第一篇:機(jī)器人算法外文翻譯
Improved Genetic Algorithm and Its Performance Analysis
Abstract: Although genetic algorithm has become very famous with its global searching, parallel computing, better robustness, and not needing differential information during evolution.However, it also has some demerits, such as slow convergence speed.In this paper, based on several general theorems, an improved genetic algorithm using variant chromosome length and probability of crossover and mutation is proposed, and its main idea is as follows : at the beginning of evolution, our solution with shorter length chromosome and higher probability of crossover and mutation;and at the vicinity of global optimum, with longer length chromosome and lower probability of crossover and mutation.Finally, testing with some critical functions shows that our solution can improve the convergence speed of genetic algorithm significantly , its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.Genetic algorithm is an adaptive searching technique based on a selection and reproduction mechanism found in the natural evolution process, and it was pioneered by Holland in the 1970s.It has become very famous with its global searching, parallel computing, better robustness, and not needing differential information during evolution.However, it also has some demerits, such as poor local searching, premature converging, as well as slow convergence speed.In recent years, these problems have been studied.In this paper, an improved genetic algorithm with variant chromosome length and variant probability is proposed.Testing with some critical functions shows that it can improve the convergence speed significantly, and its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.In section 1, our new approach is proposed.Through optimization examples, in section 2, the efficiency of our algorithm is compared with the genetic algorithm which only reserves the best individual.And section 3 gives out the conclusions.Finally, some proofs of relative theorems are collected and presented in appendix.Description of the algorithm 1.1 Some theorems Before proposing our approach, we give out some general theorems(see
appendix)as follows: Let us assume there is just one variable(multivariable can be divided into many sections, one section for one variable)x ∈ [ a, b ] , x ∈ R, and chromosome length with binary encoding is 1.Theorem 1
Minimal resolution of chromosome is s = b?a 2l?1Theorem 2
Weight value of the ith bit of chromosome is
wi = b?ai?1(i = 1,2,…l)2l?1Theorem 3
Mathematical expectation Ec(x)of chromosome searching step with one-point crossover is Ec(x)= b?aPc 2lwhere Pc is the probability of crossover.Theorem 4
Mathematical expectation Em(x)of chromosome searching step with bit mutation is Em(x)=(b-a)Pm
1.2 Mechanism of algorithm
During evolutionary process, we presume that value domains of variable are fixed, and the probability of crossover is a constant, so from Theorem 1 and 3, we know that the longer chromosome length is, the smaller searching step of chromosome, and the higher resolution;and vice versa.Meanwhile, crossover probability is in direct proportion to searching step.From Theorem 4, changing the length of chromosome does not affect searching step of mutation, while mutation probability is also in direct proportion to searching step.At the beginning of evolution, shorter length chromosome(can be too shorter, otherwise it is harmful to population diversity)and higher probability of crossover and mutation increases searching step, which can carry out greater domain searching, and avoid falling into local optimum.While at the vicinity of global optimum, longer length chromosome and lower probability of crossover and mutation will decrease searching step, and longer length chromosome also improves resolution of mutation, which avoid wandering near the global optimum, and speeds up algorithm
converging.Finally, it should be pointed out that chromosome length changing keeps individual fitness unchanged, hence it does not affect select ion(with roulette wheel selection).1.3 Description of the algorithm
Owing to basic genetic algorithm not converging on the global optimum, while the genetic algorithm which reserves the best individual at current generation can, our approach adopts this policy.During evolutionary process, we track cumulative average of individual average fitness up to current generation.It is written as 1X(t)= GG?ft?1avg(t)where G is the current evolutionary generation, fitness.favg is individual average When the cumulative average fitness increases to k times(k> 1, k ∈ R)of initial individual average fitness, we change chromosome length to m times(m is a positive integer)of itself , and reduce probability of crossover and mutation, which can improve individual resolution and reduce searching step, and speed up algorithm converging.The procedure is as follows:
Step 1 Initialize population, and calculate individual average fitness and set change parameter flag.Flag equal to 1.favg0, Step 2 Based on reserving the best individual of current generation, carry out selection, regeneration, crossover and mutation, and calculate cumulative average of individual average fitness up to current generation
favg;
favgStep 3 If
favg0≥k and Flag equals 1, increase chromosome length to m times of itself, and reduce probability of crossover and mutation, and set Flag equal to 0;otherwise continue evolving.Step 4 If end condition is satisfied, stop;otherwise go to Step 2.2 Test and analysis
We adopt the following two critical functions to test our approach, and compare it with the genetic algorithm which only reserves the best individual: f1(x,y)?0.5?sin2x2?y2?0.5[1?0.01x?y?222?]
x,y∈ [?5,5]
[?1,1] f2(x,y)?4?(x2?2y2?0.3cos(3πx)?0.4cos(4πy))
x,y∈2.1 Analysis of convergence During function testing, we carry out the following policies: roulette wheel select ion, one point crossover, bit mutation, and the size of population is 60, l is chromosome length, Pc and Pm are the probability of crossover and mutation respectively.And we randomly select four genetic algorithms reserving best individual with various fixed chromosome length and probability of crossover and mutation to compare with our approach.Tab.1 gives the average converging generation in 100 tests.In our approach, we adopt initial parameter l0= 10, Pc0= 0.3, Pm0= 0.1 and k= 1.2, when changing parameter condition is satisfied, we adjust parameters to l= 30, Pc= 0.1, Pm= 0.01.From Tab.1, we know that our approach improves convergence speed of genetic algorithm significantly and it accords with above analysis.2.2 Analysis of online and offline performance
Quantitative evaluation methods of genetic algorithm are proposed by Dejong, including online and offline performance.The former tests dynamic performance;and the latter evaluates convergence performance.To better analyze online and offline performance of testing function, w e multiply fitness of each individual by 10, and we give a curve of 4 000 and 1 000 generations for f1 and f2, respectively.(a)online
(b)online
Fig.1 Online and offline performance of f1
(a)online
(b)online
Fig.2 Online and offline performance of f2
From Fig.1 and Fig.2, we know that online performance of our approach is just little worse than that of the fourth case, but it is much better than that of the second, third and fifth case, whose online performances are nearly the same.At the same time, offline performance of our approach is better than that of other four cases.Conclusion In this paper, based on some general theorems, an improved genetic algorithm using variant chromosome length and probability of crossover and mutation is proposed.Testing with some critical functions shows that it can improve convergence speed of genetic algorithm significantly, and its comprehensive performance is better than that of the genetic algorithm which only reserves the best individual.Appendix With the supposed conditions of section 1, we know that the validation of Theorem 1 and Theorem 2 are obvious.Theorem 3 Mathematical expectation Ec(x)of chromosome searching step with one point crossover is b?aPc2lEc(x)=
where Pc is the probability of crossover.Proof
