欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      集合的概念 (說(shuō)課稿)

      時(shí)間:2019-05-14 03:15:20下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫(kù)小編為你整理了多篇相關(guān)的《集合的概念 (說(shuō)課稿)》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫(kù)還可以找到更多《集合的概念 (說(shuō)課稿)》。

      第一篇:集合的概念 (說(shuō)課稿)

      授課時(shí)間:

      08

      授課年級(jí)、科目、課題:

      高一數(shù)學(xué)

      集合的概念

      使用教材:

      必修1(人教版)

      說(shuō)課教師: 劉華

      各位老師同學(xué)們,大家好!今天我說(shuō)課的課題是“集合的概念”,本節(jié)內(nèi)容選自高中數(shù)學(xué)必修1(人教版),下面我將主要從六個(gè)方面介紹我的教學(xué)方案。

      一、教材分析: 教材的地位和作用:

      集合是學(xué)習(xí)高中數(shù)學(xué)的重要工具之一,起著承前啟后的作用。本小節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例人手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明.然后,介紹了集合的常用表示方法,包括列舉法、描述法等,還給出了畫圖表示集合的例子.從教材我歸納出本節(jié)內(nèi)容的教學(xué)重點(diǎn)和難點(diǎn)。

      (一)教學(xué)重點(diǎn):集合的基本概念和表示方法,集合元素的特征

      (二)教學(xué)難點(diǎn):運(yùn)用集合的三種常用表示方法、列舉法與描述法,正確表示一些簡(jiǎn)單的集合二、教學(xué)目標(biāo):

      (一)知識(shí)目標(biāo):

      (1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法;(2)使學(xué)生初步了解“屬于”關(guān)系的意義;

      (3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義

      (二)能力目標(biāo):

      (1)重視基礎(chǔ)知識(shí)的教學(xué)、基本技能的訓(xùn)練和能力的培養(yǎng);

      (2)啟發(fā)學(xué)生能夠發(fā)現(xiàn)問(wèn)題和提出問(wèn)題,善于獨(dú)立思考,學(xué)會(huì)分析問(wèn)題和創(chuàng)造地解決問(wèn)題;(3)通過(guò)教師指導(dǎo),發(fā)現(xiàn)知識(shí)結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力;

      (三)德育目標(biāo):激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情

      操,培養(yǎng)學(xué)生堅(jiān)忍不拔的意志,實(shí)事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。

      三、學(xué)情分析:

      針對(duì)現(xiàn)在的學(xué)生知識(shí)遷移能力差、計(jì)算能力差的特點(diǎn),第一節(jié)課的內(nèi)容不要求學(xué)生太多的計(jì)算,通過(guò)大量的舉例讓學(xué)生充分掌握集合的基礎(chǔ)知識(shí)。

      四、教法分析: 為了突出重點(diǎn)、突破難點(diǎn),本節(jié)課主要采用觀察、分析、類比、歸納的方法讓學(xué)生參與學(xué)習(xí),將學(xué)生置于主體位置,發(fā)揮學(xué)生的主觀能動(dòng)性,將知識(shí)的形成過(guò)程轉(zhuǎn)化為學(xué)生親自探索類比的過(guò)程,使學(xué)生獲得發(fā)現(xiàn)的成就感。在這個(gè)過(guò)程中力求把握好以下幾點(diǎn):(1)通過(guò)實(shí)例,讓學(xué)生去發(fā)現(xiàn)規(guī)律。讓學(xué)生在問(wèn)題情景中,經(jīng)歷知識(shí)的形成和發(fā)展,力求使學(xué)生學(xué)會(huì)用類比的思想去看待問(wèn)題。(2)營(yíng)造民主的教學(xué)氛圍,使學(xué)生參與教學(xué)全過(guò)程。

      (3)力求反饋的全面性、及時(shí)性,通過(guò)精心設(shè)計(jì)的提問(wèn),讓學(xué)生的思維動(dòng)起來(lái),針對(duì)學(xué)生回答的問(wèn)題,老師進(jìn)行適當(dāng)?shù)狞c(diǎn)評(píng)。

      (4)給學(xué)生思考的時(shí)間和空間,不急于把結(jié)果拋給學(xué)生,讓學(xué)生自己去觀察,分析,類比得出結(jié)果,提高學(xué)生的推理能力。

      五、教學(xué)過(guò)程

      (一)復(fù)習(xí)導(dǎo)入

      (1)簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);(2)教材中的章頭引言;

      (3)教材中例子(P4)。

      (二)講解新課

      (1)集合的有關(guān)概念

      (2)常用集合及表示方法(3)元素對(duì)于集合的隸屬關(guān)系(4)集合中元素的特性

      (三)課堂練習(xí)

      1下列各組對(duì)象能確定一個(gè)集合嗎?

      (1)所有很大的實(shí)數(shù)的集合(不確定)(2)好心的人的集合(不確定)(3){1,2,2,3,4,5}

      (有重復(fù))(4)所有直角三角形的集合(是的)

      (5)高一(12)班全體同學(xué)的集合(是的)

      (6)參加2008年奧運(yùn)會(huì)的中國(guó)代表團(tuán)成員的集合(是的)

      2、教材P5練習(xí)1、2 六:總結(jié)

      1.本節(jié)主要學(xué)習(xí)了集合的基本概念、表示符號(hào);一些常用數(shù)集及其記法;集合的元素與集合之間的關(guān)系;以及集合元素具有的特征.2.我們?cè)谶M(jìn)一步復(fù)習(xí)鞏固集合有關(guān)概念的基礎(chǔ)上,又學(xué)習(xí)了集合的表示方法和有限集、無(wú)限集、空集的概念,同學(xué)們要熟練掌握.

      第二篇:函數(shù)概念說(shuō)課稿

      函數(shù)概念說(shuō)課稿

      函數(shù)概念說(shuō)課稿1

      一、本課時(shí)在教材中的地位及作用

      教材采用北師大版(數(shù)學(xué))必修1,函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。本章節(jié)9個(gè)課時(shí),函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡(jiǎn)單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說(shuō)”到“對(duì)應(yīng)說(shuō)”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無(wú)疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。

      本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對(duì)應(yīng)來(lái)描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)

      二、教學(xué)目標(biāo)

      理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。

      通過(guò)對(duì)實(shí)際問(wèn)題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。

      通過(guò)對(duì)函數(shù)概念形成的探究過(guò)程,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題,探索問(wèn)題,不斷超越的創(chuàng)新品質(zhì)。

      三、重難點(diǎn)分析確定

      根據(jù)上述對(duì)教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。

      四、教學(xué)基本思路及過(guò)程

      本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對(duì)應(yīng)來(lái)描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

      ⑴學(xué)情分析

      一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

      函數(shù)在初中雖已講過(guò),不過(guò)較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來(lái)描繪函數(shù)概念,是一個(gè)抽象過(guò)程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來(lái)有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。

      ⑵教法、學(xué)法

      1、本節(jié)課采用的方法有:

      直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。

      2、采用這些方法的理論依據(jù):我一方面精心設(shè)計(jì)問(wèn)題情景,引導(dǎo)學(xué)生主動(dòng)探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問(wèn)題的提出、問(wèn)題的解決為主線,設(shè)置問(wèn)題,倡導(dǎo)學(xué)生主動(dòng)參與,通過(guò)不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過(guò)程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過(guò)程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。

      3、學(xué)法方面,學(xué)生通過(guò)對(duì)新舊兩種函數(shù)定義的對(duì)比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。

      ⑶教學(xué)過(guò)程

      (一)創(chuàng)設(shè)情景,引入新課

      情景1:提供一張表格,把本班中考得分前10名的情況填入表格,

      我報(bào)名次,學(xué)生提供分?jǐn)?shù)。

      情景2:西康高速汽車的行駛速度為80千米/小時(shí),汽車行駛的距離

      y與行駛時(shí)間x之間的關(guān)系式為:y=80x

      情景3:安康市一天24小時(shí)內(nèi)的氣溫隨時(shí)間變化圖:(圖略)

      提問(wèn)(1):這三個(gè)例子中都涉及到了幾個(gè)變化的量?(兩個(gè))

      提問(wèn)(2):當(dāng)其中一個(gè)變量取值確定后,另一個(gè)變量將如何?(它的

      值也隨之唯一確定)

      提問(wèn)(3):這樣的關(guān)系在初中稱之為什么?(函數(shù))引出課題

      [設(shè)計(jì)意圖]在創(chuàng)設(shè)本課開(kāi)頭情境1、2的時(shí)候,我并沒(méi)有運(yùn)用書中的前兩個(gè)例子。第一個(gè)例子我改成提供給學(xué)生一張中考成績(jī)統(tǒng)計(jì)單。是為了創(chuàng)設(shè)和學(xué)生生活相近的情境,從而引起學(xué)生的興趣,調(diào)節(jié)課堂氣氛,引人入勝,第二個(gè)例子我改成一道簡(jiǎn)單的速度與時(shí)間問(wèn)題,是因?yàn)閷W(xué)生對(duì)重力加速度的問(wèn)題還不是很熟悉。同時(shí)這兩個(gè)例子并沒(méi)有改變課本用三個(gè)實(shí)例分別代表三種表示函數(shù)方法的意圖。

      這樣學(xué)生可以從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生的認(rèn)知特點(diǎn)。

      (二)探索新知,形成概念

      1、引導(dǎo)分析,探求特征

      思考:如何用集合的語(yǔ)言來(lái)闡述上述三個(gè)問(wèn)題的共同特征?

