時(shí)地向?qū)W生展現(xiàn)勾股定理的歷史,激發(fā)學(xué)生愛(ài)國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神.

      練習(xí)設(shè)計(jì)我立足鞏固,著眼發(fā)展,兼顧差異,滿足學(xué)生渴望發(fā)展要求。在教學(xué)應(yīng)用勾股定理時(shí),老是運(yùn)用公式計(jì)算,學(xué)生感覺(jué)會(huì)比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運(yùn)用多媒體出示了一道實(shí)際問(wèn)題:即學(xué)校草地問(wèn)題。同學(xué)們一看,興趣來(lái)了。使數(shù)學(xué)教學(xué)變得生機(jī)勃勃,學(xué)生喜歡數(shù)學(xué),熱愛(ài)數(shù)學(xué)。即鞏固了知識(shí),又對(duì)學(xué)生進(jìn)行了品德教育。一舉兩得。

      第四篇:勾股定理教學(xué)設(shè)計(jì)(通用)[范文模版]

      勾股定理教學(xué)設(shè)計(jì)(通用5篇)

      作為一位無(wú)私奉獻(xiàn)的人民教師,很有必要精心設(shè)計(jì)一份教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。那要怎么寫(xiě)好教學(xué)設(shè)計(jì)呢?以下是小編精心整理的勾股定理教學(xué)設(shè)計(jì)(通用5篇),歡迎大家分享。

      勾股定理教學(xué)設(shè)計(jì)1

      一、教學(xué)目標(biāo)

      1、讓學(xué)生通過(guò)對(duì)的圖形創(chuàng)造、觀察、思考、猜想、驗(yàn)證等過(guò)程,體會(huì)勾股定理的產(chǎn)生過(guò)程。

      2、通過(guò)介紹我國(guó)古代研究勾股定理的成就感培養(yǎng)民族自豪感,激發(fā)學(xué)生為祖國(guó)的復(fù)興努力學(xué)習(xí)。

      3、培養(yǎng)學(xué)生數(shù)學(xué)發(fā)現(xiàn)、數(shù)學(xué)分析和數(shù)學(xué)推理證明的能力。

      二、教學(xué)重難點(diǎn)

      利用拼圖證明勾股定理

      三、學(xué)具準(zhǔn)備

      四個(gè)全等的直角三角形、方格紙、固體膠

      四、教學(xué)過(guò)程

      (一)趣味涂鴉,引入情景

      教師:很多同學(xué)都喜歡在紙上涂涂畫(huà)畫(huà),今天想請(qǐng)大家?guī)屠蠋熗瓿梢环盔f,你能按要求完成嗎?

      (1)在邊長(zhǎng)為1的方格紙上任意畫(huà)一個(gè)頂點(diǎn)都在格點(diǎn)上的直角三角形。

      (2)再分別以這個(gè)三角形的三邊向三角形外作3個(gè)正方形。

      學(xué)生活動(dòng):先獨(dú)立完成,再在小組內(nèi)互相交流畫(huà)法,最后班級(jí)展示。

      (二)小組探究,大膽猜想

      教師:觀察自己所涂鴉的圖形,回答下列問(wèn)題:

      1、請(qǐng)求出三個(gè)正方形的面積,再說(shuō)說(shuō)這些面積之間具有怎樣的數(shù)量關(guān)系?

      2、圖中所畫(huà)的直角三角形的邊長(zhǎng)分別是多少?請(qǐng)根據(jù)面積之間的關(guān)系寫(xiě)出邊長(zhǎng)之間存在的數(shù)量關(guān)系。

      3、與小組成員交流探究結(jié)果?并猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a,b,c具有怎樣的數(shù)量關(guān)系?

      4、方法提煉:這種利用面積相等得出直角三角形三邊等量關(guān)系的方法叫做什么方法?