As shown in Fig.A1, we assume that crossover happens on the kth locus, i.e.parent’s locus from k to l do not change, and genes on the locus from 1 to k are exchanged.1During crossover, change probability of genes on the locus from 1 to k is 2
(“1” to “0” or “0” to “1”).So, after crossover, mathematical expectation of chromosome searching step on locus from 1 to k is
k11b?a1b?aEck(x)??wj???l?2j?1??l?(2k?1)
22?12?1j?12j?12Furthermore, probability of taking place crossover on each locus of k1chromosome is equal, namely l Pc.Therefore, after crossover, mathematical expectation of chromosome searching step is 1Ec(x)???Pc?Eck(x)
k?1lSubstituting Eq.(A1)into Eq.(A2), we obtain l?1Pb?aP?(b?a)11b?a1?Pc??l?(2k?1)?c?l?[(2i?1)?l]?c(1?l)22?12l2?12l2?1k?1llb?a?0, so Ec(x)?Pc where l is large, l2l2?1Ec(x)??l?1
Fig.A1 One point crossover
Theorem 4 Mathematical expectation Em(x)of chromosome searching step with bit mutation Em(x)?(b?a)?Pm, where Pm is the probability of mutation.Proof Mutation probability of genes on each locus of chromosome is equal, say Pm, therefore, mathematical expectation of mutation searching step is Em(x)=?Pm·wi=?Pm·i=1i=1llb-ai-1b-a·2=P··(2i-1)=(b-a)·Pm mli2-12-1
一種新的改進(jìn)遺傳算法及其性能分析
摘要:雖然遺傳算法以其全局搜索、并行計(jì)算、更好的健壯性以及在進(jìn)化過程中不需要求導(dǎo)而著稱,但是它仍然有一定的缺陷,比如收斂速度慢。本文根據(jù)幾個基本定理,提出了一種使用變異染色體長度和交叉變異概率的改進(jìn)遺傳算法,它的主要思想是:在進(jìn)化的開始階段,我們使用短一些的變異染色體長度和高一些的交叉變異概率來解決,在全局最優(yōu)解附近,使用長一些的變異染色體長度和低一些的交叉變異概率。最后,一些關(guān)鍵功能的測試表明,我們的解決方案可以顯著提高遺傳算法的收斂速度,其綜合性能優(yōu)于只保留最佳個體的遺傳算法。
遺傳算法是一種以自然界進(jìn)化中的選擇和繁殖機(jī)制為基礎(chǔ)的自適應(yīng)的搜索技術(shù),它是由Holland 1975年首先提出的。它以其全局搜索、并行計(jì)算、更好的健壯性以及在進(jìn)化過程中不需要求導(dǎo)而著稱。然而它也有一些缺點(diǎn),如本地搜索不佳,過早收斂,以及收斂速度慢。近些年,這個問題被廣泛地進(jìn)行了研究。
本文提出了一種使用變異染色體長度和交叉變異概率的改進(jìn)遺傳算法。一些關(guān)鍵功能的測試表明,我們的解決方案可以顯著提高遺傳算法的收斂速度,其綜合性能優(yōu)于只保留最佳個體的遺傳算法。
在第一部分,提出了我們的新算法。第二部分,通過幾個優(yōu)化例子,將該算法和只保留最佳個體的遺傳算法進(jìn)行了效率的比較。第三部分,就是所得出的結(jié)論。最后,相關(guān)定理的證明過程可見附錄。
1算法的描述
1.1 一些定理
在提出我們的算法之前,先給出一個一般性的定理(見附件),如下:我們假設(shè)有一個變量(多變量可以拆分成多個部分,每一部分是一個變量)x ∈ [ a, b ] , x ∈ R,二進(jìn)制的染色體編碼是1.定理1 染色體的最小分辨率是
s =
b?a l2?1定理2 染色體的第i位的權(quán)重值是
b?ai?1(i = 1,2,…l)2l?1定理3 單點(diǎn)交叉的染色體搜索步驟的數(shù)學(xué)期望Ec(x)是
wi =
Ec(x)= b?aPc 2l其中Pc是交叉概率
定理4 位變異的染色體搜索步驟的數(shù)學(xué)期望Em(x)是
Em(x)=(b-a)Pm
其中Pm是變異概率 算法機(jī)制
在進(jìn)化過程中,我們假設(shè)變量的值域是固定的,交叉的概率是一個常數(shù),所以從定理1 和定理3我們知道,較長的染色體長度有著較少的染色體搜索步驟和較高的分辨率;反之亦然。同時,交叉概率與搜索步驟成正比。由定理4,改變?nèi)旧w的長度不影響變異的搜索步驟,而變異概率與搜索步驟也是成正比的。
進(jìn)化的開始階段,較短染色體(可以是過短,否則它不利于種群多樣性)和較高的交叉和變異概率會增加搜索步驟,這樣可進(jìn)行更大的域名搜索,避免陷入局部最優(yōu)。而全局最優(yōu)的附近,較長染色體和較低的交叉和變異概率會減少搜索的步驟,較長的染色體也提高了變異分辨率,避免在全局最優(yōu)解附近徘徊,提高了算法收斂速度。
最后,應(yīng)當(dāng)指出,染色體長度的改變不會使個體適應(yīng)性改變,因此它不影響選擇(輪盤賭選擇)。
算法描述
由于基本遺傳算法沒有在全局優(yōu)化時收斂,而遺傳算法保留了當(dāng)前一代的最佳個體,我
們的方法采用這項(xiàng)策略。在進(jìn)化過程中,我們跟蹤到當(dāng)代個體平均適應(yīng)度的累計(jì)值。它被寫成:
1GX(t)= favg(t)?Gt?1其中G是當(dāng)前進(jìn)化的一代,favg是個體的平均適應(yīng)度。
當(dāng)累計(jì)平均適用性增加到最初個體平均適應(yīng)度的k(k> 1, k ∈ R)倍,我們將染色體長度變?yōu)槠渥陨淼膍(m 是一個正整數(shù))倍,然后減小交叉和變異的概率,可以提高個體分辨率、減少搜索步驟以及提高算法收斂速度。算法的執(zhí)行步驟如下:
第一步:初始化群體,并計(jì)算個體平均適應(yīng)度favg0,然后設(shè)置改變參數(shù)的標(biāo)志flag。flag設(shè)為1.第二步:在所保留的當(dāng)代的最佳個體,進(jìn)行選擇、再生、交叉和變異,并計(jì)算當(dāng)代個體的累積平均適應(yīng)度favg
favg0第三步:如果
favg?k 且flag = 1,把染色體的長度增加至自身的m倍,減少交叉和變異概率,并設(shè)置flag等于0;否則繼續(xù)進(jìn)化。
第四步:如果滿足結(jié)束條件,停止;否則轉(zhuǎn)自第二步。
測試和分析
我們采用以下兩種方法來測試我們的方法,和只保留最佳個體的遺傳算法進(jìn)行比較:
f1(x,y)?0.5?sin2x2?y2?0.5[1?0.01x?y?222?] [?5,5]
x,y∈ [?1,1] f2(x,y)?4?(x2?2y2?0.3cos(3πx)?0.4cos(4πy))
x,y∈收斂的分析
在功能測試中,我們進(jìn)行了以下政策:輪盤賭選擇,單點(diǎn)交叉,位變異。種群的規(guī)
模是60。L是染色體長度,Pc和Pm分別是交叉概率和變異概率。我們隨機(jī)選擇4個遺傳算法所保留的最佳個體來與我們的方法進(jìn)行比較,它們具有不同的固定染色體長度和交叉和變異的概率。表1給出了在100次測試的平均收斂代。
在我們的方法中,我們采取的初始參數(shù)是l0 = 10,Pc0 = 0.3,Pm0 = 0.1和k = 1.2,當(dāng)滿足改變參數(shù)的條件時,我們調(diào)整參數(shù)l = 30,Pc = 0.1,Pm = 0.01。
1.1 在線和離線性能的分析
Dejong提出了遺傳算法的定量評價方法,包括在線和離線性能評價。前者測試動態(tài)性能,而后者評估收斂性能。為了更好地分析測試功能的在線和離線性能,我們把個體的適應(yīng)性乘以10,并f1和f2分別給出了4 000和1 000代的曲線:
(a)在線
(b)離線
圖1 f1的在線與離線性能
(a)在線
(b)離線
從圖1和圖2可以看出,我們方法的在線性能只比第四種情況差一點(diǎn)點(diǎn),但比第二種、第三種、第五種好很多,這幾種情況下的在線性能幾乎完全相同。同時,我們方法的離線性能也比其他四種好很多
結(jié)論
本文提出了一種使用變異染色體長度和交叉變異概率的改進(jìn)遺傳算法。一些關(guān)鍵功能的測試表明,我們的解決方案可以顯著提高遺傳算法的收斂速度,其綜合性能優(yōu)于只保留最佳個體的遺傳算法。
附件
有了第一部分中假定的條件,定理1和定理2的驗(yàn)證是顯而易見的。下面給出定理3和定理4的證明過程:
定理3 單點(diǎn)交叉的染色體搜索步驟的數(shù)學(xué)期望Ec(x)是
Ec(x)= 其中Pc是交叉概率
b?aPc 2l證明:
如圖A1所示,我們假設(shè)交叉發(fā)生在第k個基因位點(diǎn),從k到l的父基因位點(diǎn)沒有變化,基因位點(diǎn)1到k上的基因改變了。
在交叉過程中,1到k基因位點(diǎn)上的基因改變的概率為0.5(“1”變化”0”或者”0”變?yōu)椤?”),因此,交叉之后,基因位點(diǎn)上的染色體搜索步驟從1到k的數(shù)學(xué)期望是
k11b?a1b?aEck(x)??wj???l?2j?1??l?(2k?1)
22?12?1j?12j?121此外,每個位點(diǎn)的染色體發(fā)生交叉的概率是相等的,即lPc。交叉后,染色
k體搜索步驟的數(shù)學(xué)期望是
1Ec(x)???Pc?Eck(x)k?1l
把Eq.(A1)替換為Eq.(A2),我們得到 l?1Pb?aP?(b?a)11b?a1?Pc??l?(2k?1)?c?l?[(2i?1)?l]?c(1?l)l22l2l2?12?12?1k?1lb?a?0,所以Ec(x)?Pc 其中l(wèi)是非常大的,l2l2?1Ec(x)??l?1圖1 單點(diǎn)交叉
定理4 位變異的染色體搜索步驟的數(shù)學(xué)期望是
Em(x)?(b?a)?Pm
其中Pm是變異概率。證明:
每個基因位點(diǎn)上的基因的變異概率是相等的,比如Pm,因此變異搜索步驟的數(shù)學(xué)期望是:
Em(x)=?Pm·wi=?Pm·i=1i=1ll
b-ai-1b-a·2=P··(2i-1)=(b-a)·Pmmli2-12-1
第二篇:機(jī)器人外文翻譯
沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文
機(jī) 器 人
工業(yè)機(jī)器人是在生產(chǎn)環(huán)境中以提高生產(chǎn)效率的工具,它能做常規(guī)乏味的裝配線工作,或能做那些對于工人來說是危險(xiǎn)的工作,例如,第一代工業(yè)機(jī)器人是用來在 核電站中更換核燃料棒,如果人去做這項(xiàng)工作,將會遭受有害的放射線的輻射。工業(yè)機(jī)器人亦能工作在裝配線上將小元件裝配到一起,如將電子元件安放在電路印制板,這樣,工人就能從這項(xiàng)乏味的常規(guī)工作中解放出來。機(jī)器人也能按程序要求用來拆除炸彈,輔助殘疾人,在社會的很多應(yīng)用場合下履行職能。
機(jī)器人可以認(rèn)為是將手臂末端的工具、傳感器和(或)手爪移到程序指定位置的一種機(jī)器。當(dāng)機(jī)器人到達(dá)位置后,它將執(zhí)行某種任務(wù)。這些任務(wù)可以是焊接、密封、機(jī)器裝料、拆卸以及裝配工作。除了編程以及系統(tǒng)的開停之外,一般來說這些工作可以在無人干預(yù)下完成。如下敘述的是機(jī)器人系統(tǒng)基本術(shù)語:
1.機(jī)器人是一個可編程、多功能的機(jī)械手,通過給要完成的不同任務(wù)編制各種動作,它可以移動零件、材料、工具以及特殊裝置。這個基本定義引導(dǎo)出后續(xù)段落的其他定義,從而描繪出一個完整的機(jī)器人系統(tǒng)。
2.預(yù)編程位置點(diǎn)是機(jī)器人為完成工作而必須跟蹤的軌跡。在某些位
沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文
置點(diǎn)上機(jī)器人將停下來做某些操作,如裝配零件、噴涂油漆或焊接。這些預(yù)編程點(diǎn)貯存在機(jī)器人的貯存器中,并為后續(xù)的連續(xù)操作所調(diào)用,而且這些預(yù)編程點(diǎn)想其他程序數(shù)據(jù)一樣,可在日后隨工作需要而變化。因而,正是這種編程的特征,一個工業(yè)機(jī)器 人很像一臺計(jì)算機(jī),數(shù)據(jù)可在這里儲存、后續(xù)調(diào)用與編譯。
3.機(jī)器手是機(jī)器人的手臂,它使機(jī)器人能彎曲、延伸和旋轉(zhuǎn),提供這些運(yùn)動的是機(jī)器手的軸,亦是所謂的機(jī)器人的自由度。一個機(jī)器人能有3~16軸,自由度一詞總是與機(jī)器人軸數(shù)相關(guān)。
4.工具和手爪不是機(jī)器人自身組成部分,但它們是安裝在機(jī)器人手臂末端的附件。這些連在機(jī)器人手臂末端的附件可使機(jī)器人抬起工件、點(diǎn)焊、刷漆、電弧焊、鉆孔、打毛刺以及根據(jù)機(jī)器人的要求去做各種各樣的工作。
5.機(jī)器人系統(tǒng)還可以控制機(jī)器人的工作單元,工作單元是機(jī)器人執(zhí)行任務(wù)所處的整體環(huán)境,該單元包括控制器、機(jī)械手、工作平臺、安全保護(hù)裝置或者傳輸裝置。所有這些為保證機(jī)器人完成自己任務(wù)而必須的裝置都包括在這一工作單元中。另外,來自外設(shè)的信號與機(jī)器人通訊,通知機(jī)器人何時裝配工件、取工件或放工件到傳輸裝置上。機(jī)器人系統(tǒng)有三個基本部件:機(jī)械手、控制器和動力源。
A.機(jī)械手
沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文
機(jī)械手做機(jī)器人系統(tǒng)中粗重工作,它包括兩個部分:機(jī)構(gòu)與附件,機(jī)械手也用聯(lián)接附件基座,圖21-1表示了一機(jī)器人基座與附件之間的聯(lián)接情況。
機(jī)械手基座通常固定在工作區(qū)域的地基上,有時基座也可以移動,在這種情況下基座安裝在導(dǎo)軌回軌道上,允許機(jī)械手從一個位置移到另外一個位置。
正如前面所提到的那樣,附件從機(jī)器人基座上延伸出來,附件就是機(jī)器人的手臂,它可以是直動型,也可以是軸節(jié)型手臂,軸節(jié)型手臂也是大家所知的關(guān)節(jié)型手臂。
機(jī)械臂使機(jī)械手產(chǎn)生各軸的運(yùn)動。這些軸連在一個安裝基座上,然后再連到拖架上,拖架確保機(jī)械手停留在某一位置。
在手臂的末端上,連接著手腕(圖21-1),手腕由輔助軸和手腕凸緣組成,手腕是讓機(jī)器人用戶在手腕凸緣上安裝不同的工具來做不同的工作。
機(jī)械手的軸使機(jī)械手在某一區(qū)域內(nèi)執(zhí)行任務(wù),我們將這個區(qū)域?yàn)闄C(jī)器人的工作單元,該區(qū)域的大小與機(jī)械手的尺寸相對應(yīng),圖21-2列舉了一個典型裝配機(jī)器人的工作單元。隨著機(jī)器人機(jī)械結(jié)構(gòu)尺寸的增加,工作單元的范圍也必須相應(yīng)的增加。
機(jī)械手的運(yùn)動有執(zhí)行元件或驅(qū)動系統(tǒng)來控制。執(zhí)行元件或驅(qū)動系統(tǒng)
沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文
允許各軸力經(jīng)機(jī)構(gòu)轉(zhuǎn)變?yōu)闄C(jī)械能,驅(qū)動系統(tǒng)與機(jī)械傳動鏈相匹配。由鏈、齒輪和滾珠絲杠組成的機(jī)械傳動鏈驅(qū)動著機(jī)器人的各軸。
B.控制器
機(jī)器人控制器是工作單元的核心。控制器儲存著預(yù)編程序供后續(xù)調(diào)用、控制外設(shè),及與廠內(nèi)計(jì)算機(jī)進(jìn)行通訊以滿足產(chǎn)品更新的需要。
控制器用于控制機(jī)械手運(yùn)動和在工作單元內(nèi)控制機(jī)器人外設(shè)。用戶可通過手持的示教盒將機(jī)械手運(yùn)動的程序編入控制器。這些信息儲存在控制器的儲存器中以備后續(xù)調(diào)用,控制器儲存了機(jī)器人系統(tǒng)的所有編程數(shù)據(jù),它能儲存幾個不同的程序,并且所有這些程序均能編輯。
控制器要求能夠在工作單元內(nèi)與外設(shè)進(jìn)行通信。例如控制器有一個輸入端,它能標(biāo)識某個機(jī)加工操作何時完成。當(dāng)該加工循環(huán)完成后,輸入端接通,告訴控制器定位機(jī)械手以便能抓取已加工工件,隨后,機(jī)械手抓取一未加工件,將其放置在機(jī)床上。接著,控制器給機(jī)床發(fā)出開始加工的信號。
控制器可以由根據(jù)事件順序而步進(jìn)的機(jī)械式輪鼓組成,這種類型的控制器可用在非常簡單的機(jī)械系統(tǒng)中。用于大多數(shù)機(jī)器人系統(tǒng)中的控制器代表現(xiàn)代電子學(xué)的水平,是更復(fù)雜的裝置,即它們是由微處理器操縱的。這些微處理器可以是8位、16位或32位處理器。它們可以使得控制器在操作過程中顯得非常柔性。
沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文
控制器能通過通信線發(fā)送電信號,使它能與機(jī)械手各軸交流信息,在機(jī)器人的機(jī)械手和控制器之間的雙向交流信息可以保持系統(tǒng)操作和位置經(jīng)常更新,控制器亦能控制安裝在機(jī)器人手腕上的任何工具。
