第一篇:開關(guān)電源保護(hù)電路_電源技術(shù)概要
開關(guān)電源保護(hù)電路_電源技術(shù)概要
評(píng)價(jià)開關(guān)電源的質(zhì)量指標(biāo)應(yīng)該是以安全性、可靠性為第一原則。在電氣技術(shù)指標(biāo)滿足正常使用要求的條件下,為使電源在惡劣環(huán)境及突發(fā)故障情況下安全可靠地工作,必須設(shè)計(jì)多種保護(hù)電路,比如防浪涌的軟啟動(dòng),防過壓、欠壓、過熱、過流、短路、缺相等保護(hù)電路。開關(guān)電源常用的幾種保護(hù)電路 2.1 防浪涌軟啟動(dòng)電路
開關(guān)電源的輸入電路大都采用電容濾波型整流電路,在進(jìn)線電源合閘瞬間,由于電容器上的初始電壓為零,電容器充電瞬間會(huì)形成很大的浪涌電流,特別是大功率開關(guān)電源,采用容量較大的濾波電容器,使浪涌電流達(dá)100A以上。在電源接通瞬間如此大的浪涌電流,重者往往會(huì)導(dǎo)致輸入熔斷器燒斷或合閘開關(guān)的觸點(diǎn)燒壞,整流橋過流損壞;輕者也會(huì)使空氣開關(guān)合不上閘。上述現(xiàn)象均會(huì)造成開關(guān)電源無法正常工作,為此幾乎所有的開關(guān)電源都設(shè)置了防止流涌電流的軟啟動(dòng)電路,以保證電源正常而可靠運(yùn)行。
圖1是采用晶閘管V和限流電阻R1組成的防浪涌電流電路。在電源接通瞬間,輸入電壓經(jīng)整流橋(D1~D4)和限流電阻R1對(duì)電容器C充電,限制浪涌電流。當(dāng)電容器C充電到約80%額定電壓時(shí),逆變器正常工作。經(jīng)主變壓器輔助繞組產(chǎn)生晶閘管的觸發(fā)信號(hào),使晶閘管導(dǎo)通并短路限流電阻R1,開關(guān)電源處于正常運(yùn)行狀態(tài)。
圖1 采用晶閘管和限流電阻組成的軟啟動(dòng)電路
圖2是采用繼電器K1和限流電阻R1構(gòu)成的防浪涌電流電路。電源接通瞬間,輸入電壓經(jīng)整流(D1~D4)和限流電阻R1對(duì)濾波電容器C1充電,防止接通瞬間的浪涌電流,同時(shí)輔助電源Vcc經(jīng)電阻R2對(duì)并接于繼電器K1線包的電容器C2充電,當(dāng)C2上的電壓達(dá)到繼電器K1的動(dòng)作電壓時(shí),K1動(dòng)作,其觸點(diǎn)K1.1閉合而旁路限流電阻R1,電源進(jìn)入正常運(yùn)行狀態(tài)。限流的延遲時(shí)間取決于時(shí)間常數(shù)(R2C2),通常選取為0.3~0.5s。為了提高延遲時(shí)間的準(zhǔn)確性及防止繼電器動(dòng)作抖動(dòng)振蕩,延遲電路可采用圖3所示電路替代RC延遲電路。
圖2 采用繼電器K1和限流電阻構(gòu)成的軟啟動(dòng)電路
圖3 替代RC的延遲電路
2.2 過壓、欠壓及過熱保護(hù)電路
進(jìn)線電源過壓及欠壓對(duì)開關(guān)電源造成的危害,主要表現(xiàn)在器件因承受的電壓及電流應(yīng)力超出正常使用的范圍而損壞,同時(shí)因電氣性能指標(biāo)被破壞而不能滿足要求。因此對(duì)輸入電源的上限和下限要有所限制,為此采用過壓、欠壓保護(hù)以提高電源的可靠性和安全性。
溫度是影響電源設(shè)備可靠性的最重要因素。根據(jù)有關(guān)資料分析表明,電子元器件溫度每升高2℃,可靠性下降10%,溫升50℃時(shí)的工作壽命只有溫升25℃時(shí)的1/6,為了避免功率器件過熱造成損壞,在開關(guān)電源中亦需要設(shè)置過熱保護(hù)電路。圖4是僅用一個(gè)4比較器LM339及幾個(gè)分立元器件構(gòu)成的過壓、欠壓、過熱保護(hù)電路。取樣電壓可以直接從輔助控制電源整流濾波后取得,它反映輸入電源電壓的變化,比較器共用一個(gè)基準(zhǔn)電壓,N1.1為欠壓比較器,N1.2為過壓比較器,調(diào)整R1可以調(diào)節(jié)過、欠壓的動(dòng)作閾值。N1.3為過熱比較器,RT為負(fù)溫度系數(shù)的熱敏電阻,它與R7構(gòu)成分壓器,緊貼于功率開關(guān)器件IGBT的表面,溫度升高時(shí),RT阻值下降,適當(dāng)選取R7的阻值,使N1.3在設(shè)定的溫度閾值動(dòng)作。N1.4用于外部故障應(yīng)急關(guān)機(jī),當(dāng)其正向端輸入低電平時(shí),比較器輸出低電平封鎖PWM驅(qū)動(dòng)信號(hào)。由于4個(gè)比較器的輸出端是并聯(lián)的,無論是過壓、欠壓、過熱任何一種故障發(fā)生,比較器輸出低電平,封鎖驅(qū)動(dòng)信號(hào)使電源停止工作,實(shí)現(xiàn)保護(hù)。如將電路稍加變動(dòng),亦可使比較器輸出高電平封鎖驅(qū)動(dòng)信號(hào)。
圖4 過壓、欠壓、過熱保護(hù)電路
2.3 缺相保護(hù)電路
