欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      初中幾何證明題要用到的一些定理、初中數(shù)學(xué)知識(shí)點(diǎn)(分代數(shù)和幾何部分)(樣例5)

      時(shí)間:2019-05-14 13:31:38下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《初中幾何證明題要用到的一些定理、初中數(shù)學(xué)知識(shí)點(diǎn)(分代數(shù)和幾何部分)》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《初中幾何證明題要用到的一些定理、初中數(shù)學(xué)知識(shí)點(diǎn)(分代數(shù)和幾何部分)》。

      第一篇:初中幾何證明題要用到的一些定理、初中數(shù)學(xué)知識(shí)點(diǎn)(分代數(shù)和幾何部分)

      初中幾何證明題要用到的一些定理、初中數(shù)學(xué)知識(shí)點(diǎn)(分代

      數(shù)和幾何部分)

      初中幾何證明題要用到的一些定理、初中數(shù)學(xué)知識(shí)點(diǎn)(分代數(shù)和幾何部分)證明兩線段相等

      1.兩全等三角形中對(duì)應(yīng)邊相等。

      2.同一三角形中等角對(duì)等邊。

      3.等腰三角形頂角的平分線或底邊的高平分底邊。4.平行四邊形的對(duì)邊或?qū)蔷€被交點(diǎn)分成的兩段相等。

      5.直角三角形斜邊的中點(diǎn)到三頂點(diǎn)距離相等。

      6.線段垂直平分線上任意一點(diǎn)到線段兩段距離相等。

      7.角平分線上任一點(diǎn)到角的兩邊距離相等。

      8.過(guò)三角形一邊的中點(diǎn)且平行于第三邊的直線分第二邊所成的線段相等。

      *9.同圓(或等圓)中等弧所對(duì)的弦或與圓心等距的兩弦或等圓心角、圓周角所對(duì)的弦相等。

      *10.圓外一點(diǎn)引圓的兩條切線的切線長(zhǎng)相等或圓內(nèi)垂直于直徑的弦被直徑分成的兩段相等。

      11.兩前項(xiàng)(或兩后項(xiàng))相等的比例式中的兩后項(xiàng)(或兩前項(xiàng))相等。

      *12.兩圓的內(nèi)(外)公切線的長(zhǎng)相等。

      13.等于同一線段的兩條線段相等。證明兩個(gè)角相等

      1.兩全等三角形的對(duì)應(yīng)角相等。

      2.同一三角形中等邊對(duì)等角。

      3.等腰三角形中,底邊上的中線(或高)平分頂角。

      4.兩條平行線的同位角、內(nèi)錯(cuò)角或平行四邊形的對(duì)角相等。

      5.同角(或等角)的余角(或補(bǔ)角)相等。

      *6.同圓(或圓)中,等弦(或?。┧鶎?duì)的圓心角相等,圓周角相等,弦切角等于它所夾的弧對(duì)的圓周角。

      *7.圓外一點(diǎn)引圓的兩條切線,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

      8.相似三角形的對(duì)應(yīng)角相等。

      *9.圓的內(nèi)接四邊形的外角等于內(nèi)對(duì)角。10.等于同一角的兩個(gè)角相等

      證明兩直線平行

      1.垂直于同一直線的各直線平行。

      2.同位角相等,內(nèi)錯(cuò)角相等或同旁內(nèi)角互補(bǔ)的兩直線平行。

      3.平行四邊形的對(duì)邊平行。

      4.三角形的中位線平行于第三邊。

      5.梯形的中位線平行于兩底。

      6.平行于同一直線的兩直線平行。

      7.一條直線截三角形的兩邊(或延長(zhǎng)線)所得的線段對(duì)應(yīng)成比例,則這條直線平行于第三邊。證明兩條直線互相垂直

      1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。

      2.三角形中一邊的中線若等于這邊一半,則這一邊所對(duì)的角是直角。

      3.在一個(gè)三角形中,若有兩個(gè)角互余,則第三個(gè)角是直角。

      4.鄰補(bǔ)角的平分線互相垂直。

      5.一條直線垂直于平行線中的一條,則必垂直于另一條。

      6.兩條直線相交成直角則兩直線垂直。

      7.利用到一線段兩端的距離相等的點(diǎn)在線段的垂直平分線上。

      8.利用勾股定理的逆定理。

      9.利用菱形的對(duì)角線互相垂直。

      *10.在圓中平分弦(或?。┑闹睆酱怪庇谙?。

      *11.利用半圓上的圓周角是直角。

      證明線段的和差倍分

      1.作兩條線段的和,證明與第三條線段相等。

      2.在第三條線段上截取一段等于第一條線段,證明余下部分等于第二條線段。

      3.延長(zhǎng)短線段為其二倍,再證明它與較長(zhǎng)的線段相等。

      4.取長(zhǎng)線段的中點(diǎn),再證其一半等于短線段。

      5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質(zhì)等)。證明 角的和差倍分

      1.與證明線段的和、差、倍、分思路相同。

      2.利用角平分線的定義。

      3.三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。

      證明線段不等

      1.同一三角形中,大角對(duì)大邊。

      2.垂線段最短。

      3.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。

      4.在兩個(gè)三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。

      *5.同圓或等圓中,弧大弦大,弦心距小。

      6.全量大于它的任何一部分。

      證明兩角的不等

      1.同一三角形中,大邊對(duì)大角。

      2.三角形的外角大于和它不相鄰的任一內(nèi)角。

      3.在兩個(gè)三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。

      *4.同圓或等圓中,弧大則圓周角、圓心角大。

      5.全量大于它的任何一部分。

      證明比例式或等積式

      1.利用相似三角形對(duì)應(yīng)線段成比例。

      2.利用內(nèi)外角平分線定理。3.平行線截線段成比例。

      4.直角三角形中的比例中項(xiàng)定理即射影定理。

      *5.與圓有關(guān)的比例定理---相交弦定理、切割線定理及其推論。

      6.利用比利式或等積式化得。

      證明四點(diǎn)共圓

