第一篇:不等式證明1
本資料從網(wǎng)上收集整理
難點(diǎn)18 不等式的證明策略
不等式的證明,方法靈活多樣,它可以和很多內(nèi)容結(jié)合.高考解答題中,常滲透不等式證明的內(nèi)容,純不等式的證明,歷來是高中數(shù)學(xué)中的一個(gè)難點(diǎn),本難點(diǎn)著重培養(yǎng)考生數(shù)學(xué)式的變形能力,邏輯思維能力以及分析問題和解決問題的能力.●難點(diǎn)磁場(chǎng)
(★★★★)已知a>0,b>0,且a+b=1.求證:(a+1a1b254)(b+)≥.●案例探究
[例1]證明不等式1?12?13???1n?2n(n∈N)
*命題意圖:本題是一道考查數(shù)學(xué)歸納法、不等式證明的綜合性題目,考查學(xué)生觀察能力、構(gòu)造能力以及邏輯分析能力,屬★★★★★級(jí)題目.知識(shí)依托:本題是一個(gè)與自然數(shù)n有關(guān)的命題,首先想到應(yīng)用數(shù)學(xué)歸納法,另外還涉及不等式證明中的放縮法、構(gòu)造法等.錯(cuò)解分析:此題易出現(xiàn)下列放縮錯(cuò)誤:
這樣只注重形式的統(tǒng)一,而忽略大小關(guān)系的錯(cuò)誤也是經(jīng)常發(fā)生的.技巧與方法:本題證法一采用數(shù)學(xué)歸納法從n=k到n=k+1的過渡采用了放縮法;證法二先放縮,后裂項(xiàng),有的放矢,直達(dá)目標(biāo);而證法三運(yùn)用函數(shù)思想,借助單調(diào)性,獨(dú)具匠心,發(fā)人深省.證法一:(1)當(dāng)n等于1時(shí),不等式左端等于1,右端等于2,所以不等式成立;
(2)假設(shè)n=k(k≥1)時(shí),不等式成立,即1+12131k?11k?112?13???1k<2k,則1??????2k??2k(k?1)?1k?1?k?(k?1)?1k?1
?2k?1,∴當(dāng)n=k+1時(shí),不等式成立.綜合(1)、(2)得:當(dāng)n∈N*時(shí),都有1+
12?13???1n<2n.另從k到k+1時(shí)的證明還有下列證法:
?2(k?1)?1?2k(k?1)?k?2k(k?1)?(k?1)?(k?k?1)?0,2?2k(k?1)?1?2(k?1),?k?1?0,?2k?1k?1?2k?1.2k?1?k?2k?1?k?1?1k?1,又如:?2k?1?2k?
本資料從網(wǎng)上收集整理
?2k?1k?1?2k?1.證法二:對(duì)任意k∈N*,都有:
1k?2k?12?k13?2k????k?11n?2(k?k?1),2)???2(n?n?1)?2n.因此1??2?2(2?1)?2(3?12131n證法三:設(shè)f(n)=2n?(1?*
????),那么對(duì)任意k∈N 都有:
f(k?1)?f(k)?2(k?1??1k?11k?1k)?1k?1[2(k?1)?2k(k?1)?1](k?1?k?1k)2
?0??[(k?1)?2k(k?1)?k]?∴f(k+1)>f(k)因此,對(duì)任意n∈N 都有f(n)>f(n-1)>?>f(1)=1>0,∴1?12?13???1n?2n.x?y(x>0,y>0)恒成立的a的最小值.*[例2]求使x?y≤a命題意圖:本題考查不等式證明、求最值函數(shù)思想、以及學(xué)生邏輯分析能力,屬于★★★★★級(jí)題目.知識(shí)依托:該題實(shí)質(zhì)是給定條件求最值的題目,所求a的最值蘊(yùn)含于恒成立的不等式中,因此需利用不等式的有關(guān)性質(zhì)把a(bǔ)呈現(xiàn)出來,等價(jià)轉(zhuǎn)化的思想是解決題目的突破口,然后再利用函數(shù)思想和重要不等式等求得最值.錯(cuò)解分析:本題解法三利用三角換元后確定a的取值范圍,此時(shí)我們習(xí)慣是將x、y與cosθ、sinθ來對(duì)應(yīng)進(jìn)行換元,即令x=cosθ,y=sinθ(0<θ<
?2),這樣也得a≥sinθ+cosθ,但是這種換元是錯(cuò)誤的.其原因是:(1)縮小了x、y的范圍;(2)這樣換元相當(dāng)于本題又增加了“x、y=1”這樣一個(gè)條件,顯然這是不對(duì)的.技巧與方法:除了解法一經(jīng)常用的重要不等式外,解法二的方法也很典型,即若參數(shù)a滿足不等關(guān)系,a≥f(x),則amin=f(x)max;若 a≤f(x),則amax=f(x)min,利用這一基本事實(shí),可以較輕松地解決這一類不等式中所含參數(shù)的值域問題.還有三角換元法求最值用的恰當(dāng)好處,可以把原問題轉(zhuǎn)化.解法一:由于a的值為正數(shù),將已知不等式兩邊平方,得:
22x+y+2xy≤a(x+y),即2xy≤(a-1)(x+y),① ② ∴x,y>0,∴x+y≥2xy,當(dāng)且僅當(dāng)x=y時(shí),②中有等號(hào)成立.本資料從網(wǎng)上收集整理
比較①、②得a的最小值滿足a-1=1,∴a2=2,a=2(因a>0),∴a的最小值是2.x?x?yy(x?x?yy)22解法二:設(shè)u???x?y?2xyx?y?1?2xyx?y.∵x>0,y>0,∴x+y≥22xy2xyxy(當(dāng)x=y時(shí)“=”成立),∴x?y≤1,x?y的最大值是1.從而可知,u的最大值為1?1?2,又由已知,得a≥u,∴a的最小值為2.解法三:∵y>0,∴原不等式可化為
xy+1≤a
xy?1,設(shè)xy=tanθ,θ∈(0,?2).∴tanθ+1≤atan2??1;即tanθ+1≤asecθ ∴a≥sinθ+cosθ=2sin(θ+又∵sin(θ+?4?4),?4).③)的最大值為1(此時(shí)θ=由③式可知a的最小值為2.●錦囊妙計(jì)