由于電網(wǎng)自身原因或電源輸入接線不可靠,開關(guān)電源有時(shí)會(huì)出現(xiàn)缺相運(yùn)行的情況,且掉相運(yùn)行不易被及時(shí)發(fā)現(xiàn)。當(dāng)電源處于缺相運(yùn)行時(shí),整流橋某一臂無電流,而其它臂會(huì)嚴(yán)重過流造成損壞,同時(shí)使逆變器工作出現(xiàn)異常,因此必須對(duì)缺相進(jìn)行保護(hù)。檢測(cè)電網(wǎng)缺相通常采用電流互感器或電子缺相檢測(cè)電路。由于電流互感器檢測(cè)成本高、體積大,故開關(guān)電源中一般采用電子缺相保護(hù)電路。圖5是一個(gè)簡(jiǎn)單的電子缺相保護(hù)電路。三相平衡時(shí),R1~R3結(jié)點(diǎn)H電位很低,光耦合輸出近似為零電平。當(dāng)缺相時(shí),H點(diǎn)電位抬高,光耦輸出高電平,經(jīng)比較器進(jìn)行比較,輸出低電平,封鎖驅(qū)動(dòng)信號(hào)。比較器的基準(zhǔn)可調(diào),以便調(diào)節(jié)缺相動(dòng)作閾值。該缺相保護(hù)適用于三相四線制,而不適用于三相三線制。電路稍加變動(dòng),亦可用高電平封鎖PWM信號(hào)。
圖5 三相四線制的缺相保護(hù)電路
圖6是一種用于三相三線制電源缺相保護(hù)電路,A、B、C缺任何一相,光耦器輸出電平低于比較器的反相輸入端的基準(zhǔn)電壓,比較器輸出低電平,封鎖PWM驅(qū)動(dòng)信號(hào),關(guān)閉電源。比較器輸入極性稍加變動(dòng),亦可用高電平封鎖PWM信號(hào)。這種缺相保護(hù)電路采用光耦隔離強(qiáng)電,安全可靠,RP1、RP2用于調(diào)節(jié)缺相保護(hù)動(dòng)作閾值。
圖6 三相三線制的缺相保護(hù)電路
2.4 短路保護(hù)
開關(guān)電源同其它電子裝置一樣,短路是最嚴(yán)重的故障,短路保護(hù)是否可靠,是影響開關(guān)電源可靠性的重要因素。IGBT(絕緣柵雙極型晶體管)兼有場(chǎng)效應(yīng)晶體管輸入阻抗高、驅(qū)動(dòng)功率小和雙極型晶體管電壓、電流容量大及管壓降低的特點(diǎn),是目前中、大功率開關(guān)電源最普遍使用的電力電子開關(guān)器件。IGBT能夠承受的短路時(shí)間取決于它的飽和壓降和短路電流的大小,一般僅為幾μs至幾十μs。短路電流過大不僅使短路承受時(shí)間縮短,而且使關(guān)斷時(shí)電流下降率di/dt過大,由于漏感及引線電感的存在,導(dǎo)致IGBT集電極過電壓,該過電壓可在器件內(nèi)部產(chǎn)生擎住效應(yīng)使IGBT鎖定失效,同時(shí)高的過電壓會(huì)使IGBT擊穿。因此,當(dāng)出現(xiàn)短路過流時(shí),必須采取有效的保護(hù)措施。為了實(shí)現(xiàn)IGBT的短路保護(hù),則必須進(jìn)行過流檢測(cè)。適用IGBT過流檢測(cè)的方法,通常是采用霍爾電流傳感器直接檢測(cè)IGBT的電流Ic,然后與設(shè)定的閾值比較,用比較器的輸出去控制驅(qū)動(dòng)信號(hào)的關(guān)斷;或者采用間接電壓法,檢測(cè)過流時(shí)IGBT的電壓降Vce,因?yàn)楣軌航岛卸搪冯娏餍畔ⅲ^流時(shí)Vce增大,且基本上為線性關(guān)系,檢測(cè)過流時(shí)的Vce并與設(shè)定的閾值進(jìn)行比較,比較器的輸出控制驅(qū)動(dòng)電路的關(guān)斷。
在短路電流出現(xiàn)時(shí),為了避免關(guān)斷電流的di/dt過大形成過電壓,導(dǎo)致IGBT鎖定無效和損壞,以及為了降低電磁干擾,通常采用軟降柵壓和軟關(guān)斷綜合保護(hù)技術(shù)。在檢測(cè)到過流信號(hào)后首先是進(jìn)入降柵保護(hù)程序,以降低故障電流的幅值,延長(zhǎng)IGBT的短路承受時(shí)間。在降柵動(dòng)作后,設(shè)定一個(gè)固定延遲時(shí)間用以判斷故障電流的真實(shí)性,如在延遲時(shí)間內(nèi)故障消失則柵壓自動(dòng)恢復(fù),如故障仍然存在則進(jìn)行軟關(guān)斷程序,使柵壓降至0V以下,關(guān)斷IGBT的驅(qū)動(dòng)信號(hào)。由于在降柵壓程序階段集電極電流已減小,故軟關(guān)斷時(shí)不會(huì)出現(xiàn)過大的短路電流下降率和過高的過電壓。采用軟降柵壓及軟關(guān)斷柵極驅(qū)動(dòng)保護(hù),使故障電流的幅值和下降率都能受到限制,過電壓降低,IGBT的電流、電壓運(yùn)行軌跡能保證在安全區(qū)內(nèi)。
在設(shè)計(jì)降柵壓保護(hù)電路時(shí),要正確選擇降柵壓幅度和速度,如果降柵壓幅度大(比如7.5V),降柵壓速度不要太快,一般可采用2μs下降時(shí)間的軟降柵壓,由于降柵壓幅度大,集電極電流已經(jīng)較小,在故障狀態(tài)封鎖柵極可快些,不必采用軟關(guān)斷;如果降柵壓幅度較?。ū热?V以下),降柵速度可快些,而封鎖柵壓的速度必須慢,即采用軟關(guān)斷,以避免過電壓發(fā)生。