      學(xué)生活動(dòng):先獨(dú)立思考,再在小組內(nèi)互相交流探究結(jié)果,并猜想直角三角形的三邊關(guān)系,最后班級(jí)展示。

      (三)趣味拼圖,驗(yàn)證猜想

      教師:請(qǐng)利用四個(gè)全等的直角三角形進(jìn)行拼圖。

      1、你能拼出哪些圖形?能拼出正方形和直角梯形嗎?

      2、能否就你拼出的圖形利用面積法說(shuō)明a2+b2=c2的合理性?如果可以,請(qǐng)寫(xiě)下自己的推理過(guò)程。

      學(xué)生活動(dòng):獨(dú)立拼圖,并思考如何利用圖形寫(xiě)出相應(yīng)的證明過(guò)程,再在組內(nèi)交流算法,最后在班級(jí)展示。

      (四)課堂訓(xùn)練

      鞏固提升

      教師:請(qǐng)完成下列問(wèn)題,并上臺(tái)進(jìn)行展示。

      1.在Rt△ABC中,∠C=900,∠A,∠B,∠C的對(duì)邊分別為a,b,c

      已知a=6,b=8.求c.已知c=25,b=15.求a.已知c=9,a=3.求b.(結(jié)果保留根號(hào))

      學(xué)生活動(dòng):先獨(dú)立完成問(wèn)題,再組內(nèi)交流解題心得,最后上臺(tái)展示,其他小組幫助解決問(wèn)題。

      (五)課堂小結(jié),梳理知識(shí)

      教師:說(shuō)說(shuō)自己這節(jié)課有哪些收獲?請(qǐng)從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法、數(shù)學(xué)運(yùn)用等方向進(jìn)行總結(jié)。

      勾股定理教學(xué)設(shè)計(jì)2

      教學(xué)目標(biāo)具體要求:

      1.知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問(wèn)題。

      2.過(guò)程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過(guò)程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。

      3.情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。

      重點(diǎn):

      勾股定理的應(yīng)用

      難點(diǎn):

      勾股定理的應(yīng)用

      教案設(shè)計(jì)

      一、知識(shí)點(diǎn)講解

      知識(shí)點(diǎn)1:(已知兩邊求第三邊)

      1.在直角三角形中,若兩直角邊的長(zhǎng)分別為1cm,2cm,則斜邊長(zhǎng)為xx。

      2.已知直角三角形的兩邊長(zhǎng)為3、4,則另一條邊長(zhǎng)是xx。

      3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長(zhǎng)?

      知識(shí)點(diǎn)2:

      利用方程求線段長(zhǎng)

      1、如圖,公路上A,B兩點(diǎn)相距25km,C,D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在公路AB上建一車站E,(1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?

      (2)DE與CE的位置關(guān)系

      (3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?

      利用方程解決翻折問(wèn)題

      2、如圖,用一張長(zhǎng)方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長(zhǎng)BC為10cm.當(dāng)折疊時(shí),頂點(diǎn)D落在BC邊上的'點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長(zhǎng)?

      3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,求DE的長(zhǎng)。

      二、課堂小結(jié)

      談一談你這節(jié)課都有哪些收獲?

      應(yīng)用勾股定理解決實(shí)際問(wèn)題

      三、課堂練習(xí)以上習(xí)題。

      四、課后作業(yè)卷子。

      本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過(guò)程;第二課時(shí)是通過(guò)例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過(guò)從實(shí)際問(wèn)題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和應(yīng)用能力。

      勾股定理教學(xué)設(shè)計(jì)3

      教學(xué)目標(biāo):

      理解并掌握勾股定理及其證明。在學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”勾股定理的過(guò)程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合和從特殊到一般的思想。通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神

      重點(diǎn)

      探索和證明勾股定理。

      難點(diǎn)

      用拼圖方法證明勾股定理。

      教學(xué)準(zhǔn)備:

      教具

      多媒體課件。

      學(xué)具

      剪刀和邊長(zhǎng)分別為a、b的兩個(gè)連體正方形紙片。

      教學(xué)流程安排

      活動(dòng)流程圖 活動(dòng)內(nèi)容和目的活動(dòng)1 創(chuàng)設(shè)情境→激發(fā)興趣 通過(guò)對(duì)趙爽弦圖的了解,激發(fā)起學(xué)生對(duì)勾股定理的探索興趣。

      活動(dòng)2 觀察特例→發(fā)現(xiàn)新知 通過(guò)問(wèn)題激發(fā)學(xué)生好奇、探究和主動(dòng)學(xué)習(xí)的欲望。

      活動(dòng)3 深入探究→交流歸納 觀察分析方格圖,得出直角三角形的性質(zhì)——勾股定理,發(fā)展學(xué)生分析問(wèn)題的能力。

      活動(dòng)4 拼圖驗(yàn)證→加深理解 通過(guò)剪拼趙爽弦圖證明勾股定理,體會(huì)數(shù)形結(jié)合思想,激發(fā)探索精神。

      活動(dòng)5 實(shí)踐應(yīng)用→拓展提高 初步應(yīng)用所學(xué)知識(shí),加深理解。

      活動(dòng)6 回顧小結(jié)→整體感知 回顧、反思、交流。

      活動(dòng)7 布置作業(yè)→鞏固加深 鞏固、發(fā)展提高。

      勾股定理教學(xué)設(shè)計(jì)4

      一、教案背景概述:

      教材分析: 勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的“形”的特點(diǎn),轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問(wèn)題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說(shuō)明勾股定理的正確性。

      學(xué)生分析:

      1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過(guò)三角尺的同學(xué)并不多,通過(guò)這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。

      2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開(kāi)對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。

      設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開(kāi),以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過(guò)程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過(guò)向?qū)W生介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。

      教學(xué)目標(biāo):

      1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過(guò)程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。

      2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過(guò)程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語(yǔ)言表達(dá)能力等,感受勾股定理的文化價(jià)值。

      3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛(ài)國(guó)熱情。

      4、欣賞設(shè)計(jì)圖形美。

      二、教案運(yùn)行描述:

      教學(xué)準(zhǔn)備階段:

      學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。

      老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。

      三、教學(xué)流程:

      (一)引入

      同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過(guò):他們的邊有什么關(guān)系呢?今天我們來(lái)探索這一小秘密。(板書(shū)課題:探索直角三角形三邊關(guān)系)

      (二)實(shí)驗(yàn)探究

      1、取方格紙片,在上面先設(shè)計(jì)任意格點(diǎn)直角三角形,再以它們的每一邊分別向三角形外作正方形,設(shè)網(wǎng)格正方形的邊長(zhǎng)為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫(xiě)下表:

      (討論難點(diǎn):以斜邊為邊的正方形的面積找法)

      交流后得出一般結(jié)論:(用關(guān)于a、b、c的式子表示)

      (三)探索所得結(jié)論的正確性

      當(dāng)直角三角形的直角邊分別為a、b,斜邊為c時(shí),是否一定成立?

      1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)

      在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來(lái)交流講解,并引導(dǎo)學(xué)生進(jìn)行說(shuō)理:

      如圖2(用補(bǔ)的方法說(shuō)明)

      師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來(lái)尺子和筆又量又畫(huà),他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來(lái)西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為“畢達(dá)哥拉斯定理”。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見(jiàn)課本52頁(yè)彩圖2—1,欣賞圖片)

      如圖3(用割的方法去探索)

      師介紹:(出示圖片)中國(guó)古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過(guò)此方法測(cè)量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用“勾三、股四、弦五”測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來(lái)證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國(guó)古代以“形”證“數(shù)”,形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹(shù)立了一個(gè)典范。他是我國(guó)有記載以來(lái)第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國(guó)數(shù)學(xué)家們?yōu)榱思o(jì)念我國(guó)在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為“勾股定理”。