      *1.對(duì)角互補(bǔ)的四邊形的頂點(diǎn)共圓。

      *2.外角等于內(nèi)對(duì)角的四邊形內(nèi)接于圓。

      *3.同底邊等頂角的三角形的頂點(diǎn)共圓(頂角在底邊的同側(cè))。

      *4.同斜邊的直角三角形的頂點(diǎn)共圓。

      *5.到頂點(diǎn)距離相等的各點(diǎn)共圓。初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

      一、基本知識(shí)

      (一)、數(shù)與代數(shù)A、數(shù)與式:

      1、實(shí)數(shù) 有理數(shù):①整數(shù)→正整數(shù)/0/負(fù)整數(shù) ②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)數(shù)軸:①畫(huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较?,就得到?shù)軸。②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。有理數(shù)的運(yùn)算:加法:①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。③一個(gè)數(shù)與0相加不變。減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。②0不能作除數(shù)。乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)?;旌享樞颍合人愠朔?,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。

      2、實(shí)數(shù) 無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù)平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

      3、代數(shù)式 代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。合并同類(lèi)項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類(lèi)項(xiàng)。②把同類(lèi)項(xiàng)合并成一項(xiàng)就叫做合并同類(lèi)項(xiàng)。③在合并同類(lèi)項(xiàng)時(shí),我們把同類(lèi)項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

      4、整式與分式A、整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類(lèi)項(xiàng)。冪的運(yùn)算:AM+AN=A(M+N)(AM)N=ANMN(A/B)N=AN/BN 除法一樣。整式的乘法:①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的 積相加。公式兩條:平方差公式 / 完全平方公式整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運(yùn)算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。B、方程與不等式

      1、方程與方程組一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。解一元一次方程的步驟:去分母,移項(xiàng),合并同類(lèi)項(xiàng),未知數(shù)系數(shù)化為1。二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程1)一元二次方程的二次函數(shù)的關(guān)系大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了2)一元二次方程的解法大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元二次方程的解(1)配方法 利用配方,使方程變?yōu)橥耆椒焦?,在用直接開(kāi)平方法去求出解(2)分解因式法 提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解(3)公式法 這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式(2)分解因式法的步驟:把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法: 就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c4)韋達(dá)定理利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用5)一元二次方程根的情況利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,△=b2-4ac,這里可以分為3種情況:I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;III當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根(在這里,學(xué)到高中就會(huì)知道,這里有2個(gè)虛數(shù)根)

      2、不等式與不等式組不等式:①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。不等式的解集:①能使不等式成立的未知數(shù)的值,叫做不等式的解。②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。③求不等式解集的過(guò)程叫做解不等式。一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。一元一次不等式組:

      ①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。

      ②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。

      ③求不等式組解集的過(guò)程,叫做解不等式組。一元一次不等式的符號(hào)方向:

      在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變。

      在不等式中,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:A>B,A+C>B+C 在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:A>B,A-C>B-C 在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:A>B,A*C>B*C(C>0)