為了使電源在短路故障狀態(tài)不中斷工作,又能避免在原工作頻率下連續(xù)進(jìn)行短路保護(hù)產(chǎn)生熱積累而造成IGBT損壞,采用降柵壓保護(hù)即可不必在一次短路保護(hù)立即封鎖電路,而使工作頻率降低(比如1Hz左右),形成間歇“打嗝”的保護(hù)方法,故障消除后即恢復(fù)正常工作。
下面介紹幾種IGBT短路保護(hù)的實(shí)用電路及工作原理。
圖7是利用IGBT過流時(shí)Vce增大的原理進(jìn)行保護(hù)的電路,用于專用驅(qū)動(dòng)器EXB841。EXB841內(nèi)部電路能很好地完成降柵及軟關(guān)斷,并具有內(nèi)部延遲功能,以消除干擾產(chǎn)生的誤動(dòng)作。含有IGBT過流信息的Vce不直接送至EXB841的集電極電壓監(jiān)視腳6,而是經(jīng)快速恢復(fù)二極管VD1,通過比較器IC1輸出接至EXB841的腳6,其目的是為了消除VD1正向壓降隨電流不同而異,采用閾值比較器,提高電流檢測(cè)的準(zhǔn)確性。如果發(fā)生過流,驅(qū)動(dòng)器EXB841的低速切斷電路慢速關(guān)斷IGBT,以避免集電極電流尖峰脈沖損壞IGBT器件。
圖7 采用IGBT過流時(shí)Vce增大的原理進(jìn)行保護(hù)
圖8是利用電流傳感器進(jìn)行過流檢測(cè)的IGBT保護(hù)電路,電流傳感器(SC)初級(jí)(1匝)串接在IGBT的集電極電路中,次級(jí)感應(yīng)的過流信號(hào)經(jīng)整流后送至比較器IC1的同相輸入端,與反相端的基準(zhǔn)電壓進(jìn)行比較,IC1的輸出送至具有正反饋的比較器IC2,其輸出接至PWM控制器UC3525的輸出控制腳10。不過流時(shí),VA
(a)電路原理圖
(b)PWM控制電路的輸出驅(qū)動(dòng)波形圖
圖8 利用電流傳感器進(jìn)行過流檢測(cè)的IGBT保護(hù)電路
圖9是利用IGBT(V1)過流集電極電壓檢測(cè)和電流傳感器檢測(cè)的綜合保護(hù)電路,電路工作原理是:負(fù)載短路(或IGBT因其它故障過流)時(shí),V1的Vce增大,V3門極驅(qū)動(dòng)電流經(jīng)R2,R3分壓器使V3導(dǎo)通,IGBT柵極電壓由VD3所限制而降壓,限制IGBT峰值電流幅度,同時(shí)經(jīng)R5C3延遲使V2導(dǎo)通,送去軟關(guān)斷信號(hào)。另一方面,在短路時(shí)經(jīng)電流傳感器檢測(cè)短路電流,經(jīng)比較器IC1輸出的高電平使V3導(dǎo)通進(jìn)行降柵壓,V2導(dǎo)通進(jìn)行軟關(guān)斷。
圖9 綜合過流保護(hù)電路
圖10是應(yīng)用檢測(cè)IGBT集電極電壓的過流保護(hù)原理,采用軟降柵壓、軟關(guān)斷及降低工作頻率保護(hù)技術(shù)的短路保護(hù)電路。
圖10
正常工作狀態(tài),驅(qū)動(dòng)輸入信號(hào)為低電平時(shí),光耦I(lǐng)C4不導(dǎo)通,V1,V3導(dǎo)通,輸出負(fù)驅(qū)動(dòng)電壓。驅(qū)動(dòng)輸入信號(hào)為高電平時(shí),光耦I(lǐng)C4導(dǎo)通,V1截止而V2導(dǎo)通,輸出正驅(qū)動(dòng)電壓,功率開關(guān)管V4工作在正常開關(guān)狀態(tài)。發(fā)生短路故障時(shí),IGBT集電極電壓增大,由于Vce增大,比較器IC1輸出高電平,V5導(dǎo)通,IGBT實(shí)現(xiàn)軟降柵壓,降柵壓幅度由穩(wěn)壓管VD2決定,軟降柵壓時(shí)間由R6C1形成2μs。同時(shí)IC1輸出的高電平經(jīng)R7對(duì)C2進(jìn)行充電,當(dāng)C2上電壓達(dá)到穩(wěn)壓管VD4的擊穿電壓時(shí),V6導(dǎo)通并由R9C3形成約3μs的軟關(guān)斷柵壓,軟降柵壓至軟關(guān)斷柵壓的延遲時(shí)間由時(shí)間常數(shù)R7C2決定,通常選取在5~15μs。
V5導(dǎo)通時(shí),V7經(jīng)C4R10電路流過基極電流而導(dǎo)通約20μs,在降柵壓保護(hù)后將輸入驅(qū)動(dòng)信號(hào)閉鎖一段時(shí)間,不再響應(yīng)輸入端的關(guān)斷信號(hào),以避免在故障狀態(tài)下形成硬關(guān)斷過電壓,使驅(qū)動(dòng)電路在故障存在的情況下能執(zhí)行一個(gè)完整的降柵壓和軟關(guān)斷保護(hù)過程。