      [設(shè)計(jì)意圖]并不急著讓學(xué)生回答此問(wèn),為引導(dǎo)學(xué)生改變思路,換個(gè)角度思考問(wèn)題,進(jìn)入本節(jié)課的重點(diǎn)。這里也是教師作為教學(xué)的引導(dǎo)者的體現(xiàn),及時(shí)對(duì)學(xué)生進(jìn)行指引。

      提問(wèn)(4):觀察上述三問(wèn)題,它們分別涉及到了哪些集合?(每個(gè)問(wèn)題都涉及到了兩個(gè)集合,具體略)

      [設(shè)計(jì)意圖]引導(dǎo)學(xué)生觀察,培養(yǎng)觀察問(wèn)題,分析問(wèn)題的能力。

      提問(wèn)(5):兩個(gè)集合的元素之間具有怎樣的關(guān)系?(對(duì)應(yīng))

      及時(shí)給出單值對(duì)應(yīng)的定義,并嘗試用輸入值,輸出值的概念來(lái)表達(dá)這種對(duì)應(yīng)。

      2、抽象歸納,引出概念

      提問(wèn)(6):現(xiàn)在你能從集合角度說(shuō)說(shuō)這三個(gè)問(wèn)題的共同點(diǎn)嗎?

      [設(shè)計(jì)意圖]學(xué)生相互討論,并回答,引出函數(shù)的概念。訓(xùn)練學(xué)生的歸納能力。

      板書:函數(shù)的概念

      上述一系列問(wèn)題,始終倡導(dǎo)學(xué)生主動(dòng)參與,通過(guò)不斷探究、發(fā)現(xiàn),在師生互動(dòng),生生互動(dòng)中,在學(xué)生心情愉悅的氛圍中,突破本節(jié)課的重點(diǎn)。

      3、探求定義,提出注意

      提問(wèn)(7):你覺(jué)得這個(gè)定義中應(yīng)注意哪些問(wèn)題(兩個(gè)非空數(shù)集,唯一對(duì)應(yīng)等)?

      [設(shè)計(jì)意圖]剖析概念,使學(xué)生抓住概念的本質(zhì),便于理解記憶。

      2、例題剖析,強(qiáng)化概念

      例1、判斷下列對(duì)應(yīng)是否為函數(shù):

      (1)

      (2)

      [設(shè)計(jì)意圖]通過(guò)例1的教學(xué),使學(xué)生體會(huì)單值對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的核心作用。

      例2、(1);

      (2)y=x—1;

      (3);

      (4)

      [設(shè)計(jì)意圖]首先對(duì)求函數(shù)的定義域進(jìn)行方法引導(dǎo),偶次方根必需注意的地方,其次,通過(guò)(2)(3)兩道題,強(qiáng)調(diào)只有對(duì)應(yīng)法則與定義域相同的兩個(gè)函數(shù),才是相同的函數(shù)。而與函數(shù)用什么字母表示無(wú)關(guān),進(jìn)一步理解函數(shù)符號(hào)的本質(zhì)內(nèi)涵。

      例3、試求下列函數(shù)的定義域與值域:

      (1)

      (2)

      [設(shè)計(jì)意圖]讓學(xué)體會(huì)理解函數(shù)的三要素:定義域、值域、對(duì)應(yīng)法則。

      4、鞏固練習(xí),運(yùn)用概念

      書本練習(xí)P25:練習(xí)1,2,3。P28:練習(xí)1,2

      布置作業(yè):A組:1、2。B組1。

      5、課堂小結(jié),提升思想

      引導(dǎo)學(xué)生進(jìn)行回顧,使學(xué)生對(duì)本節(jié)課有一個(gè)整體把握,將對(duì)學(xué)生形成的知識(shí)系統(tǒng)產(chǎn)生積極的影響。

      6、板書設(shè)計(jì):借助小黑板,時(shí)間的合理分配等(略)

      五、教學(xué)評(píng)價(jià)及反思

      我通過(guò)對(duì)一系列問(wèn)題情景的設(shè)計(jì),讓學(xué)生在問(wèn)題解決的過(guò)程中體驗(yàn)成功的樂(lè)趣,實(shí)現(xiàn)對(duì)本課重難點(diǎn)的突破,教學(xué)時(shí)間分配合理,為使課堂形式更加豐富,也可將某些問(wèn)題改成判斷題。在學(xué)生分析、歸納、建構(gòu)概念的過(guò)程中,可能會(huì)出現(xiàn)理解的偏差,教師應(yīng)給予恰當(dāng)?shù)氖崂怼?/p>

      本節(jié)課的起始,可以借助于多媒體技術(shù),為學(xué)生創(chuàng)設(shè)更理想的教學(xué)情景(結(jié)合各學(xué)校的硬件條件)。

      函數(shù)概念說(shuō)課稿2

      一、說(shuō)課內(nèi)容:

      人教版九年級(jí)數(shù)學(xué)下冊(cè)的二次函數(shù)的概念及相關(guān)習(xí)題

      二、教材分析:

      1、教材的地位和作用

      這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來(lái)學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來(lái)的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過(guò)的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來(lái)學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

      2、教學(xué)目標(biāo)和要求:

      (1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問(wèn)題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問(wèn)題確定自變量的取值范圍。

      (2)過(guò)程與方法:復(fù)習(xí)舊知,通過(guò)實(shí)際問(wèn)題的引入,經(jīng)歷二次函數(shù)概念的探索過(guò)程,提高學(xué)生解決問(wèn)題的能力.

      (3)情感、態(tài)度與價(jià)值觀:通過(guò)觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.

      3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。

      4、教學(xué)難點(diǎn):由實(shí)際問(wèn)題確定函數(shù)解析式和確定自變量的.取值范圍。

      三、教法學(xué)法設(shè)計(jì):

      1、從創(chuàng)設(shè)情境入手,通過(guò)知識(shí)再現(xiàn),孕伏教學(xué)過(guò)程

      2、從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程

      3、利用探索、研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程

      四、教學(xué)過(guò)程:

      (一)復(fù)習(xí)提問(wèn)

      1.什么叫函數(shù)?我們之前學(xué)過(guò)了那些函數(shù)?

      (一次函數(shù),正比例函數(shù),反比例函數(shù))

      2.它們的形式是怎樣的?

      (y=kx+b,ky=kx ,ky= , k0)

      3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k0的條件? k值對(duì)函數(shù)性質(zhì)有什么影響?

      【設(shè)計(jì)意圖】復(fù)習(xí)這些問(wèn)題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k0的條件,以備與二次函數(shù)中的a進(jìn)行比較.

      (二)引入新課

      函數(shù)是研究?jī)蓚€(gè)變量在某變化過(guò)程中的相互關(guān)系,我們已學(xué)過(guò)正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)

      例1、(1)圓的半徑是r(cm)時(shí),面積s (cm2)與半徑之間的關(guān)系是什么?

      解:s=0)

      例2、用周長(zhǎng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m2)與矩形一邊長(zhǎng)x(m)之間的關(guān)系是什么?

      解: y=x(20/2-x)=x(10-x)=-x2+10x (0

      例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問(wèn)兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?

      解: y=100(1+x)2

      =100(x2+2x+1)

      = 100x2+200x+100(0

      教師提問(wèn):以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

      【設(shè)計(jì)意圖】通過(guò)具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

      (三)講解新課

      以上函數(shù)不同于我們所學(xué)過(guò)的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

      二次函數(shù)的定義:形如y=ax2+bx+c (a0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

      鞏固對(duì)二次函數(shù)概念的理解:

      1、強(qiáng)調(diào)形如,即由形來(lái)定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

      2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問(wèn)題中,自變量的取值范圍是使實(shí)際問(wèn)題有意義的值。(如例1中要求r0)

      3、為什么二次函數(shù)定義中要求a?

      (若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

      4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.

      5、b和c是否可以為零?

      由例1可知,b和c均可為零.

      若b=0,則y=ax2+c;

      若c=0,則y=ax2+bx;

      若b=c=0,則y=ax2.

      注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.

      【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來(lái)的判斷二次函數(shù)做好鋪墊。

      判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

      (1)y=3(x-1)2+1 (2)

      (3)s=3-2t2 (4)y=(x+3)2- x2

      (5) s=10r2 (6) y=22+2x

      (8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))

      【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。

      (四)鞏固練習(xí)

      1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。

      (1)當(dāng)它的一條直角邊的長(zhǎng)為4.5cm時(shí),求這個(gè)直角三角形的面積;

      (2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)

      于x的函數(shù)關(guān)系式。

      【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過(guò)程,從而降低學(xué)生學(xué)習(xí)的難度。

      2.已知正方體的棱長(zhǎng)為xcm,它的表面積為Scm2,體積為Vcm3。

      (1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;

      (2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?

      【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問(wèn)題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過(guò)簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

      3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長(zhǎng)為Ccm,圓柱的體積為Vcm3

      (1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

      (2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?

      【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長(zhǎng)公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來(lái)。

      4. 籬笆墻長(zhǎng)30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長(zhǎng)x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

      【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開(kāi)動(dòng)腦筋,積極思考,讓學(xué)生能夠跳一跳,夠得到。

      (五)拓展延伸

      1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時(shí),y=0;x=1時(shí),y=2;x= -1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式.

      【設(shè)計(jì)意圖】在此稍微滲透簡(jiǎn)單的用待定系數(shù)法求二次函數(shù)解析式的問(wèn)題,為下節(jié)課的教學(xué)做個(gè)鋪墊。

      2.確定下列函數(shù)中k的值

      (1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______

      (2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______

      【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.

      (六) 小結(jié)思考:

      本節(jié)課你有哪些收獲?還有什么不清楚的地方?

      【設(shè)計(jì)意圖】讓學(xué)生來(lái)談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

      (七) 作業(yè)布置:

      必做題:

      1. 正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?