      在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:A>B,A*C

      如果不等式乘以0,那么不等號(hào)改為等號(hào)

      所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不能為0,否則不等式不成立;

      3、函數(shù) 變量:因變量,自變量。

      在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。一次函數(shù):①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

      ②當(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。

      一次函數(shù)的圖象:①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。

      ④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。

      空間與圖形A、圖形的認(rèn)識(shí)

      1、點(diǎn),線,面點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。②面與面相交得線,線與線相交得點(diǎn)。③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。展開(kāi)與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。②N棱柱就是底面圖形有N條邊的棱柱。截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形?;?、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個(gè)扇形。

      2、角 線:①線段有兩個(gè)端點(diǎn)。②將線段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。③將線段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。④經(jīng)過(guò)兩點(diǎn)有且只有一條直線。比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。②一度的1/60是一分,一分的1/60是一秒。角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點(diǎn)叫做垂足。③平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了兩點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出兩點(diǎn)。垂直平分線定理:性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;判定定理:到線段兩端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上角平分線:把一個(gè)角平分的射線叫該角的角平分線。定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上正方形:一組鄰邊相等 的 矩形 是正方形性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)判定:

      1、對(duì)角線相等的菱形

      2、鄰邊相等的矩形

      二、基本定理

      1、過(guò)兩點(diǎn)有且只有一條直線

      2、兩點(diǎn)之間線段最短

      3、同角或等角的補(bǔ)角相等

      4、同角或等角的余角相等

      5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直

      6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

      7、平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行

      8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

      9、同位角相等,兩直線平行

      10、內(nèi)錯(cuò)角相等,兩直線平行

      11、同旁內(nèi)角互補(bǔ),兩直線平行

      12、兩直線平行,同位角相等

      13、兩直線平行,內(nèi)錯(cuò)角相等

      14、兩直線平行,同旁內(nèi)角互補(bǔ)

      15、三角形兩邊的和大于第三邊

      16、三角形兩邊的差小于第三邊

      17、三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°

      18、直角三角形的兩個(gè)銳角互余

      19、三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20、三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

      21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

      22、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

      23、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的 兩個(gè)三角形全等

      24、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

      25、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

      26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

      27、在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

      28、到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

      29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合30、等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)

      31、等腰三角形頂角的平分線平分底邊并且垂直于底邊

      32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、等邊三角形的各角都相等,并且每一個(gè)角都等于60°

      34、等腰三角形的判定定理(等角對(duì)等邊)如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等

      35、三個(gè)角都相等的三角形是等邊三角形

      36、有一個(gè)角等于60°的等腰三角形是等邊三角形

      37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

      38、直角三角形斜邊上的中線等于斜邊上的一半

      39、線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等40、和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

      41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42、關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

      43、如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

      44、兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

      45、如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

      46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c247、如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

      48、四邊形的內(nèi)角和等于360°

      49、四邊形的外角和等于360°50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°

      51、*任意多邊的外角和等于360°

      52、平行四邊形的對(duì)角相等

      53、平行四邊形的對(duì)邊相等

      54、夾在兩條平行線間的平行線段相等

      55、平行四邊形的對(duì)角線互相平分

      56、兩組對(duì)角分別相等的四邊形是平行四邊形

      57、兩組對(duì)邊分別相等的四邊形是平行四邊形

      58、對(duì)角線互相平分的四邊形是平行四邊形

      59、一組對(duì)邊平行相等的四邊形是平行四邊形60、矩形的四個(gè)角都是直角 61、矩形的對(duì)角線相等

      62、有三個(gè)角是直角的四邊形是矩形

      63、對(duì)角線相等的平行四邊形是矩形64、菱形的四條邊都相等

      65、菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

      66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2 67、四邊都相等的四邊形是菱形

      68、對(duì)角線互相垂直的平行四邊形是菱形69、正方形的四個(gè)角都是直角,四條邊都相等

      70、正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角71、關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的 72、關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分

      73、如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱 74、等腰梯形在同一底上的兩個(gè)角相等 75、等腰梯形的兩條對(duì)角線相等

      76、在同一底上的兩個(gè)角相等的梯形是等腰梯形 77、對(duì)角線相等的梯形是等腰梯形

      78、如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

      79、經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80、經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

      81、*三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半

      82、*梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半

      L=(a+b)÷2 S=L×h83、*(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d 84、*(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d 85、*(3)等比性質(zhì):

      如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么(a+c+…+m)/(b+d+…+n)=a/b86、*平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例 87、平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