V7導(dǎo)通時(shí),光耦I(lǐng)C5導(dǎo)通,時(shí)基電路IC2的觸發(fā)腳2獲得負(fù)觸發(fā)信號(hào),555輸出腳3輸出高電平,V9導(dǎo)通,IC3被封鎖,封鎖時(shí)間由定時(shí)元件R15C5決定(約1.2s),使工作頻率降至1Hz以下,驅(qū)動(dòng)器的輸出信號(hào)將工作在所謂的“打嗝”狀態(tài),避免了發(fā)生短路故障后仍工作在原來的頻率下,連續(xù)進(jìn)行短路保護(hù)導(dǎo)致熱積累而造成IGBT損壞。只要故障消失,電路又能恢復(fù)到正常工作狀態(tài)。結(jié)語 開關(guān)電源保護(hù)功能雖屬電源裝置電氣性能要求的附加功能,但在惡劣環(huán)境及意外事故條件下,保護(hù)電路是否完善并按預(yù)定設(shè)置工作,對(duì)電源裝置的安全性和可靠性至關(guān)重要。驗(yàn)收技術(shù)指標(biāo)時(shí),應(yīng)對(duì)保護(hù)功能進(jìn)行驗(yàn)證。
開關(guān)電源的保護(hù)方案和電路結(jié)構(gòu)具有多樣性,但對(duì)具體電源裝置而言,應(yīng)選擇合理的保護(hù)方案和電路結(jié)構(gòu),以使得在故障條件下真正有效地實(shí)現(xiàn)保護(hù)。
文中所述的保護(hù)電路可以靈活組合使用,以簡(jiǎn)化電路結(jié)構(gòu)和降低成本。
第二篇:LED開關(guān)電源保護(hù)電路介紹
LED開關(guān)電源保護(hù)電路介紹
一款好的LED開關(guān)電源除了需要穩(wěn)定、高效、可靠外,電路的各種保護(hù)措施也必須精心設(shè)計(jì),以避免在復(fù)雜環(huán)境條件下能夠迅速的對(duì)電源電路和負(fù)載進(jìn)行有效保護(hù),本文介紹LED開關(guān)電源的幾種常見保護(hù)電路。
1、過電流保護(hù)電路
在直流LED開關(guān)電源電路中,為了保護(hù)調(diào)整管在電路短路、電流增大時(shí)不被燒毀。其基本方法是,當(dāng)輸出電流超過某一值時(shí),調(diào)整管處于反向偏置狀態(tài),從而截止,自動(dòng)切斷電路電流。如圖1所示,過電流保護(hù)電路由三極管BG2 和分壓電阻R4、R5組成。電路正常工作時(shí),通過R4與R5的壓作用,使得BG2 的基極電位比發(fā)射極電位高,發(fā)射結(jié)承受反向電壓。于是BG2 處于截止?fàn)顟B(tài)(相當(dāng)于開路),對(duì)穩(wěn)壓電路沒有影響。當(dāng)電路短路時(shí),輸出電壓為零,BG2 的發(fā)射極相當(dāng)于接地,則BG2 處于飽和導(dǎo)通狀態(tài)(相當(dāng)于短路),從而使調(diào)整管BG1 基極和發(fā)射極近于短路,而處于截止?fàn)顟B(tài),切斷電路電流,從而達(dá)到保護(hù)目的。
圖2:LED開關(guān)電源輸入過電流保護(hù)電路
2、過電壓保護(hù)電路
直流LED開關(guān)電源中開關(guān)穩(wěn)壓器的過電壓保護(hù)包括輸入過電壓保護(hù)和輸出過電壓保護(hù)。如果開關(guān)穩(wěn)壓器所使用的未穩(wěn)壓直流電源(諸如蓄電池和整流器)的電壓如果過高,將導(dǎo)致開關(guān)穩(wěn)壓器不能正常工作,甚至損壞內(nèi)部器件,因此LED開關(guān)電源中有必要使用輸入過電壓保護(hù)電路。圖3為用晶體管和繼電器所組成的保護(hù)電路,在該電路中,當(dāng)輸入直流電源的電壓高于穩(wěn)壓二極管的擊穿電壓值時(shí),穩(wěn)壓管擊穿,有電流流過電阻R,使晶體管T導(dǎo)通,繼電器動(dòng)作,常閉接點(diǎn)斷開,切斷輸入。輸入電源的極性保護(hù)電路可以跟輸入過電壓保護(hù)結(jié)合在一起,構(gòu)成極性保護(hù)鑒別與過電壓保護(hù)電路。
圖3:LED開關(guān)電源輸入過電壓保護(hù)電路
3、軟啟動(dòng)保護(hù)電路
開關(guān)穩(wěn)壓電源的電路比較復(fù)雜,開關(guān)穩(wěn)壓器的輸入端一般接有小電感、大電容的輸入濾波器。在開機(jī)瞬間,濾波電容器會(huì)流過很大的浪涌電流,這個(gè)浪涌電流可以為正常輸入電流的數(shù)倍。這樣大的浪涌電流會(huì)使普通電源開關(guān)的觸點(diǎn)或繼電器的觸點(diǎn)熔化,并使輸入保險(xiǎn)絲熔斷。另外,浪涌電流也會(huì)損害電容器,使之壽命縮短,過早損壞。為此,開機(jī)時(shí)應(yīng)該接入一個(gè)限流電阻,通過這個(gè)限流電阻來對(duì)電容器充電。為了不使該限流電阻消耗過多的功率,以致影響開關(guān)穩(wěn)壓器的正常工作,而在開機(jī)暫態(tài)過程結(jié)束后,用一個(gè)繼電器自動(dòng)短接它,使直流電源直接對(duì)開關(guān)穩(wěn)壓器供電,這種電路稱之謂直流LED開關(guān)電源的“軟啟動(dòng)”電路。
