第一篇:第一組勾股定理的歷史
勾股定理的歷史
勾股定理是“人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一”,是初等幾何中的一個(gè)基本定理。所謂勾股定理,就是指“在直角三角形中,兩條直角邊的平方和等于斜邊的平方?!边@個(gè)定理有十分悠久的歷史,幾乎所有文明古國對(duì)此定理都有所研究。
畢達(dá)哥拉斯定理:勾股定理在西方被稱為畢達(dá)哥拉斯定理,相傳是古希臘數(shù)學(xué)家兼哲學(xué)家畢達(dá)哥拉斯于公元前550年首先發(fā)現(xiàn)的。但畢達(dá)哥拉斯對(duì)勾股定理的證明方法已經(jīng)失傳。著名的希臘數(shù)學(xué)家歐幾里得在巨著《幾何原本》中給出一個(gè)很好的證明。
《周髀算經(jīng)》:中國古代對(duì)這一數(shù)學(xué)定理的發(fā)現(xiàn)和應(yīng)用,遠(yuǎn)比畢達(dá)哥拉斯早得多。中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請(qǐng)教數(shù)學(xué)知識(shí)的對(duì)話:周公問:“我聽說您對(duì)數(shù)學(xué)非常精通,我想請(qǐng)教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地得到數(shù)據(jù)呢?” 商高回答說:“ 數(shù)的產(chǎn)生來源于對(duì)方和圓這些形體的認(rèn)識(shí)。其中有一條原理:當(dāng)直角三角形‘矩'得到的一條直角邊‘勾'等于3,另一條直角邊’股'等于4的時(shí)候,那么它的斜邊'弦'就必定是5。這個(gè)原理是大禹在治水的時(shí)候就總結(jié)出來的呵。” 大禹治水也是勾股定理的應(yīng)用。
《九章算術(shù)》在稍后一點(diǎn)的《九章算術(shù)》一書中勾股定理得到了更加規(guī)范的一般性表達(dá)。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進(jìn)行開方,便可以得到弦”。中國古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對(duì)勾股定理作理論的證明。
趙爽:最早對(duì)勾股定理進(jìn)行證明的,是三國時(shí)期吳國的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明。趙爽的這個(gè)證明可謂別具匠心,極富創(chuàng)新意識(shí)。他用幾何圖形的截、割、拼、補(bǔ)來證明代數(shù)式之間的恒等關(guān)系,既具嚴(yán)密性,又具直觀性,為中國古代以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何緊密結(jié)合、互不可分的獨(dú)特風(fēng)格樹立了一個(gè)典范。稍后一點(diǎn)的劉徽在證明勾股定理時(shí)也是用以形證數(shù)的方法,中國古代數(shù)學(xué)家們對(duì)于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨(dú)特的貢獻(xiàn)和地位。尤其是其中體現(xiàn)出來的“形數(shù)統(tǒng)一”的思想方法,更具有科學(xué)創(chuàng)新的重大意義。
古埃及人:實(shí)際上,在更早期的人類活動(dòng)中,人們就已經(jīng)認(rèn)識(shí)到這一定理的某些特例。除上述兩個(gè)例子外,據(jù)說古埃及人也曾利用“勾三股四弦五”的法則來確定直角。專家們還發(fā)現(xiàn),在另一塊泥板上面刻著一個(gè)奇特的數(shù)表,表中共刻有四列十五行數(shù)字,這是一個(gè)勾股數(shù)表:最右邊一列為從1到15的序號(hào),而左邊三列則分別是股、勾、弦的數(shù)值,一共記載著15組勾股數(shù)。
用意:這說明,勾股定理實(shí)際上早已進(jìn)入了人類知識(shí)的寶庫。是幾何學(xué)中的明珠,它充滿魅力,在數(shù)學(xué)教材中插入關(guān)于數(shù)學(xué)知識(shí)的歷史故事,這讓使得同學(xué)們?cè)趯W(xué)習(xí)知識(shí)的同時(shí)拓展他們的視野,使他們不僅僅掌握勾股定理的內(nèi)容,認(rèn)識(shí)勾股定理是怎么來的,也使他們了解勾股定理的發(fā)展過程和演變歷史,和不同的國家,不同的數(shù)學(xué)研究者不同的證明方法,很顯然,數(shù)學(xué)史一種變通的學(xué)習(xí)過程,它所研究的問題不僅僅局限于一個(gè)模式,很多時(shí)候,一種定理,往往能從多種渠道入手,最后得出結(jié)論。教會(huì)同學(xué)們?cè)趯W(xué)習(xí)數(shù)學(xué)時(shí)要敢于大膽的猜想和創(chuàng)新。在書本上的知識(shí)靈活運(yùn)用,使知識(shí)來源于書本又不局限于書本。只有本著這種數(shù)學(xué)精神才能學(xué)好數(shù)學(xué)。
第二篇:勾股定理的歷史及證明
勾股定理的歷史及證明
勾股定理又叫商高定理、畢氏定理,或稱畢達(dá)哥拉斯定理:
英文譯法:Pythagoras' Theorem
在一個(gè)直角三角形中,斜邊邊長的平方等于兩條直角邊邊長平方之和。如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a2+b2=c2
據(jù)考證,人類對(duì)這條定理的認(rèn)識(shí),少說也超過 4000 年!
