第一篇:師范大學(xué)英語專業(yè)論文
福建師范大學(xué)
現(xiàn)代遠(yuǎn)程教育畢業(yè)論文
裝
題
訂
線
目:培養(yǎng)中學(xué)生學(xué)習(xí)英語興趣的有效方法
專
業(yè):英語教育
學(xué)
號(hào):200908575652
學(xué)生姓名:高樹枝
導(dǎo)師姓名:邱志芳
2012年
2月日
福建師范大學(xué)網(wǎng)絡(luò)教育學(xué)院本科畢業(yè)論文(設(shè)計(jì))作者承諾保證書
本人鄭重承諾: 本篇畢業(yè)論文(設(shè)計(jì))的內(nèi)容真實(shí)、可靠。如果存在弄虛作假、抄襲的情況,本人愿承擔(dān)全部責(zé)任。
學(xué)員簽名:
年
月 日
摘要: 培養(yǎng)中學(xué)生對(duì)英語學(xué)習(xí)的興趣是提高中學(xué)英語教學(xué)質(zhì)量的關(guān)鍵。愛因斯坦曾說過:“興趣是最好的老師”。如果他們對(duì)學(xué)習(xí)感興趣的話,學(xué)生們不會(huì)覺得學(xué)習(xí)是一種負(fù)擔(dān), 他們就會(huì)積極地將他們的心放在學(xué)習(xí)上。因此激發(fā)同學(xué)們的興趣是成功學(xué)好英語的關(guān)鍵, 從而提升學(xué)生的學(xué)習(xí)興趣, 投身于英語學(xué)習(xí)。它還可以豐富學(xué)生知識(shí), 打開學(xué)生的心靈, 并且彌補(bǔ)智能發(fā)展的弱點(diǎn)。但是如何培養(yǎng)學(xué)生的學(xué)習(xí)興趣?但學(xué)生的學(xué)習(xí)興趣不能自發(fā)地產(chǎn)生,各種社會(huì)因素也會(huì)影響著學(xué)生的學(xué)習(xí)情況。教師需要從家庭、社會(huì)和學(xué)校方面充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)計(jì)劃和目的,從而使學(xué)生學(xué)習(xí)興趣得到轉(zhuǎn)變。
關(guān)鍵詞: 興趣;
關(guān)鍵;
培養(yǎng);
英語學(xué)習(xí)
Abstract:Training students' interest in English learning is the key to improving the quality of English teaching.Einstein once said: “Interest is the best teacher”.The students will not feel that learning is a kind of burden, if they are interested in learning, they will actively put their hearts into his study.So to arouse the students' interest is the key to success in learning English well, so as to promote the students' interest in study, participate in English learning.It can also enrich the students' knowledge, open the students' mind and make up for the weakness of intelligent development.But, how can we cultivate the students' interest in English learning? The students’ learning interest can't spontaneously emerge.Varieties of social factors may also affect student learning.Teachers need to fully mobilize students' plan and purpose to make the students interest in learning changed from family, society and school.Key words: interest;key;train;learning English
隨著科學(xué)技術(shù)的飛速發(fā)展, 知識(shí)在我們的日常生活中越來越重要。目前, 學(xué)生必須成為終身學(xué)習(xí)者以適應(yīng)知識(shí)爆炸的時(shí)代。而且, 正如我們所知, 英語是我們第二門重要的語言, 所以教師應(yīng)采取相應(yīng)有效的教學(xué)方法, 以激發(fā)學(xué)生的學(xué)習(xí)興趣, 使學(xué)生在課堂教學(xué)中更為活躍、更有吸引力。但事實(shí)上, 在一些中學(xué), 一些無聊的語法學(xué)習(xí)通常降低了學(xué)生的學(xué)習(xí)興趣。由于缺乏興趣, 他們?cè)诖髮W(xué)入學(xué)考試中不能取得很好的成績(jī)。盡管老師的辛勤工作,最終他們還會(huì)失去興趣并放棄它??傊?“興趣是最好的教師?!崩蠋熂ぐl(fā)培養(yǎng)學(xué)生學(xué)習(xí)英語的興趣是有必要的, 但是教師應(yīng)該如何做呢? 本人有一些如下建議:
一、創(chuàng)設(shè)活潑有趣的教學(xué)環(huán)境, 培養(yǎng)學(xué)生的英語學(xué)習(xí)興趣
“在課堂上、學(xué)生之間、各種活動(dòng)中、語言材料和學(xué)生之間創(chuàng)設(shè)交際過程?!盵1]如果一個(gè)老師在課堂上善于激發(fā)學(xué)生學(xué)習(xí)興趣, 并具有豐富的教學(xué)經(jīng)驗(yàn), 他一定是一個(gè)出色的教師?,F(xiàn)在在對(duì)最新版本的英語教科書的介紹中,每一個(gè)單元都由熱身、聽、說、預(yù)讀、讀后、語法、整合能力和寫作等各部分組成。根據(jù)上述部分, 老師應(yīng)該培養(yǎng)激發(fā)學(xué)生學(xué)習(xí)英語的興趣, 通過創(chuàng)造生動(dòng)有趣的教學(xué)環(huán)境, 激發(fā)他們的學(xué)習(xí)欲望。
(一)、每單位分成五小快, 并在每一節(jié)運(yùn)用不同的教學(xué)策略
熱身、聽、說形式一節(jié)。根據(jù)上下文不同的特點(diǎn), 教師可以搭配音樂教學(xué)、多媒體教學(xué)、感官教學(xué)刺激興趣, 培養(yǎng)他們的英語學(xué)習(xí)習(xí)慣。這是一個(gè)很好的方式,并能避免單一的的教學(xué)模式。用這種方法可以迅速培養(yǎng)、激發(fā)學(xué)生學(xué)習(xí)的興趣。
2、讀前和讀后屬于第二部分。
在這個(gè)過程中, 教師的主要任務(wù)是發(fā)現(xiàn)問題、提出問題、分析問題、解決問題。在這部分, 可以培養(yǎng)、激發(fā)學(xué)生的創(chuàng)新能力。
除此之外, 它還能刺激學(xué)生認(rèn)真思考, 善于觀察問題與實(shí)踐的能力, 讓他們充分發(fā)揮其作用, 在英語學(xué)習(xí)的過程中培養(yǎng)學(xué)生探索的精神。
在這種激勵(lì)情況下的課堂教學(xué)中, 可以激發(fā)創(chuàng)造力。教師應(yīng)給或讀一些相關(guān)問題的文本, 當(dāng)然, 這些問題應(yīng)該是任意的、思考性的和鼓舞性的, 旨在激發(fā)、培養(yǎng)學(xué)生的求知欲。我們可以以“項(xiàng)鏈”作為一個(gè)例子。在語境中, 這些問題可以包括:(1)、你這樣做, 你會(huì)被邀請(qǐng)參加舞會(huì)嗎?(2)、什么飾品, 你知道嗎?
(3)、如果你沒有任何的珠寶你會(huì)怎么做呢?(4)、你認(rèn)為借飾品合適嗎?