如圖4(a)所示,在電源接通瞬間,輸入電壓經(jīng)整流橋(D1~D4)和限流電阻R1對(duì)電容器C充電,限制浪涌電流。當(dāng)電容器C充電到約80%額定電壓時(shí),逆變器正常工作。經(jīng)主變壓器輔助繞組產(chǎn)生晶閘管的觸發(fā)信號(hào),使晶閘管導(dǎo)通并短路限流電阻R1,LED開關(guān)電源處于正常運(yùn)行狀態(tài)。為了提高延遲時(shí)間的準(zhǔn)確性及防止繼電器動(dòng)作抖動(dòng)振蕩,延遲電路可采用圖4(b)所示電路替代RC延遲電路。
圖4:LED開關(guān)電源軟啟動(dòng)保護(hù)電路
4、過熱保護(hù)電路
直流LED開關(guān)電源中開關(guān)穩(wěn)壓器的高集成化和輕量小體積,使其單位體積內(nèi)的功率密度大大提高,因此如果電源裝置內(nèi)部的元器件對(duì)其工作環(huán)境溫度的要求沒有相應(yīng)提高,必然會(huì)使電路性能變壞,元器件過早失效。因此在大功率直流LED開關(guān)電源中應(yīng)該設(shè)過熱保護(hù)電路。
本文采用溫度繼電器來檢測(cè)電源裝置內(nèi)部的溫度,當(dāng)電源裝置內(nèi)部產(chǎn)生過熱時(shí),溫度繼電器就動(dòng)作,使整機(jī)告警電路處于告警狀態(tài),實(shí)現(xiàn)對(duì)電源的過熱保護(hù)。如圖5(a)所示,在保護(hù)電路中將P型控制柵熱晶閘管放置在功率開關(guān)三極管附近,根據(jù)TT102的特性(由Rr值確定該器件的導(dǎo)通溫度,Rr越大,導(dǎo)通溫度越低),當(dāng)功率管的管殼溫度或者裝置內(nèi)部的溫度超過允許值時(shí),熱晶閘管就導(dǎo)通,使發(fā)光二極管發(fā)亮告警。倘若配合光電耦合器,就可使整機(jī)告警電路動(dòng)作,保護(hù)LED開關(guān)電源。該電路還可以設(shè)計(jì)成如圖5(b)所示,用作功率晶體管的過熱保護(hù),晶體開關(guān)管的基極電流被N型控制柵熱晶閘管TT201旁路,開關(guān)管截止,切斷集電極電流,防止過熱。
圖5:LED開關(guān)電源過熱保護(hù)電路
第三篇:開關(guān)電源和模擬電源的區(qū)別
開關(guān)電源和模擬電源的區(qū)別
模擬電源:即變壓器電源,通過鐵芯、線圈來實(shí)現(xiàn),線圈的匝數(shù)決定了兩端的電壓比,鐵芯的作用是傳遞變化磁場(chǎng),(我國(guó))主線圈在50HZ頻率下產(chǎn)生了變化的磁場(chǎng),這個(gè)變化的磁場(chǎng)通過鐵芯傳遞到副線圈,在副線圈里就產(chǎn)生了感應(yīng)電壓,于是變壓器就實(shí)現(xiàn)了電壓的轉(zhuǎn)變。
模擬電源的缺點(diǎn):線圈、鐵芯本身是導(dǎo)體,那么它們?cè)谵D(zhuǎn)化電壓的過程中會(huì)由于自感電流而發(fā)熱(損耗),所以變壓器的效率很低,一般不會(huì)超過35%。
音響器材功放中變壓器的應(yīng)用:大功率功放需要變壓器提供更多的功率輸出,那么,只有通過線圈匝數(shù)的增加、鐵芯體積的增大來實(shí)現(xiàn),匝數(shù)和鐵芯體積的增加就會(huì)加重其損耗,所以,大功率功放的變壓器必須做的非常大,這樣就會(huì)導(dǎo)致:笨重,發(fā)熱量大。
開關(guān)電源:在電流進(jìn)入變壓器之前,通過晶體管的開關(guān)功能,將我們通常50HZ的電流頻率提升到數(shù)萬HZ,在這么高的頻率下,磁場(chǎng)變化頻率也達(dá)到幾萬HZ,那么,就可以減少線圈匝數(shù)、鐵芯體積獲得同樣的電壓轉(zhuǎn)化比,由于線圈匝數(shù)、鐵芯體積的減少,損耗大大降低,一般開關(guān)電源效率達(dá)到90%,而體積可以做的非常小,并且輸出穩(wěn)定,所以開關(guān)電源具有模擬電源難以達(dá)到的優(yōu)點(diǎn)。
(.開關(guān)電源也有自己的不足,如輸出電壓有紋波及開關(guān)噪聲,線性電源是沒有的)
音響器材-功放中開關(guān)電源的應(yīng)用:開關(guān)電源的描述過程中已經(jīng)表明開關(guān)電源的優(yōu)勢(shì),所以即使是大功率功放,開關(guān)電源一樣可以做的很精細(xì)、小巧,目前國(guó)內(nèi)的數(shù)字功放以深圳崔帕斯數(shù)字音響設(shè)備公司的數(shù)字功放最為領(lǐng)先,他們目前已經(jīng)發(fā)展到T類純數(shù)字功放,并且下一代S類功放也在研發(fā)中了,具體請(qǐng)參看如下資料:
數(shù)字電源
在簡(jiǎn)單易用、參數(shù)變更要求不多的應(yīng)用場(chǎng)合,模擬電源產(chǎn)品更具優(yōu)勢(shì),因?yàn)槠鋺?yīng)用的針對(duì)性可以通過硬件固化來實(shí)現(xiàn),而在可控因素較多、實(shí)時(shí)反應(yīng)速度更快、需要多個(gè)模擬系統(tǒng)電源管理的、復(fù)雜的高性能系統(tǒng)應(yīng)用中,數(shù)字電源則具有優(yōu)勢(shì)。此外,在復(fù)雜的多系統(tǒng)業(yè)務(wù)中,相對(duì)模擬電源,數(shù)字電源是通過軟件編程來實(shí)現(xiàn)多 方面的應(yīng)用,其具備的可擴(kuò)展性與重復(fù)使用性使用戶可以方便更改工作參數(shù),優(yōu)化電源系統(tǒng)。通過實(shí)時(shí)過電流保護(hù)與管理,它還可以減少外圍器件的數(shù)量。
