第一篇:數(shù)學(xué):9.3一元一次不等式組教案(人教新課標(biāo)七年級下)范文
9.3一元一次不等式組
教學(xué)目標(biāo):1.學(xué)生通過生活實例,了解一元一次不等式組的意義和一元一次不等式組的解集的概念。
2.學(xué)生能利用數(shù)軸熟練的確定一元一次不等式組的解集,培養(yǎng)學(xué)生的觀察能力,分析能力。
3.掌握由兩個一元一次不等式所組成的不等式組的解集的四種情況。
4.學(xué)生通過對一元一次不等式組的學(xué)習(xí),認(rèn)識到事物間的相依關(guān)系。
教學(xué)重點:根據(jù)一元一次不等式組的四種情況,說出一元一次不等式組的解集。教學(xué)難點:利用數(shù)軸確定一元一次不等式組的解集。教學(xué)過程: 一.創(chuàng)設(shè)情境:
1.你能列出解決這個問題的式子嗎?
(小黑板)某學(xué)校初一()班準(zhǔn)備一次秋季外出考察活動,該班級共有學(xué)生40人。學(xué)校根據(jù)預(yù)算要求該班這次活動的總經(jīng)費不能超過2400元;旅游公司按成本計算這次活動總經(jīng)費不能低于2000元。如果考慮雙方的要求,學(xué)生所付的經(jīng)費應(yīng)該在哪一范圍之內(nèi)?
學(xué)生列式:設(shè)每人所付的經(jīng)費為x元 40x≤2400 40x≥2000
?40x?2400 同時滿足兩個條件,列成不等式組 ?
?40x?2000給出定義:由幾個含有同一個未知數(shù)的一次不等式組成的不等式組叫做一元一次不等式組。
2.(小黑板)判別下列不等式組中哪些是一元一次不等式組,并說明為什么?
?x?0?x??3?x?2(1)?(2)?(3)? x?3?0y?3x?4????2x?3?54x?1?0???3x?1?4?(4)?(5)?2(6)?3x?2?1
??x?3?0?x?y?1?x?9?0?二.嘗試探究:
1.問題:怎樣確定不等式組的解集呢? ?40x?2400?x?60 比如:?的解集怎樣確定呢??這個式子就是不?40x?2000?x?50等式組的解集嗎?
2.利用數(shù)軸來確定不等式組的解集
?x?3?x?3?x?3?x?3 例:(1)?(2)?(3)?(4)?
?x??1?x??1?x?-1?x??1 本題教師和學(xué)生共同完成
鞏固練習(xí):(書四題,學(xué)生練習(xí),學(xué)生板演,小組互相檢查,教師巡視指導(dǎo))
小組討論:當(dāng)a>b時,如何確定下列不等式組的解集?
?x?a?x?a?x?a?x?a(?。?(2)?(3)?(4)?
?x?b?x?b?x?b?x?b 課后思考:當(dāng)a
三.歸納小結(jié):
1.本節(jié)課我們認(rèn)識了什么是一元一次不等式組及其解集,并學(xué)會了利用數(shù)軸來確定不等式組的解集。(利用例題中四個不等式組解集情況說明不等式組解集取法)
2.一元一次不等式組和二元一次方程組類似,也有不同的地方。兩者都是由兩個或幾個一次式組成,但不等式組是同一個字母,方程組中有兩個字母。3.具體求不等式組解集的方法,下節(jié)課我們接著學(xué)習(xí)。
四.布置作業(yè):
練習(xí)冊B冊習(xí)題9.3
同步練習(xí)
第二篇:9.3一元一次不等式組(第1課時)教案(人教新課標(biāo)七年級下)
9.3一元一次不等式組(一)
教學(xué)目標(biāo)
1.使學(xué)生知道一元一次不等式組及其解集的含義,會利用數(shù)軸求一元一次不等式組的解集;
2.使學(xué)生逐步學(xué)會用數(shù)形結(jié)合的觀點去分析問題、解決問題. 教學(xué)重點和難點
重點:掌握一元一次不等式組解集的含義. 難點:求不等式組中各不等式的解集的公共部分. 課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
1.什么叫不等式?不等式的解?不等式的解集?解不等式?
3.將第2題中的不等號改為等號所得的一元一次方程的解是什么?不等式的解集與方程的解有什么不同?
4.(投影)在數(shù)軸上表示下列不等式的解集:
(1)x>2;(2)x<-1;(3)x≥2;(4)x≤-2;(5)1<x<3;(6)-3≤x<0.
5.(投影)將下列各圖中數(shù)軸上的點的集合用不等式來表示.(學(xué)生口答完成)
在學(xué)生解答完上述各題的基礎(chǔ)上,教師指出,我們知道,物體A的重量x克大于2克,且小于3克,就是說,x的取值要使不等式x>2與x<3同時成立.