在post-reading部分, 學(xué)生可以討論這些問題:(1)你怎么學(xué)習(xí)“項(xiàng)鏈”的?(2)你認(rèn)為接著會(huì)發(fā)生什么?(3)你認(rèn)為瑪?shù)贍柕轮懒苏嫦嗪髸?huì)是什么樣的感覺? 上述問題不僅是上下文相關(guān), 而且還能幫助學(xué)生拓寬思路。
3、單詞學(xué)習(xí)和語法為第三部分。
面對(duì)一些乏味的單詞和無聊的語法, 教師應(yīng)該根據(jù)現(xiàn)實(shí)意義建立這兩個(gè)詞之間的關(guān)系?,F(xiàn)在舉一個(gè)例子: 當(dāng)談到“被動(dòng)語態(tài)”教學(xué)、交際性語法教學(xué)時(shí), 注重提高學(xué)生觀察能力可以取代傳統(tǒng)教學(xué)模式。例如, 在黑板上有兩張圖片, 老師讓全班來仔細(xì)觀察, 對(duì)圖片間的不同發(fā)表觀點(diǎn)和看法, 然后學(xué)生們嘗試找到這個(gè)問題的答案:“What has been changed in these two questions?“根據(jù)這個(gè)觀察, 可以提高學(xué)生的觀察能力, 并且對(duì)被動(dòng)語態(tài)將有一個(gè)很好的掌握。
4、第四部分由綜合能力和寫作構(gòu)成。
在寫作部分中, 因?yàn)樗皇悄敲慈菀渍莆盏牟糠? 所以老師應(yīng)該作為一個(gè)向?qū)? 指導(dǎo)他們?nèi)绾螌?。我們可以設(shè)置“ The sound of the world ”作為一種寫作話題,并回答下列問題:
(1)、流行音樂和搖滾音樂屬于哪種音樂?(2)、除現(xiàn)代音樂以外, 還有什么別的類型的音樂, 你知道嗎?(3)、中國(guó)傳統(tǒng)與現(xiàn)代的音樂有什么不同? 在教師的指導(dǎo)下, 他們的寫作會(huì)越來越好。如果沒有足夠的時(shí)間在課堂上寫, 老師可以允許他們用業(yè)余時(shí)間來做。此外, 錯(cuò)誤可以通過teamwork查到。這樣, 他們發(fā)現(xiàn)他們各自的錯(cuò)誤并及時(shí)改正。同時(shí), 教師要引導(dǎo)他們擴(kuò)大閱讀量,并把寫作作為作業(yè)。如寫日記或?qū)懸黄鐣?huì)熱點(diǎn)問題的評(píng)論等。用這種方法, 可以日益提高他們的寫作能力。
5、第五部分是由課后作業(yè)及相關(guān)練習(xí)組成。
在這個(gè)過程中, 學(xué)生的學(xué)習(xí)能力能夠逐漸被提升, 并能使他們能夠更好地學(xué)好英語。畢竟, 枯燥的語法學(xué)習(xí)如果沒有更多的實(shí)踐就不能夠更好的掌握。否則, 學(xué)生的主動(dòng)性可能很快會(huì)減弱的。
(二)、找準(zhǔn)角色,尋找合適的教材,激發(fā)英語學(xué)習(xí)的興趣。
成就感是快樂學(xué)習(xí)的源泉。在教學(xué)過程中, 保證正常教學(xué)是非常必要的;而且, 老師可以首先選擇讓學(xué)生準(zhǔn)備更容易的部分,這種方法能使學(xué)生有機(jī)會(huì)品嘗到快樂的成就感。針對(duì)這一特殊的活動(dòng), 學(xué)生可以有機(jī)會(huì)與教師溝通交流,從而加深對(duì)知識(shí)的掌握程度并且也能激發(fā)學(xué)生的學(xué)習(xí)興趣。
(三)、實(shí)行競(jìng)爭(zhēng)機(jī)制, 培養(yǎng)激發(fā)學(xué)生英語學(xué)習(xí)的興趣。
在此過程中, 老師要求學(xué)生玩?zhèn)€游戲:在有限的時(shí)間里背單詞和課文,以使學(xué)生記住所學(xué)內(nèi)容?!罢l做的最好,誰就會(huì)贏獎(jiǎng)”。在獎(jiǎng)品的“誘惑”下,學(xué)生們將竭盡全力背課文和單詞。因此, 學(xué)生的學(xué)習(xí)效率在生動(dòng)、競(jìng)爭(zhēng)的氛圍中得以提高。
(四)、借助音樂教學(xué), 激發(fā)學(xué)生學(xué)習(xí)興趣。
如今英文歌曲深受大多數(shù)的學(xué)生喜歡, 這也可以是一個(gè)比較好的,可以提高英語聽力能力的有效方 4
法。老師如能教學(xué)生一些流行歌曲,例如 “紅河谷”、“我心永恒”、“檸檬樹”等等。這樣, 學(xué)生不僅能夠記住在這首歌中的新單詞, 還能促使他們上網(wǎng)學(xué)習(xí)英語。高中英語教科書“the sound of the world”中包含許多音樂片段, 在聽的過程中, 學(xué)生會(huì)對(duì)生活產(chǎn)生美好的感覺, 同時(shí)他們還能學(xué)習(xí)到新鮮事物。
二、提供相關(guān)閱讀資料,激發(fā)學(xué)生閱讀興趣
(一)、閱讀能有效擴(kuò)大詞匯量。
作為一個(gè)英語老師, 他應(yīng)該幫助學(xué)生擴(kuò)大他們的閱讀量,并選擇一些具有教育性和有趣的材料來供他們閱讀。
當(dāng)引導(dǎo)學(xué)生閱讀書籍時(shí), 應(yīng)遵循下列原則:(1)、難度中等的原則。
(2)、the-more-the-better的原則。(3)、內(nèi)容合適、適應(yīng)的原則。(4)、多樣性的原則。(5)、語言真實(shí)性的原則。(6)、學(xué)與得相結(jié)合的原則。(7)、成就感的原則。
閱讀材料的選擇要確保適當(dāng)?shù)碾y度,這是必要的。他們不應(yīng)該太難, 也不能太容易。從某種意義上說, 閱讀材料越多、越好。只有通過閱讀大量的語言材料才可以做到量變到質(zhì)變的實(shí)現(xiàn), 學(xué)生的閱讀能力才能被提高。更重要的是, 閱讀的材料應(yīng)該是多種多樣, 不僅可以滿足大多數(shù)的學(xué)生, 可以還可以使學(xué)生獲得成就感。只有用這種方法才能使學(xué)生更容易集中精力去閱讀。
總之, 閱讀材料的選擇, 必須從實(shí)際出發(fā), 還要針對(duì)學(xué)生的全面發(fā)展和長(zhǎng)遠(yuǎn)利益。
(二)、閱讀英文報(bào)紙, 掌握閱讀技巧, 提高閱讀能力,激發(fā)學(xué)生學(xué)習(xí)興趣
長(zhǎng)期的閱讀英語報(bào)紙和期刊也可以提高學(xué)生的閱讀技巧和閱讀理解能力。一個(gè)新聞故事是由標(biāo)題、主體和結(jié)尾組成的。標(biāo)題是刊登在報(bào)紙上面的以大體字出現(xiàn)的, 但是它必須要能夠吸引讀者, 所以我們說一個(gè)標(biāo)題通常滿足兩個(gè)要求:抓住事情本質(zhì)和吸引讀者。而內(nèi)容提要通常是新聞故事的前一、二段, 要捕捉本質(zhì)的事件, 誘使讀者進(jìn)入這個(gè)故事。
(三)、通過閱讀電子書籍,激發(fā)學(xué)生學(xué)習(xí)英語興趣
國(guó)內(nèi)和國(guó)外一些主要的報(bào)紙和雜志的網(wǎng)站, 都是些免費(fèi)的資源,是可以隨時(shí)瀏覽的: China Daily:
http://004km.cnN等)也是練習(xí)英語口語的最佳選擇。
(三)、通過瀏覽因特網(wǎng)學(xué)習(xí),全方位練習(xí)英語口語
我們都知道, 有許多網(wǎng)站提供聊天室供學(xué)習(xí)英語的學(xué)生練習(xí)口語。通過skype軟件可以用英語交談。還有新浪UC,下載安裝并登陸客戶端,進(jìn)入外語天地-初級(jí)英語口語房間,在那里可以聽,也可以上麥就某個(gè)話題和麥友用英語交流溝通。
然后, 你可以申請(qǐng)做管理, 并可以設(shè)定熱門話題供麥友們討論。那些想提高英語口語和喜歡用英語交流的朋友可以參加你組建的組或群并展開討論,這對(duì)練習(xí)英語口語非常有效。通過網(wǎng)上英語聊天, 學(xué)生的英語口語進(jìn)步了,也激發(fā)了他們學(xué)習(xí)英語的興趣。
七、貫穿英美文化教學(xué), 激發(fā)、培養(yǎng)學(xué)生學(xué)習(xí)英語
當(dāng)談到英美文化習(xí)俗時(shí), 許多學(xué)生對(duì)此不甚了解。那么老師怎樣做來解決該問題嗎? 最好的辦法是用知識(shí)來豐富自己的文化知識(shí), 這能有效地促進(jìn)外語教學(xué)。在文化教學(xué)中, 老師可以介紹一些關(guān)于這個(gè)話題的文化背景, 并介紹一些西方習(xí)俗來激發(fā)學(xué)生的好奇心, 以及他們對(duì)學(xué)習(xí)英語的興趣。然后學(xué)習(xí)者的主動(dòng)性就會(huì)慢慢的培養(yǎng)出來。此外, 組織學(xué)生看一些有關(guān)英、美國(guó)文化的電影。“文化教學(xué)以培養(yǎng)學(xué)生的文[10]化意識(shí)為主要目的。”根據(jù)來自現(xiàn)實(shí)生活中有意義的文化背景知識(shí), 學(xué)生對(duì)英語學(xué)習(xí)將會(huì)產(chǎn)生濃厚的興趣,這將極大促進(jìn)學(xué)生學(xué)習(xí)英美文化和英語口語教學(xué)。
眾所周知, 語言本身蘊(yùn)涵著豐富的文化內(nèi)涵。學(xué)習(xí)英語沒有文化就不能得以提高, 所以從另一個(gè)角度來說, 文化意識(shí)對(duì)學(xué)習(xí)一門外語的學(xué)生來說是至關(guān)重要的, 學(xué)習(xí)時(shí)了解文化背景知識(shí)還具有重要的意義, 它還可以提高英語教學(xué)的質(zhì)量和培養(yǎng)激發(fā)學(xué)生的學(xué)習(xí)興趣。如果老師把上述的步驟運(yùn)用在課堂上, 學(xué)生的知識(shí)范圍就會(huì)擴(kuò)大, 他們對(duì)英語學(xué)習(xí)的興趣就會(huì)慢慢被培養(yǎng)出來。
八、結(jié)論
也許還有許多其他好的方法策略, 但上面提到的都是有效的、可接受的,且?guī)缀踝阋越處焸兘鉀Q教學(xué)中所出現(xiàn)的所有問題。
在教學(xué)過程中, 興趣在英語教學(xué)中擔(dān)當(dāng)著不可缺少的角色?!鞍褜W(xué)習(xí)過程看成一個(gè)由學(xué)生親自參與的、生動(dòng)活潑的、主動(dòng)的和富有個(gè)性的過程?!盵11]作為一名教師, 他不僅要采取有效的教學(xué)方法, 激發(fā)閱讀興趣,選擇有吸引力的話題來討論、組織各種各樣的教學(xué)活動(dòng)、建立和諧師生關(guān)系、英語口語及文化教學(xué), 來激發(fā)培養(yǎng)學(xué)生學(xué)習(xí)興趣。更重要的是, 應(yīng)把課堂教學(xué)搞得更具吸引力、更活躍, 培養(yǎng)、激發(fā)學(xué)生學(xué)習(xí)的主動(dòng)性,從而提高英語教學(xué)質(zhì)量。老師不僅應(yīng)該在教學(xué)過程中耐心和負(fù)責(zé),而且還要做到勤學(xué)、多學(xué)、鉆研教材教法,博采眾家之長(zhǎng)。
我們都應(yīng)該承認(rèn)這樣一個(gè)事實(shí): 如果沒有任何興趣存在的話,沒有任何一個(gè)班級(jí)的教學(xué)可以做到生動(dòng),活潑。毫無疑問, 學(xué)生感興趣的一堂課才是真正成功的一堂課。一旦學(xué)生感興趣, 那么沒有什么是不可能的, 更不用說英語學(xué)習(xí)了。
參考文獻(xiàn):
[1] 馬相明.現(xiàn)代外語教學(xué)方法研究[M].北京:經(jīng)濟(jì)管理出版社,2001,86-87.[2] 謝云錦,王萱.中學(xué)英語典型課示例[M].長(zhǎng)春:東北師范大學(xué)出版社,2000,186-187.[3] 陳旭遠(yuǎn).新課程新理念[M].長(zhǎng)春:東北師范大學(xué)出版社,2002,140-141.[4] 劉秋云.高中英語校本教研的構(gòu)建與實(shí)施[M].廣東:英禾多媒體工作室,2007,158-159.[5] 侯渝生.新課程理念下的創(chuàng)新教學(xué)設(shè)計(jì)[M].長(zhǎng)春:東北師范大學(xué)出版社,2003,11-12.[6] 孫凡哲.上好課[M].長(zhǎng)春:東北師范大學(xué)出版社,2002,144-145.[7] 李廣.評(píng)好課:應(yīng)知應(yīng)會(huì)[M].長(zhǎng)春:東北師范大學(xué)出版社,2010,10-11.[8] 魯子問,王篤芹.新編英語教學(xué)論[M].上海:華東師范大學(xué)出版,2007,14-15.[9] 靳玉樂.探究教學(xué)的學(xué)習(xí)與輔導(dǎo)[M].北京:中國(guó)人事出版社,2002,38-39.[10] 魯子問,王篤芹.新編英語教學(xué)論[M].上海:華東師范大學(xué)出版,2007,86-87.[11] 劉小明,馮墨女,劉虹,吳世蘊(yùn).評(píng)好課與師德行為[M].長(zhǎng)春:東北師范大學(xué)出版社,2010,40-41.
第二篇:英語專業(yè)論文
英語專業(yè)文學(xué)方向本科畢業(yè)論文寫作問題探究