      2. 在長(zhǎng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

      選做題:

      1.已知函數(shù) 是二次函數(shù),求m的值。

      2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象

      【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

      五、教學(xué)設(shè)計(jì)思考

      以實(shí)現(xiàn)教學(xué)目標(biāo)為前提

      以現(xiàn)代教育理論為依據(jù)

      以現(xiàn)代信息技術(shù)為手段

      貫穿一個(gè)原則以學(xué)生為主體的原則

      突出一個(gè)特色充分鼓勵(lì)表?yè)P(yáng)的特色

      滲透一個(gè)意識(shí)應(yīng)用數(shù)學(xué)的意識(shí)

      函數(shù)概念說(shuō)課稿3

      第一大塊:教材分析

      一、本課時(shí)在教材中的地位及作用

      函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。本章節(jié)9個(gè)課時(shí),函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡(jiǎn)單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說(shuō)”到“對(duì)應(yīng)說(shuō)”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無(wú)疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。

      本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對(duì)應(yīng)來(lái)描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)

      二、教學(xué)目標(biāo)

      理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。

      通過(guò)對(duì)實(shí)際問(wèn)題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。

      通過(guò)對(duì)函數(shù)概念形成的探究過(guò)程,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題,探索問(wèn)題,不斷超越的創(chuàng)新品質(zhì)。

      三、重難點(diǎn)分析確定

      根據(jù)上述對(duì)教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)

      第二大塊:說(shuō)教法、學(xué)法

      一、教學(xué)基本思路及過(guò)程

      本節(jié)課《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課(借助小黑板)從集合間的對(duì)應(yīng)來(lái)描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用,也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。

      二、學(xué)情分析

      一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。

      函數(shù)在初中雖已講過(guò),不過(guò)較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來(lái)描繪函數(shù)概念,是一個(gè)抽象過(guò)程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來(lái)有一定的難度,加上學(xué)生數(shù)學(xué)基礎(chǔ)較差,理解能力,運(yùn)算能力等參差不齊等。

      三、教法、學(xué)法

      1、本節(jié)課采用的方法有:

      直觀教學(xué)法、啟發(fā)教學(xué)法、課堂討論法。

      2、采用這些方法的理論依據(jù):

      我一方面精心設(shè)計(jì)問(wèn)題情景,引導(dǎo)學(xué)生主動(dòng)探索,另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問(wèn)題的提出、問(wèn)題的解決為主線,設(shè)置問(wèn)題,倡導(dǎo)學(xué)生主動(dòng)參與,通過(guò)不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過(guò)程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過(guò)程,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”的教學(xué)原則。

      函數(shù)概念說(shuō)課稿4

      一、說(shuō)課內(nèi)容:

      蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題

      二、教材分析:

      1、教材的地位和作用

      這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來(lái)學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來(lái)的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過(guò)的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來(lái)學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

      2、教學(xué)目標(biāo)和要求:

      (1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問(wèn)題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問(wèn)題確定自變量的取值范圍。

      (2)過(guò)程與方法:復(fù)習(xí)舊知,通過(guò)實(shí)際問(wèn)題的引入,經(jīng)歷二次函數(shù)概念的探索過(guò)程,提高學(xué)生解決問(wèn)題的能力.

      (3)情感、態(tài)度與價(jià)值觀:通過(guò)觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.

      3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。

      4、教學(xué)難點(diǎn):由實(shí)際問(wèn)題確定函數(shù)解析式和確定自變量的取值范圍。

      三、教法學(xué)法設(shè)計(jì):

      1、從創(chuàng)設(shè)情境入手,通過(guò)知識(shí)再現(xiàn),孕伏教學(xué)過(guò)程

      2、從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程

      3、利用探索、研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程

      四、教學(xué)過(guò)程:

      (一)復(fù)習(xí)提問(wèn)

      1.什么叫函數(shù)?我們之前學(xué)過(guò)了那些函數(shù)?

      (一次函數(shù),正比例函數(shù),反比例函數(shù))

      2.它們的形式是怎樣的?

      (=x+b,≠0;=x ,≠0;= , ≠0)

      3.一次函數(shù)(=x+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有≠0的條件? 值對(duì)函數(shù)性質(zhì)有什么影響?

      【設(shè)計(jì)意圖】復(fù)習(xí)這些問(wèn)題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.

      (二)引入新課

      函數(shù)是研究?jī)蓚€(gè)變量在某變化過(guò)程中的相互關(guān)系,我們已學(xué)過(guò)正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)

      例1、(1)圓的半徑是r(c)時(shí),面積s (c)與半徑之間的關(guān)系是什么?

      解:s=πr(r>0)

      例2、用周長(zhǎng)為20的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積與矩形一邊長(zhǎng)x()之間的關(guān)系是什么?

      解: =x(20/2-x)=x(10-x)=-x+10x (0

      例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問(wèn)兩年后的本息和(元)與x之間的關(guān)系是什么(不考慮利息稅)?

      解: =100(1+x)

      =100(x+2x+1)

      = 100x+200x+100(0

      教師提問(wèn):以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

      【設(shè)計(jì)意圖】通過(guò)具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。

      (三)講解新課

      以上函數(shù)不同于我們所學(xué)過(guò)的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

      二次函數(shù)的定義:形如=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。

      鞏固對(duì)二次函數(shù)概念的理解:

      1、強(qiáng)調(diào)“形如”,即由形來(lái)定義函數(shù)名稱。二次函數(shù)即 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

      2、在 =ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問(wèn)題中,自變量的取值范圍是使實(shí)際問(wèn)題有意義的值。(如例1中要求r>0)

      3、為什么二次函數(shù)定義中要求a≠0 ?

      (若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

      4、在例3中,二次函數(shù)=100x2+200x+100中, a=100, b=200, c=100.

      5、b和c是否可以為零?

      由例1可知,b和c均可為零.

      若b=0,則=ax2+c;

      若c=0,則=ax2+bx;

      若b=c=0,則=ax2.

      注明:以上三種形式都是二次函數(shù)的特殊形式,而=ax2+bx+c是二次函數(shù)的一般形式.

      【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來(lái)的判斷二次函數(shù)做好鋪墊。

      判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.

      (1)=3(x-1)+1 (2)

      (3)s=3-2t (4)=(x+3)- x

      (5) s=10πr (6) =2+2x

      (8)=x4+2x2+1(可指出是關(guān)于x2的二次函數(shù))

      【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。

      (四)鞏固練習(xí)

      1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10c。

      (1)當(dāng)它的一條直角邊的長(zhǎng)為4.5c時(shí),求這個(gè)直角三角形的面積;

      (2)設(shè)這個(gè)直角三角形的面積為Sc2,其中一條直角邊為xc,求S關(guān)

      于x的函數(shù)關(guān)系式。

      【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過(guò)程,從而降低學(xué)生學(xué)習(xí)的難度。

      2.已知正方體的棱長(zhǎng)為xc,它的表面積為Sc2,體積為Vc3。

      (1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;

      (2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?

      【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問(wèn)題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過(guò)簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。

      3.設(shè)圓柱的高為h(c)是常量,底面半徑為rc,底面周長(zhǎng)為Cc,圓柱的體積為Vc3

      (1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;

      (2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?

      【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長(zhǎng)公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來(lái)。

      4. 籬笆墻長(zhǎng)30,靠墻圍成一個(gè)矩形花壇,寫出花壇面積(2)與長(zhǎng)x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.

      【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開(kāi)動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。

      (五)拓展延伸

      1. 已知二次函數(shù)=ax2+bx+c,當(dāng) x=0時(shí),=0;x=1時(shí),=2;x= -1時(shí),=1.求a、b、c,并寫出函數(shù)解析式.

      【設(shè)計(jì)意圖】在此稍微滲透簡(jiǎn)單的用待定系數(shù)法求二次函數(shù)解析式的問(wèn)題,為下節(jié)課的教學(xué)做個(gè)鋪墊。

      2.確定下列函數(shù)中的值

      (1)如果函數(shù)= x^2-3+2 +x+1是二次函數(shù),則的值一定是______

      (2)如果函數(shù)=(-3)x^2-3+2+x+1是二次函數(shù),則的值一定是______

      【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.

      (六) 小結(jié)思考:

      本節(jié)課你有哪些收獲?還有什么不清楚的地方?

      【設(shè)計(jì)意圖】讓學(xué)生來(lái)談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

      (七) 作業(yè)布置:

      必做題:

      1. 正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加,求關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?

      2. 在長(zhǎng)20c,寬15c的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xc的正方形,寫出余下木板的面積(c2)與正方形邊長(zhǎng)x(c)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。

      選做題:

      1.已知函數(shù) 是二次函數(shù),求的值。

      2.試在平面直角坐標(biāo)系畫出二次函數(shù)=x2和=-x2圖象

      【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

      五、教學(xué)設(shè)計(jì)思考

      以實(shí)現(xiàn)教學(xué)目標(biāo)為前提

      以現(xiàn)代教育理論為依據(jù)

      以現(xiàn)代信息技術(shù)為手段

      貫穿一個(gè)原則——以學(xué)生為主體的原則

      突出一個(gè)特色——充分鼓勵(lì)表?yè)P(yáng)的特色

      滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)

      函數(shù)概念說(shuō)課稿5

      “說(shuō)課”有利于提高教師理論素養(yǎng)和駕馭教材的能力,也有利于提高教師的語(yǔ)言表達(dá)能力,因而受到廣大教師的重視,登上了教育研究的大雅之堂。以下是小編整理的函數(shù)的概念說(shuō)課稿,希望對(duì)大家有幫助!