      88、如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

      89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例90、平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

      91、兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

      92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

      93、兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)94、三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

      95、如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

      96、相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

      97、相似三角形周長(zhǎng)的比等于相似比

      98、相似三角形面積的比等于相似比的平方99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

      100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

      102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104、同圓或等圓的半徑相等

      105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

      106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是這條線段的垂直平分線

      107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

      108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

      109、不在同一直線上的三點(diǎn)確定一個(gè)圓。

      110、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

      111、①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

      ②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧 ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

      112、圓的兩條平行弦所夾的弧相等 113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

      114、在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

      115、在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

      116、*一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117、同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

      118、*半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

      119、如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

      120、*圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

      121、①直線L和⊙O相交 d<r ②直線L和⊙O相切 d=r ③直線L和⊙O相離 d>r 122、切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線 123、切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑 124、經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn) 125、經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心 126、*切線長(zhǎng)定理

      從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

      127、*圓的外切四邊形的兩組對(duì)邊的和相等128、*弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角

      129、如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

      130、*相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的 積 相等

      131、如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

      132、切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

      133、從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條 割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

      134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135、①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 R-r<d<R+r(R>r)④兩圓內(nèi)切 d=R-r(R>r)⑤兩圓內(nèi)含 d<R-r(R>r)136、相交兩圓的連心線垂直平分兩圓的公共弦 137、把圓分成n(n≥3):

      ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形 ⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

      138、任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139、*正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n 140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

      141、*正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng) 142、*正三角形面積√3a/4 a表示邊長(zhǎng)

      143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144、*弧長(zhǎng)計(jì)算公式:L=n兀R/180 145、*扇形面積公式:S扇形=n兀R^2/360=LR/2 146、*內(nèi)公切線長(zhǎng)= d-(R-r)外公切線長(zhǎng)= d-(R+r)幾組有用的幾何順口溜: 如何加輔助線

      學(xué)習(xí)幾何體會(huì)深,成敗也許一線牽。分散條件要集中,常要添加輔助線。

      畏懼心理不要有,其次要把觀念變。

      熟能生巧有規(guī)律,真知灼見(jiàn)靠實(shí)踐。

      圖中已知有中線,倍長(zhǎng)中線把線連。旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。多條中線連中點(diǎn),便可得到中位線。倘若知角平分線,既可兩邊作垂線。也可沿線去翻折,全等圖形立呈現(xiàn)。角分線若加垂線,等腰三角形可見(jiàn)。角分線加平行線,等線段角位置變。已知線段中垂線,連接兩端等線段。輔助線必畫(huà)虛線,便與原圖聯(lián)系看。同軸兩點(diǎn)求距離,大減小數(shù)就為之。與軸等距兩個(gè)點(diǎn),間距求法亦如此。平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值。差方相加開(kāi)平方,距離公式要牢記。矩形的判定

      任意一個(gè)四邊形,三個(gè)直角成矩形;對(duì)角線等互平分,四邊形它是矩形。已知平行四邊形,一個(gè)直角叫矩形;兩對(duì)角線若相等,理所當(dāng)然為矩形。菱形的判定

      兩點(diǎn)間距離公式

      任意一個(gè)四邊形,四邊相等成菱形;

      四邊形的對(duì)角線,垂直互分是菱形。已知平行四邊形,鄰邊相等叫菱形;

      兩對(duì)角線若垂直,順理成章為菱形。

      第二篇:初中數(shù)學(xué)幾何證明題

      平面幾何大題 幾何是豐富的變換

      多邊形平面幾何有兩種基本入手方式:從邊入手、從角入手

      注意哪些角相等哪些邊相等,用標(biāo)記。進(jìn)而看出哪些三角形全等。平行四邊形所有的判斷方式?

      難題

      第三篇:初中數(shù)學(xué)幾何證明題

      初中數(shù)學(xué)幾何證明題

      分析已知、求證與圖形,探索證明的思路。

      對(duì)于證明題,有三種思考方式:

      (1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。

      (2)逆向思維。顧名思義,就是從相反的方向思考問(wèn)題。運(yùn)用逆向思維解題,能使學(xué)生從不同角度,不同方向思考問(wèn)題,探索解題方法,從而拓寬學(xué)生的解題思路。這種方法是推薦學(xué)生一定要掌握的。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學(xué)這門(mén)學(xué)科知識(shí)點(diǎn)很少,關(guān)鍵是怎樣運(yùn)用,對(duì)于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經(jīng)上初三了,幾何學(xué)的不好,做題沒(méi)有思路,那你一定要注意了:從現(xiàn)在開(kāi)始,總結(jié)做題方法。同學(xué)們認(rèn)真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。例如:可以有這樣的思考過(guò)程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個(gè)三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個(gè)條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過(guò)程正著寫(xiě)出來(lái)就可以了。這是非常好用的方法,同學(xué)們一定要試一試。