[摘 要]英語畢業(yè)論文由于從事英美文學(xué)教學(xué)的教師理論水平參差不齊、教師對(duì)學(xué)生文藝?yán)碚摻邮苣芰Φ膽岩?、商品?jīng)濟(jì)時(shí)代文學(xué)和文藝?yán)碚撉吆凸训纫蛩?造成文學(xué)學(xué)習(xí)和文學(xué)方向畢業(yè)論文寫作中缺乏科學(xué)的分析方法。本研究將探索將文藝?yán)碚撘氡究飘厴I(yè)生的論文寫作課程中的必要性和可行性,從而建構(gòu)以文藝?yán)碚摓橹行牡挠⒄Z專業(yè)文學(xué)方向畢業(yè)論文寫作的新模式。
[關(guān)鍵詞]文學(xué)理論;讀者反映理論;認(rèn)知教學(xué)法
依據(jù)《高等教育法》(1998)的本科教育學(xué)業(yè)標(biāo)準(zhǔn),學(xué)生應(yīng)比較系統(tǒng)地掌握本專業(yè)所必需的基礎(chǔ)理論知識(shí)、基本技能和相關(guān)知識(shí),并“具有從事本專業(yè)實(shí)際工作和研究工作的初步能力”。這一標(biāo)準(zhǔn)強(qiáng)調(diào)了研究性教學(xué)(research-oriented teaching)的重要性,無疑為英美文學(xué)教學(xué)中理論研究與實(shí)踐的有機(jī)融合提出了要求,而這種融合往往體現(xiàn)在學(xué)生文學(xué)論文寫作的能力之中。然而,高校中實(shí)用主義風(fēng)氣、急功近利思想和“重技能,輕人文”弊端的集中體現(xiàn)沖擊著文學(xué)課教學(xué),助長(zhǎng)了學(xué)生輕視與人文修養(yǎng)有關(guān)的課程,助長(zhǎng)了他們對(duì)文學(xué)作品敬而遠(yuǎn)之的傾向(馬愛華, 2006)。作為全面考核畢業(yè)生綜合素質(zhì)的有效途徑,畢業(yè)論文寫作是本科學(xué)生畢業(yè)前必須經(jīng)受的考驗(yàn)關(guān)口,是師生教學(xué)相長(zhǎng)的過程。本文將從文學(xué)課教學(xué)的現(xiàn)狀出發(fā),通過畢業(yè)論文寫作的過程,在揭示現(xiàn)象、總結(jié)經(jīng)驗(yàn)的基礎(chǔ)上,提出重視文藝?yán)碚摰慕虒W(xué),提高學(xué)生的文學(xué)素養(yǎng),培養(yǎng)研究性學(xué)習(xí)能力的意義。
一、研究現(xiàn)狀
部分專家認(rèn)為英語專業(yè)(張沖, 2003)是“英語語言技能的專業(yè)訓(xùn)練和對(duì)英語語言文化的專門研究”,其特征為“技能加專業(yè),復(fù)合而開放”,其培養(yǎng)目標(biāo)為“純熟的語言能力,深度的專題研究”。這一專業(yè)定位除了強(qiáng)調(diào)語言技能之外,著重強(qiáng)調(diào)了“文化”和“研究”。文化理解和專題研究的基礎(chǔ)在于學(xué)生文學(xué)課程的給養(yǎng)過程,其中,文學(xué)理論分析則既指導(dǎo)了文學(xué)課程的學(xué)習(xí),又加深了學(xué)生對(duì)文學(xué)作品的理解。文學(xué)作品的學(xué)習(xí)與文藝?yán)碚摰年P(guān)系好比材料和工具的關(guān)系,“工欲善其事,必先利其器”,如果學(xué)生沒有相關(guān)的文藝?yán)碚摰膶W(xué)習(xí),就好比一個(gè)沒有工具的工匠,只能望天興嘆。
二、問題成因
文藝?yán)碚撌菍W(xué)習(xí)英美文學(xué)的分析和鑒賞工具,研究生階段的文藝?yán)碚摻虒W(xué)已經(jīng)有了一定的歷史,但在英語專業(yè)本科教學(xué)中文藝?yán)碚摰慕虒W(xué)目前尚未展開。這直接導(dǎo)致學(xué)生的文學(xué)畢業(yè)論文的寫作難度增大,出現(xiàn)了許多亟待解決的問題。主要成因如下:
1.從事英美文學(xué)教學(xué)的教師理論水平參差不齊。部分教師講授英美文學(xué),而其自身很少涉及文藝?yán)碚摰氖褂?或者說自己的文學(xué)批評(píng)理論知識(shí)匱乏,因此不可能在授課時(shí)有意識(shí)地將文藝?yán)碚撊谌氲浇虒W(xué)中去。
2.輕視或放低對(duì)學(xué)生的人文素質(zhì)和評(píng)析能力的生成要求。有些教師擔(dān)心學(xué)生的接受能力,甚至害怕因?yàn)閷W(xué)生不能正確理解文藝?yán)碚摰木瓒鴮⑵湔`用或者濫用?!陡叩葘W(xué)校英語專業(yè)英語教學(xué)大綱》(2000)明確規(guī)定了文學(xué)課程的教學(xué)目的“在于培養(yǎng)學(xué)生閱讀、欣賞、理解英語文學(xué)原著的能力,掌握文學(xué)批評(píng)的基本知識(shí)和方法。通過閱讀和分析英美文學(xué)作品,促進(jìn)學(xué)生語言基本功和人文素質(zhì)的提高,增強(qiáng)學(xué)生對(duì)西方文學(xué)及文化的了解”,顯而易見,加大文學(xué)批評(píng)理論的講授和研討是符合《大綱》要求的。
3.所學(xué)知識(shí)與研究性寫作存在三個(gè)“不和諧”關(guān)系:文學(xué)課的教與學(xué)脫節(jié);文學(xué)課與語言實(shí)踐脫節(jié);文學(xué)教學(xué)理論的研究與外語教學(xué)實(shí)踐脫節(jié)(馬愛華, 2006)。學(xué)生習(xí)得的知識(shí)孤立于其寫作實(shí)踐之外。人才培養(yǎng)目標(biāo)不明確,學(xué)生急功近利,一成不變的文學(xué)課程教學(xué)脫離實(shí)際人才
培養(yǎng)模式。學(xué)生將文藝?yán)碚撘暈榧埳险劚?。因?導(dǎo)致“文學(xué)理論教材和教學(xué)實(shí)踐逐漸偏離當(dāng)今消費(fèi)時(shí)代的審美精神”以及“文學(xué)理論的教學(xué)被大學(xué)生們冷落”(李迪江, 2002)。
三、文藝?yán)碚撛谖膶W(xué)論文寫作中的意義
1.文學(xué)理論的專業(yè)知識(shí)學(xué)習(xí),鋪墊了文學(xué)論文的研究能力?!拔膶W(xué)理論教學(xué)應(yīng)該優(yōu)先地培養(yǎng)大學(xué)生的理論素養(yǎng),更多地培養(yǎng)大學(xué)生的應(yīng)用能力,如從文學(xué)作品的分析討論中,來培養(yǎng)大學(xué)生的理解能力、分析能力和表達(dá)能力等(李迪江, 2002)”。本科學(xué)生已經(jīng)有了一定的文學(xué)常識(shí),至少對(duì)于著名作品的情節(jié)有了一定程度的了解,文學(xué)名著選讀課使用文學(xué)名著的原版書籍作為教材,使得學(xué)生有機(jī)會(huì)對(duì)文學(xué)文本進(jìn)行仔細(xì)研讀,為文藝?yán)碚摰膶W(xué)習(xí)奠定了基礎(chǔ)。
2.畢業(yè)論文寫作,完成學(xué)生從讀者到理論分析的升華。Guerin認(rèn)為,“讀者參與在文本的創(chuàng)作中”。作品的意義是文本和讀者相互作用的結(jié)果,它強(qiáng)調(diào)讀者在閱讀過程中的不同參與方式。這一理論代表人物之一伊瑟爾指出,所有文學(xué)篇章都有“空白”或“缺口”,這些空白和缺口必須由讀者在解讀過程中填補(bǔ)或具體化(劉辰誕, 1999)。文學(xué)作品須由接受者內(nèi)化和心靈化,即需要接受者的理解、體驗(yàn)、加工、補(bǔ)充和創(chuàng)造,融入接受者的思想和情感、傾向和評(píng)價(jià),只有這樣,作品中的時(shí)間、人物形象等才會(huì)活生生地呈現(xiàn)在自己的頭腦中(郭宏安, 1997)。從這個(gè)角度暴露了英語專業(yè)教育中一貫的“知識(shí)單一和技能單一”問題,帶來的思考是應(yīng)該如何培養(yǎng)學(xué)生多種語言技能,滿足其獨(dú)立學(xué)習(xí)的需要。
3.文學(xué)史學(xué)習(xí)為文藝?yán)碚摰膶W(xué)習(xí)奠定基礎(chǔ)。心理學(xué)、原型批判、女權(quán)主義、馬克思主義的文學(xué)評(píng)論等可將傳統(tǒng)文學(xué)史中作家、作品按照時(shí)間排序的方式打破。從各種文藝?yán)碚摰慕嵌葘?duì)作家、作品重新排序,不同的文學(xué)作品可以用相同的文藝?yán)碚撨M(jìn)行分析,既起到梳理文學(xué)史和文學(xué)作品的目的,又使學(xué)生對(duì)文學(xué)作品甚至文學(xué)史的認(rèn)識(shí)提升到一個(gè)新的高度。如:莎士比亞的《哈姆雷特》,尤金?奧尼爾《榆樹下的欲望》,勞倫斯的《兒子與情人》等作品中都蘊(yùn)含著戀母情結(jié)的心理學(xué)分析。以此為基礎(chǔ),給學(xué)生補(bǔ)充講述古希臘劇作家索??死锼沟闹瘎∽髌贰抖淼移炙雇酢?能幫助學(xué)生探究作品人物的內(nèi)心世界,為論文寫作奠定基礎(chǔ)的同時(shí),也有助于選擇一個(gè)更為可行的題目。
4.結(jié)合文本與文藝?yán)碚?豐富學(xué)生的論文選題。學(xué)生文學(xué)專業(yè)畢業(yè)論文選題往往單一,如選擇:《偉大的蓋茨比》中美國(guó)夢(mèng)破滅的主題或美國(guó)夢(mèng)的悲劇一類的主題;《呼嘯山莊》、《傲慢與偏見》中的愛情主題等。選擇經(jīng)典作家的代表作品為研究對(duì)象并不是不可以,但對(duì)于一般本科生而言,要就這些作品的某一方面進(jìn)行較為深入、有創(chuàng)意的探討,還是有相當(dāng)難度的。因?yàn)?對(duì)于某一經(jīng)典文本的某些問題,國(guó)內(nèi)外評(píng)論界可能早有定論,而一般的學(xué)生“尚不能用當(dāng)代文論的新視角去解讀,很難提出自己的新解”(杜志卿, 2005)。
5.研讀詩歌,理論先行。在歷屆本科英語專業(yè)畢業(yè)生的論文中,有關(guān)詩歌的論文很少有人涉及。究其成因,主要是在較短篇幅的詩歌中大量運(yùn)用意象和象征等寫作手法,再加上詩人用特有的音韻感和
第三篇:英語專業(yè)論文題目參考
英語專業(yè)論文題目
語言與語言學(xué)類
001 從歷史文化的發(fā)展看某個(gè)英語詞或短語的語義演變
002 英詩中常用的修辭
003 英語諺語的修辭手法
004 委婉語種
005 英語中的縮略語
006 英語詞匯中的外來語單詞
007 英語新詞新意探究
008 美國(guó)英語的特色
009 如何正確把握英語定語從句(或其他各種從句或語法形式)在句子中的確切含義
010 Fuzzy Words and Their Uses in Human Communication
011 Ambiguity and Puns in English
012 Some basic consideration of style
013 English by Newspaper
014 English Personal Pronouns: a Preliminary Textual Analysis
015 Thematic Network and Text Types
016 An Inquiry into Speech Act Theory
017 On Lexical Cohesion in Expository Writing
018 The Inferences of Conversational Implications
019 Context and Meaning
020 The Construction and Interpretation of Cohesion in Texts 語言教學(xué)類
001 擴(kuò)大詞匯量和提高英語閱讀能力的關(guān)系
002 提高英語閱讀速度的主要障礙
003 英語閱讀能力和閱讀速度的關(guān)系
004 通過擴(kuò)大知識(shí)面提高英語閱讀能力
005 如何在閱讀實(shí)踐中提高英語閱讀能力
006 閱讀英文報(bào)刊的好處
007 如何處理精讀和泛讀的關(guān)系
008 如何對(duì)付英語閱讀材料中的生詞
009 如何通過閱讀擴(kuò)大詞匯量
010 提高閱讀能力和提高英語聽力的關(guān)系
011 英語聽說讀寫四種技能的關(guān)系
012 通過英語閱讀提高英語寫作能力
013 英語快速閱讀能力的構(gòu)成成分
014 中學(xué)生英語自主學(xué)習(xí)能力的培養(yǎng)
015 英語教學(xué)中的語言焦慮及解決策略
016 簡(jiǎn)筆畫-英語教學(xué)中簡(jiǎn)單高效的教學(xué)手段
017 提高英語聽力理解能力的策略和技巧
018 電子辭典與英語教學(xué)
019 普通話對(duì)英語語音的遷移作用
020 母語遷移在基礎(chǔ)教育各階段中的作用
021 提高大班課堂教學(xué)的效果
022 《英語課程標(biāo)準(zhǔn)》研究
023 口語教學(xué)中教師的角色
024 從心理學(xué)角度探討少兒英語教學(xué)
025 英語課堂提問的策略研究
026 英語后進(jìn)生產(chǎn)生的原因以及補(bǔ)差方法研究
027 英語詞匯教學(xué)方法探討
028 小學(xué)生英語口語能力評(píng)估方法研究
029 朗讀在英語教學(xué)中的作用
030 任務(wù)型教學(xué)法研究
031 方言對(duì)學(xué)生英語語音的影響
032 英語閱讀課堂教學(xué)模式探討
033 英語課堂的合作學(xué)習(xí)策略研究
034 中學(xué)生英語學(xué)習(xí)策略的培養(yǎng)