中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭,就有這條定理的相關(guān)內(nèi)容:周公問:“竊聞乎大夫善數(shù)也,請(qǐng)問古者包犧立周天歷度。夫天不可階而升,地不可得尺寸而度,請(qǐng)問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤。得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!睆纳厦嫠倪@段對(duì)話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經(jīng)發(fā)現(xiàn)并應(yīng)用勾股定理這一重要懂得數(shù)學(xué)原理了。
在西方有文字記載的最早的證明是畢達(dá)哥拉斯給出的。據(jù)說當(dāng)他證明了勾股定理以后,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為“百牛定理”。遺憾的是,畢達(dá)哥拉斯的證明方法早已失傳,我們無從知道他的證法。
實(shí)際上,在更早期的人類活動(dòng)中,人們就已經(jīng)認(rèn)識(shí)到這一定理的某些特例。除上述兩個(gè)例子外,據(jù)說古埃及人也曾利用“勾三股四弦五”的法則來確定直角。但是,這一傳說引起過許多數(shù)學(xué)史家的懷疑。比如說,美國的數(shù)學(xué)史家M·克萊因教授曾經(jīng)指出:“我們也不知道埃及人是否認(rèn)識(shí)到畢達(dá)哥拉斯定理。我們知道他們有拉繩人(測(cè)量員),但所傳他們?cè)诶K上打結(jié),把全長分成長度為3、4、5的三段,然后用來形成直角三角形之說,則從未在任何文件上得證實(shí)?!辈贿^,考古學(xué)家們發(fā)現(xiàn)了幾塊大約完成于公元前2000年左右的古巴比倫的泥板書,據(jù)專家們考證,其中一塊上面刻有如下問題:“一根長度為 30個(gè)單位的棍子直立在墻上,當(dāng)其上端滑下6個(gè)單位時(shí),請(qǐng)問其下端離開墻角有多遠(yuǎn)?”這是一個(gè)三邊為為3:4:5三角形的特殊例子;專家們還發(fā)現(xiàn),在另一塊泥板上面刻著一個(gè)奇特的數(shù)表,表中共刻有四列十五行數(shù)字,這是一個(gè)勾股數(shù)表:最右邊一列為從1到15的序號(hào),而左邊三列則分別是股、勾、弦的數(shù)值,一共記載著15組勾股數(shù)。這說明,勾股定理實(shí)際上早已進(jìn)入了人類知識(shí)的寶庫。
勾股定理是幾何學(xué)中的明珠,它充滿魅力,千百年來,人們對(duì)它的證明趨之若鶩,其中有著名的數(shù)學(xué)家、畫家,也有業(yè)余數(shù)學(xué)愛好者,有普通的老百姓,也有尊貴的政要權(quán)貴,甚至有國家總統(tǒng)。也許是因?yàn)楣垂啥ɡ砑戎匾趾?jiǎn)單又實(shí)用,更容易吸引人,才使它成百次地反復(fù)被人炒作,反復(fù)被人論證。1940年出版過一本名為《畢達(dá)哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實(shí)際上還不止于此,有資料表明,關(guān)于勾股定理的證明方法已有500余種,僅我國清末數(shù)學(xué)家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。(※關(guān)于勾股定理的詳細(xì)證明,由于證明過程較為繁雜,不予收錄。)
人們對(duì)勾股定理感興趣的原因還在于它可以作推廣。
歐幾里得在他的《幾何原本》中給出了勾股定理的推廣定理:“直角三角形斜邊上的一個(gè)直邊形,其面積為兩直角邊上兩個(gè)與之相似的直邊形面積之和”。
從上面這一定理可以推出下面的定理:“以直角三角形的三邊為直徑作圓,則以斜邊為直徑所作圓的面積等于以兩直角邊為直徑所作兩圓的面積和”。
勾股定理還可以推廣到空間:以直角三角形的三邊為對(duì)應(yīng)棱作相似多面體,則斜邊上的多面體的表面積等于直角邊上兩個(gè)多面體表面積之和。
若以直角三角形的三邊為直徑分別作球,則斜邊上的球的表面積等于兩直角邊上所作二球表面積之和。
如此等等。
【附錄】
一、【《《周髀算經(jīng)》·》簡(jiǎn)介】