      尊敬的各位考官大家好,我是今天的X號(hào)考生,今天我說(shuō)課的題目是《函數(shù)的概念》。

      新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個(gè)性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過(guò)程等幾個(gè)方面展開(kāi)我的說(shuō)課。

      一、說(shuō)教材

      首先談?wù)勎覍?duì)教材的理解,《函數(shù)的概念》是北師大版必修一第二章2.1的內(nèi)容,本節(jié)課的內(nèi)容是函數(shù)概念。函數(shù)內(nèi)容是高中數(shù)學(xué)學(xué)習(xí)的一條主線,它貫穿整個(gè)高中數(shù)學(xué)學(xué)習(xí)中。又是溝通代數(shù)、方程、、不等式、數(shù)列、三角函數(shù)、解析幾何、導(dǎo)數(shù)等內(nèi)容的橋梁,同時(shí)也是今后進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。函數(shù)學(xué)習(xí)過(guò)程經(jīng)歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過(guò)程,通過(guò)學(xué)習(xí)可以提高了學(xué)生的數(shù)學(xué)思維能力。

      二、說(shuō)學(xué)情

      接下來(lái)談?wù)剬W(xué)生的實(shí)際情況。新課標(biāo)指出學(xué)生是教學(xué)的主體,所以要成為符合新課標(biāo)要求的教師,深入了解所面對(duì)的學(xué)生可以說(shuō)是必修課。本階段的學(xué)生已經(jīng)具備了一定的分析能力,以及邏輯推理能力。所以,學(xué)生對(duì)本節(jié)課的學(xué)習(xí)是相對(duì)比較容易的。

      三、說(shuō)教學(xué)目標(biāo)

      根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

      (一)知識(shí)與技能

      理解函數(shù)的概念,能對(duì)具體函數(shù)指出定義域、對(duì)應(yīng)法則、值域,能夠正確使用“區(qū)間”符號(hào)表示某些函數(shù)的定義域、值域。

      (二)過(guò)程與方法

      通過(guò)實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用進(jìn)一步加深集合與對(duì)應(yīng)數(shù)學(xué)思想方法。

      (三)情感態(tài)度價(jià)值觀

      在自主探索中感受到成功的喜悅,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

      四、說(shuō)教學(xué)重難點(diǎn)

      我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說(shuō)一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:函數(shù)的模型化思想,函數(shù)的三要素。本節(jié)課的教學(xué)難點(diǎn)是:符號(hào)“y=f(x)”的含義,函數(shù)定義域、值域的區(qū)間表示,從具體實(shí)例中抽象出函數(shù)概念。

      五、說(shuō)教法和學(xué)法

      現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的心理特征與認(rèn)知規(guī)律以問(wèn)題為主線,我采用啟發(fā)法、講授法、小組合作、自主探究等教學(xué)方法。

      六、說(shuō)教學(xué)過(guò)程

      下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過(guò)程的設(shè)計(jì)。

      (一)新課導(dǎo)入

      首先是導(dǎo)入環(huán)節(jié),提問(wèn):關(guān)于函數(shù)你知道什么?在初中階段對(duì)函數(shù)是如何下定義的?你能否舉一個(gè)例子。從而引出本節(jié)課的課題《函數(shù)概念》。

      利用初中的函數(shù)概念進(jìn)行導(dǎo)入,拉近學(xué)生與新知識(shí)之間的距離,幫助學(xué)生進(jìn)一步完善知識(shí)框架行程知識(shí)體系。

      (二)新知探索

      接下來(lái)是教學(xué)中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、自主探究法等。

      首先利用多媒體展示生活實(shí)例

      (1)某山的海拔高度與氣溫的變化關(guān)系;

      (2)汽車勻速行駛,路程和時(shí)間的變化關(guān)系;

      (3)沸點(diǎn)和氣壓的變化關(guān)系。

      引導(dǎo)學(xué)生分析歸納以上三個(gè)實(shí)例,他們之間有什么共同點(diǎn),并根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量之間的關(guān)系是否為函數(shù)關(guān)系。

      預(yù)設(shè):①都有兩個(gè)非空數(shù)集A、B;②兩個(gè)數(shù)集之間都有一種確定的對(duì)應(yīng)關(guān)系;③對(duì)于數(shù)集A中的每一個(gè)x,按照某種對(duì)應(yīng)關(guān)系f,在數(shù)集B中都有唯一確定的y值和它對(duì)應(yīng)。

      接下來(lái)引導(dǎo)學(xué)生思考通過(guò)對(duì)上述實(shí)例的共同點(diǎn)并結(jié)合課本歸納函數(shù)的概念。組織學(xué)生閱讀課本,在閱讀過(guò)程中注意思考以下問(wèn)題

      問(wèn)題1:函數(shù)的概念是什么?初中與高中對(duì)函數(shù)概念的定義的異同點(diǎn)是什么?符號(hào)“x”的含義是什么?

      問(wèn)題2:構(gòu)成函數(shù)的三要素是什么?

      問(wèn)題3:區(qū)間的概念是什么?區(qū)間與集合的關(guān)系是什么?在數(shù)軸上如何表示區(qū)間?

      十分鐘過(guò)后,組織學(xué)生進(jìn)行全班交流。

      預(yù)設(shè):函數(shù)的概念:給定兩個(gè)非空數(shù)集A和B,如果按照某個(gè)對(duì)應(yīng)關(guān)系f,對(duì)于集合A中任何一個(gè)數(shù)x,在集合B中都存在唯一確定的數(shù)f(x)與之對(duì)應(yīng),那么就把這對(duì)應(yīng)關(guān)系f叫作定義在幾何A上的函數(shù),記作f:A→B,或y=f(x),x∈A。此時(shí),x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)▏x∈A}叫作函數(shù)的值域。

      函數(shù)的三要素包括:定義域、值域、對(duì)應(yīng)法則。

      區(qū)間:

      為了使得學(xué)生對(duì)函數(shù)概念的本質(zhì)了解的更加深入此時(shí)進(jìn)行追問(wèn)

      追問(wèn)1:初中的函數(shù)概念與高中的函數(shù)概念有什么異同點(diǎn)?

      講解過(guò)程中注意強(qiáng)調(diào),函數(shù)的本質(zhì)為兩個(gè)數(shù)集之間都有一種確定的對(duì)應(yīng)關(guān)系,而且是一對(duì)一,或者多對(duì)一,不能一對(duì)多。

      追問(wèn)2:符號(hào)“y=f(x)”的含義是什么?“y=g(x)”可以表示函數(shù)嗎?

      講解過(guò)程中注意強(qiáng)調(diào),符號(hào)“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù)不是f與x相乘。

      追問(wèn)3:對(duì)應(yīng)關(guān)系f可以是什么形式?

      講解過(guò)程中注意強(qiáng)調(diào),對(duì)應(yīng)關(guān)系f可以是解析式、圖象、表格

      追問(wèn)4:函數(shù)的三要素可以缺失嗎?指出三個(gè)實(shí)例中的三要素分別是什么。

      講解過(guò)程中注意強(qiáng)調(diào),函數(shù)的三要素缺一不可。

      追問(wèn)5:用區(qū)間表示三個(gè)實(shí)例的定義域和值域。

      設(shè)計(jì)意圖:在這個(gè)過(guò)程當(dāng)中我將課堂完全交給學(xué)生,教師發(fā)揮組織者,引導(dǎo)者的作用,在運(yùn)用啟發(fā)性的原則,學(xué)生能夠獨(dú)立思考問(wèn)題,動(dòng)手操作,還能在這個(gè)過(guò)程中和同學(xué)之間討論,加強(qiáng)了學(xué)生們之間的交流,這樣有利于培養(yǎng)學(xué)生們的合作意識(shí)和探究能力。

      (三)課堂練習(xí)

      接下來(lái)是鞏固提高環(huán)節(jié)。

      組織學(xué)生自己列舉幾個(gè)生活中有關(guān)函數(shù)的例子,并用定義加以描述,指出函數(shù)的定義域和值域并用區(qū)間表示。

      這樣的問(wèn)題的設(shè)置,讓學(xué)生對(duì)知識(shí)進(jìn)一步鞏固,讓學(xué)生逐漸熟練掌握。

      (四)小結(jié)作業(yè)

      在課程的最后我會(huì)提問(wèn):今天有什么收獲?

      引導(dǎo)學(xué)生回顧:函數(shù)的概念、函數(shù)的三要素、區(qū)間的表示。

      本節(jié)課的課后作業(yè)我設(shè)計(jì)為:

      1.求解下列函數(shù)的值

      (1)已知f(x)=5x-3,求發(fā)(x)=4。

      (2)已知

      求g(2)。

      2.如圖,某灌溉渠道的橫截面是等腰梯形,底寬2m,渠深1.8m,邊坡的傾角是45°

      (1)試用解析表達(dá)式將橫截面中水的面積A表示成水深h的函數(shù)

      (2)確定函數(shù)的定義域和值域

      (3)嘗試?yán)L制函數(shù)的圖象

      這樣的設(shè)計(jì)能讓學(xué)生理解本節(jié)課的核心,并為下節(jié)課學(xué)習(xí)函數(shù)的表示方法做鋪墊。

      函數(shù)概念說(shuō)課稿6

      一、說(shuō)課內(nèi)容:

      蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題二、教材分析:

      1、教材的地位和作用這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來(lái)學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來(lái)的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過(guò)的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來(lái)學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。

      2、教學(xué)目標(biāo)和要求:

      (1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問(wèn)題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問(wèn)題確定自變量的取值范圍。

      (2)過(guò)程與方法:復(fù)習(xí)舊知,通過(guò)實(shí)際問(wèn)題的引入,經(jīng)歷二次函數(shù)概念的探索過(guò)程,提高學(xué)生解決問(wèn)題的能力。

      (3)情感、態(tài)度與價(jià)值觀:通過(guò)觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心。

      3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。

      4、教學(xué)難點(diǎn):由實(shí)際問(wèn)題確定函數(shù)解析式和確定自變量的取值范圍。

      二、教法學(xué)法設(shè)計(jì):

      1、從創(chuàng)設(shè)情境入手,通過(guò)知識(shí)再現(xiàn),孕伏教學(xué)過(guò)程。

      2、從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程。

      3、利用探索、研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程四。

      三、教學(xué)過(guò)程:

      (一)復(fù)習(xí)提問(wèn)

      1.什么叫函數(shù)?我們之前學(xué)過(guò)了那些函數(shù)?(一次函數(shù),正比例函數(shù),反比例函數(shù))

      2.它們的形式是怎樣的?(y=kx+b,k≠0;y=kx,k≠0;y=,k≠0)3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件?k值對(duì)函數(shù)性質(zhì)有什么影響?