      (3)正逆結(jié)合。對(duì)于從結(jié)論很難分析出思路的題目,同學(xué)們可以結(jié)合結(jié)論和已知條件認(rèn)真的分析,初中數(shù)學(xué)中,一般所給的已知條件都是解題過(guò)程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c(diǎn),我們就要想到是否要連出中位線,或者是否要用到中點(diǎn)倍長(zhǎng)法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對(duì)角線,或補(bǔ)形等等。正逆結(jié)合,戰(zhàn)無(wú)不勝。

      幾何證明題入門(mén)難,證明題難做,是許多初中生在學(xué)習(xí)中的共識(shí),這里面有很多因素,有主觀的、也有客觀的,學(xué)習(xí)不得法,沒(méi)有適當(dāng)?shù)慕忸}思路則是其中的一個(gè)重要原因。掌握證明題的一般思路、探討證題過(guò)程中的數(shù)學(xué)思維、總結(jié)證題的基本規(guī)律是求解幾何證明題的關(guān)鍵。在這里結(jié)合自己的教學(xué)經(jīng)驗(yàn),談?wù)勛约旱囊恍┓椒ㄅc大家一起分享。

      一要審題。很多學(xué)生在把一個(gè)題目讀完后,還沒(méi)有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這非常不可齲我們應(yīng)該逐個(gè)條件的讀,給的條件有什么用,在腦海中打個(gè)問(wèn)號(hào),再對(duì)應(yīng)圖形來(lái)對(duì)號(hào)入座,結(jié)論從什么地方入手去尋找,也在圖中找到位置。

      二要記。這里的記有兩層意思。第一層意思是要標(biāo)記,在讀題的時(shí)候每個(gè)條件,你要在所給的圖形中標(biāo)記出來(lái)。如給出對(duì)邊相等,就用邊相等的符號(hào)來(lái)表示。第二層意思是要牢記,題目給出的條件不僅要標(biāo)記,還要記在腦海中,做到不看題,就可以把題目復(fù)述出來(lái)。

      三要引申。難度大一點(diǎn)的題目往往把一些條件隱藏起來(lái),所以我們要會(huì)引申,那么這里的引申就需要平時(shí)的積累,平時(shí)在課堂上學(xué)的基本知識(shí)點(diǎn)掌握牢固,平時(shí)訓(xùn)練的一些特殊圖形要熟記,在審題與記的時(shí)候要想到由這些條件你還可以得到哪些結(jié)論(就像電腦一下,你一點(diǎn)擊開(kāi)始立刻彈出對(duì)應(yīng)的菜單),然后在圖形旁邊標(biāo)注,雖然有些條件在證明時(shí)可能用不上,但是這樣長(zhǎng)期的積累,便于以后難題的學(xué)習(xí)。

      四要分析綜合法。分析綜合法也就是要逆向推理,從題目要你證明的結(jié)論出發(fā)往回推理??纯唇Y(jié)論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對(duì)頂角相等2.平行線里同位角相等、內(nèi)錯(cuò)角相等3.余角、補(bǔ)角定理4.角平分線定義5.等腰三角形6.全等三角形的對(duì)應(yīng)角等等方法。然后結(jié)合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉(zhuǎn)換成證明其他的結(jié)論,通常缺少的條件會(huì)在第三步引申出的條件和題目中出現(xiàn),這時(shí)再把這些條件綜合在一起,很條理的寫(xiě)出證明過(guò)程。

      五要?dú)w納總結(jié)。很多同學(xué)把一個(gè)題做出來(lái),長(zhǎng)長(zhǎng)的松了一口氣,接下來(lái)去做其他的,這個(gè)也是不可取的,應(yīng)該花上幾分鐘的時(shí)間,回過(guò)頭來(lái)找找所用的定理、公理、定義,重新審視這個(gè)題,總結(jié)這個(gè)題的解題思路,往后出現(xiàn)同樣類(lèi)型的題該怎樣入手。

      第四篇:初中的數(shù)學(xué)主要是分代數(shù)和幾何兩大部分

      初中的數(shù)學(xué)主要是分代數(shù)和幾何兩大部分,兩者在中考中所占的比例,代數(shù)略大于幾何

      代數(shù)主要有以下幾點(diǎn):