      20xx年,世界數(shù)學(xué)家大會(huì)在中國(guó)北京召開(kāi),當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國(guó)古代數(shù)學(xué)的輝煌成就。

      師介紹:(出示圖片)勾股定理是數(shù)學(xué)史上的一顆璀璨明珠,它的證明在數(shù)學(xué)史上屢創(chuàng)奇跡,從畢達(dá)哥拉斯到現(xiàn)在,吸引著世界上無(wú)數(shù)的數(shù)學(xué)家、物理學(xué)家、數(shù)學(xué)愛(ài)好者對(duì)它的探究,甚至政界要人——美國(guó)第20任總統(tǒng)加菲爾德,也加入到對(duì)它的探索證明中,如圖是他當(dāng)年設(shè)計(jì)的證明方法。據(jù)說(shuō)至今已經(jīng)找到的證明方法有四百多種,且每年還會(huì)有所增加。,有興趣的同學(xué)課后可以繼續(xù)探索……

      四、總結(jié):

      本節(jié)課學(xué)習(xí)的勾股定理用語(yǔ)言敘說(shuō)為:

      五、作業(yè):

      1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問(wèn)題并交流。

      2、探索勾股定理的運(yùn)用。

      勾股定理教學(xué)設(shè)計(jì)5

      一、教學(xué)目標(biāo)

      (一)知識(shí)點(diǎn)

      1、體驗(yàn)勾股定理的探索過(guò)程,由特例猜想勾股定理,再由特例驗(yàn)證勾股定理。

      2、會(huì)利用勾股定理解釋生活中的簡(jiǎn)單現(xiàn)象。

      (二)能力訓(xùn)練要求

      1、在學(xué)生充分觀察、歸納、猜想、探索勾股定理的過(guò)程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想。

      2、在探索勾股定理的過(guò)程中,發(fā)展學(xué)生歸納、概括和有條理地表達(dá)活動(dòng)過(guò)程及結(jié)論的能力。

      (三)情感與價(jià)值觀要求

      1、培養(yǎng)學(xué)生積極參與、合作交流的意識(shí)。

      2、在探索勾股定理的過(guò)程中,體驗(yàn)獲得成功的快樂(lè),鍛煉學(xué)生克服困難的勇氣。

      二、教學(xué)重、難點(diǎn)

      重點(diǎn):探索和驗(yàn)證勾股定理。

      難點(diǎn):在方格紙上通過(guò)計(jì)算面積的方法探索勾股定理。

      三、教學(xué)方法

      交流探索猜想。

      在方格紙上,同學(xué)們通過(guò)計(jì)算以直角三角形的三邊為邊長(zhǎng)的三個(gè)正方形的面積,在合作交流的過(guò)程中,比較這三個(gè)正方形的面積,由此猜想出直角三角形的三邊關(guān)系。

      四、教具準(zhǔn)備

      1、學(xué)生每人課前準(zhǔn)備若干張方格紙。

      2、投影片三張:

      第一張:填空(記作1.1.1 A);

      第二張:?jiǎn)栴}串(記作1.1.1 B);

      第三張:做一做(記作1.1.1 C)。

      五、教學(xué)過(guò)程

      創(chuàng)設(shè)問(wèn)題情境,引入新課

      出示投影片(1.1.1 A)

      (1)三角形按角分類,可分為xx。

      (2)對(duì)于一般的三角形來(lái)說(shuō),判斷它們?nèi)鹊臈l件有哪些?對(duì)于直角三角形呢?

      (3)有兩個(gè)直角三角形,如果有兩條邊對(duì)應(yīng)相等,那么這兩個(gè)直角三角形一定全等嗎?