1.不等式證明常用的方法有:比較法、綜合法和分析法,它們是證明不等式的最基本的方法.(1)比較法證不等式有作差(商)、變形、判斷三個(gè)步驟,變形的主要方向是因式分解、配方,判斷過程必須詳細(xì)敘述;如果作差以后的式子可以整理為關(guān)于某一個(gè)變量的二次式,則考慮用判別式法證.(2)綜合法是由因?qū)Ч?,而分析法是?zhí)果索因,兩法相互轉(zhuǎn)換,互相滲透,互為前提,充分運(yùn)用這一辯證關(guān)系,可以增加解題思路,開擴(kuò)視野.2.不等式證明還有一些常用的方法:換元法、放縮法、反證法、函數(shù)單調(diào)性法、判別式法、數(shù)形結(jié)合法等.換元法主要有三角代換,均值代換兩種,在應(yīng)用換元法時(shí),要注意代換的等價(jià)性.放縮性是不等式證明中最重要的變形方法之一,放縮要有的放矢,目標(biāo)可以從要證的結(jié)論中考查.有些不等式,從正面證如果不易說清楚,可以考慮反證法.凡是含有“至少”“惟一”或含有其他否定詞的命題,適宜用反證法.證明不等式時(shí),要依據(jù)題設(shè)、題目的特點(diǎn)和內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各
本資料從網(wǎng)上收集整理
種證法中的推理思維,并掌握相應(yīng)的步驟、技巧和語言特點(diǎn).●殲滅難點(diǎn)訓(xùn)練
一、填空題
1.(★★★★★)已知x、y是正變數(shù),a、b是正常數(shù),且
ax?by=1,x+y的最小值為__________.2.(★★★★)設(shè)正數(shù)a、b、c、d滿足a+d=b+c,且|a-d|<|b-c|,則ad與bc的大小關(guān)系是__________.3.(★★★★)若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,則m、n、p、q的大小順序是__________.二、解答題
4.(★★★★★)已知a,b,c為正實(shí)數(shù),a+b+c=1.求證:(1)a2+b2+c2≥
(2)3a?2?3b?2?3c?2≤6 5.(★★★★★)已知x,y,z∈R,且x+y+z=1,x2+y2+z2=6.(★★★★★)證明下列不等式:(1)若x,y,z∈R,a,b,c∈R,則(2)若x,y,z∈R,且x+y+z=xyz,則y?zx?z?xy?x?yz+
+
12,證明:x,y,z∈[0,23]
b?cax?2c?aby?2a?bcz≥2(xy+yz+zx)
2≥2(1x?1y?1z)7.(★★★★★)已知i,m、n是正整數(shù),且1<i≤m<n.(1)證明:niAim<miAin;
(2)證明:(1+m)n>(1+n)m
338.(★★★★★)若a>0,b>0,a+b=2,求證:a+b≤2,ab≤1.參考答案
難點(diǎn)磁場(chǎng)
證法一:(分析綜合法)
欲證原式,即證4(ab)+4(a+b)-25ab+4≥0,即證4(ab)-33(ab)+8≥0,即證ab≤ab≥8.∵a>0,b>0,a+b=1,∴ab≥8不可能成立 ∵1=a+b≥2ab,∴ab≤證法二:(均值代換法)設(shè)a=121
4222
14或,從而得證.+t1,b=12+t2.12∵a+b=1,a>0,b>0,∴t1+t2=0,|t1|<,|t2|<
本資料從網(wǎng)上收集整理
?(a?(?121a)(b?21b)?(1a?1a22?b?1b(?14?t1?t1?1)((222?t1)?112?t12?2?t2)?11214?t21412?t2?t2?1)?t2)2212?t1)(22(?14?t1?t1?1)(14?t2?t2?1)?2(54?t2)?t214?t22
?t2425?16?1432t2?t2222525?16?.144?t2顯然當(dāng)且僅當(dāng)t=0,即a=b=證法三:(比較法)
12時(shí),等號(hào)成立.∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤1125222214
a?1b?1254ab?33ab?8(1?4ab)(8?ab)(a?)(b?)???????0ab4ab44ab4ab 1125?(a?)(b?)?ab4證法四:(綜合法)∵a+b=1,a>0,b>0,∴a+b≥2ab,∴ab≤
14.?2?(1?ab)?125?? ??ab4???25?2(1?ab)?1??139?162?1?ab?1???(1?ab)???4416? 1?4?ab?即(a?1a)(b?1b)?254
證法五:(三角代換法)
∵ a>0,b>0,a+b=1,故令a=sin2α,b=cos2α,α∈(0,?2)
本資料從網(wǎng)上收集整理
(a??1a4)(b?1b)?(sin??4221sin?22)(cos2??1cos?222)2sin??cos??2sin?cos??24sin2?222?(4?sin?)?164sin2??sin2??1,?4?sin2??4?1?3.4?2sin2??16?25?22(4?sin2?)25????11244sin2???24sin2??即得(a?1a)(b?1b)?254.22 殲滅難點(diǎn)訓(xùn)練
一、1.解析:令ax=cos2θ,by=sin2θ,則x=asec2θ,y=bcsc2θ,∴x+y=asec2θ+bcsc2θ=a+b+atan2θ+bcot2θ≥a+b+2atan2??bcot2??a?b?2ab.答案:a+b+2ab
2.解析:由0≤|a-d|<|b-c|?(a-d)2<(b-c)2?(a+b)2-4ad<(b+c)2-4bc ∵a+d=b+c,∴-4ad<-4bc,故ad>bc.答案:ad>bc
3.解析:把p、q看成變量,則m<p<n,m<q<n.答案:m<p<q<n
二、4.(1)證法一:a2+b2+c2-===13131313=
13(3a2+3b2+3c2-1)[3a2+3b2+3c2-(a+b+c)2]
[3a2+3b2+3c2-a2-b2-c2-2ab-2ac-2bc] [(a-b)2+(b-c)2+(c-a)2]≥0 ∴a2+b2+c2≥
222
證法二:∵(a+b+c)=a+b+c+2ab+2ac+2bc≤a+b+c2+a2+b2+a2+c2+b2+c2 ∴3(a2+b2+c2)≥(a+b+c)2=1 ∴a2+b2+c2≥a?b?c32222
a?b?c3證法三:∵∴a2+b2+c2≥
?a?b?c3∴a2+b2+c2≥
13證法四:設(shè)a=+α,b=
13+β,c=
13+γ.∵a+b+c=1,∴α+β+γ=0 ∴a+b+c=(22213+α)+(2
13+β)+(2
13+γ)
本資料從網(wǎng)上收集整理
==1313+23(α+β+γ)+α+β+γ
13222 +α2+β2+γ2≥13
∴a2+b2+c2≥(2)證法一:?同理?
3a?2?3b?32(3a?2)?1?3c?323(a?b?c)?92?63a?2?12,3b?2?,3c?2?3c?2?