而將一元一次不等式x>2與x<3合在一起,就組成了一個一元一次不等式組,記作
本節(jié)課,我們就來學(xué)習(xí)一元一次不等式組及其解法.
二、講授新課 1.利用數(shù)軸的直觀性,師生共同得出一元一次不等式組解集的概念 首先,在數(shù)軸上表示不等式①,②的解集,如下圖.
其次,可向?qū)W生提出如下問題:
(1)通過觀察,要使不等式①,②同時成立,則x的取值范圍是什么?(2)這個取值范圍,是不等式①,②的解集的什么? 進(jìn)一步追問,什么叫一元一次不等式組的解集?
最后,板書一元一次不等式組的解集的定義.
一般地,幾個一元一次不等式的解集的公共部分,叫做由它們所組成的一元一次不等式組的解集.
求不等式組的解集的過程,叫解不等式組.
例1(1)在同一數(shù)軸上表示x<2,x>-3的解集.(2)在同一數(shù)軸上表示x>-4,x>-1的解集.(3)在同一數(shù)軸上表示x<2,x<-3的解集.(4)在同一數(shù)軸上表示x>2,x<-1的解集.
若上述各題中的解集有公共部分,用不等式表示出來.(此題可由學(xué)生板演來完成). 解:
此時,教師指出:由上例可以看出,由不等式x>-3或x<2合在
類似的,上例中
練習(xí)
解不等式組:
(本練習(xí),應(yīng)繼續(xù)鞏固學(xué)生利用數(shù)軸的直觀性解不等式組的能力)2.啟發(fā)學(xué)生總結(jié)解一元一次不等式組的方法及步驟 例2 解不等式組:
師生共同分析:我們知道,解不等式組就是求不等式組解集的過程.那么如何求不等式組的解集呢?(讓學(xué)生想一想,然后請幾名學(xué)生回答)應(yīng)首先求出不等式①和②的解集,然后利用數(shù)軸找出這兩個解集的公共部分,就是不等式組的解集.
解:解不等式①,得x>2,解不等式②,得x>3,在數(shù)軸上表示不等式①,②的解集.
所以這個不等式組的解集是x>3.
(首先讓兩名學(xué)生分別解出不等式①,②然后回答不等式組解集.教師板書解答過程,并用彩筆在數(shù)軸上把相應(yīng)的部分描述出來,以使學(xué)生感到醒目,加深理解記憶)例3 解不等式組:
解:解不等式①,得x<3,在數(shù)軸上表示為
(本題讓一名學(xué)生板演,其余學(xué)生在練習(xí)本上自己完成,教師巡視,并及時糾正學(xué)生在解題過程中出現(xiàn)的問題)結(jié)合上面兩個例題,教師應(yīng)讓學(xué)生思考并回答,解一元一次不等式組的方法及步驟是什么?
解一元一次不等式組可以分為以下兩個步驟:
(1)求出這個不等式組中各個不等式的解集;
(2)利用數(shù)軸求出這些不等式的解集的公共部分,即求出這個不等式組的解集.(若各個不等式的解集無公共部分,則此不等式無解)
三、課堂練習(xí)1.填表:(投影)
2.解下列不等式組:
四、師生共同小結(jié)
首先,讓學(xué)生回答以下問題: 1.本節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?
2.什么叫一元一次不等式組的解集?什么叫解不等式組? 3.解一元一次不等式組的步驟是什么?
4.若一元一次不等式組中,不等式的個數(shù)多于兩個時,解集的求法有無變化?結(jié)合學(xué)生的回答,教師指出,一元一次不等式組的解集是這個不等式組中各個不等式的解集的公共部分;當(dāng)不等式個數(shù)多于兩個時,求解方法沒有變化.
五、作業(yè)
解不等式組:
課堂教學(xué)設(shè)計說明
在設(shè)計教學(xué)過程時,注意到了學(xué)生的年齡特點.遵循由淺入深、循序漸進(jìn)的原則,并注意利用數(shù)軸的形象、直觀來表示不等式組的解集.