035 探究式教學(xué)法在中學(xué)英語教學(xué)中的應(yīng)用
036 現(xiàn)代信息技術(shù)在英語教學(xué)中的應(yīng)用
037 教師教學(xué)行為對(duì)高中生英語學(xué)習(xí)的影響
038 實(shí)施成功教育減少兩極分化
039 小學(xué)英語活動(dòng)課教學(xué)模式研究
040 中學(xué)英語聽力訓(xùn)練最佳方案
041 原版電影與英語學(xué)習(xí)
042 中學(xué)生英語興趣的培養(yǎng)
043 《瘋狂英語》(或各種教學(xué)方式)的利與弊
044 張思中教學(xué)法實(shí)踐調(diào)查報(bào)告
045 如何杜絕中式英語
046 英語教師的文化素養(yǎng)
047 網(wǎng)絡(luò)時(shí)代如何學(xué)好英語
048 背景知識(shí)與閱讀理解
049 上下文在閱讀理解中的作用
050 家庭教師在中學(xué)生英語學(xué)習(xí)中的利弊
051 中學(xué)英語教學(xué)現(xiàn)狀分析
052 中學(xué)英語課堂上的Daily Report
053 中外教師解釋課文方法比較
054 中外教師課堂提問方法比較
055 中外教師課堂鼓勵(lì)性用語比較
056 中外教師對(duì)學(xué)生總體要求之比較
057 計(jì)算機(jī)輔助英語教學(xué)中的諸問題
058 不同種類的計(jì)算機(jī)輔助英語教學(xué)方式
059 計(jì)算機(jī)輔助英語教學(xué)中的教學(xué)法原則
060 The Instructive Meaning of Inter-language Pragmatics for foreign Language Teaching
061 Pedagogical Translation and Translation Teaching
062 The Importance of Cultural Authenticity in Teaching Materials
063 Micro-teaching and Student Teacher Training
064 How to Evaluate the Teacher 004km.cn Performance-A Case Study 065 English Test Design 066 The Interference of Native Language in English Writing or Translation 067 Translation Methods and English Teaching
第四篇:英語專業(yè)論文開場(chǎng)白
Good afternoon, Distinguished professors and teachers.I am Gu Danni From the class of English translation.First, I would like to express my sincere gratitude to my supervisor, Ms.Wang, for her intellectual guidance, invaluable instructions and comments on my thesis.It is with her valuable assistance that I have finally accomplished this paper.The title of my paper is Strategies in Humor Translation of American Sitcom Friends.As a vital part in translation, the translation of humor in subtitle is gradually capturing an increasing attention and developing into an independent research field.The purpose of the paper is to explore the interpretation of verbal humor in American sitcoms Friends under the guidance of the Functional Equivalence Theory, with the hope of helping people express humor and understand humor effectively.The final goal of translating a sitcom is to ensure that the target audience can get the humor and appreciate it in the exactly the same manner as the original audiences do,here is an outline of my presentation and I divide my paper into five parts.Part one and two presents an introduction of this study and Nida’s Functional Equivalence Theory, Part three makes a clear illustration of the different categories of humor in Friends,and discussed the features of language.Then I apply these strategies to the subtitling of Friends featuring humorous language.Part five draws some conclusions that translators should try to find appropriate strategies to convey the humorous effect and make the cross-cultural communication smoothly.I hope the paper can provide some insightful opinions for the improvement of humor translation in American sitcoms.However, due to limited time and resources, the paper may have some deficiency, and there is still a long way to go..I’m looking forward to your sincere comments and suggestions.That’s all.Thank you.
第五篇:英語專業(yè)論文翻譯
A smart copper(II)-responsive binucleargadolinium(III)complex-based magnetic resonanceimaging contrast agent?
Yan-meng Xiao,ab Gui-yan Zhao,ab Xin-xiu Fang,ab Yong-xia Zhao,ab Guan-hua Wang,c Wei Yang*a and Jing-wei Xu*a A novel Gd-DO3A-type bismacrocyclic complex, [Gd2(DO3A)2BMPNA], with a Cu2+-selective binding unitwas synthesized as a potential “smart” copper(II)-responsive magnetic resonance imaging(MRI)contrast agent.The relaxivity of the complex was modulated by the presence or absence of Cu2+;in the absence of Cu2+, the complex exhibited a relatively low relaxivity value(6.40 mM1 s1), while the addition of Cu2+ triggered an approximately 76% enhancement in relaxivity(11.28 mM1 s1).Moreover, this Cu2+-responsive contrast agent was highly selective in its response to Cu2+ over other biologically-relevant metal ions.The influence of some common biological anions on the Cu2+-responsive contrast agent and the luminescence lifetime of the complex were also studied.The results of the luminescence lifetime measurements indicated that the enhancement in relaxivity was mainly ascribed to the increased number of inner-sphere water molecules binding to the paramagnetic Gd3+ core upon the addition of Cu2+.In addition, the visual change associated with the significantly enhanced relaxivity due to the addition of Cu2+ was observed from T1-weighted phantom images.Introduction Copper(II)ion is a vital metal nutrient for the metabolism of life and plays a critical role in various biological processes.1,2 Its homeostasis is critical for the metabolism and development of living organisms.3,4 On the other hand, the disruption of its homeostasis may lead to a variety of physical diseases and neurological problems such as Alzheimer's disease,5 Menkes and Wilson's disease,6 amyotrophic lateral sclerosis,7,8 and prion disease.9,10 Therefore, the assessment and understanding of the distribution of biological copper in living systems by noninvasive imaging is crucial to provide more insight into copper homeostasis and better understand the relationship between copper regulation and its physiological function.A wide variety of organic uorescent dyes have been exploited for the optical detection of ions in the last few decades.11–13However, optical imaging using organic uorescent dyes hasseveral limitations such as photobleaching, light scattering,limited penetration, low spatial resolution and the disturbance of auto uorescence.14 By comparison, magnetic resonance imaging(MRI)is an increasingly accessible technique used as a noninvasive clinical diagnostic modality for medical diagnosis and biomedical research.15 It can provide high spatial resolution three-dimensional anatomical images with information about physiological signals and biochemical events.16 As a powerful diagnostic imaging tool in medicine, MRI can distinguish normal tissue from diseased tissue