3a?2?3b?2?∴原不等式成立.證法二:3a?2?3b?2?33c?2?(3a?2)?(3b?2)?(3c?2)3
?3(a?b?c)?63?3
∴3a?2?3b?2?3c?2≤33<6 ∴原不等式成立.5.證法一:由x+y+z=1,x2+y2+z2=次方程得:
2y2-2(1-x)y+2x2-2x+
1212,得x2+y2+(1-x-y)2=
12,整理成關(guān)于y的一元二
=0,∵y∈R,故Δ≥0
12∴4(1-x)2-4×2(2x2-2x+同理可得y,z∈[0,證法二:設(shè)x=于是==1313121323)≥0,得0≤x≤
23,∴x∈[0,23]
]
132+x′,y=2
+y′,z=
13132
+z′,則x′+y′+z′=0,=(13+x′)+(13+y′)+(23+z′)
+x′2+y′2+z′2+222
(x′+y′+z′)
13+x′+y′+z′≥2
+x′+
132
(y??z?)22=
13+
2332x′2
23故x′≤19,x′∈[-,13],x∈[0,],同理y,z∈[0,]
12證法三:設(shè)x、y、z三數(shù)中若有負(fù)數(shù),不妨設(shè)x<0,則x2>0,=x2+y2+z2≥
本資料從網(wǎng)上收集整理
x+2(y?z)22?(1?x)22?x?232x?x?212>
12,矛盾.23x、y、z三數(shù)中若有最大者大于x+
2,不妨設(shè)x>
23,則
12=x2+y2+z2≥(y?z)22=x+232(1?x)22=1223232x2-x+
=32x(x-)+12>;矛盾.]
c?abcby?22故x、y、z∈[0,6.(1)證明:??(?(?bax?baax?x?22b?c22x?a?bc2z?2(xy?yz?zx)accaz?222aby?2xy)?(aby)?(y?2y?bc2bcz?2yz)?(2cax?2zx)2cby?z)?(acz?x)?0b?cc?aba?bcz?2(xy?yz?zx)(2)證明:所證不等式等介于xyz(222y?zx?z?xy?x?yz)?2(xy?yz?zx)2
2?xyz?[yz(y?z)?zx(z?x)?xy(x?y)]?2(xy?yz?zx)?(x?y?z)(yz?yz22222222?zx?zx222?xy?xy)2222?2(xy?yz?zx)?4(xyz?xyz?xyz)?yz?yz?zx?zx?xy?xy22333333?2xyz?2xyz?2xyz2222222222?yz(y?z)?zx(z?x)?xy(x?y)?x(y?z)?y(z?x)?z(x?y)?0∵上式顯然成立,∴原不等式得證.7.證明:(1)對(duì)于1<i≤m,且Aim =m·?·(m-i+1),AmmiiAmmm?1m?i?1nn?1n?i?1?????,同理?????,immmnnnnn?kn?m?kmi由于m<n,對(duì)于整數(shù)k=1,2,?,i-1,有Annii,所以?Ammii,即mAn?nAm
iiii(2)由二項(xiàng)式定理有:
2n2n(1+m)n=1+C1nm+Cnm+?+Cnm,2mm(1+n)m=1+C1mn+C2mn+?+Cmn,本資料從網(wǎng)上收集整理
ii由(1)知miAi>niAi(1<i≤miAmnm,而Cm=
i!,Cin?Ani!
∴miCin>niCim(1<m<n)
∴m0C0n=n0C0n=1,mC1n=nC1m=m·n,m2C2n>n2C2m,?,mmCmn>nmCmm,mm+1Cm?1n>0,?,mnCnn>0,∴1+C1nm+C2nm2+?+Cnnmn>1+C1mn+C2mn2+?+Cmmnm,即(1+m)n>(1+n)m成立.8.證法一:因a>0,b>0,a
3+b3
=2,所以(a+b)3-23=a3+b3+3a
2b+3ab2
-8=3a2
b+3ab2
-6 =3[ab(a+b)-2]=3[ab(a+b)-(a3
+b3)]=-3(a+b)(a-b)2
≤0.即(a+b)3≤23,又a+b>0,所以a+b≤2,因?yàn)?ab≤a+b≤2,所以ab≤1.證法二:設(shè)a、b為方程x2-mx+n=0的兩根,則a?b??m?,?n?ab因?yàn)閍>0,b>0,所以m>0,n>0,且Δ=m
2-4n≥0
因?yàn)?=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n)2所以n=m3?23m
將②代入①得m2-4(m23?23m)≥0,3即?m?83m≥0,所以-m3+8≥0,即m≤2,所以a+b≤2,由2≥m 得4≥m2,又m2≥4n,所以4≥4n,即n≤1,所以ab≤1.證法三:因a>0,b>0,a3+b3=2,所以
2=a3+b3=(a+b)(a2+b2
-ab)≥(a+b)(2ab-ab)=ab(a+b)于是有6≥3ab(a+b),從而8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=(a+b)3,所以a+b≤2,(下略)33證法四:因?yàn)閍?b2?(a?b32)
22?4ab?a2?b2?(a?b)[4a?4b?2ab])(a?b)28?3(a?b8≥0,所以對(duì)任意非負(fù)實(shí)數(shù)a、b,有
a3?b32≥(a?b32)3
b3
33因?yàn)閍>0,b>0,a+=2,所以1=a?ba?b32≥(2),∴a?b2≤1,即a+b≤2,(以下略)
證法五:假設(shè)a+b>2,則
①②
本資料從網(wǎng)上收集整理
a+b=(a+b)(a-ab+b)=(a+b)[(a+b)-3ab]>(a+b)ab>2ab,所以ab<1,又a+b=(a+b)[a-ab+b]=(a+b)[(a+b)-3ab]>2(2-3ab)因?yàn)閍3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)332
233222
第二篇:不等式證明
不等式證明
不等式是數(shù)學(xué)的基本內(nèi)容之一,它是研究許多數(shù)學(xué)分支的重要工具,在數(shù)學(xué)中有重要的地位,也是高中數(shù)學(xué)的重要組成部分,在高考和競(jìng)賽中都有舉足輕重的地位。不等式的證明變化大,技巧性強(qiáng),它不僅能夠檢驗(yàn)學(xué)生數(shù)學(xué)基礎(chǔ)知識(shí)的掌握程度,而且是衡量學(xué)生數(shù)學(xué)水平的一個(gè)重要標(biāo)志,本文將著重介紹以下幾種不等式的初等證明方法和部分方法的例題以便理解。
一、不等式的初等證明方法
1.綜合法:由因?qū)Ч?/p>
2.分析法:執(zhí)果索因?;静襟E:要證..只需證..,只需證..(1)“分析法”證題的理論依據(jù):尋找結(jié)論成立的充分條件或者是充要條件。