在復(fù)雜的多系統(tǒng)業(yè)務(wù)中,相對(duì)模擬電源,數(shù)字電源是通過軟件編程來實(shí)現(xiàn)多方面的應(yīng)用,其具備的可擴(kuò)展性與重復(fù)使用性使用戶可以方便更改工作參數(shù),優(yōu)化電源系統(tǒng)。通過實(shí)時(shí)過電流保護(hù)與管理,它還可以減少外圍器件的數(shù)量。
數(shù)字電源有用DSP控制的,還有用MCU控制的。相對(duì)來講,DSP控制的電源采用數(shù)字濾波方式,較MCU控制的電源更能滿足復(fù)雜的電源需求、實(shí)時(shí)反應(yīng)速度更快、電源穩(wěn)壓性能更好。
數(shù)字電源有什麼好處它首先是可編程的,比如通訊、檢測(cè)、遙測(cè)等所有功能都可用軟件編程實(shí)現(xiàn)。另外,數(shù)字電源具有高性能和高可靠性,非常靈活。
干擾:?jiǎn)纹瑱C(jī)中數(shù)字和模擬之間,因?yàn)閿?shù)字信號(hào)是頻譜很寬的脈沖信號(hào),因此主要是數(shù)字部分對(duì)模擬部分的干擾很強(qiáng);不僅一般都采用數(shù)字電源和模擬電源分開、二者之間用濾波器連接,在一些要求較高的場(chǎng)合,例如某些單片機(jī)內(nèi)部的AD轉(zhuǎn)換器進(jìn)行AD轉(zhuǎn)換時(shí),常常要讓數(shù)字部分進(jìn)入休眠狀態(tài),絕大部分?jǐn)?shù)字邏輯停止工作,以防止它們對(duì)模擬部分形成干擾。如果干擾嚴(yán)重,甚至可以分別用兩個(gè)電源,一般用電感和電容隔離就行了.也可以將整個(gè)板子上數(shù)字和模擬部分的電源分別聯(lián)在一起,用分別的通路直接接到電源濾波電容的焊點(diǎn)上.如果對(duì)抗干擾要求不高,也可以隨便接在一起.(1)如果不使用芯片的A/D或者D/A功能,可以不區(qū)分?jǐn)?shù)字電源和模擬電源。
(2)如果使用了A/D或者D/A,還需考慮參考電源設(shè)計(jì)。
第四篇:高頻開關(guān)電源技術(shù)方案
高頻開關(guān)電源技術(shù)方案 客戶需求
技術(shù)參數(shù)30929003.pdf 技術(shù)方案 2.1 概述
現(xiàn)場(chǎng)的實(shí)際應(yīng)用情況:12臺(tái)15V/12000A的電源配1臺(tái)90V/2000A的電源,每6臺(tái)15V/12000A 的電源配一臺(tái)6kV/380V/1MW的變壓器,其中90V/2000A電源由于只是用于去除氧化膜,并不需要長(zhǎng)時(shí)間工作。
電源關(guān)注核心指標(biāo)是可靠性和系統(tǒng)效率。
電源可以考慮采用3種主回路方式,每種方式各有優(yōu)缺點(diǎn)。
2.2主回路原理圖方案1 2.2.1方案1 總體思想為輸入36脈波移相變壓器,6組功率模塊并聯(lián)的方式,具體電路如下: 15V/12000A開關(guān)電源最大輸出功率180kW,90V/2000A開關(guān)電源最大輸出功率180kW,功率等級(jí)一樣,考慮采用同樣的主回路原理,如下:
整流器整流器36脈移相變壓器整流器整流器整流器整流器功率模塊1輸出15V/12000A或90V/2000A功率模塊2輸入380V/50Hz功率模塊3功率模塊4功率模塊5功率模塊6功率模塊原理如下:
高頻變壓器及整流
輸入端配置36脈波移相變壓器,可有效擬制輸入電流諧波,基本能滿足3%的要求; 每臺(tái)開關(guān)電源采用6個(gè)功率模塊并聯(lián)的方式,如1個(gè)模塊出現(xiàn)異常,其他模塊還能繼續(xù)降額工作,提高了工作可靠性;模塊之間的均流精度可達(dá)5%以內(nèi),因此15V/12000A的開關(guān)電源每個(gè)模塊的等級(jí)設(shè)計(jì)為15V/2200A,90V/2000A的開關(guān)電源每個(gè)模塊的等級(jí)設(shè)計(jì)為90V/360A。
逆變采用移相全橋軟開關(guān)技術(shù),效率高,比普通硬開關(guān)技術(shù)效率平均多2%左右; 二次整流采用同步整流技術(shù),效率遠(yuǎn)遠(yuǎn)大于采用一般二極管整流的方式,一般同步整流比普通二極管整流效率高出5%~6%。
輸出加LC濾波,如不加LC濾波,輸出導(dǎo)電排由于高頻肌膚效應(yīng)的緣故,導(dǎo)電排發(fā)熱嚴(yán)重。