控制器也有與廠內(nèi)各計(jì)算機(jī)進(jìn)行通信的任務(wù),這種通信聯(lián)系使機(jī)器人成為計(jì)算機(jī)輔助制造(CAM)系統(tǒng)的一個組成部分。
存儲器。給予微處理器的系統(tǒng)運(yùn)行時要與固態(tài)的存儲裝置相連,這些存儲裝置可以是磁泡,隨機(jī)存儲器、軟盤、磁帶等。每種記憶存儲裝置均能貯存、編輯信息以備后續(xù)調(diào)用和編輯。
C.動力源
動力源是給機(jī)器人和機(jī)械手提供動力的單元。傳給機(jī)器人系統(tǒng)的動力源有兩種,一種是用于控制器的交流電,另一種是用于驅(qū)動機(jī)械手各軸的動力源,例如,如果機(jī)器人的機(jī)械手是有液壓和氣壓驅(qū)動的,控制信號便傳送到這些裝置中,驅(qū)動機(jī)器人運(yùn)動。
沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文
液壓與氣壓系統(tǒng)
僅有以下三種基本方法傳遞動力:電氣,機(jī)械和流體。大多數(shù)應(yīng)用系統(tǒng)實(shí)際上是將三種方法組合起來而得到最有效的最全面的系統(tǒng)。為了合理地確定采取哪種方法。重要的是了解各種方法的顯著特征。例如液壓系統(tǒng)在長距離上比機(jī)械系統(tǒng)更能經(jīng)濟(jì)地傳遞動力。然而液壓系統(tǒng)與電氣系統(tǒng)相比,傳遞動力的距離較短。
液壓動力傳遞系統(tǒng)涉及電動機(jī),調(diào)節(jié)裝置和壓力和流量控制,總的來說,該系統(tǒng)包括:
泵:將原動機(jī)的能量轉(zhuǎn)換成作用在執(zhí)行部件上的液壓能。閥:控制泵產(chǎn)生流體的運(yùn)動方向、產(chǎn)生的功率的大小,以及到達(dá)執(zhí)行部件流體的流量。功率大小取決于對流量和壓力大小的控制。
執(zhí)行部件:將液壓能轉(zhuǎn)成可用的機(jī)械能。
介質(zhì)即油液:可進(jìn)行無壓縮傳遞和控制,同時可以潤滑部件,使閥體密封和系統(tǒng)冷卻。
聯(lián)接件:聯(lián)接各個系統(tǒng)部件,為壓力流體提供功率傳輸通路,將液體返回油箱(貯油器)。
油液貯存和調(diào)節(jié)裝置:用來確保提供足夠質(zhì)量和數(shù)量并冷卻的液體。
沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文
液壓系統(tǒng)在工業(yè)中應(yīng)用廣泛。例如沖壓`鋼類工件的磨削幾一般加工業(yè)、農(nóng)業(yè)、礦業(yè)、航天技術(shù)、深??碧?、運(yùn)輸、海洋技術(shù),近海天然氣和石油勘探等行業(yè),簡而言之,在日常生活中有人不從液壓技術(shù)中得到某種益處。
液壓系統(tǒng)成功而又廣泛使用的秘密在于它的通用性和易操作性。液壓動力傳遞不會象機(jī)械系統(tǒng)那樣受到機(jī)器幾何形狀的制約,另外,液壓系統(tǒng)不會像電氣系統(tǒng)那樣受到材料物理性能的制約,它對傳遞功率幾乎沒有量的限制。例如,一個電磁體的性能受到鋼的磁飽和極限的限制,相反,液壓系統(tǒng)的功率僅僅受材料強(qiáng)度的限制。
企業(yè)為了提高生產(chǎn)率將越來越依靠自動化,這包括遠(yuǎn)程和直接控制生產(chǎn)操作、加工過程和材料處理等。液壓動力之所以成為自動化的組成部分,是因?yàn)樗腥缦轮饕奶攸c(diǎn):
1.控制方便精確
通過一個簡單的操作桿和按扭,液壓系統(tǒng)的操作者便能立即起動,停止、加減速和能提供任意功率、位置精度為萬分之一英寸的位置控制力。圖13-1是一個使飛機(jī)駕駛員升起和落下起落架的液壓系統(tǒng),當(dāng)飛行向某方向移動控制閥,壓力油流入液壓缸的某一腔從而降下起落架。飛行員向反方向移動控制閥,允許油液進(jìn)入液壓缸的另一腔,便收回起落架。
2.增力 一個液壓系統(tǒng)(沒有使用笨重的齒輪、滑輪和杠桿)能簡單
沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文
有效地將不到一盎司的力放大產(chǎn)生幾百噸的輸出。
3.恒力或恒扭矩
只有液壓系統(tǒng)能提供不隨速度變化而變化的恒力或恒扭矩,他可以驅(qū)動對象從每小時移動幾英寸到每分鐘幾百英寸,從每小時幾轉(zhuǎn)到每分鐘幾千轉(zhuǎn)。
4.簡便、安全、經(jīng)濟(jì)
總的來說,液壓系統(tǒng)比機(jī)械或電氣系統(tǒng)使用更少的運(yùn)動部件,因此,它們運(yùn)行與維護(hù)簡便。這使得系統(tǒng)結(jié)構(gòu)緊湊,安全可靠。例如 一種用于車輛上的新型動力轉(zhuǎn)向控制裝置一淘汰其他類型的轉(zhuǎn)向動力裝置,該轉(zhuǎn)向部件中包含有人力操縱方向控制閥和分配器。因?yàn)檗D(zhuǎn)向部件是全液壓的,沒有方向節(jié)、軸承、減速齒輪等機(jī)械連接,使得系統(tǒng)簡單緊湊。
另外,只需要輸入很小的扭矩就能產(chǎn)生滿足極其惡劣的工作條件所需的控制力,這對于因操作空間限制而需要小方向盤的場合很重要,這也是減輕司機(jī)疲勞度所必須的。
液壓系統(tǒng)的其他優(yōu)點(diǎn)包括雙向運(yùn)動、過載保護(hù)和無級變速控制,在已有的任何動力、系統(tǒng)中液壓系統(tǒng)也具有最大的單位質(zhì)量功率比。
盡管液壓系統(tǒng)具有如此的高性能,但它不是可以解決所有動力傳遞問題的靈丹妙藥。液壓系統(tǒng)也有缺點(diǎn),液壓油有污染,并且泄露不可能完全避免,另外如果油液滲漏發(fā)生在灼熱設(shè)備附近,大多數(shù)液壓油能引起火災(zāi)。
沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文
氣壓系統(tǒng)
氣壓系統(tǒng)是用壓力氣體傳遞和控制動力,正如名稱所表明的那樣,氣壓系統(tǒng)通常用空氣(不用其他氣體)作為流體介質(zhì),因?yàn)榭諝馐前踩?、成本低而又隨處可得的流體,在系統(tǒng)部件中產(chǎn)生電弧有可能點(diǎn)燃泄露物的場合下(使用空氣作為介質(zhì))尤其安全。
在氣壓系統(tǒng)中,壓縮機(jī)用來壓縮并提供所需的空氣。壓縮機(jī)一般有活塞式、葉片式和螺旋式等類型。壓縮機(jī)基本上是根據(jù)理想氣體法則,通過減小氣體體積來增加氣體壓力的。氣壓系統(tǒng)通??紤]采用大的中央空氣壓縮機(jī)作為一個無限量的氣源,這類似于電力系統(tǒng)中只要將插頭插入插座邊可獲得電能。用這種方法,壓力氣體可以總氣體源輸送到整個工廠的各個角落,壓力氣體可通過空氣濾清器除去污物,這些污染可能會損壞氣動組件的精密配合部件如閥和汽缸等,隨后輸送到各個回路中,接著空氣流經(jīng)減壓閥以減小氣壓值適合某一回路使用。因?yàn)榭諝獠皇呛玫臐櫥?,氣壓系統(tǒng)需要一個油霧器將細(xì)小的油霧注射到經(jīng)過減壓閥減壓空氣中,這有幫助于減少氣動組件精密配合運(yùn)動件的磨損。
由于來自大氣中的空氣含不同數(shù)量的水分,這些水分是有害的,它可以帶走潤滑劑引起的過分磨損和腐蝕,因此,在一些使用場合中,要用空氣干燥器來除去這些有還的水分。由于氣壓系統(tǒng)直接向大氣排
沈陽航空工業(yè)學(xué)院學(xué)士學(xué)位論文
氣,會產(chǎn)生過大的噪聲,因此可在氣閥和執(zhí)行組件排氣口安裝銷聲器來降低噪聲,以防止操作人員因接觸噪聲及高速空氣粒子有可能引發(fā)的傷害。
用氣動系統(tǒng)代替液壓系統(tǒng)有以下幾條理由:液體的慣性遠(yuǎn)比氣體大,因此,在液壓系統(tǒng)中,當(dāng)執(zhí)行組件加速減速和閥突然開啟關(guān)閉時,油液的質(zhì)量更是一個潛在的問題,根據(jù)牛頓運(yùn)動定律,產(chǎn)生加速度運(yùn)動油液所需的力要比加速同等體積空氣所需的力高出許多倍。液體比氣體具有更大的粘性,這會因?yàn)閮?nèi)摩擦而引起更大的壓力和功率損失;另外,由于液壓系統(tǒng)使用的液體要與大氣隔絕,故它們需要特殊的油箱和無泄露系統(tǒng)設(shè)計(jì)。氣壓系統(tǒng)使用可以直接排到周圍環(huán)境中的空氣,一般來說氣壓系統(tǒng)沒有液體系統(tǒng)昂貴。
然而,由于空氣的可壓縮性,使得氣壓系統(tǒng)執(zhí)行組件不可能得到精確的速度控制和位置控制。氣壓系統(tǒng)由于壓縮機(jī)局限,其系統(tǒng)壓力相當(dāng)?shù)停ǖ陀?50psi),而液壓力可達(dá)1000psi之高,因此液壓系統(tǒng)可以是大功率系統(tǒng),而氣動系統(tǒng)僅用于小功率系統(tǒng),典型例子有沖壓、鉆孔、夾緊、組裝、鉚接、材料處理和邏輯控制操作等。
第三篇:智能機(jī)器人外文翻譯
Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on.With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being.The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program.At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use.To development economic practicality and high reliability robot system will be value to robot social application and economy development.With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal.Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal.The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity.Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding.With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware.In this article, the mechanical configuration combines the character of direction coordinate and the arthrosis coordinate which can improve the stability and operation flexibility of the system.The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement.In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion.Worm gear can give vary transmission ratio.Both of the transmission mechanisms have a characteristic of compact structure.The design of drive system often is limited by the environment condition and the factor of cost and technical lever.'The step motor can receive digital signal directly and has the ability to response outer environment immediately and has no accumulation error, which often is used in driving system.In this driving system, open-loop control system is composed of stepping motor, which can satisfy the demand not only for control precision but also for the target of economic and practicality.on this basis, the analysis of stepping motor in power calculating and style selecting is also given.The analysis of kinematics and dynamics for object holding manipulator is given in completing the design of mechanical structure and drive system.Kinematics analysis is the basis of path programming and track control.The positive and reverse analysis of manipulator gives the relationship between manipulator space and drive space in position and speed.The relationship between manipulator’s tip position and arthrosis angles is concluded by coordinate transform method.The geometry method is used in solving inverse kinematics problem and the result will provide theory evidence for control system.The f0unction of dynamics is to get the relationship between the movement and force and the target is to satisfy the demand of real time control.in this chamfer, Newton-Euripides method is used in analysis dynamic problem of the cleaning robot and the arthrosis force and torque are given which provide the foundation for step motor selecting and structure dynamic optimal ting.Control system is the key and core part of the object holding manipulator system design which will direct effect the reliability and practicality of the robot system in the division of configuration and control function and also will effect or limit the development cost and cycle.With the demand of the PCL-839 card, the PC computer which has a.tight structure and is easy to be extended is used as the principal computer cell and takes the function of system initialization, data operation and dispose, step motor drive and error diagnose and so on.A t the same time, the configuration structure features, task principles and the position function with high precision of the control card PCL-839 are analyzed.Hardware is the matter foundation of the control.System and the software is the spirit of the control system.The target of the software is to combine all the parts in optimizing style and to improve the efficiency and reliability of the control system.The software design of the object holding manipulator control system is divided into several blocks such as 2 system initialization block, data process block and error station detect and dispose model and so on.PCL-839 card can solve the communication between the main computer and the control cells and take the measure of reducing the influence of the outer signal to the control system.The start and stop frequency of the step motor is far lower than the maximum running frequency.In order to improve the efficiency of the step motor, the increase and decrease of the speed is must considered when the step motor running in high speed and start or stop with great acceleration.The increase and decrease of the motor’s speed can be controlled by the pulse frequency sent to the step motor drive with a rational method.This can be implemented either by hardware or by software.A step motor shift control method is proposed, which is simple to calculate, easy to realize and the theory means is straightforward.The motor' s acceleration can fit the torque-frequency curve properly with this method.And the amount of calculation load is less than the linear acceleration shift control method and the method which is based on the exponential rule to change speed.The method is tested by experiment.At last, the research content and the achievement are sum up and the problems and shortages in main the content are also listed.The development and application of robot in the future is expected.機(jī)器人
