第一篇:英語(yǔ) 專業(yè)論文怎么寫
英語(yǔ)專業(yè)論文怎么寫
一.關(guān)于本專業(yè)畢業(yè)論文的選題
英語(yǔ)專業(yè)本科生畢業(yè)論文選題可以在三個(gè)大的方向中進(jìn)行,即英語(yǔ)文學(xué),語(yǔ)言學(xué)和翻譯學(xué)。各個(gè)大方向中又可以選擇小的方向,具體解釋如下:
1.英語(yǔ)文學(xué):選擇英語(yǔ)文學(xué)的畢業(yè)論文選題可以從三個(gè)方向進(jìn)行:國(guó)別文學(xué)研究、文學(xué)批評(píng)理論研究和比較文學(xué)研究。
在進(jìn)行國(guó)別文學(xué)研究選題時(shí),一般選取英國(guó)文學(xué)或美國(guó)文學(xué)中的某一經(jīng)典作家(如海明威),某一經(jīng)典作品(如《雙城記》),某一寫作手法(如象征手法的運(yùn)用)或某一文學(xué)思潮(如浪漫主義運(yùn)動(dòng))作深入研究。但在選擇作家或作品時(shí)最好選擇在文學(xué)史上作為經(jīng)典的作家或作品。有個(gè)別流行作家或作品極富盛名,容易引起學(xué)生的興趣,如《飄》或《荊棘鳥》,學(xué)生有強(qiáng)烈愿望選擇它們作為研究對(duì)象。在不可避免上述情況時(shí),應(yīng)該盡可能地挖掘作品內(nèi)在的深刻含義,不能流于膚淺的分析。
文學(xué)批評(píng)理論的選題一般不太適合英語(yǔ)專業(yè)本科生,因?yàn)樵摾碚撝R(shí)的學(xué)習(xí)在英語(yǔ)專業(yè)研究生階段,本科生一般不具備文學(xué)批評(píng)理論的知識(shí)結(jié)構(gòu)。這個(gè)方向的選題可以有關(guān)某一文學(xué)批評(píng)理論,一文學(xué)批評(píng)術(shù)語(yǔ)的闡釋或某兩種或以上的文學(xué)批評(píng)理論的比較。
比較文學(xué)研究就是將兩個(gè)以上的作家或作品進(jìn)行比較。這兩個(gè)作品或作家可以是同一國(guó)別的(如“雪萊與拜倫的詩(shī)歌比較”),也可以是不同國(guó)別的(如《牡丹亭》與《羅密歐與朱麗葉》)
2.語(yǔ)言學(xué):選擇語(yǔ)言學(xué)的畢業(yè)論文選題可以在兩個(gè)大的方向進(jìn)行:普通語(yǔ)言學(xué)和應(yīng)用語(yǔ)言學(xué)。
普通語(yǔ)言學(xué)的研究就是對(duì)于英語(yǔ)語(yǔ)言的任何一個(gè)方面的研究,如對(duì)一種詞性、或一種時(shí)態(tài)、或拼寫、語(yǔ)調(diào)等等方面的研究(如“一般現(xiàn)在時(shí)及其交際功能”)。
應(yīng)用語(yǔ)言學(xué)包括教學(xué)法的研究和其它一些新興的應(yīng)用語(yǔ)言學(xué)分支的研究。師范專業(yè)或本身從事教師職業(yè)的學(xué)生選擇教學(xué)法方向的較多。在這個(gè)方向選題,也要避免過大范圍的選題,而應(yīng)對(duì)一個(gè)具體問題進(jìn)行研究,最重要的是要結(jié)合教學(xué)實(shí)踐或?qū)嶒?yàn)。這個(gè)方向的好的選題有:“個(gè)性與英語(yǔ)教學(xué)”,“方言對(duì)英語(yǔ)學(xué)習(xí)的影響”等。
3.翻譯學(xué):翻譯學(xué)的選題一般可以在兩個(gè)方向上進(jìn)行:翻譯理論以及翻譯活動(dòng)。對(duì)翻譯理論的研究就是探討某一種翻譯理論等等。相比之下,對(duì)翻譯活動(dòng)的研究更多一些,這些選題可以是對(duì)一種語(yǔ)言現(xiàn)象的翻譯、或一種修辭格的翻譯的研究(如“漢語(yǔ)成語(yǔ)的英譯”)。應(yīng)該注意的是,在對(duì)翻譯活動(dòng)作研究時(shí),往往需要某種翻譯理論支撐,總結(jié)規(guī)律,并對(duì)這一活動(dòng)作出評(píng)價(jià),要避免僅僅時(shí)例子的羅列。
二.英語(yǔ)專業(yè)畢業(yè)論文格式要求
學(xué)位論文包括前置、主體、附錄等三個(gè)部分。
(一)前置
1.英文封面:由論文英文題目、解釋、作者、指導(dǎo)老師姓名和職稱、時(shí)間組成。
2.目錄:由論文的中、英文摘要、篇、章、條、款以及參考書目、附錄等序號(hào)、題名和頁(yè)碼組成,排在英文封面之后另頁(yè)。
3.中、英文內(nèi)容摘要:摘要是論文的內(nèi)容不加注釋和評(píng)論的簡(jiǎn)短陳述,宜以最簡(jiǎn)潔的語(yǔ)言介紹論文的概要、作者的突出論點(diǎn)、新見解或創(chuàng)造性成果以及實(shí)驗(yàn)方法、數(shù)據(jù)或結(jié)論,是一篇完整的短文,可以獨(dú)立使用,中文摘要一般在200字左右
4關(guān)鍵詞:關(guān)鍵詞是用以表示全文主題內(nèi)容信息的單詞或術(shù)語(yǔ)。為便于文獻(xiàn)檢索,學(xué)位論文應(yīng)注明三至五個(gè)具有代表意義中、外文“關(guān)鍵詞”,這些關(guān)鍵詞就是論文的中心詞,以顯著的字符另起一行,分別排在中、外文摘要的左下方。各關(guān)鍵詞之間用“分號(hào)”隔開。外文關(guān)鍵詞應(yīng)與中文關(guān)鍵詞相對(duì)應(yīng)。
(二)主體部分
主題部分包括引言(Introduction)、正文(Body)、結(jié)論(Conclusion)、參考文獻(xiàn)(Bibliography)。主體部分必須由另頁(yè)右頁(yè)開始。
1.引言:主要說(shuō)明研究工作的目的、涉及范圍、相關(guān)領(lǐng)域的前人研究成果和知識(shí)空白、研究設(shè)想、研究方法等方面的概述、理論意義和實(shí)用價(jià)值等。
2.正文:論文的正文是核心部分,占主要篇幅。一般論文選題需要從幾個(gè)方面來(lái)論述或論證。要求論據(jù)充分,論點(diǎn)明確。行文必須實(shí)事求是,客觀真切,準(zhǔn)確完備,合乎邏輯,層次分明,簡(jiǎn)練可讀。正文部分要有分級(jí)標(biāo)題,章、條、款、項(xiàng)的序號(hào)編碼方法,采用阿拉伯?dāng)?shù)分級(jí)系列編號(hào)法,論文中的章、條、款、項(xiàng)依次排列,依次從1開始,連續(xù)編號(hào),中間用“.”相隔,最末級(jí)編號(hào)之后不加點(diǎn)。示例:
1.2.…… 2.12.2…… 2.2.1
2.2.22.2.3.… 2.2.3.1
3.結(jié)論:學(xué)位論文的結(jié)論是最終的、總體的結(jié)論,它是對(duì)正文部分的論述的概述,也可以在結(jié)論或討論中提出建議、研究設(shè)想、尚待解決的問題等。
4.參考文獻(xiàn):寫作學(xué)位論文過程中,閱讀或運(yùn)用過某些文獻(xiàn)所列出的書目清單,置于正文之后,另頁(yè)開始。參考文獻(xiàn)的著錄按原文獻(xiàn)語(yǔ)種為原則。
(1)文獻(xiàn)目錄應(yīng)另頁(yè)書寫,外文文獻(xiàn)排前,中文文獻(xiàn)排后。外文文獻(xiàn)書名須用斜體。
(2)文獻(xiàn)目錄一律按作者姓氏漢語(yǔ)拼音或外文字母順序排列。