90V/2000A電源由于只是用于去除氧化膜,并不需要長(zhǎng)時(shí)間工作,從降低成本角度考慮,可以不加36脈波移相變壓器,輸出也不需要LC濾波,直流輸出高頻方波電壓。2.2.2方案2 總體思想為輸入PWM整流器,4組功率模塊并聯(lián)的方式,具體電路如下:
6脈波整流器功率模塊1輸出15V/12000A或90V/2000A輸入380V/50Hz功率模塊2PWM整流器功率模塊3功率模塊4
輸入端配置PWM整流器,可有效擬制輸入電流諧波,基本能滿足3%的要求;PWM整流器再備份一組6脈波整流器,只是在PWM整流器出故障時(shí)投入運(yùn)行;
每臺(tái)開關(guān)電源采用4個(gè)功率模塊并聯(lián)的方式,如1個(gè)模塊出現(xiàn)異常,其他模塊還能繼續(xù)降額工作,提高了工作可靠性;模塊之間的均流精度可達(dá)5%以內(nèi),因此15V/12000A的開關(guān)電源每個(gè)模塊的等級(jí)設(shè)計(jì)為15V/3000A,90V/2000A的開關(guān)電源每個(gè)模塊的等級(jí)設(shè)計(jì)為90V/500A。
逆變采用移相全橋軟開關(guān)技術(shù),效率高,比普通硬開關(guān)技術(shù)效率平均多2%左右; 二次整流采用同步整流技術(shù),效率遠(yuǎn)遠(yuǎn)大于采用一般二極管整流的方式,一般同步整流比普通二極管整流效率高出5%~6%。
輸出加LC濾波,如不加LC濾波,輸出導(dǎo)電排由于高頻肌膚效應(yīng)的緣故,導(dǎo)電排發(fā)熱嚴(yán)重。
90V/2000A電源由于只是用于去除氧化膜,并不需要長(zhǎng)時(shí)間工作,從降低成本角度考慮,可以不加PWM,輸出也不需要LC濾波,直流輸出高頻方波電壓。
2.2.3方案3 總體思想為綜合6kV高壓配電,系統(tǒng)設(shè)計(jì),利用6kV高壓變壓器直接做成36脈波移相變壓器,具體電路如下:
開關(guān)電源1輸出15V/12000A或90V/2000A輸入6kV/50Hz36脈波移相變壓器開關(guān)電源6輸出15V/12000A或90V/2000A
輸出15V/12000A或90V/2000A功率模塊1380V/50Hz功率模塊26脈波整流器功率模塊3功率模塊4
6kV變壓器直接設(shè)計(jì)為36脈波移相變壓器,高壓側(cè)幾乎沒有諧波,每一組輸出接入一臺(tái)開關(guān)電源。開關(guān)電源就采用普通6脈波整流;
每臺(tái)開關(guān)電源采用4個(gè)功率模塊并聯(lián)的方式,如1個(gè)模塊出現(xiàn)異常,其他模塊還能繼續(xù)降額工作,提高了工作可靠性;模塊之間的均流精度可達(dá)5%以內(nèi),因此15V/12000A的開關(guān)電源每個(gè)模塊的等級(jí)設(shè)計(jì)為15V/3000A,90V/2000A的開關(guān)電源每個(gè)模塊的等級(jí)設(shè)計(jì)為90V/500A。
逆變采用移相全橋軟開關(guān)技術(shù),效率高,比普通硬開關(guān)技術(shù)效率平均多2%左右; 二次整流采用同步整流技術(shù),效率遠(yuǎn)遠(yuǎn)大于采用一般二極管整流的方式,一般同步整流比普通二極管整流效率高出5%~6%。
輸出加LC濾波,如不加LC濾波,輸出導(dǎo)電排由于高頻肌膚效應(yīng)的緣故,導(dǎo)電排發(fā)熱嚴(yán)重。
90V/2000A電源由于只是用于去除氧化膜,并不需要長(zhǎng)時(shí)間工作,從降低成本角度考慮,可以不加PWM,輸出也不需要LC濾波,直流輸出高頻方波電壓。
2.2.4方案比較
從系統(tǒng)可靠性、系統(tǒng)效率這兩個(gè)主要關(guān)心的方面進(jìn)行比較。
本方案的逆變、二次整流、輸出濾波采用的最先進(jìn)的技術(shù),在前面的方案敘述中已經(jīng)提出,逆變采用全軟開關(guān)技術(shù),比硬開關(guān)的效率高出2%左右;二次整流采用同步整流技術(shù),比普通二極管的效率高出5%~6%左右;輸出經(jīng)過LC后為平滑的直流,不會(huì)引起后級(jí)導(dǎo)電排高頻發(fā)熱;電源內(nèi)部輸出的直流匯流排全部采用銅排,比采用鋁排的效率高出1%左右;
方案選擇主要針對(duì)輸入采用哪一種方式更合理進(jìn)行比較分析??煽啃苑治觯?/p>
36脈波移相變壓器的可靠性遠(yuǎn)遠(yuǎn)高出PWM整流器,而且方案1采用6個(gè)模塊并聯(lián),及時(shí)2個(gè)模塊出現(xiàn)故障,也不會(huì)影響系統(tǒng)使用,方案1的可靠性遠(yuǎn)遠(yuǎn)高出方案2的可靠性;
方案3把高壓變壓器引入,作為電源設(shè)計(jì)的一部分,相當(dāng)于減少了一個(gè)變壓器的可靠性影響,因此方案3比方案1的可靠性更高。
系統(tǒng)效率分析:
方案1中變壓器損耗約為1.5%,整流器約為0.5%,前級(jí)總和約為2%;方案2中PWM整流器的損耗約為3%;方案1比方案2的效率略微高出一些;