      第五篇:勾股定理教學(xué)設(shè)計(jì)

      勾股定理教學(xué)設(shè)計(jì)

      勇 【教學(xué)目標(biāo)】

      一、知識(shí)目標(biāo)

      1.了解勾股定理的歷史背景,體會(huì)勾股定理的探索過(guò)程.2.掌握直角三角形中的三邊關(guān)系和三角之間的關(guān)系。

      二、數(shù)學(xué)思考

      在勾股定理的探索過(guò)程中,發(fā)現(xiàn)合理推理能力.體會(huì)數(shù)形結(jié)合的思想.三、解決問(wèn)題

      1.通過(guò)探究勾股定理(正方形方格中)的過(guò)程,體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。

      2.在探究活動(dòng)中,學(xué)會(huì)與人合作并能與他人交流思維的過(guò)程和探究的結(jié)果。

      四、情感態(tài)度目標(biāo)

      1.學(xué)生通過(guò)適當(dāng)訓(xùn)練,養(yǎng)成數(shù)學(xué)說(shuō)理的習(xí)慣,培養(yǎng)學(xué)生參與的積極性,逐步體驗(yàn)數(shù)學(xué)

      說(shuō)理的重要性。

      2.在探究活動(dòng)中,體驗(yàn)解決問(wèn)題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識(shí)和探究精神?!局攸c(diǎn)難點(diǎn)】

      重點(diǎn):探索和證明勾股定理。

      難點(diǎn):應(yīng)用勾股定理時(shí)斜邊的平方等于兩直角邊的平方和。

      疑點(diǎn):靈活運(yùn)用勾股定理?!窘虒W(xué)過(guò)程設(shè)計(jì)】 【活動(dòng)一】

      (一)問(wèn)題與情景

      1、你聽(tīng)說(shuō)過(guò)“勾股定理”嗎?

      (1)勾股定理古希臘數(shù)學(xué)家畢達(dá)哥拉斯發(fā)現(xiàn)的,西方國(guó)家稱勾股定理為“畢達(dá)哥拉斯”定理

      (2)我國(guó)著名的《算經(jīng)十書(shū)》最早的一部《周髀算經(jīng)》。書(shū)中記載有“勾廣三,股修四,徑隅五?!边@作為勾股定理特例的出現(xiàn)。

      2、畢答哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用的地磚鋪成的地面反映了直角三角形的某寫(xiě)特性。(1)現(xiàn)在請(qǐng)你一觀察一下,你能發(fā)現(xiàn)什么?(2)一般直角三角形是否也有這樣的特點(diǎn)嗎?

      (二)師生行為

      教師講故事(勾股定理的發(fā)現(xiàn))、展示圖片,參與小組活動(dòng),指導(dǎo)、傾聽(tīng)學(xué)生交流。針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其用不同的方法得出大正方形的面積等于兩個(gè)小正方形的面積之和。學(xué)生聽(tīng)故事發(fā)表見(jiàn)解,分組交流、在獨(dú)立思考的基礎(chǔ)上以小組為單位,采用分割、拼接、數(shù)格子的個(gè)數(shù)等等方法。闡述自己發(fā)現(xiàn)的結(jié)論?!净顒?dòng)二】

      (一)問(wèn)題與情景

      (1)以直角三角形的兩直角邊a,b拼一個(gè)正方形,你能拼出來(lái)嗎?(2)面積分別怎樣來(lái)表示,它們有什么關(guān)系呢?

      (二)師生行為

      教師提出問(wèn)題,學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動(dòng)手拼接。

      學(xué)生展示分割、拼接的過(guò)程

      學(xué)生通過(guò)圖形的拼接、分割,通過(guò)數(shù)學(xué)的計(jì)算發(fā)現(xiàn)結(jié)論。

      教師通過(guò)(FLASH課件演示拼接動(dòng)畫(huà))圖1生共同來(lái)完成勾股定理的數(shù)學(xué)驗(yàn)證。

      得出結(jié)論:

      直角三角形的兩條直角邊的平方和等于斜邊的平方

      教師引導(dǎo)學(xué)生通過(guò)圖

      1、圖2的拼接(FLASH課件演示拼接動(dòng)畫(huà))讓學(xué)生發(fā)現(xiàn)結(jié)論。

      【活動(dòng)三】

      (一)問(wèn)題與情景

      例題:例

      1、甲船以10海里/小時(shí)的速度從港口向北航行,乙船以20海里/小時(shí)的速度從港口向東航行,同時(shí)行駛3小時(shí)后乙遇險(xiǎn),甲調(diào)轉(zhuǎn)航向前去搶救,船長(zhǎng)想知道兩地間的距離,你能幫忙算一下嗎?

      2、在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多少? 練習(xí):在Rt△ABC中,∠A,∠B,∠C的對(duì)邊為a,b,c(1)已知∠C是Rt∠,a=6,b=8.則c=

      (2)(2)已知∠C是Rt∠,c=25,b=15.則a=

      (3)已知∠C是Rt∠,a:b=3:4,c=25,則b=

      (二)師生行為

      教師提出問(wèn)題。學(xué)生思考、交流,解答問(wèn)題。教師正確引導(dǎo)學(xué)生正確運(yùn)用勾股定理來(lái)解決實(shí)際問(wèn)題。針對(duì)練習(xí)可以通過(guò)讓學(xué)生來(lái)演示結(jié)果,形成共識(shí)?!净顒?dòng)四】

      (一)問(wèn)題與情景

      1、通過(guò)本節(jié)課你學(xué)到哪些知識(shí)?有什么體會(huì)?

      2、布置作業(yè)

      ①通過(guò)上網(wǎng)收集有關(guān)勾股定理的資料,以及證明方法。② P77復(fù)習(xí)鞏固1、2、3、4題

      (二)師生行為

      教師以問(wèn)題的形式提出,讓學(xué)生歸納、總結(jié)所學(xué)知識(shí),進(jìn)行自我評(píng)價(jià),自我總結(jié).學(xué)生把作業(yè)做在作業(yè)本上,教師檢查、批改.勾股定理【教學(xué)反思】

      教學(xué)的成功體驗(yàn):《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出:“有效的數(shù)學(xué)活動(dòng)不能單純地依賴于模仿與記憶,學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式是動(dòng)手實(shí)踐、自主探索與合作交流,以促進(jìn)學(xué)生自主、全面、可持續(xù)發(fā)展”.數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間相互交往、積極互動(dòng)、共同發(fā)展的過(guò)程,是“溝通”與“合作”的過(guò)程.本節(jié)課我結(jié)合勾股定理的歷史和畢答哥拉斯的發(fā)現(xiàn)直角三角形的特性自然地引入了課題,讓學(xué)生親身體驗(yàn)到數(shù)學(xué)知識(shí)來(lái)源于實(shí)踐,從而激發(fā)學(xué)生的學(xué)習(xí)積極性.為學(xué)生提供了大量的操作、思考和交流的學(xué)習(xí)機(jī)會(huì),通過(guò) “觀察“——“操作”——“交流”發(fā)現(xiàn)勾股定理。層層深入,逐步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成、發(fā)展與應(yīng)用過(guò)程.通過(guò)引導(dǎo)學(xué)生在具體操作活動(dòng)中進(jìn)行獨(dú)立思考,鼓勵(lì)學(xué)生發(fā)表自己的見(jiàn)解,學(xué)生自主地發(fā)現(xiàn)問(wèn)題、探索問(wèn)題、獲得結(jié)論的學(xué)習(xí)方式,有利于學(xué)生在活動(dòng)中思考,在思考中活動(dòng).勾股定理【教學(xué)反思】