and lesions in a noninvasive manner,17–19 which avoids diagnostic thoracotomy or laparotomy surgery for medical diagnoses and greatly improves the diagnostic efficiency.Multiple MRI imaging parameters can provide a wealth of diagnostic information.In addition, the desired cross-section for acquiring multi-angle and multi-planar images of various parts of the entire body can be freely chosen by adjusting the MRI magnetic eld;this ability makes medical diagnostics and studies of the body's metabolism and function more and more effective and convenient.Contrast agents are often used in MRI examinations to improve the resolution and sensitivity;the image quality can be signicantly improved by applying contrast agents which enhance the MRI signal intensity by increasing the relaxation rates of the surrounding water protons.20 Due to the high magnetic moment(seven unpaired electrons)and slow electronic relaxation of the
paramagnetic gadolinium(III)ion, gadolinium(III)-based MRI contrast agents are commonly employed to increase the relaxation rate of the surrounding water protons.16,21 However, most of these contrast agents are nonspecific and provide only anatomical information.On the basis of Solomon–Bloembergen–Morgan theory,22–24 several parameters can be manipulated to alter the relaxivity of gadolinium(III)-based MRI contrast agents.These parameters include the number of coordinated water molecules(q), the rotational correlation time(sR)and the residence lifetime of coordinated water molecules bound to the paramagnetic Gd3+ center(sM).Adjusting any of these three factors provides the opportunity to design “smart” MRI contrast agents for specific biochemical events.25–27 In recent years, there have been many studies on the development of responsive gadolinium(III)-based MRI contrast agents;most of them have focused on the development of targeted, high relaxivity and bioactivated contrast agents.These responsive gadolinium(III)-based MRI contrast agents can be modulated by particular in vivo stimuli including pH,28–35 metal ion concentration36–43 and enzyme activity.44–50 Notably, a number of copper-responsive MRI contrast agents have been reported to detect uctuations of copper ions in vivo.51–58 These activated contrast agents exploit the modulation of the number of coordinated water molecules to generate distinct enhancements in longitudinal relaxivity in response to copper ions(Cu+ or Cu2+).In this study, we designed and synthesized a binuclear gadolinium-based MRI contrast agent, [Gd2(DO3A)2BMPNA], that is specically responsive to Cu2+ over other biologicallyrelevant metal ions.The new copper-responsive MRI contrast agent comprises two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold59,60(BMPNA), which functions as a receptor for copper-induced relaxivity switching.The synthetic strategy for [Gd2(DO3A)2BMPNA] is depicted in Scheme 1.Subsequently, the T1 relaxivity of [Gd2(DO3A)2BMPNA] was studied at 25 C and 60 MHz in the absence or presence of Cu2+.Experiments to determine the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+ over other biologically-relevant ions were carried out as well.Luminescence lifetime was measured to determine the number of coordinated water molecules(q)of [Gd2(DO3A)2BMPNA] in the absence or presence of Cu2+.In addition, T1-weighted phantom images were collected to visualize the relaxivity enhancement caused by Cu2+, suggesting potential in vivo applications.Experimental section
Materials and instruments
All materials for synthesis were purchased from commercial suppliers and used without further purication.1H and 13C NMR spectra were taken on an AMX600 Bruker FT-NMR spectrometer with tetramethylsilane(TMS)as an internal standard.Luminescence measurements were performed on a Hitachi Fluorescence spectrophotometer-F-4600.The time-resolved luminescence emission spectra were recorded on a Perkin-Elmer LS-55 uorimeter with the following conditions: excitation wavelength, 295 nm;emission wavelength, 545 nm;dela time, 0.02 ms;gate time, 2.00 ms;cycle time, 20 ms;excitation slit, 5 nm;emission slit, 10 nm.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Mass spectra(MS)were obtained on an auto ex III TOF/TOF MALDI-MS and anIonSpec ESI-FTICR mass spectrometer.Elemental analyses were performed on a Vario EL Element Analyzer.Synthesis Synthesis of compound 3.Methyl 2,6-bis(3-(bromomethyl)-1H-pyrazol-1-yl)isonicotinate(Compound1)59,60 and 4,7,10-tris(2-(tert-butoxy)-2-oxoethyl)-4,7,10-triaza-azoniacyclododecan-1-ium bromide(Compound 2)61 were prepared following thereported methods.Compound 2(0.25 g, 0.296 mmol)was suspended in 2 ml anhydrous acetonitrile with 6 equivalents of NaHCO3(0.1492 g)and the mixture was stirred at room temperature for 0.5 h.Compound 1(0.0675 g, 0.148 mmol)was added, and the mixture was slowly heated to reflux(80 C)and stirred overnight.After the reaction was terminated, the mixture was cooled to room temperature, and the solution was ltered.The precipitate was washed several times with anhydrous acetonitrile, and the collected ltrate solution was evaporated under reduced pressure.The residue was puried using silicagel column chromatography eluted with CH2Cl2–n-hexane–CH3OH(10 : 3 : 1, v/v/v)to afford Compound 3(0.1038 g, 53%)as a pale yellow solid.1H NMR(600 MHz, DMSO): 8.22(s, 2H), 8.15(s, 2H), 6.62(s, 2H), 4.53(s, 4H), 3.82(s, 3H), 3.42(m, 4H), 2.98(m, 8H), 2.85(s, 8H), 2.71(m, 24H), 1.33(s, 54H)(Fig.S1?).13C NMR(151 MHz, CDCl3): d 173.21, 172.44, 163.99, 152.38, 150.11, 143.13, 128.07, 109.83, 108.36, 82.59, 57.84, 56.52, 56.06, 55.56, 52.98, 50.55, 48.91, 47.30, 27.96(Fig.S2?).HRMS(ESI): m/z calc.for C67H111N13O14 [M + 2H]2+ 661.92650, [M + H + Na]2+ 672.91747, [M + 2Na]2+ 683.90844, found [M + 2H]2+ 661.92584, [M+ H + Na]2+ 672.91690, [M + 2Na]2+ 683.90682(Fig.S3?).Synthesis of compound 4.Compound 3(0.1 g, 0.0756 mmol)was stirred with triuoroacetic acid in methylene chloride solution(2 ml)at room temperature for 24 h.The solvent was then