      (二)設(shè)計(jì)意圖

      復(fù)習(xí)這些問(wèn)題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較。

      引入新課函數(shù)是研究?jī)蓚€(gè)變量在某變化過(guò)程中的相互關(guān)系,我們已學(xué)過(guò)正比例函數(shù),反比例函數(shù)和一次函數(shù)。

      看下面三個(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系:

      例1、(1)圓的半徑是r(cm)時(shí),面積s(cm)與半徑之間的關(guān)系是什么?解:s=πr(r>0)。

      例2、用周長(zhǎng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m)與矩形一邊長(zhǎng)x(m)之間的關(guān)系是什么?解:y=x(20/2—x)=x(10—x)=—x+10x(0

      例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問(wèn)兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?解:y=100(1+x)=100(x+2x+1)=100x+200x+100(0

      教師提問(wèn):以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?

      (三)講解新課以上函數(shù)不同于我們所學(xué)過(guò)的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。

      二次函數(shù)的定義:形如y=ax2+bx+c(a≠0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。

      鞏固對(duì)二次函數(shù)概念的理解:

      1、強(qiáng)調(diào)“形如”,即由形來(lái)定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。

      2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問(wèn)題中,自變量的取值范圍是使實(shí)際問(wèn)題有意義的值。(如例1中要求r>0)

      3、為什么二次函數(shù)定義中要求a≠0?(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)

      4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.5、b和c是否可以為零?

      (四)鞏固練習(xí)

      已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。

      (1)當(dāng)它的一條直角邊的長(zhǎng)為4。5cm時(shí),求這個(gè)直角三角形的面積;

      (2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)于x的函數(shù)關(guān)系式。

      此題由具體數(shù)據(jù)逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過(guò)程,從而降低學(xué)生學(xué)習(xí)的難度。

      (五)小結(jié)思考:本節(jié)課你有哪些收獲?還有什么不清楚的地方?

      讓學(xué)生來(lái)談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。

      (六)作業(yè)布置

      必做題:

      正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加y,求y關(guān)于x的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?

      在長(zhǎng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍?

      選做題:

      1、已知函數(shù)是二次函數(shù),求m的值?

      2、試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=—x2圖象?

      作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。

      函數(shù)概念說(shuō)課稿7

      尊敬的各位評(píng)委、老師們:

      大家好!

      今天我說(shuō)課的內(nèi)容是《函數(shù)的概念》,選自人教版高中數(shù)學(xué)必修一第一章第二節(jié)。下面介紹我對(duì)本節(jié)課的設(shè)計(jì)和構(gòu)思,請(qǐng)您多提寶貴意見(jiàn)。

      我的說(shuō)課有以下六個(gè)部分:

      一、背景分析

      1、學(xué)習(xí)任務(wù)分析

      本節(jié)課是必修1第1章第2節(jié)的內(nèi)容,是函數(shù)這一章的起始課,它上承集合,下引性質(zhì),與方程、不等式、數(shù)列、三角函數(shù)、解析幾何、導(dǎo)數(shù)等內(nèi)容聯(lián)系密切,是學(xué)好后繼知識(shí)的基礎(chǔ)和工具,所以本節(jié)課在數(shù)學(xué)教學(xué)中的地位和作用是至關(guān)重要的。

      2、學(xué)情分析

      學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù)的概念,初步具備了學(xué)習(xí)函數(shù)概念的基本能力,但函數(shù)的概念從初中的變量學(xué)說(shuō)到高中階段的對(duì)應(yīng)說(shuō)很抽象,不易理解。

      另外,通過(guò)對(duì)集合的學(xué)習(xí),學(xué)生基本適應(yīng)了有效教學(xué)的課堂模式,初步具備了小組合作、自主探究的學(xué)習(xí)能力。

      基于以上的分析,我認(rèn)為本節(jié)課的教學(xué)重點(diǎn)為:函數(shù)的概念以及構(gòu)成函數(shù)的三要素;

      教學(xué)難點(diǎn)為:函數(shù)概念的形成及理解。

      二、教學(xué)目標(biāo)設(shè)計(jì)

      根據(jù)《課程標(biāo)準(zhǔn)》對(duì)本節(jié)課的學(xué)習(xí)要求,結(jié)合本班學(xué)生的情況,故而確立本節(jié)課的教學(xué)目標(biāo)。

      1、知識(shí)與技能(方面)

      通過(guò)豐富的實(shí)例,讓學(xué)生

      ①了解函數(shù)是非空數(shù)集到非空數(shù)集的一個(gè)對(duì)應(yīng);

      ②了解構(gòu)成函數(shù)的三要素;

      ③理解函數(shù)概念的本質(zhì);

      ④理解f(x)與f(a)(a為常數(shù))的區(qū)別與聯(lián)系;

      ⑤會(huì)求一些簡(jiǎn)單函數(shù)的定義域。

      2、過(guò)程與方法(方面)

      在教學(xué)過(guò)程中,結(jié)合生活中的實(shí)例,通過(guò)師生互動(dòng)、生生互動(dòng)培養(yǎng)學(xué)生分析推理、歸納總結(jié)和表達(dá)問(wèn)題的能力,在函數(shù)概念的構(gòu)建過(guò)程中體會(huì)類比、歸納、猜想等數(shù)學(xué)思想方法。

      3、情感、態(tài)度與價(jià)值觀(方面)

      讓學(xué)生充分體驗(yàn)函數(shù)概念的形成過(guò)程,參與函數(shù)定義域的求解過(guò)程以及函數(shù)的求值過(guò)程,使學(xué)生感受到數(shù)學(xué)的抽象美與簡(jiǎn)潔美。

      三、課堂結(jié)構(gòu)設(shè)計(jì)

      為充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,變被動(dòng)學(xué)習(xí)為主動(dòng)愉快的探究,我使用有效教學(xué)的課堂模式,課前學(xué)生通過(guò)結(jié)構(gòu)化預(yù)習(xí),完成問(wèn)題生成單,課中采用師生互動(dòng)、小組討論、學(xué)生展寫、展講例題,教師點(diǎn)評(píng)的方式完成問(wèn)題解決單,課后完成問(wèn)題拓展單,課堂結(jié)構(gòu)包含:

      復(fù)習(xí)舊知,引出課題(約2分鐘)創(chuàng)設(shè)情境,形成概念(約5分鐘)剖析概念(約12分鐘)例題分析,鞏固知識(shí)——小組討論,展寫例題(約8分鐘)小組展講,教師點(diǎn)評(píng)(約10分鐘)總結(jié)反思,知識(shí)升華(約2分鐘)(最后)布置作業(yè),拓展練習(xí)。

      四、教學(xué)媒體設(shè)計(jì)

      教學(xué)中利用投影與黑板相結(jié)合的形式,利用投影直觀、生動(dòng)地展示實(shí)例,并能增加課堂容量;利用黑板列舉本節(jié)重要內(nèi)容,使學(xué)生對(duì)所學(xué)內(nèi)容有一整體認(rèn)識(shí),并讓學(xué)生利用黑板展寫、展講例題,有問(wèn)題及時(shí)發(fā)現(xiàn)及時(shí)解決。

      五、教學(xué)過(guò)程設(shè)計(jì)

      本節(jié)課圍繞問(wèn)題的解決與重難點(diǎn)的突破,設(shè)計(jì)了下面的教學(xué)過(guò)程。

      整個(gè)教學(xué)過(guò)程按四個(gè)環(huán)節(jié)展開(kāi):

      首先,在第一環(huán)節(jié)——復(fù)習(xí)舊知,引出課題,先由兩個(gè)問(wèn)題導(dǎo)入新課

      ①初中時(shí)函數(shù)是如何定義的?

      ②y=1是函數(shù)嗎?

      [設(shè)計(jì)意圖]:學(xué)生通過(guò)對(duì)這兩個(gè)問(wèn)題的思考與討論,發(fā)現(xiàn)利用初中的定義很難回答第②個(gè)問(wèn)題,從而激起他們的好奇心:高中階段的函數(shù)概念會(huì)是什么?激發(fā)他們學(xué)習(xí)本節(jié)課的強(qiáng)烈愿望和情感,使他們處于積極主動(dòng)的探究狀態(tài),大大提高了課堂效率。

      從學(xué)生的心理狀態(tài)與認(rèn)知規(guī)律出發(fā),教學(xué)過(guò)程自然過(guò)渡到第二個(gè)環(huán)節(jié)——函數(shù)概念的形成。

      由于高中階段的函數(shù)概念本身比較抽象,看不見(jiàn)也摸不著,不易直接給出,因此在本環(huán)節(jié)中,我主要通過(guò)學(xué)生能看見(jiàn)能感知的生活中的3個(gè)實(shí)例出發(fā),由具體到抽象,由特殊到一般,一步步歸納形成函數(shù)的概念,此過(guò)程我稱之為“創(chuàng)設(shè)情境,形成概念”。

      對(duì)于這3個(gè)實(shí)例,我分別預(yù)設(shè)一個(gè)問(wèn)題讓學(xué)生思考與體會(huì)。

      問(wèn)題1:從炮彈發(fā)射到落地的0-26s時(shí)間內(nèi),集合A是否存在某一時(shí)間t,在B中沒(méi)有高度h與之對(duì)應(yīng)?是否有兩個(gè)或多個(gè)高度與之相對(duì)應(yīng)?