(3)每條文獻(xiàn)必須頂格寫,回行時(shí)空兩字或五個(gè)英語(yǔ)字母。
(4)將各文獻(xiàn)的類型代號(hào)(即文獻(xiàn)英文名的首字母)注明在文獻(xiàn)之后:
專著[M] 學(xué)位論文[D]論文集〔C〕 報(bào)紙文章〔N〕期刊文章〔J〕報(bào)告[R]
專利 [P]專著、論文集的析出文獻(xiàn)[A]其他未說(shuō)明文件 〔Z〕
電子文獻(xiàn)中光盤圖書 [M/CD](MONOGRAPH ON CD)
網(wǎng)上期刊〔J/OL〕(serial online)
5.文內(nèi)所引文獻(xiàn):要求附夾注,應(yīng)在引文后加括號(hào)注明作者姓名(英文只注姓),出版年和引文頁(yè)碼。若為轉(zhuǎn)引文獻(xiàn),則加quoted in 字樣。
例:(王佐良,1982:38)
(Newmark,8:26-33)
6.文獻(xiàn)中列出的文獻(xiàn)應(yīng)該與正文中標(biāo)注的文獻(xiàn)一一對(duì)應(yīng)。正文中沒有出現(xiàn)的,不應(yīng)出現(xiàn)在參考文獻(xiàn)中。
(三)附錄部分
附錄包括所有與論文有關(guān)的補(bǔ)充材料,如圖表或照片等。
第二篇:英語(yǔ)專業(yè)論文
英語(yǔ)專業(yè)文學(xué)方向本科畢業(yè)論文寫作問題探究
[摘 要]英語(yǔ)畢業(yè)論文由于從事英美文學(xué)教學(xué)的教師理論水平參差不齊、教師對(duì)學(xué)生文藝?yán)碚摻邮苣芰Φ膽岩?、商品?jīng)濟(jì)時(shí)代文學(xué)和文藝?yán)碚撉吆凸训纫蛩?造成文學(xué)學(xué)習(xí)和文學(xué)方向畢業(yè)論文寫作中缺乏科學(xué)的分析方法。本研究將探索將文藝?yán)碚撘氡究飘厴I(yè)生的論文寫作課程中的必要性和可行性,從而建構(gòu)以文藝?yán)碚摓橹行牡挠⒄Z(yǔ)專業(yè)文學(xué)方向畢業(yè)論文寫作的新模式。
[關(guān)鍵詞]文學(xué)理論;讀者反映理論;認(rèn)知教學(xué)法
依據(jù)《高等教育法》(1998)的本科教育學(xué)業(yè)標(biāo)準(zhǔn),學(xué)生應(yīng)比較系統(tǒng)地掌握本專業(yè)所必需的基礎(chǔ)理論知識(shí)、基本技能和相關(guān)知識(shí),并“具有從事本專業(yè)實(shí)際工作和研究工作的初步能力”。這一標(biāo)準(zhǔn)強(qiáng)調(diào)了研究性教學(xué)(research-oriented teaching)的重要性,無(wú)疑為英美文學(xué)教學(xué)中理論研究與實(shí)踐的有機(jī)融合提出了要求,而這種融合往往體現(xiàn)在學(xué)生文學(xué)論文寫作的能力之中。然而,高校中實(shí)用主義風(fēng)氣、急功近利思想和“重技能,輕人文”弊端的集中體現(xiàn)沖擊著文學(xué)課教學(xué),助長(zhǎng)了學(xué)生輕視與人文修養(yǎng)有關(guān)的課程,助長(zhǎng)了他們對(duì)文學(xué)作品敬而遠(yuǎn)之的傾向(馬愛華, 2006)。作為全面考核畢業(yè)生綜合素質(zhì)的有效途徑,畢業(yè)論文寫作是本科學(xué)生畢業(yè)前必須經(jīng)受的考驗(yàn)關(guān)口,是師生教學(xué)相長(zhǎng)的過程。本文將從文學(xué)課教學(xué)的現(xiàn)狀出發(fā),通過畢業(yè)論文寫作的過程,在揭示現(xiàn)象、總結(jié)經(jīng)驗(yàn)的基礎(chǔ)上,提出重視文藝?yán)碚摰慕虒W(xué),提高學(xué)生的文學(xué)素養(yǎng),培養(yǎng)研究性學(xué)習(xí)能力的意義。
一、研究現(xiàn)狀
部分專家認(rèn)為英語(yǔ)專業(yè)(張沖, 2003)是“英語(yǔ)語(yǔ)言技能的專業(yè)訓(xùn)練和對(duì)英語(yǔ)語(yǔ)言文化的專門研究”,其特征為“技能加專業(yè),復(fù)合而開放”,其培養(yǎng)目標(biāo)為“純熟的語(yǔ)言能力,深度的專題研究”。這一專業(yè)定位除了強(qiáng)調(diào)語(yǔ)言技能之外,著重強(qiáng)調(diào)了“文化”和“研究”。文化理解和專題研究的基礎(chǔ)在于學(xué)生文學(xué)課程的給養(yǎng)過程,其中,文學(xué)理論分析則既指導(dǎo)了文學(xué)課程的學(xué)習(xí),又加深了學(xué)生對(duì)文學(xué)作品的理解。文學(xué)作品的學(xué)習(xí)與文藝?yán)碚摰年P(guān)系好比材料和工具的關(guān)系,“工欲善其事,必先利其器”,如果學(xué)生沒有相關(guān)的文藝?yán)碚摰膶W(xué)習(xí),就好比一個(gè)沒有工具的工匠,只能望天興嘆。
二、問題成因
文藝?yán)碚撌菍W(xué)習(xí)英美文學(xué)的分析和鑒賞工具,研究生階段的文藝?yán)碚摻虒W(xué)已經(jīng)有了一定的歷史,但在英語(yǔ)專業(yè)本科教學(xué)中文藝?yán)碚摰慕虒W(xué)目前尚未展開。這直接導(dǎo)致學(xué)生的文學(xué)畢業(yè)論文的寫作難度增大,出現(xiàn)了許多亟待解決的問題。主要成因如下:
1.從事英美文學(xué)教學(xué)的教師理論水平參差不齊。部分教師講授英美文學(xué),而其自身很少涉及文藝?yán)碚摰氖褂?或者說(shuō)自己的文學(xué)批評(píng)理論知識(shí)匱乏,因此不可能在授課時(shí)有意識(shí)地將文藝?yán)碚撊谌氲浇虒W(xué)中去。
2.輕視或放低對(duì)學(xué)生的人文素質(zhì)和評(píng)析能力的生成要求。有些教師擔(dān)心學(xué)生的接受能力,甚至害怕因?yàn)閷W(xué)生不能正確理解文藝?yán)碚摰木瓒鴮⑵湔`用或者濫用。《高等學(xué)校英語(yǔ)專業(yè)英語(yǔ)教學(xué)大綱》(2000)明確規(guī)定了文學(xué)課程的教學(xué)目的“在于培養(yǎng)學(xué)生閱讀、欣賞、理解英語(yǔ)文學(xué)原著的能力,掌握文學(xué)批評(píng)的基本知識(shí)和方法。通過閱讀和分析英美文學(xué)作品,促進(jìn)學(xué)生語(yǔ)言基本功和人文素質(zhì)的提高,增強(qiáng)學(xué)生對(duì)西方文學(xué)及文化的了解”,顯而易見,加大文學(xué)批評(píng)理論的講授和研討是符合《大綱》要求的。
3.所學(xué)知識(shí)與研究性寫作存在三個(gè)“不和諧”關(guān)系:文學(xué)課的教與學(xué)脫節(jié);文學(xué)課與語(yǔ)言實(shí)踐脫節(jié);文學(xué)教學(xué)理論的研究與外語(yǔ)教學(xué)實(shí)踐脫節(jié)(馬愛華, 2006)。學(xué)生習(xí)得的知識(shí)孤立于其寫作實(shí)踐之外。人才培養(yǎng)目標(biāo)不明確,學(xué)生急功近利,一成不變的文學(xué)課程教學(xué)脫離實(shí)際人才