evaporated under reduced pressure, and the residue was washed three times in CH3OH and CH2Cl2 to eliminate excess acid.The obtained residue was dissolved with a minimum volume of CH3OH and precipitated with cold Et2O.The precipitate was ltered to afford a brown yellow solid(0.1022 g).1H NMR(600 MHz, DMSO): 9.06(s, 2H), 8.17(s, 2H), 6.84(s, 2H), 4.33(s, 4H), 3.98(s, 3H), 3.56(b, 20H), 3.09(m, 24H)(Fig.S4?).13C NMR(151 MHz, D2O): d 174.11, 169.13, 164.64, 150.75, 148.85, 142.10, 129.88, 109.75, 107.99, 55.69, 54.01, 53.10, 52.43, 51.15, 49.59, 48.22, 47.69(Fig.S5?).MALDI-TOFMS spectrum(CH3OH): m/z calc.for C43H63N13O14 [M H] 984.46, found 984.7(Fig.S6?).Anal calc.for C43H63N13O14-$3CF3COOH$2H2O: C, 43.14;H, 5.17;N, 13.35;found C, 42.34;H, 4.999;N, 13.29%.Preparation of [Gd2(DO3A)2BMPNA] and [Tb2(DO3A)2-BMPNA].Compound 4(0.05 mmol)was dissolved in 2 ml of highly-puried water.GdCl3 or TbCl3(0.1 mmol)was added dropwise.The pH was maintained at 6.5–7.0 with NaOH during the whole process.The solution was then stirred at 75 C for 24 h.MALDI-MS(H2O): m/z calc.for C42H55N13O14Gd2 [M + H]+ 1281.46, found 1281.4(Fig.S7?).MALDI-MS(H2O): m/z calc.for C42H55N13O14Tb2 [M + H]+ 1284.3, found 1284.4(Fig.S8?).T1 measurements.The longitudinal relaxation times(T1)of aqueous solutions of [Gd2(DO3A)2BMPNA] were measured on an HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd)at 1.5 T.All of the tested samples were prepared in HEPES-buffered aqueous solutions at pH 7.4.All of the metal ions(Na+, K+, Ca2+, Mg2+, Cu2+, Zn2+, Fe3+, Fe2+)were used as chloride salts.Concentrations of Gd3+ were determined by ICP-OES.Relaxivities were determined from the slope of the plot of 1/T1 vs.[Gd].The data were tted to the following eqn(1),20
(1/T1)obs ?(1/T1)d + r1[M](1)
where(1/T1)obs and(1/T1)d are the observed values in the presence and absence of the paramagnetic species, respectively, and [M] is the concentration of paramagnetic [Gd].Luminescence measurements.Luminescence emission spectra were collected on a Hitachi uorescence spectrophotometer-F-4600.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Samples were excited at 290 nm, and the emission maximum(545 nm)was used to determine luminescence lifetimes.The Tb(III)-based emission spectra were measured using 0.1 mM solutions of Tb complex analog in 100 mM HEPES buffer at pH 7.4 in H2O and D2O in the absence and presence of Cu2+.The number of coordinated water molecules(q)was calculated according to eqn(2):62,63 q= ? 5(sH2O1 sD2O1 0.06)(2)T1-weighted MRI phantom images.Phantom images were collected on a 1.5 T HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd).Instrument parameter settings were as follows: 1.5 T magnet;matrix =256 256;slice thickness =1 mm;TE= 13 ms;TR= 100 ms;and number of acquisitions =1.Results and discussion Longitudinal relaxivity of [Gd2(DO3A)2BMPNA] in response to copper(II)ion To investigate the inuence of Cu2+ on the relaxivity of [Gd2(DO3A)2BMPNA], the longitudinal relaxivity r1 for the [Gd2(DO3A)2BMPNA] contrast agent was determined using T1 measurements in the absence or presence of Cu2+ at 60 MHz and 25 C using a 0.2mMGd3+ solution of [Gd2(DO3A)2BMPNA] in 100 mM HEPES buffer(pH 7.4)under simulated physiological conditions.The concentrations of Gd3+ were determined by ICP-OES.The relaxivity r1 was calculated from eqn(1).In the absence of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] was 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).64 Upon addition of up to 1 equiv.of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] increased to 11.28 mM1 s1(76% relaxivity enhancement).As shown in Fig.1, the relaxivity gradually increased with the copper ion concentration, reaching a maximum value of approximately 1.2 equivalents of Cu2+.Due to the use of triuoroacetic acid in the synthesis of Compound 4, triuoroacetic acid residues produced CF3COO in the [Gd2(DO3A)2BMPNA] solution, allowing CF3COO to partially coordinate with Cu2+ to form “Chinese lantern” type structure complexes.65 When the amount of added copper ions was further increased to above 1.2 equiv., the relaxivity was maintained at the same level.The observed difference in Cu2+-triggered relaxivity enhancement demonstrated the ability of this contrast agent to sense Cu2+ in vivo by means of MRI.Our designed contrast agent not only exhibited a higher relaxivity, but also displayed a Cu2+-responsive relaxivity enhancement.Selectivity studies The relaxivity response of [Gd2(DO3A)2BMPNA] exhibited excellent selectivity for Cu2+ over a variety of other competing, biologically-relevant metal ions at physiological levels.As depicted in Fig.2(white bars), the addition of alkali metal cations(10 mM Na+, 2 mM K+)and alkaline earth metal cations(2 mM Mg2+, 2 mM Ca2+)did not generate an increase in relaxivity compared to the copper ion turn-on response;even the introduction of d-block metal cations(0.2 mM Fe2+, 0.2 mM Fe3+, 0.2 mM or 2 mM Zn2+)did not trigger relaxivity enhancements.We noted that Zn2+ is also known to replace Gd3+ in transmetalation experiments;however, studies with analogous Gd3+-DO3A complexes demonstrated that this ligand is more kinetically inert to metal-ion exchange.66 To ensure the kinetic stability of the complex, we used MS to monitor [Gd2(DO3A)2BMPNA] in the presence of 1 equiv.of Zn2+.No metal-ion exchange was observed at room temperature after 7 days(Fig.S13?).Relaxivity interference experiments for [Gd2(DO3A)2BMPNA] in the presence of both Cu2+(0.2 mM)and other biologically-relevant metal ions were also conducted;the results are shown as black bars in Fig.2, indicating that these biologically-relevant metal ions(Na+, K+, Mg2+, Ca2+, Fe2+, Fe3+, Zn2+)had no interference on the Cu2+-triggered relaxivity enhancement.In addition, we also tested the Cu2+ response for [Gd2(DO3A)2BMPNA] in the presence of physiologically-relevant concentrations of common biological anions to determine whether the Cu2+-triggered relaxivity enhancement was affected by biological