《周髀算經(jīng)》算經(jīng)十書之一。約成書于公元前二世紀(jì),原名《周髀》,它是我國最古老的天文學(xué)著作,主要闡明當(dāng)時(shí)的蓋天說和四分歷法。唐初規(guī)定它為國子監(jiān)明算科的教材之一,故改名《周髀算經(jīng)》?!吨荀滤憬?jīng)》在數(shù)學(xué)上的主要成就是介紹了勾股定理及其在測(cè)量上的應(yīng)用。原書沒有對(duì)勾股定理進(jìn)行證明,其證明是三國時(shí)東吳人趙爽在《周髀注》一書的《勾股圓方圖注》中給出的?!吨荀滤憬?jīng)》使用了相當(dāng)繁復(fù)的分?jǐn)?shù)算法和開平方法。
二、【伽菲爾德證明勾股定理的故事】
1876年一個(gè)周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當(dāng)時(shí)美國俄亥俄州共和黨議員伽菲爾德。他走著走著,突然發(fā)現(xiàn)附近的一個(gè)小石凳上,有兩個(gè)小孩正在聚精會(huì)神地談?wù)撝裁?,時(shí)而大聲爭(zhēng)論,時(shí)而小聲探討。由于好奇心驅(qū)使,伽菲爾德循聲向兩個(gè)小孩走去,想搞清楚兩個(gè)小孩到底在干什么。只見一個(gè)小男孩正俯著身子用樹枝在地上畫著一個(gè)直角三角形。于是伽菲爾德便問他們?cè)诟墒裁??那個(gè)小男孩頭也不抬地說:“請(qǐng)問先生,如果直角三角形的兩條直角邊分別為3和4,那么斜邊長為多少呢?”伽菲爾德答道:“是5呀?!毙∧泻⒂謫柕溃骸叭绻麅蓷l直角邊長分別為5和7,那么這個(gè)直角三角形的斜邊長又是多少?”伽菲爾德不假思索地回答道:“那斜邊的平方一定等于5的平方加上7的平方?!毙∧泻⒂终f:“先生,你能說出其中的道理嗎?”伽菲爾德一時(shí)語塞,無法解釋了,心里很不是滋味。
于是,伽菲爾德不再散步,立即回家,潛心探討小男孩給他出的難題。他經(jīng)過反復(fù)思考與演算,終于弄清了其中的道理,并給出了簡(jiǎn)潔的證明方法。
解:勾股定理的內(nèi)容:直角三角形兩直角邊a、b的平方和等于斜邊c的平方,a2+b2=c2
說明:我國古代學(xué)者把直角三角形的較短直角邊稱為“勾”,較長直角邊為“股”,斜邊稱為“弦”,所以把這個(gè)定理成為“勾股定理”。勾股定理揭示了直角三角形邊之間的關(guān)系。
舉例:如直角三角形的兩個(gè)直角邊分別為3、4,則斜邊c2= a2+b2=9+16=25 則說明斜邊為5。
第三篇:勾股定理的歷史與證明
安溪六中校本課程之?dāng)?shù)學(xué)探秘
勾股定理史話
一、勾股定理的歷史
勾股定理是“人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一”,是初等幾何中的一個(gè)基本定理。那么大家知道多少勾股定理的別稱呢?我可以告訴大家,有:畢達(dá)哥拉斯定理,商高定理,百牛定理,驢橋定理和埃及三角形等。所謂勾股定理,就是指“在直角三角形中,兩條直角邊的平方和等于斜邊的平方?!边@個(gè)定理有十分悠久的歷史,幾乎所有文明古國(希臘、中國、埃及、巴比倫、印度等)對(duì)此定理都有所研究。
勾股定理在西方被稱為畢達(dá)哥拉斯定理,相傳是古希臘數(shù)學(xué)家兼哲學(xué)家畢達(dá)哥拉斯(Pythagoras,公元前572?~公元前497?)于公元前550年首先發(fā)現(xiàn)的。但畢達(dá)哥拉斯對(duì)勾股定理的證明方法已經(jīng)失傳。著名的希臘數(shù)學(xué)家歐幾里得(Euclid,公元前330~公元前275)在巨著《幾何原本》(第Ⅰ卷,命題47)中給出一個(gè)很好的證明。(下圖為歐幾里得和他的證明圖)
中國古代對(duì)這一數(shù)學(xué)定理的發(fā)現(xiàn)和應(yīng)用,遠(yuǎn)比畢達(dá)哥拉斯早得多。中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請(qǐng)教數(shù)學(xué)知識(shí)的對(duì)話:周公問:“我聽說您對(duì)數(shù)學(xué)非常精通,我想請(qǐng)教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地得到數(shù)據(jù)呢?” 商高回答說:“ 數(shù)的產(chǎn)生來源于對(duì)方和圓這些形體的認(rèn)識(shí)。其中有一條原理:當(dāng)直角三角形?