      問(wèn)題2:從1979—20xx年,集合A是否存在某一時(shí)間t,在B中沒(méi)有面積S與之對(duì)應(yīng)?是否有兩個(gè)或多個(gè)面積與它相對(duì)應(yīng)嗎?

      問(wèn)題3:從1991—20xx年間,集合A中是否存在某一時(shí)間t,在B中沒(méi)恩格爾系數(shù)與之對(duì)應(yīng)?是否會(huì)有兩個(gè)或多個(gè)恩格爾系數(shù)與對(duì)應(yīng)?

      [設(shè)計(jì)意圖]:通過(guò)循序漸進(jìn)地提問(wèn),變教為誘,以誘達(dá)思,引導(dǎo)學(xué)生根據(jù)問(wèn)題總結(jié)3個(gè)實(shí)例的各自特點(diǎn),并綜合各自特點(diǎn),歸納它們的公共特征,著重向?qū)W生滲透集合與對(duì)應(yīng)的觀點(diǎn),這樣,再讓學(xué)生經(jīng)歷由具體到抽象的概括過(guò)程,用集合、對(duì)應(yīng)的語(yǔ)言來(lái)描述函數(shù)時(shí)就顯得水到渠成,難點(diǎn)得以突破。

      函數(shù)的概念既已形成,本節(jié)課自然進(jìn)入了第3個(gè)環(huán)節(jié)——剖析概念,理解概念。

      函數(shù)概念的理解是本節(jié)課的重點(diǎn)也是難點(diǎn),概念本身比較抽象,學(xué)生在理解上可能把握不準(zhǔn)確,所以我分兩個(gè)步驟來(lái)進(jìn)行剖析,由具體到抽象,螺旋上升。

      首先,在學(xué)生熟讀熟背函數(shù)概念的基礎(chǔ)上,我設(shè)計(jì)一個(gè)學(xué)生活動(dòng),讓學(xué)生充分參與,在參與中體會(huì)學(xué)習(xí)的快樂(lè)。

      我利用多媒體制作一個(gè)表格,請(qǐng)學(xué)號(hào)為01—05的同學(xué)填寫自己上次的數(shù)學(xué)考試成績(jī),并提出3個(gè)問(wèn)題:

      問(wèn)題1:若學(xué)號(hào)構(gòu)成集合A,成績(jī)構(gòu)成集合B,對(duì)應(yīng)關(guān)系f:上次數(shù)學(xué)考試成績(jī),那么由A到B能否構(gòu)成函數(shù)?

      問(wèn)題2:若將問(wèn)題1中“學(xué)號(hào)”改為“01—05的學(xué)生”,其余不變,那么由A到B能否構(gòu)成函數(shù)?

      問(wèn)題3:若學(xué)號(hào)04的學(xué)生上次考試因病缺考,無(wú)成績(jī),那么對(duì)問(wèn)題1學(xué)號(hào)與成績(jī)能否構(gòu)成函數(shù)?

      [設(shè)計(jì)意圖]:通過(guò)層層提問(wèn),層層回答,讓學(xué)生對(duì)概念中關(guān)鍵詞的把握更為準(zhǔn)確,對(duì)函數(shù)概念的理解更為具體,為總結(jié)歸納函數(shù)概念的本質(zhì)特征打下基礎(chǔ)。

      其次,我通過(guò)幻燈片的形式展示幾組數(shù)集的對(duì)應(yīng)關(guān)系,讓學(xué)生分析討論哪些對(duì)應(yīng)關(guān)系能構(gòu)成函數(shù),在學(xué)生深刻認(rèn)識(shí)到函數(shù)是非空數(shù)集到非空數(shù)集的一對(duì)一或多對(duì)一的對(duì)應(yīng)關(guān)系,并能準(zhǔn)確把握概念中的關(guān)鍵詞后,再著重強(qiáng)強(qiáng)在這兩種對(duì)應(yīng)關(guān)系中,何為定義域,何為值域,值域和集合B有什么關(guān)系,強(qiáng)調(diào)函數(shù)的三要素,得出兩函數(shù)相等的條件。

      至此,本節(jié)課的第三個(gè)環(huán)節(jié)已經(jīng)完成,對(duì)于區(qū)間的概念,學(xué)生通過(guò)預(yù)習(xí)能夠理解課堂上不再多講,僅在多媒體上進(jìn)行展示,但會(huì)在后面例題的使用中指出注意事項(xiàng)。

      在本節(jié)課的第四個(gè)環(huán)節(jié)——例題分析中,我重點(diǎn)以例題的形式考查函數(shù)的有關(guān)概念問(wèn)題,簡(jiǎn)單函數(shù)的定義域問(wèn)題以及函數(shù)的求值問(wèn)題,至于分段函數(shù)、復(fù)合函數(shù)的求值及定義域問(wèn)題,將在下節(jié)課予以解決,本環(huán)節(jié)主要通過(guò)學(xué)生討論、展寫、展講、學(xué)生互評(píng)、教師點(diǎn)評(píng)的方式完成知識(shí)的鞏固,讓學(xué)生成為課堂的主人。

      最后,通過(guò)

      ——總結(jié)點(diǎn)評(píng),完善知識(shí)體系

      ——課堂練習(xí),鞏固知識(shí)掌握

      ——布置作業(yè),沉淀教學(xué)成果

      六、教學(xué)評(píng)價(jià)設(shè)計(jì)

      教學(xué)是動(dòng)態(tài)生成的過(guò)程,課堂上必然會(huì)有難以預(yù)料的事情發(fā)生,具體的教學(xué)過(guò)程還應(yīng)根據(jù)實(shí)際情況加以調(diào)整。

      最后,引用赫爾巴特的一句名言結(jié)束我的說(shuō)課,那就是“發(fā)揮我們教師的創(chuàng)造性,使教育過(guò)程成為一種藝術(shù)的事業(yè),使我們不聰明的孩子變的聰明,使我們聰明的孩子變的更聰明”。

      謝謝大家!

      第三篇:定積分概念說(shuō)課稿

      定積分的概念說(shuō)課稿

      一、教材分析

      1、教材的地位和作用

      本節(jié)課選自二十一世紀(jì)普通高等教育系列教材《高等數(shù)學(xué)》第三章第二節(jié)定積分的概念與性質(zhì),是上承導(dǎo)數(shù)、不定積分,下接定積分在水力學(xué)、電工學(xué)、采油等其他學(xué)科中的應(yīng)用。定積分的應(yīng)用在高職院校理工類各專業(yè)課程中十分普遍。

      2、教學(xué)目標(biāo)

      根據(jù)教材內(nèi)容及教學(xué)大綱要求,參照學(xué)生現(xiàn)有的知識(shí)水平和理解能力,確定本節(jié)課的教學(xué)目標(biāo)為:

      (1)知識(shí)目標(biāo):掌握定積分的概念,幾何意義和性質(zhì)

      (2)能力目標(biāo):掌握“分割、近似代替、求和、取極限”的方法,培養(yǎng)邏輯思維能力和進(jìn)行知識(shí)遷移的能力,培養(yǎng)創(chuàng)新能力。

      (3)思想目標(biāo):激發(fā)學(xué)習(xí)熱情,強(qiáng)化參與意識(shí),培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

      3、教學(xué)重點(diǎn)和難點(diǎn)

      教學(xué)重點(diǎn):定積分的概念和思想

      教學(xué)難點(diǎn):理解定積分的概念,領(lǐng)會(huì)定積分的思想

      二、學(xué)情分析

      一般來(lái)說(shuō),學(xué)生從知識(shí)結(jié)構(gòu)上來(lái)說(shuō)屬于好壞差別很大,有的接受很快,有的接受很慢,有的根本聽(tīng)不懂,基于這些特點(diǎn),綜合教材內(nèi)容,我以板書教學(xué)為主,多媒體課件為輔,把概念性較強(qiáng)的課本知識(shí)直觀化、形象化,引導(dǎo)學(xué)生探究性學(xué)習(xí)。

      三、教法和學(xué)法

      1、教法方面

      以講授為主:案例教學(xué)法(引入概念)問(wèn)題驅(qū)動(dòng)法(加深理解)練習(xí)法(鞏固知識(shí))

      直觀性教學(xué)法(變抽象為具體)

      2、學(xué)法方面:

      板書教學(xué)為主,多媒體課件為輔(化解難點(diǎn)、保證重點(diǎn))

      (1)發(fā)現(xiàn)法解決第一個(gè)案例

      (2)模仿法解決第二個(gè)案例

      (3)歸納法總結(jié)出概念(4)練習(xí)法鞏固加深理解

      四、教學(xué)程序

      1、組織教學(xué)

      2、導(dǎo)入新課:

      我們前面剛剛學(xué)習(xí)了不定積分的一些基本知識(shí),我們知道不定積分的概念、幾何意義和性質(zhì),今天我們要學(xué)習(xí)定積分的概念、幾何意義和性質(zhì)。

      3、講授新課(分為三個(gè)時(shí)段)

      第一時(shí)段講授

      概念:

      案例1:曲邊梯形的面積如何求?