      1,有理數(shù)的運(yùn)算,主要講有理數(shù)的三級(jí)運(yùn)算(加減乘除和乘方開(kāi)方)在這里要注意數(shù)字和字母的符號(hào)意識(shí),就是,不要受小學(xué)數(shù)字的影響,一看見(jiàn)字母就不會(huì)做題了。

      2,整式的三級(jí)運(yùn)算,注意符號(hào)意識(shí)的培養(yǎng),還有就是因式分解,這和整式的乘法是互換的,注意像平方差公式和完全平方公式的正用、逆用和變形用。

      3,方程,會(huì)一元一次、二元一次、三元一次、一元二次四種方程的解法和應(yīng)用,記住,方程是一種方法,是一種解題的手段。

      4,函數(shù),會(huì)識(shí)別一次函數(shù)、二次函數(shù)、反比例函數(shù)的圖像,記住他們的特征,要會(huì)根據(jù)條件來(lái)應(yīng)用。尤其要注意二次函數(shù),這是中考的重點(diǎn)和難點(diǎn)。應(yīng)用題里會(huì)拿它來(lái)出一道難題的幾何主要有以下幾點(diǎn):

      1,識(shí)別各種平面圖形和立體圖形,這你應(yīng)該非常熟悉。

      2,圖形的平移、旋轉(zhuǎn)和軸對(duì)稱,這個(gè)考察你的空間想象的能力,多做一些題。3,三角形的全等和相似,要會(huì)證明,注意要有完整的過(guò)程和嚴(yán)密的步驟,背過(guò)證明三角形全等的五種方法和證明相似的四種方法;還有像等腰三角形、直角三角形和黃金三角形的性質(zhì),要會(huì)應(yīng)用,這在證明題中會(huì)有很大的幫助。

      4,四邊形,把握好平行四邊形、長(zhǎng)方形、正方形、菱形和梯形的概念,選擇體里會(huì)拿著它們之間的微小差異而大做文章,注意它們的判定和性質(zhì),證明題里也會(huì)考到。

      5,圓,我這里沒(méi)有細(xì)學(xué),因?yàn)檫@里不是我們中考的重點(diǎn),但是圓的難度會(huì)很大,它的知識(shí)點(diǎn)很多、很碎,圓的難題就是由許許多多細(xì)小的點(diǎn)構(gòu)成的。

      第五篇:初中幾何證明題

      (1)如圖,在三角形ABC中,BD,CE是高,F(xiàn)G分別為ED,BC的中點(diǎn),O是外心,求證AO∥FG 問(wèn)題補(bǔ)充:

      證明:延長(zhǎng)AO,交圓O于M,連接BM,則:∠ABM=90°,且∠M=∠ACB.∠AEC=∠ADB=90°,∠EAC=∠DAB,則⊿AEC∽⊿ADB,AE/AD=AC/AB;

      又∠EAD=∠CAB,則⊿EAD∽⊿CAB,得∠AED=∠ACB=∠M.∴∠AED+∠BAM=∠M+∠BAM=90°,得AO⊥DE.--------(1)

      連接DG,EG.點(diǎn)G為BC的中點(diǎn),則DG=BC/2;(直角三角形斜邊的中線等于斜邊的一半)同理可證:EG=BC/2.故DG=EG.又F為DE的中點(diǎn),則FG⊥DE.(等腰三角形底邊的中線也是底邊的高)-----------------(2)所以,AO∥FG.(2)已知梯形ABCD中,對(duì)角線AC與腰BC相等,M是底邊AB的中點(diǎn),L是邊DA延長(zhǎng)線上一點(diǎn)連接LM并延長(zhǎng)交對(duì)角線BD于N點(diǎn)