第三篇:9.3 一元一次不等式組教案
9.3 一元一次不等式組(2)
文星中學(xué)唐波
一、教學(xué)目標(biāo)
(一)知識與技能目標(biāo)
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實際問題。
2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力。
(二)過程與方法目標(biāo)
通過利用列一元一次不等式組解答實際問題,初步學(xué)會從數(shù)學(xué)的角度提出問題、理解問題、并能綜合運用所學(xué)的知識解決問題,發(fā)展應(yīng)用意識。
(三)情感態(tài)度與價值觀
通過解決實際問題,體驗數(shù)學(xué)學(xué)習(xí)的樂趣,初步認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系。
二、教學(xué)重難點
(一)重點:建立用不等式組解決實際問題的數(shù)學(xué)模型。
(二)難點:正確分析實際問題中的不等關(guān)系,根據(jù)具體信息列出不等式組。
三、學(xué)法引導(dǎo)
(一)教師教法:直觀演示、引導(dǎo)探究相結(jié)合。
(二)學(xué)生學(xué)法:觀察發(fā)現(xiàn)、交流探究、練習(xí)鞏固相結(jié)合。
四、教具準(zhǔn)備:多媒體演示
五、教學(xué)過程
(一)、設(shè)問激趣,引入新課
猜一猜:我屬狗,請同學(xué)們根據(jù)我的實際情況來猜測我的年齡。(學(xué)生大膽猜想,利用不等關(guān)系分析得出答案。)
(二)、觀察發(fā)現(xiàn),競賽闖關(guān)
1、比一比:填表找規(guī)律
(學(xué)生搶答,教師補(bǔ)充。)2利用發(fā)現(xiàn)的規(guī)律解不等式組 ?(學(xué)生解答,抽生演板。)你可以得到它的整數(shù)解嗎?
(抽生回答:因為大于11小于14的整數(shù)有12和13,所以整數(shù)解為12和13。)3填空:三角形三邊長分別為2、7、c,則 c的取值范圍是__________。如果c是一個偶
數(shù),則 c=__________。
(學(xué)生回答,教師補(bǔ)充更正。)
(三)、欣賞圖片,探究新知
1、欣賞“五岳看山”。
2、利用欣賞引出例題(教科書P139例2仿編)
例:3名同學(xué)計劃在10天內(nèi)到嵩山拍照500張(每天拍照數(shù)量相同),按原來的計劃,不能完成任務(wù);如果每人每天比原計劃多拍1張,就能提前完成任務(wù),每個同學(xué)原計劃每天............拍多少張?
生齊讀,找出題中的已知條件和未知條件;再默讀,找一找表示數(shù)量關(guān)系的句子。師引導(dǎo)分析,并提出問題:
(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(2)解決這個問題,你打算怎樣設(shè)未知數(shù)?
(3)在本題中,可以找出幾個不等關(guān)系,可以列出幾個不等式?(學(xué)生交流討論,教師指導(dǎo)。)
?7x?98
?7(x?3)?98
解答完成后,學(xué)生自學(xué)課本例2。
3、由例解題答過程,類比列二元一次方程組解應(yīng)用題的步驟,總結(jié)列一元一次不等式組的解題步驟:
(1)、分析題意,設(shè)未知數(shù); .(2)、利用不等關(guān)系,列不等式組; .(3)、解不等式組; .
(4)、檢驗,根據(jù)題意寫出答案。.(學(xué)生總結(jié),抽生回答,教師補(bǔ)充。)
(四)、闖關(guān)練習(xí),鞏固新知
1練一練:為紀(jì)念“5·12”大地震一周年,“五一”部分同學(xué)到青城山拍照留念,如果每人拍8張則多于如果每人拍9張則不夠問共有多少個同學(xué)參加青城山旅游? ..150張;..180張。
教師引導(dǎo):抓住重點詞語,找到不等關(guān)系,列出不等式組。學(xué)生獨立完成,抽生回答。
比較列二元一次方程組和列一元一次不等式組解應(yīng)用題的區(qū)別:
(學(xué)生類比找區(qū)別,教師補(bǔ)充。)2練一練(教科書P140練習(xí)第2題):一本英語書共98頁,張力讀了一周(7天)還沒讀完,而李永不到一周就已讀完。李永平均每天比張力多讀3頁,張力平均每天讀多少頁(答案取整數(shù))?
學(xué)生分析列出不等式組,教師指導(dǎo)。(前面的練習(xí)已解出不等式組。)
(五)、暢所欲言,歸納小結(jié) 學(xué)生暢所欲言,談收獲體會 多媒體展示,本課內(nèi)容小結(jié):
1、解一元一次不等式組的秘笈:同大取大,同小取小,大小小大中間找,大大小小解不了。
2、具有多種不等關(guān)系的問題,可通過不等式組解決。
3、列一元一次不等式組解應(yīng)用題的步驟是:(1)、分析題意,設(shè)未知數(shù);(2)、利用不等關(guān)系,列不等式組;(3)、解不等式組;
(4)、檢驗,根據(jù)題意寫出答案。
(六)、課后演練,終極挑戰(zhàn)
必做題:教材習(xí)題9.3第4、5、6題;
選做題:一個兩位數(shù),它的十位數(shù)字比個位數(shù)字大1,而且這個兩位數(shù)大于30小于42,則這個兩位數(shù)是多少?
六、板書設(shè)計
9.3一元一次不等式組(2)
解:設(shè)每個同學(xué)原計劃每天拍x張,得
① ?3?10x?500
?