培養(yǎng)模式。學(xué)生將文藝?yán)碚撘暈榧埳险劚?。因?導(dǎo)致“文學(xué)理論教材和教學(xué)實(shí)踐逐漸偏離當(dāng)今消費(fèi)時(shí)代的審美精神”以及“文學(xué)理論的教學(xué)被大學(xué)生們冷落”(李迪江, 2002)。
三、文藝?yán)碚撛谖膶W(xué)論文寫作中的意義
1.文學(xué)理論的專業(yè)知識(shí)學(xué)習(xí),鋪墊了文學(xué)論文的研究能力?!拔膶W(xué)理論教學(xué)應(yīng)該優(yōu)先地培養(yǎng)大學(xué)生的理論素養(yǎng),更多地培養(yǎng)大學(xué)生的應(yīng)用能力,如從文學(xué)作品的分析討論中,來(lái)培養(yǎng)大學(xué)生的理解能力、分析能力和表達(dá)能力等(李迪江, 2002)”。本科學(xué)生已經(jīng)有了一定的文學(xué)常識(shí),至少對(duì)于著名作品的情節(jié)有了一定程度的了解,文學(xué)名著選讀課使用文學(xué)名著的原版書籍作為教材,使得學(xué)生有機(jī)會(huì)對(duì)文學(xué)文本進(jìn)行仔細(xì)研讀,為文藝?yán)碚摰膶W(xué)習(xí)奠定了基礎(chǔ)。
2.畢業(yè)論文寫作,完成學(xué)生從讀者到理論分析的升華。Guerin認(rèn)為,“讀者參與在文本的創(chuàng)作中”。作品的意義是文本和讀者相互作用的結(jié)果,它強(qiáng)調(diào)讀者在閱讀過程中的不同參與方式。這一理論代表人物之一伊瑟爾指出,所有文學(xué)篇章都有“空白”或“缺口”,這些空白和缺口必須由讀者在解讀過程中填補(bǔ)或具體化(劉辰誕, 1999)。文學(xué)作品須由接受者內(nèi)化和心靈化,即需要接受者的理解、體驗(yàn)、加工、補(bǔ)充和創(chuàng)造,融入接受者的思想和情感、傾向和評(píng)價(jià),只有這樣,作品中的時(shí)間、人物形象等才會(huì)活生生地呈現(xiàn)在自己的頭腦中(郭宏安, 1997)。從這個(gè)角度暴露了英語(yǔ)專業(yè)教育中一貫的“知識(shí)單一和技能單一”問題,帶來(lái)的思考是應(yīng)該如何培養(yǎng)學(xué)生多種語(yǔ)言技能,滿足其獨(dú)立學(xué)習(xí)的需要。
3.文學(xué)史學(xué)習(xí)為文藝?yán)碚摰膶W(xué)習(xí)奠定基礎(chǔ)。心理學(xué)、原型批判、女權(quán)主義、馬克思主義的文學(xué)評(píng)論等可將傳統(tǒng)文學(xué)史中作家、作品按照時(shí)間排序的方式打破。從各種文藝?yán)碚摰慕嵌葘?duì)作家、作品重新排序,不同的文學(xué)作品可以用相同的文藝?yán)碚撨M(jìn)行分析,既起到梳理文學(xué)史和文學(xué)作品的目的,又使學(xué)生對(duì)文學(xué)作品甚至文學(xué)史的認(rèn)識(shí)提升到一個(gè)新的高度。如:莎士比亞的《哈姆雷特》,尤金?奧尼爾《榆樹下的欲望》,勞倫斯的《兒子與情人》等作品中都蘊(yùn)含著戀母情結(jié)的心理學(xué)分析。以此為基礎(chǔ),給學(xué)生補(bǔ)充講述古希臘劇作家索??死锼沟闹瘎∽髌贰抖淼移炙雇酢?能幫助學(xué)生探究作品人物的內(nèi)心世界,為論文寫作奠定基礎(chǔ)的同時(shí),也有助于選擇一個(gè)更為可行的題目。
4.結(jié)合文本與文藝?yán)碚?豐富學(xué)生的論文選題。學(xué)生文學(xué)專業(yè)畢業(yè)論文選題往往單一,如選擇:《偉大的蓋茨比》中美國(guó)夢(mèng)破滅的主題或美國(guó)夢(mèng)的悲劇一類的主題;《呼嘯山莊》、《傲慢與偏見》中的愛情主題等。選擇經(jīng)典作家的代表作品為研究對(duì)象并不是不可以,但對(duì)于一般本科生而言,要就這些作品的某一方面進(jìn)行較為深入、有創(chuàng)意的探討,還是有相當(dāng)難度的。因?yàn)?對(duì)于某一經(jīng)典文本的某些問題,國(guó)內(nèi)外評(píng)論界可能早有定論,而一般的學(xué)生“尚不能用當(dāng)代文論的新視角去解讀,很難提出自己的新解”(杜志卿, 2005)。
5.研讀詩(shī)歌,理論先行。在歷屆本科英語(yǔ)專業(yè)畢業(yè)生的論文中,有關(guān)詩(shī)歌的論文很少有人涉及。究其成因,主要是在較短篇幅的詩(shī)歌中大量運(yùn)用意象和象征等寫作手法,再加上詩(shī)人用特有的音韻感和
第三篇:愛麗絲夢(mèng)游仙境英語(yǔ)專業(yè)論文
Alice adventures in wonder land 主要內(nèi)容
《愛麗絲奇境歷險(xiǎn)記》講述了小姑娘愛麗絲追趕一只揣著懷表、會(huì)說(shuō)話的白兔,掉進(jìn)了一個(gè)兔子洞,由此墜入了神奇的地下世界。在這個(gè)世界里,喝一口水就能縮得如同老鼠大小,吃一塊蛋糕又會(huì)變成巨人,在這個(gè)世界里,似乎所有吃的東西都有古怪。她還遇到了一大堆人和動(dòng)物:渡渡鳥、蜥蜴比爾、柴郡貓、瘋帽匠、三月野兔、睡鼠、素甲魚、鷹頭獅、丑陋的公爵夫人。兔子洞里還另有乾坤,她在一扇小門后的大花園里遇到了一整副的撲克牌,牌里粗暴的紅桃王后、老好人紅桃國(guó)王和神氣活現(xiàn)的紅桃杰克(J)等等。在這個(gè)奇幻瘋狂的世界里,似乎只有愛麗絲是唯一清醒的人,她不斷探險(xiǎn),同時(shí)又不斷追問“我是誰(shuí)”,在探險(xiǎn)的同時(shí)不斷認(rèn)識(shí)自我,不斷成長(zhǎng),終于成長(zhǎng)為一個(gè)“大”姑娘的時(shí)候,猛然驚醒,才發(fā)現(xiàn)原來(lái)這一切都是自己的一個(gè)夢(mèng)境。
《愛麗絲穿鏡奇幻記》講述的是小姑娘愛麗絲剛下完一盤國(guó)際象棋,又對(duì)鏡子里反映的東西好奇不已,以致穿鏡而入,進(jìn)入了鏡子中的象棋世界。在這里,整個(gè)世界就是一個(gè)大棋盤,愛麗絲本人不過是這個(gè)棋盤中的一個(gè)小卒。小姑娘從自己所處的棋格開始,一步一步向前走,每一步棋都有奇妙的遭遇:愛麗絲會(huì)腳不沾地地飛著走路,那里的花朵和昆蟲都會(huì)說(shuō)話,白王后變成了綿羊女店主,她手中的編織針變成劃船的槳,等等。鏡中的故事大多取材于英國(guó)傳統(tǒng)童謠,作者通過自己的想象加以展開,并詳細(xì)敘述,童謠里的人和物活靈活現(xiàn)地呈現(xiàn)在讀者面前:為一丁點(diǎn)兒小事打架的對(duì)頭兄弟,行止傲慢的憨蛋和為爭(zhēng)奪王冠而戰(zhàn)的獅子和獨(dú)角獸??磥?lái)只有發(fā)明家兼廢品收藏家白騎士無(wú)法歸類,但他恰好是作者本人的化身。等到愛麗絲終于走到第八格,當(dāng)了王后之后,為所有這些人準(zhǔn)備了一次盛大的宴會(huì),宴會(huì)上的烤羊腿會(huì)鞠躬,布丁會(huì)說(shuō)話,盛宴最終變成了一片混亂,忍無(wú)可忍的愛麗絲緊緊捉住搖晃的紅后最后變成了一只小黑貓,愛麗絲也在搖晃中醒來(lái),開始追問這到底是自己的夢(mèng)呢,還是紅國(guó)王的夢(mèng)? 作者介紹