矩'得到的一條直角邊?勾'等于3,另一條直角邊?股'等于4的時(shí)候,那么它的斜邊'弦'就必定是5。這個(gè)原理是大禹在治水的時(shí)候就總結(jié)出來的呵?!?如果說大禹治水因年代久遠(yuǎn)而無法確切考證的話,那么周公與商高的對(duì)話則可以確定在公元前1100年左右的西周時(shí)期,比畢達(dá)哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個(gè)應(yīng)用特例。所以現(xiàn)在數(shù)學(xué)界把它稱為“勾股定理”是非常恰當(dāng)?shù)摹?/p>
在稍后一點(diǎn)的《九章算術(shù)》一書中(約在公元50至100年間),勾股定理得到了更加規(guī)范的一般性表達(dá)。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進(jìn)行開方,便可以得到弦”?!毒耪滤阈g(shù)》系統(tǒng)地總結(jié)了戰(zhàn)國、秦、漢以來的數(shù)學(xué)成就,共收集了246個(gè)數(shù)學(xué)的應(yīng)用問題和各個(gè)問題的解法,列為九章,可能是所有中國數(shù)學(xué)著作中影響最大的一部。中國古代的數(shù)學(xué)家們不僅很早就發(fā)現(xiàn)并應(yīng)用勾股定理,而且很早就嘗試對(duì)勾股定理作理論的證明。最早對(duì)勾股定理進(jìn)行證明的,是三國時(shí)期吳國的數(shù)學(xué)家趙爽。趙爽創(chuàng)制了一幅“勾股圓方圖”,用形數(shù)結(jié)合得到方法,給出了勾股定理的詳細(xì)證明(右圖)。趙爽的這個(gè)證明可謂別具匠心,極富創(chuàng)新意識(shí)。在這幅“勾股圓方圖”中,以弦為邊長得到正方形ABDE是由4個(gè)相等的直角三角形再加上中間的那個(gè)小正方形組成的。每個(gè)直角三角形的面積為ab/2;中間的小正方形邊長為b-a,則面積為(b-a)2。于是便可得如下的式子:
4×(ab/2)+(b-a)2=c
2化簡(jiǎn)后便可得:
a2+b2=c2
亦即:c=(a2+b2)(1/2)
他用幾何圖形的截、割、拼、補(bǔ)來證明代數(shù)式之間的恒等關(guān)系,既具嚴(yán)密性,又具直觀性,為中國古代以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何緊密結(jié)合、互不可分的獨(dú)特風(fēng)格樹立了一個(gè)典范。以后的數(shù)學(xué)家大多繼承了這一風(fēng)格并且有發(fā)展,只是具體圖形的分合移補(bǔ)略有不同而已。例如稍后一點(diǎn)的劉徽在證明勾股定理時(shí)也是用以形證數(shù)的方法,中國古代數(shù)學(xué)家們對(duì)于勾股定理的發(fā)現(xiàn)和證明,在世界數(shù)學(xué)史上具有獨(dú)特的貢獻(xiàn)和地位。尤其是其中體現(xiàn)出來的“形數(shù)統(tǒng)一”的思想方法,更具有科學(xué)創(chuàng)新的重大意義。
二、勾股定理的證明
據(jù)不完全統(tǒng)計(jì),勾股定理的證明方法已經(jīng)多達(dá)400多種了。下面我便向大家介紹幾種十分著名的證明方法?!咀C法1】(趙爽證明)
以a、b 為直角邊(b>a),以c為斜邊作四個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于
.把這四個(gè)直角三角形拼成如圖所示形狀.∵ RtΔDAH ≌ RtΔABE, ∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90o,∴ ∠EAB + ∠HAD = 90o,∴ ABCD是一個(gè)邊長為c的正方形,它的面積等于c2.∵ EF = FG =GH =HE = b―a ,∠HEF = 90o.∴ EFGH是一個(gè)邊長為b―a的正方形,它的面積等于
.∴ ∴.【證法2】(課本的證明)
做8個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b,斜邊長為c,再做三個(gè)邊長分別為a、b、c的正方形,把它們像上圖那樣拼成兩個(gè)正方形.從圖上可以看到,這兩個(gè)正方形的邊長都是a + b,所以面積相等.即,整理得.【證法3】(1876年美國總統(tǒng)Garfield證明)