      延長(zhǎng)LM至E,使LM=ME。

      ∵AM=MB,LM=ME,∴ALBE是平行四邊形,∴AL=BE,AL∥EB,∴LN/EN=DN/BN。

      延長(zhǎng)CN交AB于F,令LC與AB的交點(diǎn)為G。

      ∵AB是梯形ABCD的底邊,∴BF∥CD,∴CN/FN=DN/BN。

      由LN/EN=DN/BN,CN/FN=DN/BN,得:LN/EN=DN/BN,∴LC∥FE,∴∠GLM=∠FEB。

      由AL∥EB,得:∠LAG=∠EBF,∠ALM=∠BEM。

      由∠ALM=∠BEM,∠GLM=∠FEB,得:∠ALM-∠GLM=∠BEM-∠FEB,∴∠ALG=∠BEF,結(jié)合證得的∠LAG=∠EBF,AL=BE,得:△ALG≌△BEF,∴AG=BF。

      ∵AC=BC,∴∠CAG=∠CBF,結(jié)合證得的AG=BF,得:△ACG≌△BCF,∴ACL=∠BCN。

      (3)如圖,三角形ABC中,D,E分別在邊AB,AC上且BD=CE,F,G分別為BE,CD的中點(diǎn),直線FG交

      AB于P,交AC于Q.求證:AP=AQ

      取BC中點(diǎn)為H

      連接HF,HG并分別延長(zhǎng)交AB于M點(diǎn),交AC于N點(diǎn)

      由于H,F(xiàn)均為中點(diǎn)

      易得:

      HM‖AC,HN‖AB

      HF=CE/2,HG=BD/

      2得到:

      ∠BMH=∠A

      ∠CNH=∠A

      又:BD=CE

      于是得:

      HF=HG

      在△HFG中即得:

      ∠HFG=∠HGF

      即:∠PFM=∠QGN

      于是在△PFM中得:

      ∠APQ=180°-∠BMH-∠PFM=180°-∠A-∠QGN

      在△QNG中得:

      ∠AQP=180°-∠CNH-∠QGN=180°-∠A-∠QGN

      即證得:

      ∠APQ=∠AQP

      在△APQ中易得到: AP=AQ

      (4)ABCD為圓內(nèi)接凸四邊形,取△DAB,△ABC,△BCD,△CDA的內(nèi)心O,O,O,O.求證:OOOO為矩形. 123

      41234

      已知銳角三角形ABC的外接圓O,過(guò)B,C作圓的切線交于E,連結(jié)AE,M為BC的中點(diǎn)。求證角BAM=角EAC。

      設(shè)點(diǎn)O為△ABC外接圓圓心,連接OP;

      則O、E、M三點(diǎn)共線,都在線段BC的垂直平分線上。

      設(shè)AM和圓O相交于點(diǎn)Q,連接OQ、OB。

      由切割線定理,得:MB2 = Q·MA ;

      由射影定理,可得:MB2 = ME·MO ;

      ∴MQ·MA = ME·MO,即MQ∶MO = ME∶MA ;

      又∵ ∠OMQ = ∠AME,∴△OMQ ∽ △AME,可得:∠MOQ = ∠MAE。

      設(shè)OM和圓O相交于點(diǎn)D,連接AD。

      ∵弧BD = 弧CD,∴∠BAD = ∠CAD。

      ∵∠DAQ =(1/2)∠MOQ =(1/2)∠MAE,∴∠DAE = ∠MAE∠DAE = ∠CAD-∠DAQ = ∠CAM。

      設(shè)AD、BE、CF是△ABC的高線,則△DEF稱為△ABC的垂足三角形,證明這些高線平分垂足三角形的內(nèi)角或外角 設(shè)交點(diǎn)為O,OE⊥EC,OD⊥DC,則CDOE四點(diǎn)共圓,由圓周角定理,∠ODE=∠OCE。

      CF⊥FC,AD⊥DC,則ACDF四點(diǎn)共圓,由圓周角定理,∠ADF=∠ACF=∠OCE=∠ODE,AD平分∠EDF。

      其他同理。

      平行四邊形內(nèi)有一點(diǎn)P,滿足角PAB=角PCB,求證:角PBA=角PDA

      過(guò)P作PH//DA,使PH=AD,連結(jié)AH、BH

      ∴四邊形AHPD是平行四邊形

      ∴∠PHA=∠PDA,HP//=AD

      ∵四邊形ABCD是平行四邊形

      ∴AD//=BC

      ∴HP//=BC

      ∴四邊形PHBC是平行四邊形

      ∴∠PHB=∠PCB

      又∠PAB=∠PCB

      ∴∠PAB=∠PHB

      ∴A、H、B、P四點(diǎn)共圓

      ∴∠PHA=∠PBA

      ∴∠PBA=∠PDA

      補(bǔ)充:

      補(bǔ)充:

      把被證共圓的四個(gè)點(diǎn)連成共底邊的兩個(gè)三角形,且兩三角形都在這底邊的同側(cè),若能證明其頂角相等,從而即可肯定這四點(diǎn)共圓.