劉易斯·卡羅爾(Lewis Carroll),原名查爾斯·路德維?!さ榔孢d,與安徒生、格林兄弟齊名的世界頂尖兒童文學(xué)大師。原名查爾斯·路德維?!さ榔孢d。1832年1月出生于英國(guó)柴郡的一個(gè) 牧師家庭,1898年卒于薩里。曾在牛津大學(xué)基督堂學(xué)院任教達(dá)30年之久,業(yè)余愛好非常廣泛,尤其喜愛兒童肖像攝影。他的第一本童書《愛麗絲奇境歷險(xiǎn)記》于1865年出版,當(dāng)時(shí)就引起了巨大轟動(dòng),1871年又推出了續(xù)篇《愛麗絲穿鏡奇幻記》,更是好評(píng)如潮。兩部童書旋即風(fēng)靡了整個(gè)世界,成為一代又一代孩子們乃至成人最喜愛的讀物。
如果說(shuō)劉易斯·卡羅爾因?yàn)檫@兩部童書而被稱為現(xiàn)代童話之父,絲毫沒有夸大的成分。至少他的兩部《愛麗絲》一改此前傳統(tǒng)童話(包括《安徒生童話》、《格林童話》)充斥著殺戮和說(shuō)教的風(fēng)格,從而奠定了怪誕、奇幻的現(xiàn)代童話基調(diào)。僅從這點(diǎn)來(lái)說(shuō),就堪稱跨時(shí)代的里程碑。故事簡(jiǎn)介
Alice, sitting with her sister, is bored.A White Rabbit scurries by, muttering to himself and pulling a watch from his waistcoat pocket.Curious, Alice follows the animal down a rabbit hole, the first of many instances in which she is propelled by her curiosity.Alice falls, landing in a pile of leaves.She finds herself in a hall and discovers a tiny key to a tiny door leading to a garden.She drinks from a bottle labeled DRINK ME, and shrinks down to ten inches tall.Too short to unlock the garden door, Alice begins to cry.She eats some cake, grows unusually tall, then fans herself and becomes exceedingly small.She finds herself swimming in a pool of her own giant tears.A group of animals gathers around her on the shore.A Mouse gives a speech and then a foot race ensues.Alice is soon left alone and begins to cry again.The White Rabbit approaches.Thinking Alice is his housemaid, he sends her on an errand to fetch some things from his house.Alice drinks from a bottle she finds inside and grows until she fills the house, spilling out windows and bumping her head against the ceiling.Frightened, the Rabbit and his friends throw pebbles at Alice.The pebbles become cakes, which Alice eats to shrink.She escapes and meets a Caterpillar sitting on a mushroom, smoking.While he questions her identity and learning, Alice experiments with eating parts of the mushroom to alter her height.After a brief conversation with a Pigeon, she visits the highly
peppered house of the ill-tempered Duchess and encounters the Cheshire Cat, traveling next to the house of the March Hare.Here the Hare, the Mad Hatter, and the Dormouse have tea.Confused, she leaves the party in disgust and finds her way to the garden she could not reach earlier.In the garden, Alice encounters a very curious croquet game and a Queen of Hearts who threatens to chop off everyone's heads.Alice talks with the moralizing Duchess until the Queen threatens to execute the woman.At the Queen's orders, a Gryphon leads Alice to the Mock Turtle.She listens to his life story and his instructions for dancing the Lobster
Quadrille.The two creatures ask Alice to recount her own adventures, which she does, until a Trial is announced in the distance.The Trial concerns some tarts stolen from the Queen.When she is called to the witness stand, Alice begins to grow again and knocks over the jury box.The King orders her to leave the court because of her height.She refuses and continues to grow as the White Rabbit introduces more evidence.The Queen threatens to chop off Alice's head.Having grown to her full size, Alice calls the Queen and her soldiers a mere deck of cards, at which point the entire pack of them rises up and flies down upon her.Alice awakes.Her sister is brushing off some leaves from Alice's face.She recounts her Adventures and runs off.Her sister watches Alice and begins to dream herself, imagining that the White Rabbit rushes by through the grass.