機(jī)器人是典型的機(jī)電一體化裝置,它綜合運(yùn)用了機(jī)械與精密機(jī)械、微電子與計(jì)算機(jī)、自動控制與驅(qū)動、傳感器與信息處理以及人工智能等多學(xué)科的最新研究成果,隨著經(jīng)濟(jì)的發(fā)展和各行各業(yè)對自動化程度要求的提高,機(jī)器人技術(shù)得到了迅速發(fā)展,出現(xiàn)了各種各樣的機(jī)器人產(chǎn)品。機(jī)器人產(chǎn)品的實(shí)用化,既解決了許多單靠人力難以解決的實(shí)際問題,又促進(jìn)了工業(yè)自動化的進(jìn)程。目前,由于機(jī)器人的研制和開發(fā)涉及多方面的技術(shù),系統(tǒng)結(jié)構(gòu)復(fù)雜,開發(fā)和研制的成本普遍較高,在某種程度上限制了該項(xiàng)技術(shù)的廣泛應(yīng)用,因此,研制經(jīng)濟(jì)型、實(shí)用化、高可靠性機(jī)器人系統(tǒng)具有廣泛的社會現(xiàn)實(shí)意義和經(jīng)濟(jì)價值。
由于我國經(jīng)濟(jì)建設(shè)和城市化的快速發(fā)展,城市污水排放量增長很快,污水處理己經(jīng)擺在了人們的議事日程上來。隨著科學(xué)技術(shù)的發(fā)展和人類知識水平的提高,人們越來越認(rèn)識到污水處理的重要性和迫切性,科學(xué)家和研究人員發(fā)現(xiàn)塑料制品在水中是用于污水處理的很有效的污泥菌群的附著體。塑料制品的大量需求,使得塑料制品生產(chǎn)的自動化和高效率要求成為經(jīng)濟(jì)發(fā)展的必然。
本文結(jié)合塑料一次擠出成型機(jī)和塑料抓取機(jī)械手的研制過程中出現(xiàn)的問題,綜述近幾年機(jī)器人技術(shù)研究和發(fā)展的狀況,在充分發(fā)揮機(jī)、電、軟、硬件各自特點(diǎn)和優(yōu)勢互補(bǔ)的基礎(chǔ)上,對物料抓取機(jī)械手整體機(jī)械結(jié)構(gòu)、傳動系統(tǒng)、驅(qū)動裝置和控制系統(tǒng)進(jìn)行了分析和設(shè)計(jì),提出了一套經(jīng)濟(jì)型設(shè)計(jì)方案。采用直角坐標(biāo)和關(guān)節(jié)坐標(biāo)相結(jié)合的框架式機(jī)械結(jié)構(gòu)形式,這種方式能夠提高系統(tǒng)的穩(wěn)定性和操作靈活性。傳動裝置的作用是將驅(qū)動元件的動力傳遞給機(jī)器人機(jī)械手相應(yīng)的執(zhí)行機(jī)構(gòu),以實(shí)現(xiàn)各種必要的運(yùn)動,傳動方式上采用結(jié)構(gòu)緊湊、傳動比大的蝸輪蝸桿傳動和將旋轉(zhuǎn)運(yùn)動轉(zhuǎn)換為直線運(yùn)動的螺旋傳動。機(jī)械手驅(qū)動系統(tǒng)的設(shè)計(jì)往往受到作業(yè)環(huán)境條件的限制,同時也要考慮價格因素的影響以及能夠達(dá)到的技術(shù)水平。由于步進(jìn)電機(jī)能夠直接接收數(shù)字量,響應(yīng)速度快而且工作可靠并無累積誤差,常用作數(shù)字控制系統(tǒng)驅(qū)動機(jī)構(gòu)的動力元件,因此,在驅(qū)動裝置中采用由步進(jìn)電機(jī)構(gòu)成的開環(huán)控制方式,這種方式既能滿足控制精度的要求,又能達(dá)到經(jīng)濟(jì)性、實(shí)用化目的,在此基礎(chǔ)上,對步進(jìn)電機(jī)的功率計(jì)一算及選型問題經(jīng)行了分析。
在完成機(jī)械結(jié)構(gòu)和驅(qū)動系統(tǒng)設(shè)計(jì)的基礎(chǔ)上,對物料抓取機(jī)械手運(yùn)動學(xué)和動力學(xué)進(jìn)行了分析。運(yùn)動學(xué)分析是路徑規(guī)劃和軌跡控制的基礎(chǔ),對操作臂進(jìn)行了運(yùn)動學(xué)正、逆問題的分析可以完成操作空間位置和速度向驅(qū)動空間的映射,采用齊次坐標(biāo)變換法得到了操作臂末端位置和姿態(tài)隨關(guān)節(jié)夾角之間的變換關(guān)系,采用幾何法分析了操作臂的逆向運(yùn)動學(xué)方程求解問題,對控制系統(tǒng)設(shè)計(jì)提供了理論依據(jù)。機(jī)器人動力學(xué)是研究物體的運(yùn)動和作用力之間的關(guān)系的科學(xué),研究的目的是為了4 滿足是實(shí)時性控制的需要,本文采用牛頓-歐拉方法對物料抓取機(jī)械手動力學(xué)進(jìn)行了分析,計(jì)算出了關(guān)節(jié)力和關(guān)節(jié)力矩,為步進(jìn)電機(jī)的選型和動力學(xué)分析與結(jié)構(gòu)優(yōu)化提供理論依據(jù)。
控制部分是整個物料抓取機(jī)械手系統(tǒng)設(shè)計(jì)關(guān)鍵和核心,它在結(jié)構(gòu)和功能上的劃分和實(shí)現(xiàn)直接關(guān)系到機(jī)器人系統(tǒng)的可靠性、實(shí)用性,也影響和制約機(jī)械手系統(tǒng)的研制成本和開發(fā)周期。在控制主機(jī)的選用上,采用結(jié)構(gòu)緊湊、擴(kuò)展功能強(qiáng)和可靠性高的PC工業(yè)控制計(jì)算機(jī)作為主機(jī),配以PCL-839卡主要承擔(dān)系統(tǒng)功能初始化、數(shù)據(jù)運(yùn)算與處理、步進(jìn)電機(jī)驅(qū)動以及故障診斷等功能;同時對PCL-839卡的結(jié)構(gòu)特點(diǎn)、功能原理和其高定位功能等給與了分析。硬件是整個控制系統(tǒng)以及極限位置功能賴以存在的物質(zhì)基礎(chǔ),軟件則是計(jì)算機(jī)控制系統(tǒng)的神經(jīng)中樞,軟件設(shè)計(jì)的目的是以最優(yōu)的方式將各部分功能有機(jī)的結(jié)合起來,使系統(tǒng)具有較高的運(yùn)行效率和較強(qiáng)的可靠性。在物料抓取機(jī)械手軟件的設(shè)計(jì)上,采用的是模塊化結(jié)構(gòu),分為系統(tǒng)初始化模塊、數(shù)據(jù)處理模塊和故障狀態(tài)檢測與處理等幾部分。主控計(jì)算機(jī)和各控制單元之間全部由PCL-839卡聯(lián)系,并且由該卡實(shí)現(xiàn)抗干擾等問題,減少外部信號對系統(tǒng)的影響。
步進(jìn)電機(jī)的啟停頻率遠(yuǎn)遠(yuǎn)小于其最高運(yùn)行頻率,為了提高工作效率,需要步進(jìn)電機(jī)高速運(yùn)行并快速啟停時,必須考慮它的升,降速控制問題。電機(jī)的升降速控制可以歸結(jié)為以某種合理的力一式控制發(fā)送到步進(jìn)電機(jī)驅(qū)動器的脈沖頻率,這可由硬件實(shí)現(xiàn),也可由軟件方法來實(shí)現(xiàn)。本文提出了一種算法簡單、易于實(shí)現(xiàn)、理論意義明確的步進(jìn)電機(jī)變速控制策略:定時器常量修改變速控制方案。該方法能使步進(jìn)電機(jī)加速度與其力矩——頻率曲線較好地?cái)M合,從而提高變速效率。而且它的計(jì)算量比線性加速度變速和基于指數(shù)規(guī)律加速度的變速控制小得多。通過實(shí)驗(yàn)證明了該方法的有效性。
最后,對論文主要研究內(nèi)容和取得的技術(shù)成果進(jìn)行了總結(jié),提出了存在的問題和不足,同時對機(jī)器人技術(shù)的發(fā)展和應(yīng)用進(jìn)行了展望。
第四篇:爬墻機(jī)器人外文翻譯
The development trend of the robot 1.Preface: Climbing robot is an important branch in the field of mobile robot, flexible mobile on vertical wall, replace artificial under the condition of the limit to complete various tasks, is one of the hotspot in research of the robot.It is mainly used in the nuclear industry, petrochemical industry, shipbuilding, fire departments and investigation activities, such as the building external wall cleaning, material storage tank in petrochemical enterprise testing and maintenance, the outer wall of large steel plate spray paint, and in building accident rescue and relief, etc., and achieved good social benefits and economic benefits, has wide development prospects.After 30 years of development, the field of robot which has emerged a large number of fruitful results, especially since the 1990 s, especially rapid development in the field of climbing robot at home and abroad.In recent years, due to the development of a variety of new technology, the robot which solved many technical challenges, greatly promote the development of the climbing robot.The robot design activities of universities in our country also has a wide development, this kind of atmosphere for our robot research and development of special and professional talents' cultivation is of positive significance.2.Climbing robot research status abroad 1966 Japanese professor west light wall mobile robot prototype is developed for the first time, and performance success in Osaka prefecture university.This is a kind of rely on negative pressure adsorption climbing robot.Then appeared various types of climbing robot, has already begun to the late 80 s application in the production.Japan's most rapid development in the development of climbing robot, mainly used in the construction industry and nuclear industry.Such as: Japan shimizu construction company has developed with the outer wall of the building industry coating with ceramic tile of the robot, they developed by negative pressure adsorption cleaning climbing robot, on the surface of the glass for the Canadian embassy to clean.Tokyo university of technology development of the wireless remote control magnetic adsorption climbing robot.In Japan's miti “l(fā)imit homework robot” national research projects, supported by day CDH, developed a large pot of negative pressure adsorption surface inspection robots used in nuclear power plants, etc.Other countries are also added to the climbing robot research upsurge, such as: Seattle Henry R Seemann under the funding of the Boeing company developed a vacuum adsorption crawler “AutoCrawler” robot.On the two tracks each containing a number of small adsorption chamber, with the moving of the crawler, adsorption chamber form continuous vacuum cavity and makes the crawler walking against the wall.American CaseWestern Reserve University developed by using four climbing robot prototype “l(fā)egs”.Similar to the first two robots, the robot depends on four “l(fā)egs” on biomimetic viscous materials to adsorption, the prototype is the four legs wheel on the sole of the foot even special distribution is more advantageous to the robot stable crawling on the wall.The quality of the robot is only 87 g.Polytechnic school in the early 1990 s, British Portsmouth has developed a climbing robot multilegged walking type.Adopting modular design, the robot is composed of two similar modules, each module includes two mechanical legs and leg controller.According to the task need to install a different number of legs, reconfigurable ability.Mechanical legs using bionics mechanism, simulation of the large animals arm muscle function, is two type, including upper and lower two and three double-acting cylinder, with three degrees of freedom.Good stability and bearing capacity is big, the robot's lightweight, and can span bigger obstacles.In addition to the leg on one end of vacuum cups, robot equipped with suction