      本節(jié)課是公式課,探索勾股定理和利用數(shù)形結(jié)合的方法驗(yàn)證勾股定理。勾股定理是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它是解直角三角形的主要根據(jù)之一,是直角三角形的一條非常重要的性質(zhì),也是幾何中最重要的定理之一,它將形與數(shù)密切聯(lián)系起來(lái),在數(shù)學(xué)的發(fā)展中起著重要的作用,在現(xiàn)實(shí)世界中也有著廣泛的作用.由此可見(jiàn),勾股定理是對(duì)直角三角形進(jìn)一步的認(rèn)識(shí)和理解,是后續(xù)學(xué)習(xí)的基礎(chǔ)。因此,本節(jié)內(nèi)容在整個(gè)知識(shí)體系中起著重要的作用。

      針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課的設(shè)計(jì)思路是引導(dǎo)學(xué)生?做?數(shù)學(xué)”,選用“引導(dǎo)探究式”教學(xué)方法,先由淺入深,由特殊到一般地提出問(wèn)題,接著引導(dǎo)學(xué)生通過(guò)實(shí)驗(yàn)操作,歸納驗(yàn)證,在學(xué)生的自主探究與合作交流中解決問(wèn)題,這樣既遵循了學(xué)生的認(rèn)知規(guī)律,又充分體現(xiàn)了“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人、教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者”的教學(xué)理念.通過(guò)教師引導(dǎo),學(xué)生動(dòng)手、動(dòng)腦,主動(dòng)探索獲取新知,進(jìn)一步理解并運(yùn)用歸納猜想,由特殊到一般,數(shù)形結(jié)合等數(shù)學(xué)思想方法解決問(wèn)題。同時(shí)讓學(xué)生感悟到:學(xué)習(xí)任何知識(shí)的最好方法就是自己去探究。本節(jié)課采用的教學(xué)流程是:創(chuàng)設(shè)情境→激發(fā)興趣→提出問(wèn)題→故事場(chǎng)景→發(fā)現(xiàn)新知→深入探究→網(wǎng)絡(luò)信息 →規(guī)律猜想→數(shù)字驗(yàn)證→拼圖效果→實(shí)踐應(yīng)用 →拓展提高→回顧小結(jié)→整體感知等環(huán)節(jié)共六個(gè)活動(dòng)來(lái)完成教學(xué)任務(wù)的。在這一過(guò)程中,讓學(xué)生經(jīng)歷了知識(shí)的發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想,從而更好地理解勾股定理,應(yīng)用勾股定理,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)與能力,增強(qiáng)了學(xué)生學(xué)好數(shù)學(xué)的愿望和信心。

      本節(jié)課中的學(xué)生對(duì)用地磚鋪成的地面的觀察發(fā)現(xiàn),計(jì)算建立在直角三角形斜邊上的正方形面積,對(duì)直角三角形三邊關(guān)系的發(fā)現(xiàn),自我小結(jié)等,都給學(xué)生提供了充分的表達(dá)和交流的機(jī)會(huì),發(fā)展了語(yǔ)言表達(dá)和概括能力,增強(qiáng)了合作意識(shí)。由展示生活圖片,感受生活中直角三角形的應(yīng)用,引導(dǎo)學(xué)生將生活圖形數(shù)學(xué)化。感受到生活中處處有數(shù)學(xué)。由實(shí)際問(wèn)題:工人師傅要做出一個(gè)直角三角形支架,一般會(huì)怎么做?引導(dǎo)學(xué)生思考:直角三角形的三邊除了我們已知的不等關(guān)系以外,是不是還存在著我們未知的等量關(guān)系呢?調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的學(xué)習(xí)愿望和參與動(dòng)機(jī)。由學(xué)生觀察地磚鋪成的地面,分別以圖中的直角三角形三邊為邊向外作正方形,求出這三個(gè)正方形的面積,尤其計(jì)算建立在直角三角形斜邊上的正方形面積。這樣學(xué)生通過(guò)正方形面積之間的關(guān)系主動(dòng)建立了由形到數(shù),由數(shù)到形的聯(lián)想,同時(shí)也初步感受到對(duì)于直角三角形而言,三邊滿足兩直角邊的平方和等于斜邊的平方。這樣的設(shè)計(jì)有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。得出結(jié)論后,還要引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示勾股定理,如符號(hào)語(yǔ)言:Rt△ABC中,∠C=90,AC2+BC2= AB2(或a2+b2=c2),因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。其次,介紹“勾,股,弦”的含義,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形;最后介紹古今中外對(duì)勾股定理的研究,這樣可讓學(xué)生更好地體會(huì)勾股定理的豐富內(nèi)涵與文化背景,陶冶情操,豐富自我,從中得到深層次的發(fā)展。