梗概:Alice's Adventures in Wonderland(commonly shortened to Alice in Wonderland)is an 1865 novel written by English author Charles Lutwidge Dodgson under the pseudonym LewisCarroll。[1]It tells of a girl named Alice who falls down a rabbit hole into a fantasy world(Wonderland)populated by peculiar, anthropomorphic creatures.The tale plays with logic, giving the story lasting popularity with adults as well as children.[2] It is considered to be one of the best examples of the literary nonsense genre,[2][3] and its narrative course and structure have been enormously influential,[3] especially in the fantasy genre.
第四篇:英語(yǔ)專業(yè)論文翻譯
A smart copper(II)-responsive binucleargadolinium(III)complex-based magnetic resonanceimaging contrast agent?
Yan-meng Xiao,ab Gui-yan Zhao,ab Xin-xiu Fang,ab Yong-xia Zhao,ab Guan-hua Wang,c Wei Yang*a and Jing-wei Xu*a A novel Gd-DO3A-type bismacrocyclic complex, [Gd2(DO3A)2BMPNA], with a Cu2+-selective binding unitwas synthesized as a potential “smart” copper(II)-responsive magnetic resonance imaging(MRI)contrast agent.The relaxivity of the complex was modulated by the presence or absence of Cu2+;in the absence of Cu2+, the complex exhibited a relatively low relaxivity value(6.40 mM1 s1), while the addition of Cu2+ triggered an approximately 76% enhancement in relaxivity(11.28 mM1 s1).Moreover, this Cu2+-responsive contrast agent was highly selective in its response to Cu2+ over other biologically-relevant metal ions.The influence of some common biological anions on the Cu2+-responsive contrast agent and the luminescence lifetime of the complex were also studied.The results of the luminescence lifetime measurements indicated that the enhancement in relaxivity was mainly ascribed to the increased number of inner-sphere water molecules binding to the paramagnetic Gd3+ core upon the addition of Cu2+.In addition, the visual change associated with the significantly enhanced relaxivity due to the addition of Cu2+ was observed from T1-weighted phantom images.Introduction Copper(II)ion is a vital metal nutrient for the metabolism of life and plays a critical role in various biological processes.1,2 Its homeostasis is critical for the metabolism and development of living organisms.3,4 On the other hand, the disruption of its homeostasis may lead to a variety of physical diseases and neurological problems such as Alzheimer's disease,5 Menkes and Wilson's disease,6 amyotrophic lateral sclerosis,7,8 and prion disease.9,10 Therefore, the assessment and understanding of the distribution of biological copper in living systems by noninvasive imaging is crucial to provide more insight into copper homeostasis and better understand the relationship between copper regulation and its physiological function.A wide variety of organic uorescent dyes have been exploited for the optical detection of ions in the last few decades.11–13However, optical imaging using organic uorescent dyes hasseveral limitations such as photobleaching, light scattering,limited penetration, low