(2)“分析法”證題是一個(gè)非常好的方法,但是書寫不是太方便,所以我們可利用分析法尋找證題的途徑,然后用“綜合法”進(jìn)行表達(dá)。
3.反證法:正難則反。
4.放縮法:將不等式一側(cè)適當(dāng)?shù)姆糯蠡蚩s小以達(dá)證題目的。放縮法的方法有:
(1)添加或舍去一些項(xiàng),如:
2)利用基本不等式,如:
(3)將分子或分母放大(或縮小):
5.換元法:換元的目的就是減少不等式中變量,以使問題
化難為易、化繁為簡(jiǎn),常用的換元有三角換元和代數(shù)換元。
6.構(gòu)造法:通過構(gòu)造函數(shù)、方程、數(shù)列、向量或不等式來證明不等式。
證明不等式的方法靈活多樣,但比較法、綜合法、分析法和數(shù)學(xué)歸納法仍是證明不等式的最基本方法。
7.數(shù)學(xué)歸納法:數(shù)學(xué)歸納法證明不等式在數(shù)學(xué)歸納法中專門研究。
8.幾何法:用數(shù)形結(jié)合來研究問題是數(shù)學(xué)中常用的方法,若求證的不等式是幾何不等式或有較明顯的幾何意義時(shí),可以考慮構(gòu)造相關(guān)幾何圖形來完成,若運(yùn)用得好,有時(shí)則有神奇的功效。
9.函數(shù)法:引入一個(gè)適當(dāng)?shù)暮瘮?shù),利用函數(shù)的性質(zhì)達(dá)到證明不等式的目的。
10.判別式法:利用二次函數(shù)的判別式的特點(diǎn)來證明一些不等式的方法。當(dāng)a>0時(shí),f(x)=ax2+bx+c>0(或<0).△<0(或>0)。當(dāng)a<0時(shí),f(x)>0(或<0).△>0(或<0)。
二、部分方法的例題
1.換元法
換元法是數(shù)學(xué)中應(yīng)用最廣泛的解題方法之一。有些不等式通過變量替換可以改變問題的結(jié)構(gòu),便于進(jìn)行比較、分析,從而起到化難為易、化繁為簡(jiǎn)、化隱蔽為外顯的積極效果。
注意:在不等式的證明中運(yùn)用換元法,能把高次變?yōu)榈痛危质阶優(yōu)檎?,無理式變?yōu)橛欣硎?,能?jiǎn)化證明過程。尤其對(duì)含有若干個(gè)變?cè)凝R次輪換式或輪換對(duì)稱式的不等式,通過換元變換形式以揭示內(nèi)容的實(shí)質(zhì),可收到事半功倍之效。
2.放縮法
欲證A≥B,可將B適當(dāng)放大,即B1≥B,只需證明A≥B1。相反,將A適當(dāng)縮小,即A≥A1,只需證明A1≥B即可。
注意:用放縮法證明數(shù)列不等式,關(guān)鍵是要把握一個(gè)度,如果放得過大或縮得過小,就會(huì)導(dǎo)致解決失敗。放縮方法靈活多樣,要能想到一個(gè)恰到好處進(jìn)行放縮的不等式,需要積累一定的不等式知識(shí),同時(shí)要求我們具有相當(dāng)?shù)臄?shù)學(xué)思維能力和一定的解題智慧。
3.幾何法
數(shù)形結(jié)合來研究問題是數(shù)學(xué)中常用的方法,若求證的不等式是幾何不等式或有較明顯的幾何意義時(shí),可以考慮構(gòu)造相關(guān)幾何圖形來完成,若運(yùn)用得好,有時(shí)則有神奇的功效。
第三篇:不等式證明
不等式的證明
比較法證明不等式
a2?b2a?b?1.設(shè)a?b?0,求證:2.a?b2a?b
2.(本小題滿分10分)選修4—5:不等式選講
(1)已知x、y都是正實(shí)數(shù),求證:x3?y3?x2y?xy2;
(2?對(duì)滿足x?y?z?1的一切正實(shí)數(shù) x,y,z恒成立,求實(shí)數(shù)a的取值范圍
.??,1?綜合法證明不等式(利用均值不等式)3.已知a?b?c, 求證:??1??? ??114??.a?bb?ca?c
4.設(shè)a,b,c均為正數(shù),且a+b+c=1,證明:
1(Ⅰ)ab+bc+ac?3;
a2b2c2
???1ca(Ⅱ)b
5.(1)求不等式x?3?2x???1的解集;
121225(a?)?(b?)??a,b?R,a?b?1ab2.(2)已知,求證:
6.若a、b、c是不全相等的正數(shù),求證:
分析法證明不等式
7.某同學(xué)在證明命題“7??要證明7?3??2”時(shí)作了如下分析,請(qǐng)你補(bǔ)充完整.6?2,只需證明________________,只需證明___________,+2?9?2,展開得9即?,只需證明14?18,________________,所以原不等式:??6?2成立.22?2?6?3,(7?2)?(6?3),因?yàn)?4?18成立。
a?b?c8.已知a,b,c?R。?3?
9.(本題滿分10分)已知函數(shù)f(x)?|x?1|。
(Ⅰ)解不等式f(x)?f(x?4)?8;{x|x≤-5,或x≥3}(Ⅱ)若|a|?1,|b|?1,且a?0,求證:f(ab)?|a|f().10.(本小題滿分10分)當(dāng)a,b?M??x|?2?x?2?時(shí),證明:2|a+b|<|4+ab|.反證法證明不等式
11.已知a,b,c均為實(shí)數(shù),且a=x?2y+2baπππ22,b=y?2z+,c=z?2x+,236
求證:a,b,c中至少有一個(gè)大于0.12.(12分)若x,y?R,x?0,y?0,且x?y?2。求證:1?x和1?y中至少有一個(gè)小于2.yx
放縮法證明不等式
13.證明不等式:?111??11?21?2?3?1
1?2?3??n?2
214.設(shè)各項(xiàng)均為正數(shù)的數(shù)列?an?的前n項(xiàng)和為Sn,滿足4Sn?ann?N?,且
?1?4n?1,a2,a5,a14構(gòu)成等比數(shù)列.
(1)證明:a2?
(2)求數(shù)列?an?的通項(xiàng)公式;an?2n?1
(3)證明:對(duì)一切正整數(shù)n,有11??a1a2a2a3?11?. anan?12
15.設(shè)數(shù)列?an?的前n項(xiàng)和為Sn.已知a1?1,2Sn12?an?1?n2?n?,n?N*.n33
(Ⅰ)求a2的值;a2?4(Ⅱ)求數(shù)列?an?的通項(xiàng)公式;an?n2(Ⅲ)證明:對(duì)一切正整數(shù)n,有數(shù)學(xué)歸納法證明不等式
16.(本小題滿分12分)若不等式11??
n?1n?2?1a對(duì)一切正整數(shù)n都成立,求正?3n?12411??a1a2?17?.an4
整數(shù)a的最大值,并證明結(jié)論.25
17.用數(shù)學(xué)歸納法證明不等式:
.