以a、b 為直角邊,以c為斜邊作兩個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于.把這兩個(gè)直角三角形拼成如圖所示形狀,使A、E、B三點(diǎn)在一條直線上.∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o.∴ ΔDEC是一個(gè)等腰直角三角形,它的面積等于又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD∥BC.∴
ABCD是一個(gè)直角梯形,它的面積等于 ∴ ∴...【趣聞】:在1876年一個(gè)周末的傍晚,在美國華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當(dāng)時(shí)美國俄亥俄州共和黨議員伽菲爾德。他走著走著,突然發(fā)現(xiàn)附近的一個(gè)小石凳上,有兩個(gè)小孩正在聚精會(huì)神地談?wù)撝裁矗瑫r(shí)而大聲爭(zhēng)論,時(shí)而小聲探討。由于好奇心驅(qū)使伽菲爾德循聲向兩個(gè)小孩走去,想搞清楚兩個(gè)小孩到底在干什么。只見一個(gè)小男孩正俯著身子用樹枝在地上畫著一個(gè)直角三角形。于是伽菲爾德便問他們?cè)诟墒裁??只見那個(gè)小男孩頭也不抬地說:“請(qǐng)問先生,如果直角三角形的兩條直角邊分別為3和4,那么斜邊長為多少呢?”伽菲爾德答到:“是5呀。”小男孩又問道:“如果兩條直角邊分別為5和7,那么這個(gè)直角三角形的斜邊長又是多少?”伽菲爾德不加思索地回答到:“那斜邊的平方一定等于5的平方加上7的平方。”小男孩又說道:“先生,你能說出其中的道理嗎?”伽菲爾德一時(shí)語塞,無法解釋了,心理很不是滋味。于是伽菲爾德不再散步,立即回家,潛心探討小男孩給他留下的難題。他經(jīng)過反復(fù)的思考與演算,終于弄清楚了其中的道理,并給出了簡(jiǎn)潔的證明方法。1876年4月1日,伽菲爾德在《新英格蘭教育日志》上發(fā)表了他對(duì)勾股定理的這一證法。1881年,伽菲爾德就任美國第二十任總統(tǒng)后來,人們?yōu)榱思o(jì)念他對(duì)勾股定理直觀、簡(jiǎn)捷、易懂、明了的證明,就把這一證法稱為“總統(tǒng)。”證法?!咀C法4】(歐幾里得證明)
做三個(gè)邊長分別為a、b、c的正方形,把它們拼成如圖所示形狀,使H、C、B三點(diǎn)在一條直線上,連結(jié)BF、CD.過C作CL⊥DE,交AB于點(diǎn)M,交DE于點(diǎn)L.∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ ΔFAB ≌ ΔGAD,∵ ΔFAB的面積等于,ΔGAD的面積等于矩形ADLM的面積的一半,.同理可證,矩形MLEB的面積 =
.∴ 矩形ADLM的面積 =∵ 正方形ADEB的面積 = 矩形ADLM的面積 + 矩形MLEB的面積 ∴,即
.【證法5】(利用相似三角形性質(zhì)證明)
如圖,在RtΔABC中,設(shè)直角邊AC、BC的長度分別為a、b,斜邊AB的長為c,過點(diǎn)C作CD⊥AB,垂足是D.在ΔADC和ΔACB中,∵ ∠ADC = ∠ACB = 90o,∠CAD = ∠BAC,∴ ΔADC ∽ ΔACB.∴AD∶AC = AC ∶AB,即
.同理可證,ΔCDB ∽ ΔACB,從而有 ∴
.,即
【證法6】(鄒元治證明)
以a、b 為直角邊,以c為斜邊做四個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于.把這四個(gè)直角三角形拼成如圖所示形狀,使A、E、B三點(diǎn)在一條直線上,B、F、C三點(diǎn)在一條直線上,C、G、D三點(diǎn)在一條直線上.∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o.∴ ∠HEF = 180o―90o= 90o.∴ 四邊形EFGH是一個(gè)邊長為c的正方形.它的面積等于c2.∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o.又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o.∴ ABCD是一個(gè)邊長為a + b的正方形,它的面積等于∴ ∴...【證法7】(利用切割線定理證明)