cups, abdomen mass ratio of powder and make the robot has a larger load of 2:1.3.Climbing robot research status in China China is also in a similar study since the 1990 s.In 1988 at the national “863” high technology program, under the support of the robotics institute of Harbin institute of technology has successfully developed the use of magnetic adsorption and vacuum adsorption two series of five types of wall climbing robot.Successful development of the our country the first wall climbing robot remote detection, using negative pressure adsorption, omni-directional mobile wheel, used for nuclear waste storage jars of wall weld defect detection.Developed in 1994 for tall buildings wall climbing robot cleaning CLRⅡ, driven by two independent ways--coaxial two-wheeled differential mechanism, through the coordination of two rounds of speed control to realize the omni-directional mobile robot, the robot ontology and using power line carrier communication methods between the ground control station.Above-mentioned three climbing machine adopts single suction cup structure, spring air sealed, ensure the crawl robot with high speed and reliable adhesion ability.In 1995 successfully developed the metal corrosion by magnetic adsorption climbing robot, structure of permanent magnetic adsorption, accomplished by two tracks positive &negative mobile turn.The robot can do for petrochemical enterprises to the outer wall of the metal material storage tank to spray paint, sandblasting, as well as with automatic detection system to test the tank wall thickness.Developed in 1997's detection of water wall climbing robot, a circular permanent magnet adsorption block in conformity with the tank wall arc, improve the adsorption capacity, and improve the efficiency of the operation.Shanghai university also conducted early tall wall cleaning robot research, successively developed a vertical wall climbing robot and spherical wall climbing robot.The spherical wall climbing robot adopts many suckers, negative pressure adsorption, 6 foot independent driving leg feet walking style, can be used for different radius of curvature of the spherical outer wall since 1996, the Beijing university of aeronautics and astronautics has successfully developed WASH2 MAN, CLEANBOT 1, SKYCLEAN, “hanging basket type window robot” and “LanTianJie treasure” curtain wall cleaning robot prototype.For all the window is brushed pneumatic robot;Hanging basket type cleaning robot, the robot depends on the roof of the safety line traction, attached with the negative pressure made by fan robot on the wall in the application background of national grand theatre ellipsoid ceiling cleaning developed suitable for complex curved surface from climbing robot prototype, the climbing mechanism, mobile mechanism, cleaning robot has many similarities, but due to its special working environment and mission requirements, in terms of theory and technology has some particularity.4.The key technology of robot: 4.1 adsorption mechanism, adsorption mechanism of action is to produce an upward force to balance the gravity of the robot, keep it on the wall.Currently, magnetic adsorption methods mainly include vacuum negative pressure adsorption, adsorption, propeller thrust and binder etc.Several ways.Due to the adsorption methods each have limitations, climbing robot developed by often targeted strong, applies only to a specific task, difficult to generalize.Robot design need to work on task, environment, choose the right means of adsorption.In recent years, people through the study of the adsorption mechanism of gecko reptiles such as the soles of your feet, making the polymer synthesis of viscous material, the use of van der Waals force between the molecules and molecular materials, can be obtained on the contact area of small huge adsorption capacity, and has the advantages of adsorption has nothing to do with the surface material properties.Short life but at the moment, the use of these materials, the use of a certain number of times after lose viscosity, practical, need further study.4.2 mobile mechanism and motion control system: mobile mechanism and the movement control system of robot which major wheeled mobile mechanism, more foot type, such as caterpillar, among them, the wheel and foot type which has been widely used, caterpillar much for magnetic adsorption method.Obstacle ability is wall robot which used to an important indicator of performance.When work surface is convex, groove, the robot to go through these obstacles, we must have enough obstacle ability.All kinds of mobile mechanism, more foot type robot obstacle-navigation ability is stronger, its each leg small suction cup is placed, when faced with obstacles, can control the “l(fā)eg”, make the small suction cup across the obstacles one by one.Wall mobile mechanism of the robot can make the robot on the premise of reliable adsorption can move on the wall.Due to the particularity of climbing robot working in wall, mobile mechanism and adsorption mechanism exists coupling, which brought some difficulties to the robot's motion control.Than climbing robot sucker foot type and legs with a suction cup at the end, every move a leg needs to be done “to eliminate suctionWallace leg, left leg-gasoline, hydrogen fuel can have higher weight ratio, such as advanced micro internal combustion engine can also be applied to the climbing robot.Safety problems: 4.4 the robot by interference, environmental change circumstances, how to ensure the safety of the robot is attached to the wall without falling, falling or after how to minimize the damage of the robot.The past buildings cleaning climbing robot, developed by most used by in carrying the car at the top of the tower, hoisting and wire rope of insurance system on the robot.Robot for some other purposes, such as detection with small climbing robot, the goal is not sure, cannot use the rope way of insurance, so need to study new way to prevent falling.Could consider using a parachute, small power into a pulp, fast supporting resistance drop plate, etc., these may be a future development direction of climbing robot safety measures.5.Development trend of the robot Hard drive, sensor and control the development of software technology has greatly promoted the development of climbing robot technology, the demand of the practical application is also put forward the challenge, the development of robot climbing robot development trend in the aggregate, basically has the following several aspects.(1)the development of new adsorption technology.Adsorption technology has been a bottleneck of the development of the robot, it determines the application range of the robot.(2)the task of robot from simplification to muti_function change direction.The past most climbing robot which is used for washing, spraying, detection and so on homework, homework tasks are often confined to a single task.Now people want climbing robot can equipped with a variety of tools, are working on different occasions.(3)the miniaturization, micromation is currently the trend of the development of the robot.On the premise of meet the functional requirements, small volume, light quality of robot can be less energy consumption, high flexibility, and in some special occasions are also need robot with small volume.(4)by the mooring operation development to the direction of untethered.Because the robot working space is generally larger, mooring operation greatly limits the robot working space, so, in order to improve the flexibility of robot and expand the working space, no cable is changed and is now and the future development trend of the robot.(5)by simple remote monitoring to intelligent direction.Combined with artificial intelligence, the robot can in a closed environment has a certain capacity for independent decision and complete the task, and have ego to protect ability, is the important direction of mobile robot, is also a important development direction of mobile robot climbing wall.(6)the adaptability of the reconfigurable robot is an important indicator.In order to make the robots could be used in different occasions, according to the mission requirements, under the condition of the system does not need to design, make full use of existing robot system, should make with reconfigurable robot, which has a modular structure.According to the mission requirements, the need of module is directly connected to form a new robot.譯文:
1.引言:
爬壁機(jī)器人是移動機(jī)器人領(lǐng)域的一個重要分支,可在垂直壁面上靈活移動,代替人工在極限條件下完成多種作業(yè)任務(wù),是當(dāng)前機(jī)器人領(lǐng)域研究的熱點(diǎn)之一。它主要應(yīng)用于核工業(yè)、石化工業(yè)、造船業(yè)、消防部門及偵查活動等,如對高樓外壁面進(jìn)行清洗,對石化企業(yè)中的儲料罐外壁進(jìn)行檢測和維護(hù),對大面積鋼板進(jìn)行噴漆,以及在高樓事故中進(jìn)行搶險(xiǎn)救災(zāi)等,并且取得了良好的社會效益和經(jīng)濟(jì)效益,具有廣闊的發(fā)展前景。
經(jīng)過30多年的發(fā)展,爬壁機(jī)器人領(lǐng)域已經(jīng)涌現(xiàn)出一大批豐碩的成果,特別是20世紀(jì)90年代以來,國內(nèi)外在爬壁機(jī)器人領(lǐng)域中的發(fā)展尤為迅速。近年來,由于多種新技術(shù)的發(fā)展,爬壁機(jī)器人的許多技術(shù)難題得到解決,極大地推動了爬壁機(jī)器人的發(fā)展。在我國各高校機(jī)器人設(shè)計(jì)活動也已經(jīng)很廣的開展起來,這種氛圍對我國機(jī)器人的研制開發(fā)特別以及專業(yè)方面人才的培養(yǎng)是具有積極意義的。
2.國外爬壁機(jī)器人研究現(xiàn)狀
1966年日本的西亮教授首次研制成功壁面移動機(jī)器人樣機(jī),并在大阪府立大學(xué)表演成功。這是一種依靠負(fù)壓吸附的爬壁機(jī)器人。隨后出現(xiàn)了各種類型的爬壁機(jī)器人,到80年代末期已經(jīng)開始在生產(chǎn)中應(yīng)用。日本在開發(fā)爬壁機(jī)器人方面發(fā)展最為迅速,主要應(yīng)用在建筑行業(yè)與核工業(yè)。如:日本清水建設(shè)公司開發(fā)了建筑行業(yè)用的外壁涂裝與貼瓷磚的機(jī)器人,他們研制的負(fù)壓吸附清洗玻璃面的爬壁機(jī)器人,曾為加拿大使館清洗。東京工業(yè)大學(xué)開發(fā)了無線遙控磁吸附爬壁機(jī)器人。在日本通產(chǎn)省”極限作業(yè)機(jī)器人"國家研究計(jì)劃支持下,日暉株式會社開發(fā)了用于核電站大罐的負(fù)壓吸附壁面檢查機(jī)器人等。
其他各國也加入到爬壁機(jī)器人研究的熱潮中如:美國西雅圖的Henry R Seemann在波音公司的資助下研制出一種真空吸附履帶式爬壁機(jī)器人“AutoCrawler”。其兩條履帶上各裝有數(shù)個小吸附室,隨著履帶的移動,吸附室連續(xù)地形成真空腔而使得履帶貼緊壁面行走。美國CaseWestern Reserve University研制的采用4個“腿輪”的爬壁機(jī)器人樣機(jī)。與前兩種機(jī)器人相似,該機(jī)器人依靠4個“腿輪”上的仿生粘性材料來吸附,樣機(jī)不同的是這4個腿輪上腳掌的特殊分布更有利于機(jī)器人在壁面上穩(wěn)定爬行。該機(jī)器人質(zhì)量僅有87 g。20世紀(jì)90年代初,英國樸次茅斯工藝學(xué)校研制了一種多足行走式的爬壁機(jī)器人。采用模塊化設(shè)計(jì),機(jī)器人由兩個相似的模塊組成,每個模塊包括兩個機(jī)械腿和腿部控制器??筛鶕?jù)任務(wù)需要來安裝不同數(shù)量的腿,可重構(gòu)能力強(qiáng)。機(jī)械腿采用仿生學(xué)機(jī)構(gòu),模擬大型動物臂部肌肉的功能,為兩節(jié)式,包括上、下兩個桿和3個雙作用氣缸,具有3個自由度。穩(wěn)定性好,承載能力大,利于機(jī)器人的輕量化,并能跨越較大的障礙物。除腿端部各有一真空吸盤外,機(jī)器人腹部設(shè)有吸盤, 使機(jī)器人具有較大的負(fù)載質(zhì)量比,可達(dá)2∶1。
3.國內(nèi)爬壁機(jī)器人研究現(xiàn)狀
中國也于20世紀(jì)90年代以來進(jìn)行類似的研究。1988年在國家“863”高技術(shù)計(jì)劃的支持下,哈爾濱工業(yè)大學(xué)機(jī)器人研究所先后研制成功了采用磁吸附和真空吸附兩個系列的5種型號壁面爬行機(jī)器人。研制成功的我國第一臺壁面爬行遙控檢測機(jī)器人,采用負(fù)壓吸附,全方位移動輪,用于核廢液儲存罐罐壁焊縫缺陷檢測。1994年開發(fā)的用于高樓壁面清洗作業(yè)的爬壁機(jī)器人CLR-Ⅰ,采用全方位移動機(jī)構(gòu),機(jī)器人在原地就可以任意改變運(yùn)動方向。之后開發(fā)的CLR-Ⅱ,采用兩輪獨(dú)立驅(qū)動方式———同軸雙輪差速機(jī)構(gòu), 通過對兩輪速度的協(xié)調(diào)控制實(shí)現(xiàn)機(jī)器人的全方位移動,機(jī)器人本體和地面控制站之間采用電力線載波通訊方式。上述3款爬壁機(jī)器人均采用單吸盤結(jié)構(gòu),彈簧氣囊密封,保證了機(jī)器人具有較高爬行速度和可靠的附著能力。1995年研制成功的金屬管防腐用磁吸附爬壁機(jī)器人,采用永磁吸附結(jié)構(gòu),靠兩條履帶的正反轉(zhuǎn)移動來實(shí)現(xiàn)轉(zhuǎn)彎。該機(jī)器人可以為石化企業(yè)金屬儲料罐的外壁進(jìn)行噴漆、噴砂,以及攜帶自動檢測系統(tǒng)對罐壁涂層厚度進(jìn)行檢測。1997年研制的水冷壁清檢測爬壁機(jī)器人,呈圓弧形永磁吸附塊與罐壁圓弧相吻合,提高了吸附力,也提高了作業(yè)的效率。上海大學(xué)也較早開展高樓壁面清洗作業(yè)機(jī)器人的研究,先后研制出垂直壁面爬壁機(jī)器人和球形壁面爬壁機(jī)器人。該球形壁面爬壁機(jī)器人采用多吸盤、負(fù)壓吸附、6足獨(dú)立驅(qū)動腿足行走方式,可用于不同曲率半徑的球形外壁1996年以來,北京航空航天大學(xué)先后研制成功WASH2 MAN,CLEANBOT 1,SKYCLEAN,“吊籃式擦窗機(jī)器人”和“藍(lán)天潔寶”等幕墻清洗機(jī)器人樣機(jī)。為全氣動擦窗機(jī)器人;吊籃式清洗機(jī)器人,機(jī)器人依靠樓頂上的安全吊索牽引移動,利用風(fēng)機(jī)產(chǎn)生的負(fù)壓使機(jī)器人貼附在壁面上以國家大劇院橢球形頂棚清洗為應(yīng)用背景研制的適用于復(fù)雜曲面的自攀爬式機(jī)器人樣機(jī),由攀爬機(jī)構(gòu)、移動機(jī)構(gòu)、清機(jī)器人有許多相似之處,但由于其特殊的工作環(huán)境和任務(wù)要求,在理論和技術(shù)等方面又有一些特殊性。
4.爬壁機(jī)器人的關(guān)鍵技術(shù):
4.1吸附機(jī)構(gòu):吸附機(jī)構(gòu)的作用是產(chǎn)生一個向上的力來平衡機(jī)器人的重力,使其保持在壁面上。目前,吸附方式主要有真空負(fù)壓吸附、磁吸附、螺旋槳推力及粘結(jié)劑等幾種方式。由于這些吸附方式各自都有局限性,所研制的爬壁機(jī)器人往往針對性較強(qiáng),只適用于某種特定任務(wù),較難通用化。機(jī)器人的設(shè)計(jì)需要針對工作任務(wù)、環(huán)境,選取合適的吸附方式。近年來,人們通過研究壁虎等爬行動物腳掌的吸附機(jī)理,制作出高分子合成的粘性材料,這些材料利用分子與分子之間的范德華力,在很小的接觸面積上就可獲得巨大的吸附力,而且具有吸附力與表面材料特性無關(guān)的優(yōu)點(diǎn)。但目前這些材料的使用壽命較短, 使用一定次數(shù)之后就失去粘性,難以實(shí)用化,需要進(jìn)一步進(jìn)行研究。
4.2移動機(jī)構(gòu)及運(yùn)動控制系統(tǒng):移動機(jī)構(gòu)及運(yùn)動控制系統(tǒng)爬壁機(jī)器人的移動機(jī)構(gòu)主要有輪式、多足式、履帶式等,其中,輪式和足式使用較為廣泛,履帶式多用于磁吸附方式。越障能力是爬壁機(jī)器人壁面適應(yīng)性能的一個重要指標(biāo)。當(dāng)工作面上有凸起、溝槽時,機(jī)器人要通過這些障礙物,就必須有足夠的越障能力。各種移動機(jī)構(gòu)中,多足式機(jī)器人的越障能力較強(qiáng),其每個腿部都置有小吸盤,當(dāng)遇到障礙物時,可控制各個“腿”,使小吸盤逐個跨過障礙物。壁面機(jī)器人的移動機(jī)構(gòu)可以使機(jī)器人在可靠吸附的前提下能夠在壁面上靈活移動。由于爬壁機(jī)器人工作于壁面的特殊性,移動機(jī)構(gòu)常和吸附機(jī)構(gòu)存在耦合,這給機(jī)器人的運(yùn)動控制帶來了一些困難。如多吸盤足式爬壁機(jī)器人,腿末端各有一個吸盤,每移動一個腿需要完成“消除吸力—抬腿—邁腿—落腿—產(chǎn)生吸附力”一系列動作。在此過程中,機(jī)器人移動機(jī)構(gòu)的動作要和吸附機(jī)構(gòu)相互協(xié)調(diào),才能保證機(jī)器人在壁面上的靈活移動。此外,也有移動機(jī)構(gòu)與吸附機(jī)構(gòu)分離的,如單吸盤爬壁機(jī)器人,吸盤可持續(xù)吸附,驅(qū)動輪連續(xù)運(yùn)動實(shí)現(xiàn)機(jī)器人的移動,運(yùn)動控制較為簡單。
4.3能源供應(yīng)及驅(qū)動方式:能源供應(yīng)及驅(qū)動方式能源供應(yīng)方式有通過電線管路為機(jī) 器人提供電、氣等能源的方式,也有自帶電池、氣瓶等方式。驅(qū)動方式主要有電機(jī)氣動等幾種方式。爬壁機(jī)器人的設(shè)計(jì)盡量采用具有高功效質(zhì)量比的驅(qū)動器和動力源,特別是采用無線控制情況下。采用電機(jī)驅(qū)動時,能源供應(yīng)主要有聚合物鋰電池、鎳氫電池、電化學(xué)電池和燃料電池。此外,由于內(nèi)燃機(jī)的能源———汽油、氫等燃料具有較高的能重比,先進(jìn)的微型內(nèi)燃機(jī)也可應(yīng)用于爬壁機(jī)器人。
4.4安全問題:機(jī)器人在受到外界干擾、環(huán)境變化情況下,如何保證機(jī)器人安全附著于壁面而不至于墜落,或墜落后如何盡量減小機(jī)器人的損傷。過去所研制的高樓清洗爬壁機(jī)器人, 大都采用由置于高樓頂上的運(yùn)載小車、卷揚(yáng)機(jī)構(gòu)和系在機(jī)器人上的鋼絲繩組成保險(xiǎn)系統(tǒng)。而對于一些其他用途的機(jī)器人,比如偵查用的小型爬壁機(jī)器人,其目標(biāo)并不確定,不能采用保險(xiǎn)繩的方式,因而需要研究新的防墜落方式??梢钥紤]采用降落傘、小功率螺旋降落漿、快速撐起阻降板等,這些可能會成為未來爬壁機(jī)器人安全措施的發(fā)展方向。
5.爬壁機(jī)器人的發(fā)展趨勢
驅(qū)動、傳感、控制等硬軟件技術(shù)的發(fā)展極大地推動了爬壁機(jī)器人技術(shù)的發(fā)展,實(shí)際應(yīng)用的需求也對爬壁機(jī)器人的發(fā)展提出了挑戰(zhàn),爬壁機(jī)器人的發(fā)展趨勢歸結(jié)起來主要有以下幾方面。(1)新型吸附技術(shù)的發(fā)展。吸附技術(shù)一直是爬壁機(jī)器人發(fā)展的一個瓶頸,它決定了機(jī)器人的應(yīng)用范圍。(2)爬壁機(jī)器人的任務(wù)由單一化向多功能化方向發(fā)展。過去所研制的爬壁機(jī)器人大多用于清洗、噴涂、檢測等作業(yè),作業(yè)任務(wù)往往只局限于單一的任務(wù)。而目前人們則希望爬壁機(jī)器人能夠裝備多種工具,在不同的場合進(jìn)行工作。(3)小型化、微型化是當(dāng)前爬壁機(jī)器人發(fā)展的趨勢。在滿足功能要求的前提下,體積小、質(zhì)量輕的機(jī)器人可較小能耗,具有較高靈活性,并且在某些特殊場合也需要機(jī)器人具有小的體積。(4)由帶纜作業(yè)向無纜化方向發(fā)展。由于爬壁機(jī)器人的作業(yè)空間一般都較大,帶纜作業(yè)極大地限制了機(jī)器人的作業(yè)空間,所以,為了提高機(jī)器人的靈活性和擴(kuò)大工作空間,無纜化成為現(xiàn)在和未來爬壁機(jī)器人的發(fā)展趨勢。(5)由簡單遠(yuǎn)距離遙控向智能化方向發(fā)展。與人工智能相結(jié)合,使機(jī)器人在封閉環(huán)境中能夠具有一定的自主決策能力, 完成任務(wù),并具有自我保護(hù)能力,是移動機(jī)器人發(fā)展的重要方向,也是爬壁移動機(jī)器人的重要發(fā)展方向。(6)可重構(gòu)是機(jī)器人適應(yīng)能力的一項(xiàng)重要指標(biāo)。為了使機(jī)器人能夠應(yīng)用于不同場合,根據(jù)任務(wù)需求,在不需要重新設(shè)計(jì)系統(tǒng)條件下,充分利用已有的機(jī)器人系統(tǒng),應(yīng)使機(jī)器人具有可重構(gòu)性,即具有模塊化結(jié)構(gòu)。根據(jù)任務(wù)需求,把需要的模塊直接連接起來組成新的機(jī)器人。
第五篇:外文翻譯--六自由度機(jī)器人
六自由度并聯(lián)機(jī)器人基于Grassmann-Cayley代數(shù)的奇異性條件
Patricia Ben-Horin和Moshe Shoham,會員,IEEE
摘要
本文研究了奇異性條件大多數(shù)的六自由度并聯(lián)機(jī)器人在每一個腿上都有一個球形接頭。首先,確定致動器螺絲在腿鏈中心。然后用凱萊代數(shù)和相關(guān)的分解方法用于確定哪些條件的導(dǎo)數(shù)(或剛度矩陣)包含這些螺絲是等級不足。這些工具是有利的,因?yàn)樗麄兎奖悴倏v坐標(biāo)-簡單的表達(dá)式表示的幾何實(shí)體,從而使幾何解釋的奇異性條件是更容易獲得。使用這些工具,奇異性條件(至少)144種這類的組合被劃定在四個平面所相交的一個點(diǎn)上。這四個平面定義為這個零距螺絲球形關(guān)節(jié)的位置和方向。指數(shù)Terms-Grassmann-Cayley代數(shù),奇點(diǎn),三條腿的機(jī)器。
一、介紹
在過去的二十年里,許多研究人員廣泛研究并聯(lián)機(jī)器人的奇異性。不像串聯(lián)機(jī)器人,失去在奇異配置中的自由度,盡管并聯(lián)機(jī)器人的執(zhí)行器都是鎖著但是他們的的自由度還是可以獲得的。因此,這些不穩(wěn)定姿勢的全面知識為提高機(jī)器人的設(shè)計(jì)和確定機(jī)器人的路徑規(guī)劃是至關(guān)重要的。
主要的方法之一,用于尋找奇異性并行機(jī)器人是基于計(jì)算雅可比行列式進(jìn)行的。Gosselin和安杰利斯[1]分類奇異性的閉環(huán)機(jī)制通過考慮兩個雅克比定義輸入速度和輸出速度之間的關(guān)系。當(dāng)圣魯克和Gosselin[2]減少了算術(shù)操作要求定義的雅可比行列式高夫·斯圖爾特平臺(GSP),從而使數(shù)值計(jì)算得到多項(xiàng)式。
另一個重要的工具,為分析螺旋理論中的奇異性,首先闡述了1900的論文[6]和開發(fā)機(jī)器人應(yīng)用程序。幾項(xiàng)研究已經(jīng)應(yīng)用這個理論找到并聯(lián)機(jī)器人的奇異性,例如,[11]-[14]。特別注意到情況,執(zhí)行機(jī)構(gòu)是線性和代表螺絲是零投的。在這些情況下,奇異的配置是解決通過使用幾何,尋找可能的致動器線依賴[15]-[17]。其他分類方法閉環(huán)機(jī)制可以被發(fā)現(xiàn)在[18]-[22]。
在本文中,我們分析了奇異點(diǎn)的一大類三條腿的機(jī)器人,在每個腿鏈有一個球形接頭上的任何點(diǎn)。我們只關(guān)注了正運(yùn)動學(xué)奇異性。首先,我們發(fā)現(xiàn)螺絲相關(guān)執(zhí)行機(jī)構(gòu)的每個鏈。因?yàn)槊恳粋€鏈包含一個球形接頭,自致動器螺絲是相互聯(lián)合的,他們是通過球形關(guān)節(jié)的零螺距螺桿螺絲。然后我們使用Grassmann-Cayley代數(shù)和相關(guān)的發(fā)展獲得一個代數(shù)方程,它源于管理行機(jī)器人包含的剛度矩陣。直接和高效檢索的幾何意義的奇異配置是最主要的一個優(yōu)點(diǎn),在這里將介紹其方法。
雖然之前的研究[53]分析7架構(gòu)普惠制,各有至少三條并發(fā)關(guān)節(jié),本文擴(kuò)展了奇點(diǎn)分析程度更廣泛的一類機(jī)器人有三條腿和一個球形關(guān)節(jié)。使用降低行列式和Grassmann-Cayley運(yùn)營商我們獲得一個通用的條件,這些機(jī)器人的奇異性提供在一個簡單的幾何意義方式計(jì)算中。
本文的結(jié)構(gòu)如下。第二節(jié)詳細(xì)描述了運(yùn)動學(xué)結(jié)構(gòu)的并聯(lián)機(jī)器人。第三節(jié)包含一個簡短的在螺絲和大綱性質(zhì)的背景下驅(qū)動器螺絲,零距螺絲作用于中心的球形關(guān)節(jié)。第四部分包含一個介紹Grassmann-Cayley代數(shù)的基本工具用于尋找奇異性條件。這部分還包括剛度矩陣(或?qū)?shù))分解成坐標(biāo)自由表達(dá)。第五節(jié)中一個常見的例子給出了這種方法。最后,第六章比較了使用本方法結(jié)果與結(jié)果的其他技術(shù)。
二、運(yùn)動構(gòu)架
本文闡述了6自由度并聯(lián)機(jī)器人有六間連通性基礎(chǔ)和移動平臺。肖海姆和羅斯[54]提供了調(diào)查可能的結(jié)構(gòu),產(chǎn)生基于流動公式6自由度的Grubler和Kutzbach。他們尋找了所有的可能性,滿足這個公式對關(guān)節(jié)的數(shù)目和任何鏈接。GSP和三條腿的機(jī)器人結(jié)構(gòu)的一個子集所列出的6自由度Shoham和羅斯。一個類似的例子也證實(shí)了了Podhorodeski和Pittens[55],他發(fā)現(xiàn)了一個類的三條腿的對稱并聯(lián)機(jī)器人,球形關(guān)節(jié)、轉(zhuǎn)動關(guān)節(jié)的平臺在每個腿比其他結(jié)構(gòu)潛在有利。正如上面所討論的,大多數(shù)的報(bào)告文獻(xiàn)限制他們的分析結(jié)構(gòu)和球形關(guān)節(jié)位于移動平臺和棱柱關(guān)節(jié)作為驅(qū)動的關(guān)節(jié)。在這個分類,我們包括五種類型的關(guān)節(jié)和更多的可選職位的球形關(guān)節(jié)。