第四篇:不等式證明經(jīng)典
金牌師資,笑傲高考
2013年數(shù)學(xué)VIP講義
【例1】 設(shè)a,b∈R,求證:a2+b2≥ab+a+b-1。
【例2】 已知0 【例3】 設(shè)A=a+d,B=b+c,a,b,c,d∈R+,ad=bc,a=max{a,b,c,d},試比較A與B的大小。 因A、B的表達(dá)形式比較簡(jiǎn)單,故作差后如何對(duì)因式進(jìn)行變形是本題難點(diǎn)之一。利用等式ad=bc,借助于消元思想,至少可以消去a,b,c,d中的一個(gè)字母。關(guān)鍵是消去哪個(gè)字母,因條件中已知a的不等關(guān)系:a>b,a>c,a>d,故保留a,消b,c,d中任一個(gè)均可。 由ad=bc得:d?bca1?ab?bc?caa?b?c?abc≥1。 bca??b?c?a?b?(a?b)(a?c)a?0bc?acaA-B=a+d-(b+c)=a? =a?b? c(a?b)a 【例4】 a,b,c∈R,求證:a4+b4+c4≥(a+b+c)。 不等號(hào)兩邊均是和的形式,利用一次基本不等式顯然不行。不等號(hào)右邊為三項(xiàng)和,根據(jù)不等號(hào)方向,應(yīng)自左向右運(yùn)用基本不等式后再同向相加。因不等式左邊只有三項(xiàng),故把三項(xiàng)變化六項(xiàng)后再利用二元基本不等式,這就是“化奇為偶”的技巧。 左=12(2a4?2b224?2c)?22412[(a24?b)?(b22244?c)?(c2244?a)]24 ≥12(2ab?2bc?2ca)?ab?bc?ca 2發(fā)現(xiàn)縮小后沒有達(dá)到題目要求,此時(shí)應(yīng)再利用不等式傳遞性繼續(xù)縮小,處理的方法與剛才類似。 中天教育咨詢電話:0476-8705333 第1頁/共9頁 金牌師資,笑傲高考 ab?1212 2013年數(shù)學(xué)VIP講義 22?bc2222?ca2222?212(2ab2222?2bc2222?2ca)22 ?ca)?(ca2[(ab?bc)?(bc22?ab)]22≥(2abc?2abc2?2abc)?ab(a?b?c)1a ?1c?【例5】(1)a,b,c為正實(shí)數(shù),求證:?(2)a,b,c為正實(shí)數(shù),求證: a21bb2≥ c21ab?1bc?1ac; b?c?a?ca?b≥ a?b?c2。 (1)不等式的結(jié)構(gòu)與例4完全相同,處理方法也完全一樣。 (2)同學(xué)們可試一試,再用剛才的方法處理該題是行不通的。注意到從左向右,分式變成了整式,可考慮在左邊每一個(gè)分式后配上該分式的分母,利用二元基本不等式后約去分母,再利用不等式可加性即可達(dá)到目的。試一試行嗎? a2b?cb2?(b?c)≥2a2b?cb2?(b?c)?2a a?cc2?(a?c)≥2a?c?(a?c)?2ba?b?(a?b)≥2c2a?b?(a?b)?2c 相加后發(fā)現(xiàn)不行,a,b,c的整式項(xiàng)全消去了。為了達(dá)到目的,應(yīng)在系數(shù)上作調(diào)整。 a2b?c?b?c4≥a,b2a?c?a?c4≥b,c2a?b?a?b4≥a 相向相加后即可。 【例6】 x,y為正實(shí)數(shù),x+y=a,求證:x+y≥ 2a22。 思路一;根據(jù)x+y和x2+y2的結(jié)構(gòu)特點(diǎn),聯(lián)想到算術(shù)平均數(shù)與平方平均數(shù)之間的不等關(guān)系?!?x?y22≤2x2?y22 2∴ x?y≥(x?y)2?a22 思路二:因所求不等式右邊為常數(shù),故可從求函數(shù)最小值的角度去思考。思路一所用的是基本不等式法,這里采用消元思想轉(zhuǎn)化為一元函數(shù),再用單調(diào)性求解。換元有下列三種途徑: 途徑1:用均值換元法消元: 令 x?2a2?m,y?aa22?m 22則 x?y?(?m)?(?m)?2m?222aa22≥ a22 途徑2:代入消元法: y=a-x,0 a2)2?a22≥ a22 中天教育咨詢電話:0476-8705333 第2頁/共9頁 金牌師資,笑傲高考 途徑3:三角換元法消元: 令 x=acos2θ,y=asin2θ,θ∈(0,] 2?2013年數(shù)學(xué)VIP講義 則 x2+y2=a2(cos4θ+sin4θ)=a2[(sin2θ+cos2θ)2-2sin2θcos2θ] =a[1-2(sin2θ)]=a(1-22122 12sin2θ)≥ a22 注:為了達(dá)到消元的目的,途徑1和途徑3引入了適當(dāng)?shù)膮?shù),也就是找到一個(gè)中間變量表示x,y。這種引參的思想是高中數(shù)學(xué)常用的重要方法?!纠?】 已知a>b>0,求證:(a?b)8a2?a?b2?ab?(a?b)8b2。 12所證不等式的形式較復(fù)雜(如從次數(shù)看,有二次,一次,次等),難以從某個(gè)角度著手。故考慮用分析法證明,即執(zhí)果索因,尋找使不等式成立的必要條件。實(shí)際上就是對(duì)所證不等式進(jìn)行適當(dāng)?shù)幕?jiǎn)、變形,實(shí)際上這種變形在相當(dāng)多的題目里都是充要的。 a?b2?ab?a?b?2ab2b)(a?(a??(a?2b)2 a?b?(a?b)b)(a?8a2所證不等式可化為∵ a>b>0 ∴ a?b ∴ a?b?0 b)2?(a?2b)2?(a?b)(a?8b2b)2 ∴ 不等式可化為:(a?4ab)2?1?(a?4bb)2 2??(a?b)?4a即要證? 2??4b?(a?b)??a?b?2a只需證? ?2b?a?b?在a>b>0條件下,不等式組顯然成立 ∴ 原不等式成立 【例8】 已知f(x)=24xx?3?8,求證:對(duì)任意實(shí)數(shù)a,b,恒有f(a) 112.不等號(hào)兩邊字母不統(tǒng)一,采用常規(guī)方法難以著手。根據(jù)表達(dá)式的特點(diǎn),借助于函數(shù)思想,可分別求f(a)及g(b)=b2-4b+f(a)?112的最值,看能否通過最值之間的大小關(guān)系進(jìn)行比較。 ?8?2(2)a2a24aa?3?8?8?2a8?82a≤ 2?82?a?82a842?2 令 g(b)=b2-4b+11232 ≥32 g(b)=(b-2)2+ 中天教育咨詢電話:0476-8705333 第3頁/共9頁 金牌師資,笑傲高考 ∵ 32?22013年數(shù)學(xué)VIP講義 ∴ g(b)>f(a)注:本題實(shí)際上利用了不等式的傳遞性,只不過中間量為常數(shù)而已,這種思路在兩數(shù)大小比較時(shí)曾講過。由此也說明,實(shí)數(shù)大小理論是不等式大小理論的基礎(chǔ)。 【例9】 已知a,b,c∈R,f(x)=ax2+bx+c,當(dāng)|x|≤1時(shí),有|f(x)|≤1,求證: (1)|c|≤1,|b|≤1; (2)當(dāng)|x|≤1時(shí),|ax+b|≤2。 