      首先用多媒體演示一個(gè)曲邊梯形,然后提出問(wèn)題

      (1)什么是曲邊梯形?

      (2)有關(guān)歷史:簡(jiǎn)單介紹割圓術(shù)及微積分背景

      (3)探究:提出幾個(gè)問(wèn)題(注意啟發(fā)與探究)

      a、能否直接求出面積的準(zhǔn)確值?

      b、用什么圖形的面積來(lái)代替曲邊梯形的面積呢?三角形、矩形、梯形?采用一個(gè)矩形的面積來(lái)近似與二個(gè)矩形的面積來(lái)近似,一般來(lái)說(shuō)哪個(gè)值更接近?二個(gè)矩形與三個(gè)相比呢?……探究階段、概念引入階段、創(chuàng)設(shè)情境、拋磚引玉

      (4)猜想:讓學(xué)生大膽設(shè)想,使用什么方法,可使誤差越來(lái)越小,直到為零?

      (5)論證:多媒體圖像演示,直觀形象模擬,讓學(xué)生逐步觀察到求出面積的方法.(6)教師講解分析:“分割成塊、近似代替、積累求和、無(wú)窮累加”的微積分思想方法。思解階段、概念探索階段、啟發(fā)探究、引人入勝

      (7)總結(jié): 總結(jié)出求該平面圖形面積的極限式公式

      案例2.如何求變速直線運(yùn)動(dòng)物體的路程?

      (1)提問(wèn): 通過(guò)類似方法解決,注意啟發(fā)引導(dǎo)。

      (2)歸納:用數(shù)學(xué)表達(dá)式表示。

      案例1和案例2的共同點(diǎn):特殊的和式極限,并寫出模型。

      方法:化整為零細(xì)劃分,不變代變得微分, 積零為整微分和,無(wú)限累加得積分。

      歸結(jié)階段、提煉概念階段、類比探究、數(shù)學(xué)建模

      (1)定義: 寫出定積分的概念。

      (2)疑問(wèn):不同的分割方法,不同的矩形的高度計(jì)算,對(duì)曲邊梯形的面積有何影響?

      (3)定義說(shuō)明

      (4)簡(jiǎn)單應(yīng)用

      曲邊梯形面積 直線運(yùn)動(dòng)路程

      定義階段、抓本質(zhì)建立概念、深化概念

      1、根據(jù)定積分的幾何意義,求??20sinxdx例

      2、比較?20?xdx與?20sin?xdx的積分值的大小分析并解題解題示范、鞏固理解概念階段

      練習(xí)1 定義計(jì)算 dxex?10練習(xí)2 將由曲線及直線y=0,x=0,x=1圍成的平面圖形的面積用定積分表示。學(xué)生練習(xí),教師點(diǎn)評(píng)練習(xí)、訓(xùn)練鞏固階段意義:意義應(yīng)用概念階段、概念具體化1.幾何意義分f(x)>0, f(x)<0和f(x)符號(hào)不定三種情況。利用圖形直觀即可得出(關(guān)鍵要說(shuō)明代數(shù)和的含義及原因)。2.范例(1)將幾個(gè)平面圖形的面積用定積分表示(題目略)。(2)利用幾何意義求定積分??20)32(dxx的值。第二時(shí)段指導(dǎo)練習(xí)題

      4、歸納總結(jié): 總結(jié):梳理知識(shí)、鞏固重點(diǎn)(1)、回顧四個(gè)步驟:①分割②近似③求和④取極限(2)、回顧定積分作為和式極限的概念(3)、加深概念理解的幾個(gè)注意點(diǎn)(4)、幾何意義 第三時(shí)段測(cè)驗(yàn)

      5、作業(yè)布置

      第四篇:算法的概念說(shuō)課稿

      1.1.1 算法的概念說(shuō)課稿

      陽(yáng)泉十一中

      崔建華

      我說(shuō)課的題目是《算法的概念》,下面我從教材分析、學(xué)情分析、目標(biāo)分析、教法學(xué)法、教學(xué)過(guò)程、教學(xué)反思談?wù)勎覍?duì)這節(jié)課的設(shè)想。一.教材分析

      本節(jié)內(nèi)容選自高中數(shù)學(xué)人教A版《必修3》第一章第一節(jié)《算法與程序框圖》,本節(jié)是第一課時(shí)---《算法的概念》。

      算法在高中數(shù)學(xué)課程中是新內(nèi)容,算法的思想方法幾乎貫穿整個(gè)高中數(shù)學(xué)課程的所有章節(jié),如解三角形、數(shù)學(xué)歸納法、數(shù)學(xué)建模等.算法概念的引入有助于理解算法的思想,為后面的學(xué)習(xí)奠定基礎(chǔ)。

      二、學(xué)情分析

      學(xué)生在初中接觸過(guò)算法,例如本節(jié)課出現(xiàn)的二元一次方程組的解法,但沒(méi)有明確的算法的概念。本班學(xué)生為一個(gè)普通大班,需要提高總結(jié)歸納能力。

      三、目標(biāo)分析

      本節(jié)課通過(guò)對(duì)具體問(wèn)題的解決過(guò)程與步驟的分析,讓學(xué)生體會(huì)算法的思想,了解算法的含義.具體目標(biāo)為:

      1. 要求學(xué)生了解算法的含義,體會(huì)算法的思想.2. 在分析實(shí)例的基礎(chǔ)上了解算法的基本特征.3. 能夠用自然語(yǔ)言描述一些具體問(wèn)題的算法.本節(jié)課教學(xué)重點(diǎn)通過(guò)實(shí)例讓學(xué)生體會(huì)算法思想,會(huì)用自然語(yǔ)言表達(dá)一些具體問(wèn)題的算法,難點(diǎn)是把自然語(yǔ)言轉(zhuǎn)化為算法語(yǔ)言.

      四、教法學(xué)法

      教法上采用情境式教學(xué)、問(wèn)題式教學(xué)、探究式教學(xué)、體現(xiàn)教師的 啟發(fā)引導(dǎo)與評(píng)價(jià)。學(xué)生通過(guò)觀察類比、自主探究 合作交流、練習(xí)總結(jié)等方法學(xué)習(xí)。

      五、教學(xué)過(guò)程

      本節(jié)課教學(xué),先介紹元代數(shù)學(xué)家朱世杰的《四元玉鑒》,引出介紹我國(guó)古代部分?jǐn)?shù)學(xué)成就,對(duì)學(xué)生滲透愛(ài)國(guó)主義教育.接著圍繞算法概念,立足于用自然語(yǔ)言描述解決問(wèn)題過(guò)程中的明確順序.根據(jù)這節(jié)課的教學(xué)內(nèi)容、教學(xué)目標(biāo),采用以教師引導(dǎo)分析幫助學(xué)生建立算法概念,著重一個(gè)“導(dǎo)”字,并通過(guò)適量的練習(xí)加以鞏固.通過(guò)例題設(shè)計(jì)算法,幫助學(xué)生學(xué)會(huì)用自然語(yǔ)言描述算法.重點(diǎn)是通過(guò)設(shè)計(jì)幫助學(xué)生領(lǐng)會(huì)算法概念,而不在于算法所涉及問(wèn)題的本身.教學(xué)時(shí)可以先讓學(xué)生回顧問(wèn)題的解題過(guò)程,再讓他們整理出步驟,并有條理的用自然語(yǔ)言表達(dá)出來(lái).通過(guò)這樣的教學(xué)使學(xué)生體會(huì)算法設(shè)計(jì)的基本思路.六、教學(xué)反思

      本節(jié)課是概念課,而概念的形成需要“延遲”,需要先給學(xué)生思維活動(dòng)的機(jī)會(huì),讓學(xué)生充分感知概念的內(nèi)涵,從而使概念形成水到渠成.算法概念沒(méi)有統(tǒng)一的定義,因此,需要?jiǎng)?chuàng)設(shè)條件,使學(xué)生從概念的特征方面去真正理解概念.由此出發(fā),教學(xué)過(guò)程設(shè)計(jì)的“問(wèn)題鏈”要圍繞上述要求進(jìn)行,使“問(wèn)題鏈”能產(chǎn)生學(xué)生有效的思維活動(dòng),能一環(huán)一環(huán)相扣,引導(dǎo)學(xué)生理解算法概念.算法教學(xué)應(yīng)緊扣教材,研究的問(wèn)題以數(shù)學(xué)問(wèn)題為主,避免將算法概念泛化。

      第五篇:《反函數(shù)的概念》說(shuō)課稿

      《反函數(shù)的概念》說(shuō)課稿

      本次說(shuō)課主要從五個(gè)部分進(jìn)行,分別是教材分析、學(xué)情分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析和教學(xué)設(shè)計(jì)。

      首先是教材分析:

      我所使用的教材選自人教2003年版的《全日制普通高級(jí)中學(xué)教科書數(shù)學(xué)第一冊(cè)(上)》,《反函數(shù)》函數(shù)部分的一個(gè)重難點(diǎn),也是研究?jī)蓚€(gè)函數(shù)相互關(guān)系的重要內(nèi)容,而反函數(shù)的概念又是其中的抽象難理解部分,因此反函數(shù)概念的學(xué)習(xí)有助于學(xué)生進(jìn)一步加深對(duì)函數(shù)的認(rèn)識(shí)和理解。

      接著是學(xué)情分析:

      高一的學(xué)生在學(xué)習(xí)反函數(shù)之前,已經(jīng)對(duì)函數(shù)的概念、表示法,映射等內(nèi)容有了一定的認(rèn)識(shí)和了解,那么有了這些儲(chǔ)備知識(shí),學(xué)生在本節(jié)課的學(xué)習(xí)中可以在教師的引導(dǎo)下進(jìn)行思考和理解,從而能較好地完成對(duì)本節(jié)課的學(xué)習(xí)。

      接下來(lái)的教學(xué)目標(biāo)分析是從知識(shí)與技能、過(guò)程與方法、情感與態(tài)度入手的:

      知識(shí)與技能:讓學(xué)生學(xué)生了解反函數(shù)的概念;通過(guò)本節(jié)課的學(xué)習(xí)會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù) 過(guò)程與方法:教學(xué)上使用引導(dǎo)、發(fā)現(xiàn)法,這主要通過(guò)從具體到抽象、從特殊到一般的過(guò)渡方式來(lái)實(shí)現(xiàn)。

      情感與態(tài)度(也就是德育目標(biāo)):通過(guò)本節(jié)課的學(xué)習(xí),能使學(xué)生發(fā)現(xiàn)函數(shù)內(nèi)部因素相互聯(lián)系,從而培養(yǎng)他們善于發(fā)現(xiàn)分析的能力,使他們學(xué)會(huì)以發(fā)現(xiàn)分析的目光去關(guān)注數(shù)學(xué),以聯(lián)系發(fā)展的態(tài)度去學(xué)習(xí)數(shù)學(xué)。

      第四部分是教學(xué)重難點(diǎn)分析

      本節(jié)課的教學(xué)重點(diǎn)放在反函數(shù)的概念、反函數(shù)的求法上,而由于反函數(shù)的概念相對(duì)抽象難理解,所以教學(xué)難點(diǎn)自然落在了反函數(shù)的概念理解。

      下面我對(duì)第五部分的教學(xué)設(shè)計(jì)進(jìn)行詳細(xì)展開(kāi): 我的整個(gè)教學(xué)過(guò)程分成五個(gè)環(huán)節(jié)

      一、新課引入

      由于反函數(shù)的概念比較抽象難理解,在概念講解前先以具體例子入手逐步引導(dǎo),這樣比較符合學(xué)生的接受規(guī)律。

      聯(lián)系函數(shù)的三要素,通過(guò)給出的兩對(duì)函數(shù)之間三要素變化的比較,讓學(xué)生對(duì)反函數(shù)首先有了一個(gè)大概的認(rèn)識(shí),然后再對(duì)反函數(shù)下嚴(yán)格的定義并進(jìn)行詳細(xì)的講解。

      二、概念講解

      由于教材中給出的反函數(shù)的概念較長(zhǎng)且較抽象,會(huì)給學(xué)生在理解上產(chǎn)生一定的難度,故引導(dǎo)學(xué)生從另外的角度分三步完成對(duì)反函數(shù)概念的理解,這樣較易于學(xué)生接受和理解。

      1.由函數(shù)式y(tǒng)?f(x)x?A y?C,得到式子 x??(y)

      2.根據(jù)函數(shù)的概念去說(shuō)明x??(y)是一個(gè)函數(shù),其中定義域?yàn)镃,值域?yàn)锳.3.下結(jié)論說(shuō)明函數(shù)x??(y)是函數(shù)y?f(x)的反函數(shù),并記作x?f?1(y),一般互換x和y,寫作y?f?1(x).三、通過(guò)問(wèn)題的討論加深學(xué)生對(duì)反函數(shù)的認(rèn)識(shí)和理解

      1.所有函數(shù)都有反函數(shù)嗎?

      通過(guò)兩個(gè)具體的函數(shù)(在講課的課件中有詳細(xì)給出)的異同,引導(dǎo)分析發(fā)現(xiàn)并不是所有的函數(shù)都有反函數(shù)。

      2.互為反函數(shù)的函數(shù)有什么關(guān)系?

      通過(guò)引入部分例子分析,結(jié)合反函數(shù)的概念,引導(dǎo)學(xué)生從從函數(shù)的三要素出發(fā)去描述互為反函數(shù)的兩函數(shù)之間的關(guān)系:

      (1)對(duì)應(yīng)法則互逆(2)定義域與值域互換 3.y?f?1(x)的反函數(shù)是什么?

      ?1 在回答了第二個(gè)問(wèn)題的基礎(chǔ)上,引導(dǎo)學(xué)生利用以上結(jié)論發(fā)現(xiàn)y?f(x)的反函數(shù)恰好是y?f(x),即有y?f(x)與y?f?1(x)互為反函數(shù)。

      四、例題、聯(lián)系相結(jié)合,歸納求反函數(shù)的方法

      首先分析講解例題中的(1)、(2),再讓學(xué)生結(jié)合反函數(shù)概念的分步理解思考?xì)w納,嘗試從解題過(guò)程中總結(jié)出求已知函數(shù)反函數(shù)的一般方法。

      1.找原函數(shù)的值域;

      2.由原函數(shù)式解出x??(y); 3.互換x和y的位置; 4.標(biāo)注反函數(shù)的定義域。

      簡(jiǎn)化為一句話:一找、二解、三換、四標(biāo)。

      本次課堂不再安排別的練習(xí)題,而讓學(xué)生對(duì)照求法步驟,自行完成(3)、(4)的求解作為課堂練習(xí)。

      五、課堂小結(jié)、布置作業(yè)

      本節(jié)課所布置的作業(yè)是求已知函數(shù)的反函數(shù),主要為了鞏固學(xué)生對(duì)本節(jié)課知識(shí)的學(xué)習(xí)并加強(qiáng)對(duì)反函數(shù)求法的使用。

      本節(jié)課的整個(gè)課堂設(shè)計(jì),希望能從從新課引入到概念講解、從概念學(xué)習(xí)到深入學(xué)習(xí)理解,實(shí)現(xiàn)從從具體到抽象、從特殊到一般的過(guò)渡方式。我覺(jué)得這樣的設(shè)計(jì),符合學(xué)生學(xué)習(xí)的循序漸進(jìn)的接受規(guī)律,在教學(xué)過(guò)程中可以貫穿著教師引導(dǎo)學(xué)生討論學(xué)習(xí)的主線,體現(xiàn)了教師教學(xué)的輔助作用與學(xué)生學(xué)習(xí)的主體地位。

      下載集合的概念 (說(shuō)課稿)word格式文檔
      下載集合的概念 (說(shuō)課稿).doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        《函數(shù)的概念》說(shuō)課稿

        《函數(shù)的概念》說(shuō)課 各位專家、評(píng)委:大家好! 我說(shuō)課的內(nèi)容是數(shù)學(xué)人教版普通高中新課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書必修1函數(shù)第一課時(shí)。我將從背景分析、教學(xué)目標(biāo)設(shè)計(jì)、教法與學(xué)法選擇、教學(xué)......

        定積分的概念說(shuō)課稿

        定積分的概念說(shuō)課稿 基礎(chǔ)教學(xué)部 高黎明 一、教材分析 1、教材的地位和作用 本節(jié)課選自同濟(jì)大學(xué)《高等數(shù)學(xué)》第五章第一節(jié)定積分的概念與性質(zhì),是上承導(dǎo)數(shù)、不定積分,下接定積......

        《棱錐的概念和性質(zhì)》說(shuō)課稿

        《棱錐的概念和性質(zhì)》說(shuō)課稿作為一名默默奉獻(xiàn)的教育工作者,時(shí)常要開(kāi)展說(shuō)課稿準(zhǔn)備工作,說(shuō)課稿有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。快來(lái)參考說(shuō)課稿是怎么寫的吧!以下是小編收集整理......

        《函數(shù)概念》說(shuō)課稿(共5則范文)

        《函數(shù)概念》說(shuō)課稿作為一位不辭辛勞的人民教師,常常要寫一份優(yōu)秀的說(shuō)課稿,編寫說(shuō)課稿是提高業(yè)務(wù)素質(zhì)的有效途徑。優(yōu)秀的說(shuō)課稿都具備一些什么特點(diǎn)呢?下面是小編整理的《函數(shù)概......

        高中函數(shù)的概念說(shuō)課稿(最終定稿)

        “說(shuō)課”有利于提高教師理論素養(yǎng)和駕馭教材的能力,也有利于提高教師的語(yǔ)言表達(dá)能力,因而受到廣大教師的重視,登上了教育研究的大雅之堂。以下是小編整理的函數(shù)的概念說(shuō)課稿,希望......

        數(shù)學(xué)說(shuō)課稿:導(dǎo)數(shù)概念[五篇材料]

        數(shù)學(xué)說(shuō)課稿:導(dǎo)數(shù)概念作為一位兢兢業(yè)業(yè)的人民教師,就不得不需要編寫說(shuō)課稿,說(shuō)課稿有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。說(shuō)課稿要怎么寫呢?以下是小編收集整理的數(shù)學(xué)說(shuō)課稿:導(dǎo)數(shù)概念,歡......

        等比數(shù)列的概念說(shuō)課稿(通用)(最終5篇)

        等比數(shù)列的概念說(shuō)課稿(通用5篇)在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,總歸要編寫說(shuō)課稿,說(shuō)課稿有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。寫說(shuō)課稿需要注意哪些格式呢?下面是小編收集整理的等比數(shù)......

        集合的概念教學(xué)設(shè)計(jì)

        《集合的概念》教學(xué)設(shè)計(jì) 教學(xué)目的: (1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法 (2)使學(xué)生初步了解“屬于”關(guān)系的意義 (3)使學(xué)生初步了解有限集、無(wú)限集、空集的......