spatial resolution and the disturbance of auto uorescence.14 By comparison, magnetic resonance imaging(MRI)is an increasingly accessible technique used as a noninvasive clinical diagnostic modality for medical diagnosis and biomedical research.15 It can provide high spatial resolution three-dimensional anatomical images with information about physiological signals and biochemical events.16 As a powerful diagnostic imaging tool in medicine, MRI can distinguish normal tissue from diseased tissue and lesions in a noninvasive manner,17–19 which avoids diagnostic thoracotomy or laparotomy surgery for medical diagnoses and greatly improves the diagnostic efficiency.Multiple MRI imaging parameters can provide a wealth of diagnostic information.In addition, the desired cross-section for acquiring multi-angle and multi-planar images of various parts of the entire body can be freely chosen by adjusting the MRI magnetic eld;this ability makes medical diagnostics and studies of the body's metabolism and function more and more effective and convenient.Contrast agents are often used in MRI examinations to improve the resolution and sensitivity;the image quality can be signicantly improved by applying contrast agents which enhance the MRI signal intensity by increasing the relaxation rates of the surrounding water protons.20 Due to the high magnetic moment(seven unpaired electrons)and slow electronic relaxation of the
paramagnetic gadolinium(III)ion, gadolinium(III)-based MRI contrast agents are commonly employed to increase the relaxation rate of the surrounding water protons.16,21 However, most of these contrast agents are nonspecific and provide only anatomical information.On the basis of Solomon–Bloembergen–Morgan theory,22–24 several parameters can be manipulated to alter the relaxivity of gadolinium(III)-based MRI contrast agents.These parameters include the number of coordinated water molecules(q), the rotational correlation time(sR)and the residence lifetime of coordinated water molecules bound to the paramagnetic Gd3+ center(sM).Adjusting any of these three factors provides the opportunity to design “smart” MRI contrast agents for specific biochemical events.25–27 In recent years, there have been many studies on the development of responsive gadolinium(III)-based MRI contrast agents;most of them have focused on the development of targeted, high relaxivity and bioactivated contrast agents.These responsive gadolinium(III)-based MRI contrast agents can be modulated by particular in vivo stimuli including pH,28–35 metal ion concentration36–43 and enzyme activity.44–50 Notably, a number of copper-responsive MRI contrast agents have been reported to detect uctuations of copper ions in vivo.51–58 These activated contrast agents exploit the modulation of the number of coordinated water molecules to generate distinct enhancements in longitudinal relaxivity in response to copper ions(Cu+ or Cu2+).In this study, we designed and synthesized a binuclear gadolinium-based MRI contrast agent, [Gd2(DO3A)2BMPNA], that is specically responsive to Cu2+ over other biologicallyrelevant metal ions.The new copper-responsive MRI contrast agent comprises two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold59,60(BMPNA), which