這是一個(gè)與絕對(duì)值有關(guān)的不等式證明題,除運(yùn)用前面已介紹的不等式性質(zhì)和基本不等式以外,還涉及到與絕對(duì)值有關(guān)的基本不等式,如|a|≥a,|a|≥-a,||a|-|b||≤|a±b|≤|a|+|b|,|a1±a2±?±an|≤|a1|+|a2|+?+|an|。就本題來說,還有一個(gè)如何充分利用條件“當(dāng)|x|≤1時(shí),|f(x)|≤1”的解題意識(shí)。 從特殊化的思想出發(fā)得到: 令 x=0,|f(0)|≤1 即 |c|≤1 當(dāng)x=1時(shí),|f(1)|≤1;當(dāng)x=-1時(shí),|f(-1)|≤1 下面問題的解決試圖利用這三個(gè)不等式,即把f(0),f(1),f(-1)化作已知量,去表示待求量。∵ f(1)=a+b+c,f(-1)=a-b+c ∴ b?12[f(1)?f(?1)] 12|f(1)?f(?1)|≤12[|f(1)|?|f(?1)|]≤ 12(1?1)≤1 ∴ |b|?(2)思路一:利用函數(shù)思想,借助于單調(diào)性求g(x)=ax+b的值域。 當(dāng)a>0時(shí),g(x)在[-1,1]上單調(diào)遞增 ∴ g(-1)≤g(x)≤g(1)∵ g(1)=a+1=f(1)-f(0)≤|f(1)-f(0)|≤|f(1)|+|f(0)|≤2 g(-1)=-a+b=f(0)-f(-1)=-[f(-1)-f(0)] ≥-|f(-1)-f(0)|≥-[|f(-1)|+|f(0)|]≥-2 ∴-2≤g(x)≤2 即 |g(x)|≤2 當(dāng)a<0時(shí),同理可證。 思路二:直接利用絕對(duì)值不等式 為了能將|ax+b|中的絕對(duì)值符號(hào)分配到a,b,可考慮a,b的符號(hào)進(jìn)行討論。當(dāng)a>0時(shí) |ax+b|≤|ax|+|b|=|a||x|+|b|≤|a|+|b|≤a+|b| 下面對(duì)b討論 ① b≥0時(shí),a+|b|=a+b=|a+b|=|f(1)-f(0)| ≤ |f(1)|+|f(0)|≤2; ② b<0時(shí),a+|b|=a-b=|a-b|=|f(-1)-f(0)|≤|f(-1)|+f(0)|≤2?!?|ax+b|≤2 當(dāng)a<0時(shí),同理可證。 評(píng)注:本題證明過程中,還應(yīng)根據(jù)不等號(hào)的方向,合理選擇不等式,例如:既有|a-b|≥|a|-|b|,又有|a-b|≥|b|-|a|,若不適當(dāng)選擇,則不能滿足題目要求。 中天教育咨詢電話:0476-8705333 第4頁/共9頁 金牌師資,笑傲高考 2013年數(shù)學(xué)VIP講義 1、設(shè)a,b為正數(shù),且a+b≤4,則下列各式一定成立的是 A、C、1a12?1b1a≤?141b B、≤1 D、141a≤ ?1a?1b≤ ≤ 1b≥1 2、已知a,b,c均大于1,且logac·logbc=4,則下列各式中一定正確的是 A、ac≥b B、ab≥c C、bc≥a D、ab≤c 5、已知a,b,c>0,且a+b>c,設(shè)M= a4?a?bb?cc4?c,N=,則MN的大小關(guān)系是 A、M>N B、M=N C、M 6、已知函數(shù)f(x)=-x-x3,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,則f(x1)+f(x2)+f(x3)的值 A、一定大于零 B、一定小于零 C、一定等于零 D、正負(fù)都有可能 7、若a>0,b>0,x?111(?)2ab1a?b1ab,y?,z?,則 A、x≥y>z B、x≥z>y C、y≥x>z D、y>z≥x 8、設(shè)a,b∈R,下面的不等式成立的是 A、a+3ab>b B、ab-a>b+ab C、(二)填空題 9、設(shè)a>0,b>0,a≠b,則aabb與abba的大小關(guān)系是__________。 10、若a,b,c是不全相等的正數(shù),則(a+b)(b+c)(c+a)______8abc(用不等號(hào)填空)。 12、當(dāng)00且t≠1時(shí),logat與log21t?1a2 2ab?a?1b?1 D、a+b≥2(a-b-1) 22的大小關(guān)系是__________。 n13、若a,b,c為Rt△ABC的三邊,其中c為斜邊,則an+bn與c(其中n∈N,n>2)的大小關(guān)系是________________。 (三)解答題 14、已知a>0,b>0,a≠b,求證:a? 15、已知a,b,c是三角形三邊的長(zhǎng),求 證:1? 中天教育咨詢電話:0476-8705333 第5頁/共9頁 ab?c?ba?c?ca?b?2。 b?ab?ba。金牌師資,笑傲高考 16、已知a≥0,b≥0,求證: 18、若a,b,c為正數(shù),求證: 19、設(shè)a>0,b>0,且a+b=1,求證:(a? 20、已知a+b+c>0,ab+bc+ca>0,abc>0,求證:a,b,c全為正數(shù)。 1a)(b?1b)2541a?1b?1ca82013年數(shù)學(xué)VIP講義 12(a?b)2?14(a?b)≥aa?ba。 ≤ ?b383?c38。 abc≥。 中天教育咨詢電話:0476-8705333 第6頁/共9頁 §14不等式的證明 不等式在數(shù)學(xué)中占有重要地位,由于其證明的困難性和方法的多樣性,而成為競(jìng)賽和高考的熱門題型.證明不等式就是對(duì)不等式的左右兩邊或條件與結(jié)論進(jìn)行代數(shù)變形和化歸,而變形的依據(jù)是不等式的性質(zhì),不等式的性分類羅列如下: 不等式的性質(zhì):a?b?a?b?0,a?b?a?b?0.這是不等式的定義,也是比較法的依據(jù).對(duì)一個(gè)不等式進(jìn)行變形的性質(zhì): (1)a?b?b?a(對(duì)稱性) (2)a?b?a?c?b?c(加法保序性) (3)a?b,c?0?ac?bc;a?b,c?0?ac?bc.(4)a?b?0?an?bn,na?nb(n?N*).對(duì)兩個(gè)以上不等式進(jìn)行運(yùn)算的性質(zhì).(1)a?b,b?c?a?c(傳遞性).這是放縮法的依據(jù).(2)a?b,c?d?a?c?b?d.(3)a?b,c?d?a?c?b?d.(4)a?b?0,d?c?0,?含絕對(duì)值不等式的性質(zhì): (1)|x|?a(a?0)?x2?a2??a?x?a.(2)|x|?a(a?0)?x2?a2?x?a或x??a.(3)||a|?|b||?|a?b|?|a|?|b|(三角不等式).(4)|a1?a2???an|?|a1|?|a2|???