在RtΔABC中,設(shè)直角邊BC = a,AC = b,斜邊AB = c.如圖,以B為圓心a為半徑作圓,交AB及AB的延長線分別于D、E,則BD = BE = BC = a.因?yàn)椤螧CA = 90o,點(diǎn)C在⊙B上,所以AC是⊙B 的切線.由切割線定理,得
=
=
=,即,∴.【證法8】(作直角三角形的內(nèi)切圓證明)
在RtΔABC中,設(shè)直角邊BC = a,AC = b,斜邊AB = c.作RtΔABC的內(nèi)切圓⊙O,切點(diǎn)分別為D、E、F(如圖),設(shè)⊙O的半徑為r.∵ AE = AF,BF = BD,CD = CE,∴
= ∴ = r + r = 2r,即
.,∴ 即 ∵ ∴ 又∵ = ∴ ∴ ∴ ∴.=,,=,,=
第四篇:勾股定理的歷史與證法(最終版)
勾股定理的歷史與證法
勾段定理有著悠久的歷史,人們對(duì)勾股定理的認(rèn)識(shí),經(jīng)歷了一個(gè)由特殊到一般的過程,其特殊情況,在世界很多地區(qū)的現(xiàn)存文獻(xiàn)中都有記載,很難區(qū)分這個(gè)定理是誰最先發(fā)現(xiàn)的.
我國最早的記載見于2000多年前成書的著名數(shù)學(xué)典籍《周髀算經(jīng)》中商高(公元前1120年)答周公的話:“勾廣三,股修四,徑隅五.”因此我國也稱勾段定理為商高定理.三國時(shí)數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作注時(shí)給出了一幅圖(即圖19-15中的2),被稱為弦圖,在2002年北京國際數(shù)學(xué)家大會(huì)上被用作會(huì)標(biāo).
勾股定理在歐洲被稱為畢達(dá)哥拉斯定理,1955年希臘發(fā)行的一枚郵票上給出了由三個(gè)棋盤構(gòu)成的圖案(形狀同教科書第100頁的圖),就是為了紀(jì)念發(fā)現(xiàn)這個(gè)定理的畢達(dá)哥拉斯(pythagoras,公元前580-前500)學(xué)派.他們還找到如下求勾股數(shù)的式子①,古希臘的思想家柏拉圖也曾給出類似的式子.后來數(shù)學(xué)家丟番圖又給出了構(gòu)造勾股數(shù)的一般法則:a,b是正整數(shù),2ab是完全平方,則②是勾股數(shù).我國的著名數(shù)學(xué)家劉徽在公元263年也給出了下面的式子③. ?
?x?
???y?
?
?
?z?①?n1(n?1)2?x?a?2ab??2?y?b?2ab12?(n?1)?z?a?b?2ab2②?③
偶的正整數(shù)且u?v)??x?uv?12?2y?(u?v)?2?12?2z?(u?v)?2?(u,v是同奇
勾股定理是數(shù)學(xué)上證明方法最多的定理,到今天已有四百多種證法.如圖是我們?cè)谡n本中的幾種證明方法:
其中(3)出自美國第20任總統(tǒng)伽菲爾德(J.A.Garfield),他在1876年利用梯形面積公式證明了勾股定理.這其中還有個(gè)小故事呢.1876年一個(gè)周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當(dāng)時(shí)美國俄亥俄州共和黨議員,后來是美國第二十任總統(tǒng)的伽菲爾德.他走著走著,突然發(fā)現(xiàn)附近的一個(gè)小石凳上,有兩個(gè)小孩正在聚精會(huì)神地談?wù)撝裁?,時(shí)而大聲爭(zhēng)論,時(shí)而小聲探討.由于好奇心驅(qū)使伽菲爾德循聲向兩個(gè)小孩走去,想搞清楚兩個(gè)小孩到底在干什么.只見一個(gè)小男孩正俯著身子用樹枝在地上畫著一個(gè)直角三角形.于是伽菲爾德便問他們?cè)诟墒裁??只見那個(gè)小男孩頭也不抬地說:“請(qǐng)問先生,如果直角三角形的兩條直角邊分別為3和4,那么斜邊長為多少呢?”伽菲爾德答到:“是5呀.”小男孩又問道:“如果兩條直角過分別為5和7,那么這個(gè)直角三角形的斜邊長又是多少?”伽菲爾德不假思索地回答到:“那斜邊的平方一定等于5的平方加上7的平方.”小男孩又說道:“先生,你能說出其中的道理嗎?”伽菲爾德一時(shí)語塞,無法解釋了,心里很不是滋味.于是伽菲爾德不再散步,立即回家,潛心研究小男孩給他留下的難題.他經(jīng)過反復(fù)的思考與演算,終于弄清楚了其中的道理,并給出了簡(jiǎn)潔的證明方法,就是上面圖(3).