?3?10(x?1)?500②
1、分析題意,設(shè)未知數(shù);
解得x <16 3
3根據(jù)題意,x應(yīng)為整數(shù),所以x=16 答:每個同學(xué)原計劃每天拍16張。
2??
2、找不等關(guān)系,列不等式組; ?
?
3、解不等式組; ?步驟
??
?
4、檢驗并根據(jù)題意寫出答案。?
第四篇:9.3一元一次不等式組教案
9.3 一元一次不等式組(第1課時)
西吉三中 劉征兵
教學(xué)設(shè)計思想
準(zhǔn)確熟練地解一元一次不等式以及用數(shù)軸上的點表示不等式的解集是這節(jié)課的基礎(chǔ),因此講新課之前要復(fù)習(xí)提問這些內(nèi)容。本節(jié)教學(xué)的重點是一元一次不等式組和它的解法,及用一元一次不等式組解決實際問題。難點是正確應(yīng)用不等式的基本性質(zhì)對不等式進(jìn)行變形、求不等式組中各個不等式解集的公共部分,及根據(jù)實際情況列出不等式組。在學(xué)習(xí)的過程中有問題引入新課,引導(dǎo)學(xué)生充分討論,得出所要的不等式組,進(jìn)而研究不等式組的解法及其用數(shù)軸的表示,通過練習(xí)來鞏固如何解不等式組。最后學(xué)習(xí)的是不等式組在現(xiàn)實生活中的簡單應(yīng)用。
教學(xué)目標(biāo)
1.使學(xué)生知道一元一次不等式組及其解集的含義,會利用數(shù)軸求一元一次不等式組的解集;
2.使學(xué)生逐步學(xué)會用數(shù)形結(jié)合的觀點去分析問題、解決問題. 知識目標(biāo)
經(jīng)歷通過具體問題抽象出不等式組的過程;
表述一元一次不等式組及其解集的意義,初步感知利用一元一次不等式解集的數(shù)軸表示求不等式組的解和解集的方法。
能力目標(biāo)
體會運用不等式組解決簡單實際問題的過程,提高學(xué)習(xí)熱情和積極性,進(jìn)一步發(fā)展符號感與數(shù)學(xué)化的能力。
情感目標(biāo)
通過用數(shù)軸表示不等式組的解集,滲透用數(shù)學(xué)圖形解題的直觀性、簡捷性的數(shù)學(xué)美,體會數(shù)形結(jié)合的思想。
重點:一元一次不等式組和它的解法,及用一元一次不等式組解決實際問題。難點:求不等式組中各個不等式解集的公共部分,及根據(jù)實際情況列出不等式組。解決辦法:不等式組的解集通過數(shù)軸來表示簡單明了,關(guān)于不等式組的應(yīng)用要仔細(xì)審題以小組討論的形式引導(dǎo)學(xué)生找出題中的不等關(guān)系,進(jìn)而列出不等式組。
教學(xué)方法
引導(dǎo)發(fā)現(xiàn)法、小組討論交流。
分即不等式組中未知數(shù)的可取值范圍。
由不等式①解得x<13。由不等式②解得x>7。
從圖9.3—2容易看出,x可以取值的范圍為7 注:利用數(shù)軸可以直觀形象地認(rèn)識公共部分。這個公共部分是兩端有界的開區(qū)間。這就是說,當(dāng)木條c比7 cm長并且比13 cm短時,它能與木條a和b一起釘成三角形木框。 一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集。解不等式組就是求它的解集。 注:這里正式給出不等式組的解集以及解不等式組的定義。例1 解下列不等式組: 解:(1)解不等式①,得x>2。解不等式②,得x>3。 把不等式①和②的解集在數(shù)軸上表示出來(圖9.3—3)。 注:這個不等式組的解集是左端有界的開區(qū)間。 從圖9。3—3可以找出兩個不等式解集的公共部分,得不等式組的解集x>3。(2)解不等式①,得x≥8。 x?45解不等式②,得 這兩個不等式的解集沒有公共部分(圖9.3—4),不等式組無解。 9.3 一元一次不等式組 同步測試題 班級:_____________姓名:_____________ 一、選擇題 (本題共計 小題,每題 分,共計21分,) 1.不等式組x+2≥0,x-1≤0的解集是() A.-2≤x≤1 B.-2 C.x≤-1 D.x≥2 2.下列屬于一元一次不等式組的是() A.{xy<2x+y>5 B.{x-x-2<0x+1>0 C.{x+1>2y-1<3 D.{x+5<22x-3>1 3.一元一次不等式組x+3>5,3x-6≤9的解集是() A.x≤2 B.x>5 C.2≤x<5 D.2 4.已知關(guān)于x的不等式組x-a≥05-2x>1有且只有1個整數(shù)解,則實數(shù)a的取值范圍是()第五篇:七年級數(shù)學(xué)9.3一元一次不等式組同步測試題