|an|.ab?,ad?bc.cd 證明不等式的常用方法有:比較法、放縮法、變量代換法、反證法、數(shù)學(xué)歸納法、構(gòu)造函數(shù)方法等.當(dāng)然在證題過程中,常可“由因?qū)Ч被颉皥?zhí)果索因”.前者我們稱之為綜合法;后者稱為分析法.綜合法和分析法是解決一切數(shù)學(xué)問題的常用策略,分析問題時(shí),我們往往用分析法,而整理結(jié)果時(shí)多用綜合法,這兩者并非證明不等式的特有方法,只是在不等式證明中使用得更為突出而已.此外,具體地證明一個(gè)不等式時(shí),可能交替使用多種方法.例題講解 1.a(chǎn),b,c?0,求證:ab(a?b)?bc(b?c)?ca(c?a)?6abc.a?b?c32.a(chǎn),b,c?0,求證:abc?(abc) abc.a2?b2b2?c2c2?a2a3b3c3?????.3.:a,b,c?R,求證a?b?c?2c2a2bbccaab? 4.設(shè)a1,a2,?,an?N*,且各不相同,求證:1????? 12131aa3an?a1?2????..n2232n25.利用基本不等式證明a2?b2?c2?ab?bc?ca.446.已知a?b?1,a,b?0,求證:a?b?1.8 7.利用排序不等式證明Gn?An 8.證明:對(duì)于任意正整數(shù)R,有(1? 1n1n?1)?(1?).nn?11119.n為正整數(shù),證明:n[(1?n)?1]?1??????n?(n?1)nn?1.23n 1n? 課后練習(xí) 1.選擇題 (1)方程x-y=105的正整數(shù)解有().(A)一組(B)二組 (C)三組 (D)四組 (2)在0,1,2,?,50這51個(gè)整數(shù)中,能同時(shí)被2,3,4整除的有().(A)3個(gè)(B)4個(gè) (C)5個(gè) (D)6個(gè) 2.填空題 (1)的個(gè)位數(shù)分別為_________及_________.4 5422(2)滿足不________.等式10?A?10的整數(shù)A的個(gè)數(shù)是x×10+1,則x的值(3)已知整數(shù)y被7除余數(shù)為5,那么y被7除時(shí)余數(shù)為________.(4)求出任何一組滿足方程x-51y=1的自然數(shù)解x和y_________.3.求三個(gè)正整數(shù)x、y、z滿足 23.4.在數(shù)列4,8,17,77,97,106,125,238中相鄰若干個(gè)數(shù)之和是3的倍數(shù),而不是9的倍數(shù)的數(shù)組共有多少組? 5.求的整數(shù)解.6.求證可被37整除.7.求滿足條件的整數(shù)x,y的所有可能的值.8.已知直角三角形的兩直角邊長(zhǎng)分別為l厘米、m厘米,斜邊長(zhǎng)為n厘米,且l,m,n均為正整數(shù),l為質(zhì)數(shù).證明:2(l+m+n)是完全平方數(shù).9.如果p、q、、都是整數(shù),并且p>1,q>1,試求p+q的值.課后練習(xí)答案 1.D.C.2.(1)9及1.(2)9.(3)4.(4)原方程可變形為x=(7y+1)+2y(y-7),令y=7可得x=50.223.不妨設(shè)x?y?z,則,故x?3.又有故x?2.若x=2,則,故y?6.又有,故y?4.若y=4,則z=20.若y=5,則z=10.若y=6,則z無整數(shù)解.若x=3,類似可以確定3?y?4,y=3或4,z都不能是整數(shù).4.可仿例2解.5.分析:左邊三項(xiàng)直接用基本不等式顯然不行,考察到不等式的對(duì)稱性,可用輪換的方法... 略解:a2?b2?2ab,同理b2?c3?2bc,c2?a2?2ca;三式相加再除以2即得證.評(píng)述:(1)利用基本不等式時(shí),除了本題的輪換外,一般還須掌握添項(xiàng)、連用等技巧.22xnx12x2如?????x1?x2???xn,可在不等式兩邊同時(shí)加上x2x3x1x2?x3???xn?x1.再如證(a?1)(b?1)(a?c)3(b?c)3?256a2b2c3(a,b,c?0)時(shí),可連續(xù)使用基本不等式.a?b2a2?b2)?(2)基本不等式有各種變式 如(等.但其本質(zhì)特征不等式兩邊的次22數(shù)及系數(shù)是相等的.如上式左右兩邊次數(shù)均為2,系數(shù)和為1.6.8888≡8(mod37),∴8888333 3222 2≡8(mod37).2222 27777≡7(mod37),7777≡7(mod37),8888238+7=407,37|407,∴37|N.22 3+7777 3333 ≡(8+7)(mod37),而 237.簡(jiǎn)解:原方程變形為3x-(3y+7)x+3y-7y=0由關(guān)于x的二次方程有解的條件△?0及y為整數(shù)可得0?y?5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程僅有兩組解(4,5)、(5,4).8.∵l+m=n,∴l(xiāng)=(n+m)(n-m).∵l為質(zhì)數(shù),且n+m>n-m>0,∴n+m=l,n-m=1.于是2222l=n+m=(m+1)+m=2m+1,2m=l-1,2(l+m+1)=2l+2+2m=l+2l+1=(l+1).即2(l+m+1)是完全平方數(shù).222 229.易知p≠q,不妨設(shè)p>q.令(4-mn)p=m+2,解此方程可得p、q之值.=n,則m>n由此可得不定方程 例題答案: 1.證明:?ab(a?b)?bc(b?c)?ca(c?a)?6abc ?a(b2?c2?2bc)?b(a2?c2?2ac)?c(a2?b2?2ab) ?a(b?c)2?b(c?a)2?c(a?b)2 ?0 ?ab(a?b)?bc(b?c)?ca(c?a)?6ab.c 評(píng)述:(1)本題所證不等式為對(duì)稱式(任意互換兩個(gè)字母,不等式不變),在因式分解或配方時(shí),往往采用輪換技巧.再如證明a2?b2?c2?ab?bc?ca時(shí),可將a2?b2 1?(ab?bc?ca)配方為[(a?b)2?(b?c)2?(c?a)2],亦可利用a2?b2?2ab,2b2?c2?2bc,c2?a2?2ca,3式相加證明.(2)本題亦可連用兩次基本不等式獲證.2.分析:顯然不等式兩邊為正,且是指數(shù)式,故嘗試用商較法.不等式關(guān)于a,b,c對(duì)稱,不妨a?b?c,則a?b,b?c,a?c?R?,且 ab,,bca都大于等于1.caabbcc(abc)a?b?c3?a2a?b?c3b2b?a?c3c2c?a?b3?aa?b3?aa?c3?bb?a3?bb?c3?cc?a3?cc?b3 a?b3a?()bb?()cb?c3a?()ca?c3?1.評(píng)述:(1)證明對(duì)稱不等式時(shí),不妨假定n個(gè)字母的大小順序,可方便解題.(2)本題可作如下推廣:若ai?0(i?1,2,?,n),則a11a22?anaaan?