      下載勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思word格式文檔
      下載勾股定理教學(xué)設(shè)計(jì)與教學(xué)反思.doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        勾股定理教學(xué)設(shè)計(jì)

        附件2: 《勾股定理》教學(xué)設(shè)計(jì) 課程名稱 授課人 教學(xué)對(duì)象 一、教材分析 這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版八年級(jí)第一章第1節(jié)《探索勾股定理》第一課時(shí),勾股定理是......

        勾股定理教學(xué)設(shè)計(jì)

        《勾股定理》教學(xué)設(shè)計(jì) 泰來(lái)縣江橋鎮(zhèn)中心學(xué)校 潘艷梅 教學(xué)目標(biāo) 一、知識(shí)技能 1.了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過(guò)程. 2.掌握直角三角形中的三邊關(guān)系和三角之間......

        勾股定理教學(xué)設(shè)計(jì)

        勾股定理教學(xué)設(shè)計(jì) 學(xué)情分析 勾股定理揭示了直角三角形三邊之間的一種美妙關(guān)系,將形與數(shù)密切聯(lián)系起來(lái),在數(shù)學(xué)的發(fā)展和現(xiàn)實(shí)世界中有著廣泛的作用。本節(jié)是直角三角形相關(guān)知識(shí)的......

        勾股定理教學(xué)設(shè)計(jì)(定稿)

        《勾股定理》教學(xué)設(shè)計(jì) 長(zhǎng)春市第六十九中學(xué) 徐明國(guó) 這節(jié)課所用的教材是華東師大版本《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)》,這節(jié)課講授的是第十四章《勾股定理》第一節(jié)的內(nèi)容。勾股......

        《勾股定理》教學(xué)設(shè)計(jì)

        《勾股定理》教學(xué)設(shè)計(jì) 這節(jié)課是人教版《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)》八年級(jí)(下)教材第十八章《勾股定理》第一節(jié)的內(nèi)容。勾股定理的內(nèi)容是全章內(nèi)容的重點(diǎn)、難點(diǎn),它的地位作用......

        勾股定理教學(xué)設(shè)計(jì)

        《勾股定理》教學(xué)設(shè)計(jì) 古敢水族鄉(xiāng)中學(xué):徐祥林 教學(xué)目標(biāo) : 1、知識(shí)目標(biāo): (1)掌握; (2)學(xué)會(huì)利用進(jìn)行計(jì)算、證明與作圖; (3)了解有關(guān)的歷史. 2、能力目標(biāo): (1)在定理的證明中培養(yǎng)學(xué)生的拼圖能......

        勾股定理教學(xué)設(shè)計(jì)

        勾股定理教學(xué)設(shè)計(jì) 教材分析: 勾股定理是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)八年級(jí)下冊(cè)第十章七的內(nèi)容。勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量......

        《勾股定理》教學(xué)設(shè)計(jì)

        《勾股定理》教學(xué)設(shè)計(jì) 一、內(nèi)容和內(nèi)容解析 本節(jié)課為人教版八年級(jí)數(shù)學(xué)下冊(cè)第十八章第一節(jié),教材64頁(yè)至66頁(yè)(不含探究1)的內(nèi)容。其內(nèi)容包括章前對(duì)勾股定理整章的引入:2002年北京召......