anions at physiological levels.As previously mentioned, Cu2+ binding induced an enhancement in relaxivity from 6.40 mM1 s1 to 11.28 mM1 s1(a 76% increase).As shown in Fig.3, in the presence of citrate(0.13 mM), lactate(0.9 mM), H2PO4(0.9 mM), or HCO3(10 mM), the Cu2+-triggered relaxivity enhancement was approximately 61%(from 6.01 mM1 s1 to 9.66mM1 s1), 66%(from 6.13mM1 s1 to 10.16 mM1 s1), 20%(from 5.88 mM1 s1 to 7.02 mM1 s1), or 55%(from 6.15 mM1 s1 to 9.55 mM1 s1), respectively.Additionally, 100 mM NaCl had almost no effect(an approximately 75% increase), and a simulated extracellular anion solution(EAS, contain 30 mM NaHCO3, 100 mM NaCl, 0.9 mM KH2PO4, 2.3 mM sodium lactate, and 0.13 mM sodium citrate, pH =7),67 resulted in a Cu2+-triggered relaxivity enhancement of approximately 26%(from 6.02 mM1 s1 to 7.56 mM1 s1).Generally, the results revealed that lactate, citrate, and HCO3 had slight impacts on the Cu2+-triggered relaxivity enhancement, while H2PO4 and EAS influenced the enhancement to a greater degree.As shown in Scheme 2, [Gd2(DO3A)2BMPNA] possessed two water molecules after the addition of 1 equiv.Of Cu2+.According to the work of Dickins and coworkers, in lanthanide complexes with two water molecules, the waters can be partially displaced by phosphate, carbonate, acetate, carboxylate, lactate and citrate at different levels.68–70 The influence of these anions on the Cu2+-triggered relaxivity enhancement may be attributed to the partial replacement of coordinated water molecules by these anions.The relatively high concentration of phosphate could likely replace coordinated water molecules to reduce the increased number of water molecules surrounding the paramagnetic Gd3+ centre induced by Cu2+.As shown in Table 1, we measured the number of water molecules in the rst coordination sphere of Tb3+ in the presence of phosphate;the number of coordinated water molecules(q)decreased from 1.5 to 0.8.Coordination features Luminescence lifetime experiments were performed to explore the mechanism of the Cu2+-triggered relaxivity enhancement.Luminescence lifetime measurements of lanthanide complexes have been widely used to quantify the number of inner-sphere water molecules.71 In particular, Tb3+ and Eu3+ have commonly been applied for lifetime measurements because their emission spectra are in the visible region when their 4f electrons are relaxed from higher energy levels to the lowest energy multiplets.72,73 Therefore, the Tb3+ analogue of [Gd2(DO3A)2BMPNA], [Tb2(DO3A)2BMPNA], was prepared according to a similar method, and the luminescence lifetimes of the Tb3+ analogue in HEPES-buffered H2O and D2O in the absence and presence of Cu2+ were measured.As shown in Fig.S9,? the luminescence decay curve of [Tb2(DO3A)2BMPNA] was tted to obtain the luminescence lifetimes74(Table 1), and the number of coordinated water molecules(q)was calculated by eqn(2).The analysis results(Table 1)for [Tb2(DO3A)2BMPNA] in HEPES-bufferedH2OandD2O in the absence and presence of Cu2+ indicated that q increased from 0.6 to 1.5 upon the addition of 1 equiv.of Cu2+;this result indicated that the Cu2+-triggered relaxivity enhancement for [Gd2(DO3A)2BMPNA] was most likely due to the increased number of coordinated water molecules around the Gd3+ ion upon Cu2+ binding to the pyrazole centre(Scheme 2).Aer the addition of Cu2+, Cu2+ removed the pyrazole centre N atom from the paramagnetic Gd3+ ion to generate an open coordination site available for a water molecule.Luminescence emission titrations of [Tb2(DO3A)2BMPNA] towards Cu2+ were also performed to investigate the binding properties of the contrast agent towards Cu2+.Upon addition of 1 equiv.Cu2+, the luminescence of [Tb2(DO3A)2BMPNA] at 545 nm decreased gradually and reached a minimum due to the quenching nature of the paramagnetic Cu2+(Fig.S10?).The titration data indicated a 1 : 1 binding stoichiometry(Scheme 2)Copper-responsive T1-weighted phantom MRI in vitro To demonstrate the potential feasibility of this Cu2+-responsive [Gd2(DO3A)2BMPNA] for copper-imaging applications, T1-weighted phantom images of [Gd2(DO3A)2BMPNA] were acquired in the absence and presence of copper ions.The phantom images depicted in Fig.4 displayed distinct increases in image intensity in the presence of 1 equiv.Cu2+ compared with those without Cu2+(Fig.4D).Moreover, some of the other competing metal ions were also tested to further verify the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+.Discernible differences were not observed upon the addition of Mg2+(Fig.4C), Zn2+(Fig.4E), or Ca2+(Fig.4F).In addition, we also tested the clinical contrast agent Magnevist(Fig.4G);the image intensity was a bit darker than that of our contrast agent.Conclusions
In conclusion, we designed and synthesized a novel bismacrocyclic DO3A-type Cu2+-responsive MRI contrast agent, [Gd2(DO3A)2BMPNA].The new Cu2+-responsive MRI contrast agent comprised two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold(BMPNA)that functioned as a Cu2+ receptor switch to induce a distinct relaxivity enhancement in response to Cu2+;the relaxivity was increased up to 76%.Importantly, the complex exhibited high selectivity for Cu2+ over a range of other biologically-relevant metal ions at physiological levels.Luminescence lifetime experiment results showed that the number of inner-sphere water molecules(q)increased from 0.6 to 1.5 upon the addition of 1 equiv.Cu2+.When Cu2+ was coordinated in the central part of the complex, the donor N atom of the pyrazole centre was removed from the paramagnetic Gd3+ ion and replaced by a water molecule(Scheme 2).Consequently, the Cu2+-triggered relaxivity enhancement could be ascribed to the increase in the number of inner-sphere water molecules.The designed contrast agent had a longitudinal relaxivity of 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).In addition, the visual change associated with the signicantly enhanced relaxivity from the addition of Cu2+ was observed in