functions as a receptor for copper-induced relaxivity switching.The synthetic strategy for [Gd2(DO3A)2BMPNA] is depicted in Scheme 1.Subsequently, the T1 relaxivity of [Gd2(DO3A)2BMPNA] was studied at 25 C and 60 MHz in the absence or presence of Cu2+.Experiments to determine the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+ over other biologically-relevant ions were carried out as well.Luminescence lifetime was measured to determine the number of coordinated water molecules(q)of [Gd2(DO3A)2BMPNA] in the absence or presence of Cu2+.In addition, T1-weighted phantom images were collected to visualize the relaxivity enhancement caused by Cu2+, suggesting potential in vivo applications.Experimental section
Materials and instruments
All materials for synthesis were purchased from commercial suppliers and used without further purication.1H and 13C NMR spectra were taken on an AMX600 Bruker FT-NMR spectrometer with tetramethylsilane(TMS)as an internal standard.Luminescence measurements were performed on a Hitachi Fluorescence spectrophotometer-F-4600.The time-resolved luminescence emission spectra were recorded on a Perkin-Elmer LS-55 uorimeter with the following conditions: excitation wavelength, 295 nm;emission wavelength, 545 nm;dela time, 0.02 ms;gate time, 2.00 ms;cycle time, 20 ms;excitation slit, 5 nm;emission slit, 10 nm.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Mass spectra(MS)were obtained on an auto ex III TOF/TOF MALDI-MS and anIonSpec ESI-FTICR mass spectrometer.Elemental analyses were performed on a Vario EL Element Analyzer.Synthesis Synthesis of compound 3.Methyl 2,6-bis(3-(bromomethyl)-1H-pyrazol-1-yl)isonicotinate(Compound1)59,60 and 4,7,10-tris(2-(tert-butoxy)-2-oxoethyl)-4,7,10-triaza-azoniacyclododecan-1-ium bromide(Compound 2)61 were prepared following thereported methods.Compound 2(0.25 g, 0.296 mmol)was suspended in 2 ml anhydrous acetonitrile with 6 equivalents of NaHCO3(0.1492 g)and the mixture was stirred at room temperature for 0.5 h.Compound 1(0.0675 g, 0.148 mmol)was added, and the mixture was slowly heated to reflux(80 C)and stirred overnight.After the reaction was terminated, the mixture was cooled to room temperature, and the solution was ltered.The precipitate was washed several times with anhydrous acetonitrile, and the collected ltrate solution was evaporated under reduced pressure.The residue was puried using silicagel column chromatography eluted with CH2Cl2–n-hexane–CH3OH(10 : 3 : 1, v/v/v)to afford Compound 3(0.1038 g, 53%)as a pale yellow solid.1H NMR(600 MHz, DMSO): 8.22(s, 2H), 8.15(s, 2H), 6.62(s, 2H), 4.53(s, 4H), 3.82(s, 3H), 3.42(m, 4H), 2.98(m, 8H), 2.85(s, 8H), 2.71(m, 24H), 1.33(s, 54H)(Fig.S1?).13C NMR(151 MHz, CDCl3): d 173.21, 172.44, 163.99, 152.38, 150.11, 143.13, 128.07, 109.83, 108.36, 82.59, 57.84, 56.52, 56.06, 55.56, 52.98, 50.55, 48.91, 47.30, 27.96(Fig.S2?).HRMS(ESI): m/z calc.for C67H111N13O14 [M + 2H]2+ 661.92650, [M + H + Na]2+ 672.91747, [M + 2Na]2+ 683.90844, found [M + 2H]2+ 661.92584, [M+ H + Na]2+ 672.91690, [M + 2Na]2+ 683.90682(Fig.S3?).Synthesis of compound 4.Compound 3(0.1 g, 0.0756 mmol)was stirred with triuoroacetic acid in methylene chloride solution(2 ml)at room temperature for 24 h.The