(a1a2?an)a1?a2???ann.(3)本題還可用其他方法得證。因aabb?abba,同理bbcc?bccb,ccaa?caac,另aabbcc?aabbcc,4式相乘即得證.(4)設(shè)a?b?c?0,則lga?lgb?lgc.例3等價(jià)于alga?blgb?algb?blga,類似例4可證alga?blgb?clgc?algb?blgc?clga?algc?blgb?clga.事實(shí)上,一般地有排序不等式(排序原理): 設(shè)有兩個(gè)有序數(shù)組a1?a2???an,b1?b2???bn,則a1b1?a2b2???anbn(順序和) ?a1bj1?a2bj2???anbjn(亂序和)?a1bn?a1bn?1???anb1(逆序和) 其中j1,j2,?,jn是1,2,?,n的任一排列.當(dāng)且僅當(dāng)a1?a2???an或b1?b2???bn時(shí)等號(hào)成立.排序不等式應(yīng)用較為廣泛(其證明略),它的應(yīng)用技巧是將不等式兩邊轉(zhuǎn)化為兩個(gè)有序數(shù)組的積的形式.如a,b,c?R?時(shí),a3?b3?c3?a2b?b2c?c2a?a2?a?b2?b?c2?c a2b2c2111111?a?b?b?c?c?a;???a?b?c?a2??b2??c2??a2??b2??c2?bcabcaabc222.3.思路分析:中間式子中每項(xiàng)均為兩個(gè)式子的和,將它們拆開,再用排序不等式證明.111111??,則a2??b2??c2?(亂序和)cbacab111111?a2??b2??c2?(逆序和),同理a2??b2??c2?(亂序和)abccab111?a2??b2??c2?(逆序和)兩式相加再除以2,即得原式中第一個(gè)不等式.再考慮數(shù)abc111333??組a?b?c及,仿上可證第二個(gè)不等式.bcacab 222不妨設(shè)a?b?c,則a?b?c,4.分析:不等式右邊各項(xiàng) ai1?a?;可理解為兩數(shù)之積,嘗試用排序不等式.i22ii設(shè)b1,b2,?,bn是a1,a2,?,an的重新排列,滿足b1?b2???bn,又1?111????.22223nanbna2a3b2b3.由于b1,b2,?bn是互不相同的正整數(shù),?????b?????122222n2323nb3bnb11故b1?1,b2?2,?,bn?n.從而b1?2,原式得證.?????1????2222n23n所以a1?評(píng)述:排序不等式應(yīng)用廣泛,例如可證我們熟悉的基本不等式,a2?b2?a?b?b?a,a3?b3?c3?a2?b?b2?c?c2?a?a?ab?b?bc?c?ca?a?bc?b?ac?c?ab?3abc.5.思路分析:左邊三項(xiàng)直接用基本不等式顯然不行,考察到不等式的對(duì)稱性,可用輪換的方..法.a2?b2?2ab,同理b2?c3?2bc,c2?a2?2ca;三式相加再除以2即得證.評(píng)述:(1)利用基本不等式時(shí),除了本題的輪換外,一般還須掌握添項(xiàng)、連用等技巧.22xnx12x2如?????x1?x2???xn,可在不等式兩邊同時(shí)加上x2x3x1x2?x3???xn?x1.再如證(a?1)(b?1)(a?c)3(b?c)3?256a2b2c3(a,b,c?0)時(shí),可連續(xù)使用基本不等式.a?b2a2?b2)?(2)基本不等式有各種變式 如(等.但其本質(zhì)特征不等式兩邊的次數(shù)及22系數(shù)是相等的.如上式左右兩邊次數(shù)均為2,系數(shù)和為1.6.思路分析:不等式左邊是a、b的4次式,右邊為常數(shù)式呢.44要證a?b?1,如何也轉(zhuǎn)化為a、b的4次811,即證a4?b4?(a?b)4.8833評(píng)述:(1)本題方法具有一定的普遍性.如已知x1?x2?x3?1,xi?0,求證:x1 ?x211133求證:x1x2?x2x3 ?x3?.右側(cè)的可理解為(x1?x2?x3).再如已知x1?x2?x3?0,3332+x3x1?0,此處可以把0理解為(x1?x2?x3),當(dāng)然本題另有簡(jiǎn)使證法.38(2)基本不等式實(shí)際上是均值不等式的特例.(一般地,對(duì)于n個(gè)正數(shù)a1,a2,?an) 調(diào)和平均Hn?n111????a1a2an 幾何平均Gn?na1?a2?an 算術(shù)平均An?a1?a2???an n22a12?a2???an平方平均Qn? 2這四個(gè)平均值有以下關(guān)系:Hn?Gn?An?Qn,其中等號(hào)當(dāng)且僅當(dāng)a1?a2???an時(shí)成立.7.證明: 令bi?ai,(i?1,2,?,n)則b1b2?bn?1,故可取x1,x2,?xn?0,使得 Gnb1? xxx1x,b2?2,?,bn?1?n?1,bn?n由排序不等式有: x2x3xnx1b1?b2???bn =xx1x2????n(亂序和)x2x3x1111?x2????xn?(逆序和)x1x2xn ?x1? =n,?aa?a2???ana1a2????n?n,即1?Gn.GnGnGnn111,?,各數(shù)利用算術(shù)平均大于等于幾何平均即可得,Gn?An.a1a2an 評(píng)述:對(duì)8.分析:原不等式等價(jià)于n?1(1?)?1?平均,而右邊為其算術(shù)平均.n?11nn1,故可設(shè)法使其左邊轉(zhuǎn)化為n個(gè)數(shù)的幾何n?111111n?21(1?)n?(1?)?(1?)?1?(1?)?(1?)?1??1?.n?1nnnnnn?1n?1??????????????n個(gè)n?1 評(píng)述:(1)利用均值不等式證明不等式的關(guān)鍵是通過分拆和轉(zhuǎn)化,使其兩邊與均值不等式形式相近.類似可證(1?1n?11n?2)?(1?).nn?1(2)本題亦可通過逐項(xiàng)展開并比較對(duì)應(yīng)項(xiàng)的大小而獲證,但較繁.9.證明:先證左邊不等式 111?????(1?n)?1?23n1111??????n123n ?(1?n)n? n111(1?1)?(?1)?(?1)???(?1)123n ?(1?n)n?n34n?12?????23n?n1?n?(*) nn[(1?n)?1]?1?2?1n1n1?111????23n n 34n?1????23n?n2?3?4???n?1?nn?1.n23n ?(*)式成立,故原左邊不等式成立.其次證右邊不等式 ?1111??????n?(n?1)?nn?1 23n1 ?n1?n?1n?(1??111111????)(1?)?(1?)???(1?)23n?n?11?23n n?1nn?112n?1????123n (**)? n?1?nn?1 (**)式恰符合均值不等式,故原不等式右邊不等號(hào)成立.第五篇:不等式證明