      已知點(diǎn)o為三角型ABC在平面內(nèi)的一點(diǎn),且向量OA2+BC2=OB2+CA2=OC2+AB2,,則O為三角型ABC的()

      只說(shuō)左邊2式子 其他一樣

      OA2+BC2=OB2+CA2 移項(xiàng)后平方差公式可得

      (OA+OB)(OA-OB)=(CA+BC)(CA-BC)化簡(jiǎn)

      得 BA(OA+OB)=BA(CA-BC)

      移項(xiàng)并合并得BA(OA+OB+BC-CA)=0

      即 BA*2OC=0 所以BA和OC垂直

      同理AC垂直BO BC垂直AO哈哈啊是垂心

      設(shè)H是△ABC的垂心,求證:AH2+BC2=HB2+AC2=HC2+AB2.

      作△ABC的外接圓及直徑AP.連接BP.高AD的延長(zhǎng)線交外接圓于G,連接CG. 易證∠HCB=∠BCG,從而△HCD≌△GCD.

      故CH=GC.

      又顯然有∠BAP=∠DAC,從而GC=BP.

      從而又有CH2+AB2=BP2+AB2=AP2=4R2.

      同理可證AH2+BC2=BH2+AC2=4R2.

      下載初中幾何證明題要用到的一些定理、初中數(shù)學(xué)知識(shí)點(diǎn)(分代數(shù)和幾何部分)(樣例5)word格式文檔
      下載初中幾何證明題要用到的一些定理、初中數(shù)學(xué)知識(shí)點(diǎn)(分代數(shù)和幾何部分)(樣例5).doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        要掌握初中數(shù)學(xué)幾何證明題技巧

        要掌握初中數(shù)學(xué)幾何證明題技巧,熟練運(yùn)用和記憶如下原理是關(guān)鍵。下面歸類(lèi)一下,多做練習(xí),熟能生巧,遇到幾何證明題能想到采用哪一類(lèi)型原理來(lái)解決問(wèn)題。 一、證明兩線段相等 1.兩......

        初中數(shù)學(xué)幾何定理集錦

        初中數(shù)學(xué)幾何定理集錦 1。同角(或等角)的余角相等。 3。對(duì)頂角相等。 5。三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角之和。 6。在同一平面內(nèi)垂直于同一條直線的兩條直線是平行......

        初中數(shù)學(xué)幾何公式、定理(二)

        初中數(shù)學(xué)幾何公式、定理匯編(二) 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的......

        初中幾何基礎(chǔ)證明題(初一)

        幾何證明題(1) 1.如圖,AD∥BC,∠B=∠D,求證:AB∥CD。 AD C 2.如圖CD⊥AB,EF⊥AB,∠1=∠2,求證:∠AGD=∠ACB。A D / F 2BG BE 3. 已知∠1=∠2,∠1=∠3,求證:CD∥OB。 APC 3D /2 BO 4.......

        淺談初中幾何證明題教學(xué)

        淺談初中幾何證明題教學(xué)學(xué)習(xí)幾何對(duì)培養(yǎng)學(xué)生邏輯思維及邏輯推理能力有著特殊的作用。對(duì)于眾多的幾何證明題,幫助學(xué)生尋找證題方法和探求規(guī)律,對(duì)培養(yǎng)學(xué)生的證題推理能力,往往能夠......

        初中幾何證明題(共五篇)

        初中幾何證明題己知M是△ABC邊BC上的中點(diǎn),,D,E分別為AB,AC上的點(diǎn),且DM⊥EM。求證:BD+CE≥DE。1.延長(zhǎng)EM至F,使MF=EM,連BF.∵BM=CM,∠BMF=∠CME,∴△BFM≌△CEM(SAS),∴BF=CE,又D......

        初中幾何證明題思路總結(jié)

        幾何題證明思路總結(jié)幾何證明題重點(diǎn)考察的是學(xué)生的邏輯思維能力,能通過(guò)嚴(yán)密的"因?yàn)?quot;、"所以"邏輯將條件一步步轉(zhuǎn)化為所要證明的結(jié)論。這類(lèi)題目出法相當(dāng)靈活,不像代數(shù)計(jì)算類(lèi)題目......

        有關(guān)初中數(shù)學(xué)幾何證明題的教學(xué)研究

        有關(guān)初中數(shù)學(xué)幾何證明題的教學(xué)研究 【摘 要】幾何是初中數(shù)學(xué)的重難點(diǎn),教師應(yīng)該注重幾何證明題教學(xué),讓學(xué)生掌握基本的解題技巧。初中數(shù)學(xué)幾何證明題需要有明確的思路、簡(jiǎn)明的步......