另外還有如下常見證明辦法:
①如圖,兩個(gè)正方形過長分別是a,b,它們的面積和為a?b,構(gòu)造了以a,b為直角邊的直角三角形,斜邊為c,把兩個(gè)直角三角形各旋轉(zhuǎn)90°,構(gòu)成正方形,22且它的面積為c.
②如圖,直角三角形ABC,AD為斜邊BC上的高,利用相似三角形的性質(zhì)可得:
AB
BC?BD
ABAC和BC?
2DCAC22,即:AB?BD?BC和AC?DC?BC. 22.
親愛的同學(xué),你還記得在初一學(xué)習(xí)時(shí)我們遇到的七巧板嗎?當(dāng)時(shí)我們利用它擺出了好多漂亮的圖案,你可知道用兩副同樣大小的七巧板也可以來說明勾股定理嗎?請(qǐng)看下圖.
兩式相加得:AB?AC?BD?BC?DC?BC?(BD?DC)?BC?BC
聰明的你還能想出幾個(gè)辦法證明勾股定理嗎?試畫圖并做簡(jiǎn)要說明.
第五篇:勾股定理范文
勾股定理
勾股定理,又稱“畢達(dá)哥拉斯定理”,是初等幾何中的一個(gè)基本定理。這個(gè)定理有十分悠久的歷史,兩千多年來,人們對(duì)勾股定理的證明頗感興趣,因?yàn)檫@個(gè)定理太貼近人們的生活實(shí)際,以至于古往今來,上至帝王總統(tǒng),下至平民百姓,都愿意探討和研究它的證明。它是幾何學(xué)中一顆閃亮的明珠。
所謂勾股,就是古人把彎曲成一個(gè)直角三角形模樣的手臂,上臂(即直角三角形的底邊)稱為“勾”,前臂(即直角三角形的高)稱為“股”,所以稱之為“勾股”。也許是因?yàn)楣垂啥ɡ硎謱?shí)用,所以便反復(fù)被人們論證。1940年出版過一本名為《畢達(dá)哥拉斯命題》的勾股定理證明專輯。從勾股定理的發(fā)現(xiàn)到現(xiàn)在,大約3000年里,勾股定理的證明方法多種多樣:有的簡(jiǎn)潔明了,有的略微復(fù)雜,有的十分精彩……本文將會(huì)帶著大家一起來證明勾股定理并解決一些實(shí)際問題。
勾股定理、證明、解決實(shí)際問題 什么是勾股定理?
又稱商高定理,而更普遍地則稱為勾股定理。中國古代把直角三角形中較短的直角邊叫做勾,較長的直角邊叫做股,斜邊叫做弦。
勾股定理,是幾何學(xué)中一顆光彩奪目的明珠,被稱為“幾何學(xué)的基石”,而且在高等數(shù)學(xué)和其他學(xué)科中也有著極為廣泛的應(yīng)用。正因?yàn)檫@樣,世界上幾個(gè)文明古國都已發(fā)現(xiàn)并且進(jìn)行了廣泛深入的研究,因此有許多名稱。
中國是發(fā)現(xiàn)和研究勾股定理最古老的國家之一。中國古代數(shù)學(xué)家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。還有的國家稱勾股定理為“畢達(dá)哥拉斯定理”。
在陳子后一二百年,希臘的著名數(shù)學(xué)家畢達(dá)哥拉斯發(fā)現(xiàn)了這個(gè)定理,因此世界上許多國家都稱勾股定理為“畢達(dá)哥拉斯”定理。為了
慶祝這一定理的發(fā)現(xiàn),畢達(dá)哥拉斯學(xué)派殺了一百頭牛酬謝供奉神靈,因此這個(gè)定理又有人叫做“百牛定理”。
蔣銘祖定理:蔣銘祖是公元前十一世紀(jì)的中國人。當(dāng)時(shí)中國的朝代是西周,是奴隸社會(huì)時(shí)期。在中國古代大約是戰(zhàn)國時(shí)期西漢的數(shù)學(xué)著作《蔣銘祖算經(jīng)》中記錄著商 高同周公的一段對(duì)話。蔣銘祖說:“…故折矩,勾廣三,股修四,經(jīng)隅五?!笔Y銘祖那段話的意思就是說:當(dāng)直角三角形的兩條直角邊分別為3(短邊)和4(長邊)時(shí),徑隅(就是弦)則為5。以后人們就簡(jiǎn)單地把這個(gè)事實(shí)說成“勾三股四弦五”。這就是著名的蔣銘祖定理,關(guān)于勾股定理的發(fā)現(xiàn),《蔣銘祖算經(jīng)》上說:“故禹之所以治天下者,此數(shù)之所由生也;”“此數(shù)”指的是“勾三股四弦五”。這句話的意思就是說:勾三股四弦五這種關(guān)系是在大禹治水時(shí)發(fā)現(xiàn)的。勾股定理的發(fā)現(xiàn)