T1-weighted phantom images.Acknowledgements We are grateful to the State Key Laboratory of Electroanalytical Chemistry for nancial support.Notes and references 1 S.Puig and D.J.Thiele, Curr.Opin.Chem.Biol., 2002, 6, 171.2 S.C.Leary, D.R.Winge and P.A.Cobine, Biochim.Biophys.Acta, Gen.Subj., 2009, 146, 1793.3 D.D.Agranoff and S.Krishna, Mol.Microbiol., 1998, 28, 403.4 H.Kozlowski, A.Janicka-Klos, J.Brasun, E.Gaggelli, D.Valensin and G.Valensin, Coord.Chem.Rev., 2009, 253, 2665.5 K.J.Barnham, C.L.Masters and A.I.Bush, Nat.Rev.Drug Discovery, 2004, 3, 205.6 D.J.Waggoner, T.B.Bartnikas and J.D.Gitlin, Neurobiol.Dis., 1999, 6, 221.7 J.S.Valentine and P.J.Hart, Proc.Natl.Acad.Sci.U.S.A., 2003, 100, 3617.8 L.I.Bruijn, T.M.Miller and D.W.Cleveland, Annu.Rev.Neurosci., 2004, 27, 723.9 G.L.Millhauser, Acc.Chem.Res., 2004, 37, 79.10 D.R.Brown and H.Kozlowski, Dalton Trans., 2004, 1907.11 A.W.Czarnik, Acc.Chem.Res., 1994, 27, 302.12 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.13 H.N.Kim, M.H.Lee, H.J.Kim, J.S.Kim and J.Yoon, Chem.Soc.Rev., 2008, 37, 1465.14 M.Mahmoudi, V.Serpooshan and S.Laurent, Nanoscale, 2011, 3, 3007.15 P.A.Rinck, Magnetic Resonance Imaging, Blackwell Science, Berlin, 4th edn, 2001, p.149.16 A.E.Merbach and ′E.T′oth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, Ltd., New York, 2001.17 S.Aime, E.Terreno, D.D.Castelli and A.Viale, Chem.Rev., 2010, 110, 3019.18 S.Aime, M.Fasano and E.Terreno, Chem.Soc.Rev., 1998, 27, 19.19 M.Woods, D.E.Woessner and A.D.Sherry, Chem.Soc.Rev., 2006, 35, 500.20 R.B.Lauffer, Chem.Rev., 1987, 87, 901.21 J.Kowalewski, D.Kruk and J.Parigi, Adv.Inorg.Chem., 2005, 57, 42.22 I.Solomon, Phys.Rev., 1955, 99, 559.23 N.Bloembergen, J.Chem.Phys., 1957, 27, 572.24 N.Bloembergen and L.O.Morgan, J.Chem.Phys., 1961, 34, 842.25 E.L.Que and C.J.Chang, Chem.Soc.Rev., 2010, 39, 51.26 C.S.Bonnet and ′E.T′oth, Future Med.Chem., 2010, 2, 367.27 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.28 S.Aime, S.G.Crich, M.Botta, G.Giovenzana, G.Palmisano and M.Sisti, Chem.Commun., 1999, 1577.29 J.Hall, R.Haner, S.Aime, M.Botta, S.Faulkner, D.Parker and A.S.de Sousa, New J.Chem., 1998, 22, 627.30 M.P.Lowe and D.Parker, Chem.Commun., 2000, 707.31 S.Aime, A.Barge, M.Botta, D.Parker and A.S.De Sousa, J.Am.Chem.Soc., 1997, 119, 4767.32 S.Aime, F.Fedeli, A.Sanino and E.Terreno, J.Am.Chem.Soc., 2006, 128, 11326.33 M.P.Lowe, D.Parker, O.Reany, S.Aime, M.Botta, G.Castellano, E.Gianolio and R.Pagliarin, J.Am.Chem.Soc., 2001, 123, 7601.34 R.Hovland, C.Glogard, A.J.Aasen and J.Klaveness, J.Chem.Soc., Perkin Trans.2, 2001, 929.35 ′E.T′oth, R.D.Bolskar, A.Borel, G.Gonz′alez, L.Helm, A.E.Merbach, B.Sitharaman and L.J.Wilson, J.Am.Chem.Soc., 2004, 127, 799.36 W.H.Li, S.E.Fraser and T.J.Meade, J.Am.Chem.Soc., 1999, 121, 1413.37 K.Dhingra, M.E.Maier, M.Beyerlein, G.Angelovski and N.K.Logothetis, Chem.Commun., 2008, 3444.38 H.Hifumi, A.Tanimoto, D.Citterio, H.Komatsu and K.Suzuki, Analyst, 2007, 132, 1153.39 L.M.De Le′on-Rodr′?guez, A.J.M.Lubag, J.A.L′opez, G.Andreu-de-Riquer, J.C.Alvarado-Monz′on and A.D.Sherry, MedChemComm, 2012, 3, 480.40 R.Trokowski, J.Ren, F.K.Kalman and A.D.Sherry, Angew.Chem., Int.Ed., 2005, 44, 6920.41 W.S.Li, J.Luo, F.Jiang and Z.N.Chen, Dalton Trans., 2012, 41, 9405.42 K.Hanaoka, K.Kikuchi, Y.Urano and T.Nagano, J.Chem.Soc., Perkin Trans.2, 2001, 1840.43 R.Ruloff, G.v.Koten and A.E.Merbach, Chem.Commun., 2004, 842.44 M.Giardiello, M.P.Lowe and M.Botta, Chem.Commun., 2007, 4044.45 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.46 W.Xu and Y.Lu, Chem.Commun., 2011, 47, 4998.47 R.A.Moats, S.E.Fraser and T.J.Meade, Angew.Chem., Int.Ed., 1997, 36, 726.48 A.Y.Louie, M.M.Huber, E.T.Ahrens, U.Rothbacher, R.Moats, R.E.Jacobs, S.E.Fraser and T.J.Meade, Nat.Biotechnol., 2000, 18, 321.49 B.Yoo and M.D.Pagel, J.Am.Chem.Soc., 2006, 128, 14032.50 Q.Wei, G.K.Seward, P.A.Hill, B.Patton, I.E.Dimitrov, N.N.Kuzma and I.J.Dmochowski, J.Am.Chem.Soc., 2006, 128, 13274.51 E.L.Que and C.J.Chang, J.Am.Chem.Soc., 2006, 128, 15942.52 E.L.Que, E.Gianolio, S.L.Baker, A.P.Wong, S.Aime and C.J.Chang, J.Am.Chem.Soc., 2009, 131, 8527.53 E.L.Que, E.Gianolio, S.L.Baker, S.Aime and C.J.Chang, Dalton Trans., 2010, 39, 469.54 W.S.Li, J.Luo and Z.N.Chen, Dalton Trans., 2011, 484.55 E.L.Que, E.J.New and C.J.Chang, Chem.Sci., 2012, 3, 1829.56 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.57 D.Kasala, T.S.Lin, C.Y.Chen, G.C.Liu, C.L.Kao, T.L.Cheng and Y.M.Wang, Dalton Trans., 2011, 5018.58 D.Patel, A.Kell, B.Simard, B.Xiang, H.Y.Lin and G.Tian, Biomaterials, 2011, 32, 1167.59 E.Brunet, O.Juanes, R.Sedano and J.C.Rodr′?guez-Ubis, Photochem.Photobiol.Sci., 2002, 1, 613.60 Z.Q.Ye, G.L.Wang, J.X.Chen, X.Y.Fu, W.Z.Zhang and J.L.Yuan, Biosens.Bioelectron., 2010, 26, 1043.61 S.Mizukami, K.Tonai, M.Kaneko and K.Kikuchi, J.Am.Chem.Soc., 2008, 130, 14376.62 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.63 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.64 P.Caravan, J.J.Ellison, T.J.McMurry and R.B.Laufer, Chem.Rev., 1999, 99, 2293.65 O.G.Polyakov, B.G.Nolan, B.P.Fauber, S.M.Miller, O.P.Anderson and S.H.Strauss, Inorg.Chem., 2000, 39, 1735.66 M.F.Tweedle, J.J.Hagan, K.Kumar, S.Mantha and C.A.Chang, Magn.Reson.Imaging, 1991, 9, 409.67 D.Parker, Coord.Chem.Rev., 2000, 205, 109.68 R.S.Dickins, T.Gunnlaugsson, D.Parker and R.D.Peacock, Chem.Commun., 1998, 1643.69 J.I.Bruce, R.S.Dickins, L.J.Govenlock, T.Gunnlaugsson, S.Lopinski, M.P.Lowe, D.Parker, R.D.Peacock, J.J.B.Perry, S.Aime and M.Botta, J.Am.Chem.Soc., 2000, 122, 9674.70 R.S.Dickins, S.Aime, A.S.Batsanov, A.Beeby, M.Botta, J.I.Bruce, J.A.K.Howard, C.S.Love, D.Parker, R.D.Peacock and H.Puschmann, J.Am.Chem.Soc., 2002, 124, 12697–12705.71 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.72 C.C.Bryden and C.N.Reilley, Anal.Chem., 1982, 54, 610.73 K.Binnemans, Chem.Rev., 2009, 109, 4283.74 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.This journal is ? The Royal Society of Chemistry 2014 RSC Adv., 2014, 4, 34421–34427 | 34427