我們處理機(jī)器人有三個鏈連接到移動平臺,每個驅(qū)動有兩個1自由度關(guān)節(jié)或一個二自由度關(guān)節(jié)。這些鏈不一定是平等的,但都有移動和連接六個基地和之間的平臺。除了球形接頭(S),關(guān)節(jié)考慮是棱鏡(P),轉(zhuǎn)動(R)、螺旋(H)、圓柱(C)和通用(U),前三個是1自由度關(guān)節(jié)和最后兩個二自由度的關(guān)節(jié)。所有的可能性都顯示在表I和II。該列表只包含機(jī)器人,有平等的連鎖,總計(jì)144種不同的結(jié)構(gòu),但是機(jī)器人與任何可能的組合鏈也可以被認(rèn)為是membersof這類方法。組合的總數(shù),大于500 000,計(jì)算方式如下:
三、管理方法
本節(jié)涉及螺絲和平臺運(yùn)動的確定。因?yàn)榭紤]機(jī)器人有三個串行鏈,每個驅(qū)動器螺絲的方向可以由其互惠到其他關(guān)節(jié)螺釘固定在鏈條。被動球形接頭在每個鏈部隊(duì)驅(qū)動器螺絲為零距(行)并且通過它的中心。因此,三個平面是創(chuàng)建中心位于自己的球形關(guān)節(jié)。
以下簡要介紹了螺旋理論,廣泛的解決[7],[73],[75];我們解決在第二節(jié)中列出相互的所有關(guān)節(jié)螺釘系統(tǒng)。
上述類的機(jī)器人的幾何結(jié)果奇點(diǎn)現(xiàn)在相比其他方法獲得的結(jié)果要準(zhǔn)確。首先,我們比較奇異條件在上述3 GSP平臺與結(jié)果報(bào)告線幾何方法。
根據(jù)相對幾何條件的他行方法區(qū)分不同的幾種類型沿著棱鏡致動器[81]的奇異性。我們表明,所有這些奇異點(diǎn)是特定情況下的條件通過(17 c)提供,這是有效的三條腿以及6:3 GSP平臺的機(jī)器人的考慮。這種結(jié)構(gòu)的奇異的配置根據(jù)線幾何分析包括五種類型:3 c、4 b、4 d,5 a和5 b[17],[36]。
四、奇異性分析
本節(jié)確定奇異性條件定義在第二節(jié)的機(jī)器人。第一部分包括尋找方向的執(zhí)行機(jī)構(gòu)的行動路線,基于解釋第三節(jié)中介紹。他行通過球形接頭中心,而他們的方向取決于關(guān)節(jié)的分布和位置。第二部分包括應(yīng)用程序的方法使用了Grassmann-Cayley代數(shù)在第四節(jié)定義奇點(diǎn)。因?yàn)槊繉€滿足在一個點(diǎn)(球形接頭),所有例子的解決方案是象征性地平等,無論點(diǎn)位置的腿或腿的對稱性。我們從文獻(xiàn)中舉例說明使用三個機(jī)器人的解決方案。
1.方向的致動器螺絲
第一個例子是3-PRPS機(jī)器人提出Behi[61][見圖3(a)]。對于每個腿驅(qū)動螺絲躺在這家由球形接頭中心和轉(zhuǎn)動關(guān)節(jié)軸。特別是,致動器螺桿是垂直于軸的,和致動器螺桿是垂直于軸的,這些方向被描繪在圖3(b)。第二個例子是the3-USR機(jī)器人提出Simaan et al。[66][見圖4(a)]。每條腿有驅(qū)動器螺絲躺在通過球形接頭中心和包含轉(zhuǎn)動關(guān)節(jié)軸中。驅(qū)動器螺絲穿過球形接頭中心并與轉(zhuǎn)動關(guān)節(jié)軸相連。這些方向被描繪在圖4(b)。
第三個例子是3-PPSP Byun建造的機(jī)器人和[65][見圖5(一個)]。每條腿,驅(qū)動螺絲躺在飛機(jī)通過球形接頭中心和正常的棱鏡接頭軸。驅(qū)動器螺絲垂直于軸的,和致動器螺桿是垂直于軸的,這些方向被描繪在圖5(b)。
圖3(a)3-PRPS機(jī)器人提出Behi[61]
(b)飛機(jī)和致動器螺絲
圖4(a)3自由度機(jī)器人提出Simaan和Shoham[66]
(b)飛機(jī)和致動器螺絲的3自由度機(jī)器人
圖5(a)3-PPSP機(jī)器人提出Byun[65]
(b)飛機(jī)和致動器螺絲
2、.奇異性條件
雅克(或superbracket)的機(jī)器人是分解成普通支架monomials使用麥克米蘭的分解,即(16)。解釋部分3—b機(jī)器人,本文認(rèn)為每個鏈有兩個零距驅(qū)動器螺絲通過球形接頭。拓?fù)?這個描述等于行6:3 GSP(或在[53]),這三條線,每經(jīng)過一個雙球面上的接頭平臺(見圖6)。這意味著每對線共享一個公共點(diǎn)(這些點(diǎn)在圖6中)。因此類的機(jī)器人被認(rèn)為是在本文中,我們可以使用相同的標(biāo)記點(diǎn)的至于6:3 GSP。六線與相關(guān)各機(jī)器人通過雙點(diǎn),并且,用同樣的方式在圖6。
圖6 6-3 GSP
五、結(jié)果
本文提出一個廣義奇異性分析并聯(lián)機(jī)器人組成元素。這些是有一個球形接頭在每個腿鏈的三條腿的6自由度機(jī)器人。因?yàn)榍蛐侮P(guān)節(jié)需要驅(qū)動器,螺絲是純粹的力量作用于他們的中心,他們的位置沿鏈?zhǔn)遣恢匾?。組成元素包括144機(jī)制不同類型的關(guān)節(jié),每個都有不同的聯(lián)合裝置沿鏈。提出并建立描述幾個機(jī)器人出現(xiàn)在列表中。大量的機(jī)器人相關(guān)的分析組合不同被認(rèn)為是。奇點(diǎn)的分析是由第一個找到的執(zhí)行機(jī)構(gòu)使用互惠的螺絲。然后,借助組合方法和Grassmann-Cayley方法,得到剛度矩陣行列式在一個可以操作的協(xié)調(diào)自由形式,可以翻譯成一個簡單的幾何條件之后。其定義是幾何條件由執(zhí)行機(jī)構(gòu)位置的線條和球形接頭,至少有一個相交點(diǎn)。這個有效的奇異點(diǎn)條件考慮所有組成元素中的機(jī)器人。一個比較的結(jié)果與結(jié)果的奇點(diǎn)證明了其他技術(shù)所有先前描述奇異條件實(shí)際上是特殊情況下的幾何條件的四架飛機(jī)交叉在一個點(diǎn),一個條件獲取的方法直接在這里提出。
Singularity Condition of Six-Degree-of-Freedom Three-Legged Parallel Robots Based on Grassmann–Cayley Algebra Patricia Ben-Horin and Moshe Shoham, Associate Member, IEEE
ABSTRACT This paper addresses the singularity condition of a broad class of six-degree-of-freedom three-legged parallel robots that have one spherical joint somewhere along each leg.First, the actuator screws for each leg-chain are determined.Then Grassmann–Cayley algebra and the associated superbracket decomposition are used to find the condition for which the Jacobian(or rigidity matrix)containing these screws is rank-deficient.These tools are advantageous since they facilitate manipulation of coordinate-free expressions representing geometric entities, thus enabling the geometrical interpretation of the singularity condition to be obtained more easily.Using these tools, the singularity condition of(at least)144 combinations of this class is delineated to be the intersection of four planes at one point.These four planes are defined by the locations of the spherical joints and the directions of the zero-pitch screws.Index Terms—Grassmann–Cayley algebra, singularity, three-legged robots.I.INTRODUCTION During the last two decades, many researchers have extensively investigated singularities of parallel robots.Unlike serial robots that lose degrees of freedom(DOFs)in singular configurations, parallel robots might also gain DOFs even though their actuators are locked.Therefore, thorough knowledge of these unstable poses is essential for improving robot design and determining robot path planning.One of the principal methods used for finding the singularities of parallel robots is based on calculation of the Jacobian determinant degeneracy.Gosselin and Angeles [1] classified the singularities of closed-loop mechanisms by considering two Jacobians that define the relationship between input and output velocities.St-Onge and Gosselin [2] reduced the arithmetical operations required to define the Jacobian determinant for the Gough–Stewart platform(GSP), and thus enabled numerical calculation of the obtained polynomial in real-time.Zlatanov et al.[3]–[5] expanded the classification proposed by Gosselin and Angeles to define six types of singularity that are derived using equations containing not only the input and output velocities but also explicit passive joint velocities.Another important tool that has served in the analysis of singularities is the screw theory, first expounded in Ball’s 1900 treatise [6] and developed for robotic applications by Hunt [7]–[9] and Sugimoto et al.[10].Several studies have applied this theory to find singularities of parallel robots, for example, [11]–[14].Special attention was paid to cases in which the actuators are linear and the representing screws are zero-pitched.In these cases, the singular configurations were solved by using line geometry, looking for possible actuator-line dependencies [15]–[17].Other approaches taken to classify singularities of closed-loop mechanisms can be found in [18]–[22].In this paper, we analyze the singularities of a broad class of three-legged robots, having a spherical joint at any point in each individual leg-chain.We focus only on forward kinematics singularities.First, we find the screws associated with the actuators of each chain.Since every chain contains a spherical joint, and since the actuator screws are reciprocal to the joint screws, they are zero-pitch screws passing through the spherical joints.Then we use Grassmann–Cayley algebra and related developments to get an algebraic equation which originates from the rigidity matrix containing the governing lines of the robot.The direct and efficient retrieval of the geometric meaning of the singular configurations is one of the main advantages of the method presented here.While the previous study [53] analyzed only seven architectures of GSP, each having at least three pairs of concurrent joints, this paper expands the singularity analysis to a considerably broader class of robots that have three legs with a spherical joints somewhere along the legs.Using the reduced determinant and Grassmann–Cayley operators we obtain one single generic condition for which these robots are singular and provide in a simple manner the geometric meaning of this condition.The structure of this paper is as follows.Section II describes in detail the kinematic architecture of the class of parallel robots under consideration.Section III contains a brief background on screws and outlines the nature of the actuator screws, which are zero-pitch screws acting on the centers of the spherical joints.Section IV contains an introduction to Grassmann–Cayley algebra which is the basic tool used for finding the singularity condition.This section also includes the rigidity matrix(or Jacobian)decomposition into coordinate-free expressions.In Section V a general example of this approach is given.Finally, Section VI compares the results obtained using the present method with results obtained by other techniques.II.KINEMATIC ARCHITECTURE This paper deals with 6-DOF parallel robots that have connectivity six between the base and the moving platform.Shoham and Roth [54] provided a survey of the possible structures that yield 6-DOF based on the