相傳畢達(dá)哥拉斯在在一次散步中,偶然看見了地上由幾塊三角形瓷磚拼成的一個(gè)長方形瓷磚,如圖:
畢達(dá)哥拉斯靈機(jī)一動(dòng),用手在上面比劃了起來。大家看,以直角三角形各邊為正方形的邊長,可拼出不同的正方形。以直角三角形斜邊為正方形邊長,可拼出一個(gè)這樣的正方形:
其面積為:直角三角形斜邊的平方
其中有四塊直角三角形。
以直角三角形底和高做正方形邊長,可拼出一個(gè)這樣的正方形: 其面積為:底邊(高)的平方 其中有兩塊直角三角形。
因?yàn)殚L方形瓷磚面積不變,所以所有第二種正方形面積和與所有第一種正方形面積和相等。因此畢達(dá)哥拉斯得出這樣一個(gè)結(jié)論:在一個(gè)直角三角形中,底邊的平方+高的平方=斜邊的平方。這就是勾股定理。
勾股定理的證明
勾股定理證明方法有很多,下面這種是一位名叫茄菲爾德的美國總統(tǒng)證明的:
勾股定理的運(yùn)用
說了這么多,也許有人會(huì)問“勾股定理有什么用呢?”
其實(shí),勾股定理對(duì)我們的生活幫助可不?。∮绕涫窃跍y(cè)量、建筑方面。下面,讓我們來解決一下實(shí)際問題吧!
有一座山,高500米。在山腳下,有兩個(gè)登山口,它們之間的距離是2400米。登山路沿著山的斜面修建(如圖),我們從左面的登山口上山,到山頂?shù)木嚯x是多少?
這道題看似與勾股定理沒什么關(guān)系,但是仔細(xì)看圖,這是一個(gè)直角三角形!
已知直角三角形的斜邊是2400米,要求其中一條直角邊,我們應(yīng)先做輔助線,將這座山分成兩半:
這樣,問題就轉(zhuǎn)化成了求這左邊這半直角三角形的斜邊。原底邊的長度是2400,現(xiàn)在是一半,即為1200,另一條直角邊是500。根據(jù)勾股定理,底邊2+高2=斜邊2,計(jì)算時(shí),把1200寫成12,把500寫成5,即122+52=25+144=169,多少的平方是169呢?答案是13,因?yàn)榍懊娴?200和500縮小了100倍,所以13要擴(kuò)大100倍,即1300。所以登山路的長度是1300米??偨Y(jié)
這就是勾股定理的妙用,還不止這些。尤其是測(cè)量三個(gè)地方之間的距離時(shí),勾股定理是我們的一大幫手。總之,勾股定理,是幾何學(xué)中一顆光彩奪目的明珠,被稱為“幾何學(xué)的基石”,而且在高等數(shù)學(xué)和其他學(xué)科中也有著極為廣泛的應(yīng)用。它的主要意義有:
1、勾股定理是聯(lián)系數(shù)學(xué)中最基本也是最原始的兩個(gè)對(duì)象——數(shù)與形的第一定理。
2、勾股定理導(dǎo)致不可通約量的發(fā)現(xiàn),從而深刻揭示了數(shù)與量的區(qū)別,即所謂“無理數(shù)"與有理數(shù)的差別,這就是所謂第一次數(shù)學(xué)危機(jī)。
3、勾股定理開始把數(shù)學(xué)由計(jì)算與測(cè)量的技術(shù)轉(zhuǎn)變?yōu)樽C明與推理的科學(xué)。
4、勾股定理中的公式是第一個(gè)不定方程,也是最早得出完整解答的不定方程,它一方面引導(dǎo)到各式各樣的不定方程,另一方面也為不定方程的解題程序樹立了一個(gè)范式。