方案3中比方案1只有一級(jí)變壓器的損耗,效率自然多出1.5%左右。綜合比較:方案排序?yàn)榉桨?/p>
3、方案
1、方案2。
2.2控制系統(tǒng)
功率模塊1模擬控制板Ig+-If1Io1IoUoK13875驅(qū)動(dòng)電路IGBTK2集中控制板GV+-UfIfPI功率模塊6K5K6Ig+-If1K13875驅(qū)動(dòng)電路IGBTIo1模擬控制板K
2控制方式:
雙環(huán)控制:電壓或電流外環(huán),PI環(huán); 每模塊電流內(nèi)環(huán),比例環(huán) 2.3監(jiān)控單元
采用8寸觸摸屏;
功能:本地、遠(yuǎn)程操作切換;電源設(shè)置、啟停操作;顯示輸出等參數(shù),電源故障信息等;RS485上位機(jī)通訊等。2.4結(jié)構(gòu)外形
見附件。
第五篇:sm7012待機(jī)電源控制芯片 BUCK電路應(yīng)用方案概要
SM7012 AC/DC PWM 功率開關(guān) v1.6 I D = G ID ?(0.23V0.23V R1 1 1 + R1 R 2 再將上式合并,最終得到 IDLIM: I DLIM = G ID ? 0.23V ?(然而在實(shí)際應(yīng)用中,F(xiàn)B 腳是上拉的方式接入到 VDD,不可能對(duì)地短路。當(dāng)系統(tǒng)啟動(dòng)或者短路時(shí),此時(shí) FB 腳的電壓比較接近于 0V,通過內(nèi)部高壓 MOS 管漏極電流則為最大值 IDLIM。IFB =-0.23V R1 GID = ΔID ΔIFB 從上圖可以看出,IFB 電流大,ID 的電流就??;IFB 電流小,ID 的電流就大。當(dāng) IFB 的電流大于 IFBSD 時(shí),芯片會(huì)關(guān)閉 PWM,此時(shí)的 ID 的值大約為 85mA,同時(shí)芯片會(huì)自動(dòng)進(jìn)入突發(fā)模式。這對(duì)于系統(tǒng)工作在空載或者輕 載至關(guān)重要。? 過壓保護(hù) 當(dāng)芯片 VDD 的電壓超過 VDDOVP 時(shí),會(huì)觸發(fā)內(nèi)部復(fù)位信號(hào),導(dǎo)致系統(tǒng)重新啟動(dòng)。-6-SM7012 AC/DC PWM 功率開關(guān) v1.6 ? 典型應(yīng)用方案 BUCK 電路—電磁爐應(yīng)用方案 原理圖: F1 R1 5 D6 DRAIN VDD 4 ZD1 FB GND 3 2 SM7012 6 DRAIN AC C1 D1-D4 7 DRAIN DRAIN C2 C3 C4 L1 18V 8 GND 1 U1 D5 C5 C6 C7 D7 5V BOM 表: 位號(hào) D1、D2、D3、D4 D5 D6 D7 ZD1 R1 C1 C2 變壓器參數(shù): 參數(shù) 1N4007
BYV26C UF4007 BYV26C 18V 穩(wěn)壓管 22Ω 4.7uF/400V 103 位號(hào) C3 C4 C5 C6 C7 L1 F1 U1 參數(shù) 4.7uF/50V 104 220uF/25V 104 220uF/25V EE10 1A/250V SM7012 N1 N2 1)骨架EE10(4+4)臥式普通磁芯 2)電感量L為:1.6mH 3)N1:0.19mm線徑為繞150匝 4)N2:0.19mm線徑為繞64匝 7 SM7012 AC/DC PWM 功率開關(guān) v1.6 ? 12V/500mA 反激電源應(yīng)用方案 原理圖: C6 F1 LT1 C3 T1 R1 D7 C7 C8 C9 R4 L1 12V CX1 C1 RT1 LT2 C2 D5 D6 R3 CY1 8 7 6 5 U1 GND DRAIN SM7012 GND DRAIN DRAIN 1 2 3 VDD FB 4 DRAIN R5 R6 R9 R7 R2 U2 C10 C11 C4 C5 R8 U3 R10 BOM 清單: 位號(hào) C1 C2 C3、C6 C4 C5 C7 C8 C9、C10 C11 R1 R2 變壓器參數(shù): 參數(shù) 4.7uF/400V 10uF/400V 102/1KV 103/50V 4.7uF/50V 470 uF/25V 220 uF/25V 104/50V NC 100KΩ/1W 9.1K 位號(hào) R3 R4 R5 R6 R7 R8 R9 R10 LT L1 D1、D2 參數(shù) 0R 15Ω/1W 120R/1/2W 1K 47K NC 33K 5.1K 40mH 3uH 1N4007 位號(hào) D3、D4 D5、D6 D7 RT1 CX1 CY1 F1 U1 U2 U3 T1 參數(shù) 1N4007 FR107 SR2100 5D-9 0.1uF/275V 222/250V 1A/250V SM7012 光耦 TL431 EE16(5+5)-8-SM7012 AC/DC PWM 功率開關(guān) v1.6 封裝形式 DIP8 SOP8-9-