mobility formula of Grübler and Kutzbach.They searched for all the possibilities that satisfy this formula with respect to the number of joints connected to any of the links.The GSP and three-legged robots are a subset of the structures with 6-DOF listed by Shoham and Roth.A similar enumeration was provided also by Podhorodeski and Pittens [55], who found a class of three-legged symmetric parallel robots that have spherical joints at the platform and revolute joints in each leg to be potentially advantageous over other structures.As discussed above, most of the reports in the literature limit their analysis to structures with spherical joints located on the moving platform and revolute or prismatic joints as actuated or passive additional joints.Exceptions are the family of 14 robots proposed by Simaan and Shoham [28] which contain spherical-revolute dyads connected to the platform, and some structures mentioned below which have revolute or prismatic joints on the platform.In this classification, we include five types of joints and more optional positions for the spherical joints.We deal with robots that have three chains connected to the moving platform, each actuated by two 1-DOF joints or one 2-DOF joint.These chains are not necessarily equal, but all have mobility and connectivity six between the base and the platform.Besides the spherical joint(S), the joints taken into consideration are prismatic(P), revolute(R), helical(H), cylindrical(C), and universal(U), the first three being 1-DOF joints and the last two being 2-DOF joints.All the possibilities are shown in Tables I and II.The list contains only the robots that have equal chains, totaling 144 different structures, but robots with any possible combination of chains can also be considered as membersof this class.The total number of combinations, , is larger than 500 000, calculated as follows:
III.GOVERNING LINES This section deals with the screws that determine the platform motion.Since the robots under consideration have three serial chains, the direction of each actuator screw can be determined by its reciprocity to the other joint screws in the chain.The passive spherical joint in each chain forces the actuator screws to have zero-pitch(lines)and to pass through its center.Therefore, three flat pencils are created having their centers located at the spherical joints.Following a brief introduction to the screw theory that is extensively treated in [7], [73]–[75];we address the reciprocal screw systems of all the joints listed in Section II.The geometric result for the singularity of the aforementioned class of robots is now compared with the results obtained by other approaches in the literature.First, we compare the singularity condition described above for the 6-3 GSP platform with the results reported for the line geometry method.The line geometry method distinguishes among several types of singularities, according to the relative geometric condition of he lines along the prismatic actuators [81].We show that all these singularities are particular cases of the condition provided by(17c), which is valid for the three-legged robots under consideration as well as for the 6-3 GSP platform.The singular configurations of this structure according to line geometry analysis include five types: 3C, 4B, 4D, 5A, and 5B [17], [36].IV.SINGULARITY ANALYSIS This section determines the singularity condition for the class of robots defined in Section II.The first part consists of finding the direction of the actuator lines of action, based on the explanation introduced in Section III.The lines pass through the spherical joint center while their directions depend on the distribution and position of the joints.The second part includes application of the approach using Grassmann–Cayley algebra presented in Section IV for defining singularity when considering six lines attaching two platforms.Since every pair of lines meet at one point(the spherical joint), the solution for all the cases is symbolically equal, regardless of the points’ location in the leg or the symmetry of the legs.We exemplify the solution using three robots from the literature.A.Direction of the Actuator Screws The first example is the 3-PRPS robot as proposed by Behi [61] [see Fig.3(a)].For each leg the actuated screws lie on theplane defined by the spherical joint center and the revolute joint axis.In particular,the actuator screw is perpendicular to the axis of , and the actuator screw is perpendicular to the axis of , these directions being depicted in Fig.3(b).The second example is the3-USR robot as proposed by Simaan et al.[66][see Fig.4(a)].Every leg has the actuator screws lying on the plane passing through the spherical joint center and containing the revolute joint axis.The actuator screw passes through the spherical joint center and intersects the revolute joint axis and.Similarly, the actuator screw passes through the spherical joint center and intersects the revolute joint axis and , these directions being depicted in Fig.4(b).The third example is the 3-PPSP robot built by Byun and Cho [65] [see Fig.5(a)].For every leg the actuated screws lie on the plane passing through the spherical joint center and being normal to the prismatic joint axis.The actuator screw is perpendicular to the axis of , and the actuator screw is perpendicular to the axis of , these directions being depicted in Fig.5(b).Fig.3.(a)The 3-PRPS robot as proposed by Behi [61].(b)Planes and actuator screws.Fig.4.(a)The 3-USR robot as proposed by Simaan and Shoham [66].(b)Planes and actuator
screws of the 3-USR robot.Fig.5.(a)3-PPSP robot as proposed by Byun and Cho [65].(b)Planes and actuator screws.B.Singularity Condition
The Jacobian(or superbracket)of a robot is decomposed into ordinary bracket monomials using McMillan’s decomposition, namely(16).As explained in Section III-B, all the robots of the class considered in this paper have two zero-pitch actuator screws passing through the spherical joint of each chain.Topologically, this description is equivalent to the lines of the 6-3 GSP(or in [53]), which has three pairs of lines, each passing through a double spherical joint on the platform(see Fig.6).This means that each pair of lines share one common point(in Fig.6 these points are , , and).Therefore for the class of robots considered in this paper, we can use the same notation of points as for the 6-3 GSP.The six lines associated with each robot pass through the pairs of points,and , in the same way as in Fig.6.Due to the common points of the pairs of lines ,and ,denoted , and respectively, many of the monomials of(16)vanish due to(4).Fig.6.6-3 GSP.V.CONCLUSION
This paper presents singularity analysis for a broad family of parallel robots.These are 6-DOF three-legged robots which have one spherical joint in each leg-chain.Since the spherical joints entail the actuator screws to be pure forces acting on their centers, their location along the chain is not important.The family includes 144 mechanisms incorporating diverse types of joints that each has a different joint arrangement along the chains.Several proposed and built robots described in the literature appear in this list.A larger number of robots are relevant to this analysis if combinations of different legs are considered.The singularity analysis was performed by first finding the lines of action of the actuators using the reciprocity of screws.Then, with the aid of combinatorial methods and Grassmann–Cayley operators, the rigidity matrix determinant was obtained in a manipulable coordinate-free form that could be translated later into a simple geometric condition.The geometric condition consists of four planes, defined by the actuator lines and the position of the spherical joints, which intersect at least one point.This singularity condition is valid for all the robots in the family under consideration.A comparison of this singularity result with results obtained by other techniques demonstrated that all the previously described singularity conditions are actually special cases of the geometrical condition of four planes intersecting at a point, a condition that was obtained straightforwardly by the method suggested here