solvent was then evaporated under reduced pressure, and the residue was washed three times in CH3OH and CH2Cl2 to eliminate excess acid.The obtained residue was dissolved with a minimum volume of CH3OH and precipitated with cold Et2O.The precipitate was ltered to afford a brown yellow solid(0.1022 g).1H NMR(600 MHz, DMSO): 9.06(s, 2H), 8.17(s, 2H), 6.84(s, 2H), 4.33(s, 4H), 3.98(s, 3H), 3.56(b, 20H), 3.09(m, 24H)(Fig.S4?).13C NMR(151 MHz, D2O): d 174.11, 169.13, 164.64, 150.75, 148.85, 142.10, 129.88, 109.75, 107.99, 55.69, 54.01, 53.10, 52.43, 51.15, 49.59, 48.22, 47.69(Fig.S5?).MALDI-TOFMS spectrum(CH3OH): m/z calc.for C43H63N13O14 [M H] 984.46, found 984.7(Fig.S6?).Anal calc.for C43H63N13O14-$3CF3COOH$2H2O: C, 43.14;H, 5.17;N, 13.35;found C, 42.34;H, 4.999;N, 13.29%.Preparation of [Gd2(DO3A)2BMPNA] and [Tb2(DO3A)2-BMPNA].Compound 4(0.05 mmol)was dissolved in 2 ml of highly-puried water.GdCl3 or TbCl3(0.1 mmol)was added dropwise.The pH was maintained at 6.5–7.0 with NaOH during the whole process.The solution was then stirred at 75 C for 24 h.MALDI-MS(H2O): m/z calc.for C42H55N13O14Gd2 [M + H]+ 1281.46, found 1281.4(Fig.S7?).MALDI-MS(H2O): m/z calc.for C42H55N13O14Tb2 [M + H]+ 1284.3, found 1284.4(Fig.S8?).T1 measurements.The longitudinal relaxation times(T1)of aqueous solutions of [Gd2(DO3A)2BMPNA] were measured on an HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd)at 1.5 T.All of the tested samples were prepared in HEPES-buffered aqueous solutions at pH 7.4.All of the metal ions(Na+, K+, Ca2+, Mg2+, Cu2+, Zn2+, Fe3+, Fe2+)were used as chloride salts.Concentrations of Gd3+ were determined by ICP-OES.Relaxivities were determined from the slope of the plot of 1/T1 vs.[Gd].The data were tted to the following eqn(1),20
(1/T1)obs ?(1/T1)d + r1[M](1)
where(1/T1)obs and(1/T1)d are the observed values in the presence and absence of the paramagnetic species, respectively, and [M] is the concentration of paramagnetic [Gd].Luminescence measurements.Luminescence emission spectra were collected on a Hitachi uorescence spectrophotometer-F-4600.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Samples were excited at 290 nm, and the emission maximum(545 nm)was used to determine luminescence lifetimes.The Tb(III)-based emission spectra were measured using 0.1 mM solutions of Tb complex analog in 100 mM HEPES buffer at pH 7.4 in H2O and D2O in the absence and presence of Cu2+.The number of coordinated water molecules(q)was calculated according to eqn(2):62,63 q= ? 5(sH2O1 sD2O1 0.06)(2)T1-weighted MRI phantom images.Phantom images were collected on a 1.5 T HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd).Instrument parameter settings were as follows: 1.5 T magnet;matrix =256 256;slice thickness =1 mm;TE= 13 ms;TR= 100 ms;and number of acquisitions =1.Results and discussion Longitudinal relaxivity of [Gd2(DO3A)2BMPNA] in response to copper(II)ion To investigate the inuence of Cu2+ on the relaxivity of [Gd2(DO3A)2BMPNA], the longitudinal relaxivity r1 for the [Gd2(DO3A)2BMPNA] contrast agent was determined using T1 measurements in the absence or presence of Cu2+ at 60 MHz and 25 C using a 0.2mMGd3+ solution of [Gd2(DO3A)2BMPNA] in 100 mM HEPES buffer(pH 7.4)under simulated physiological conditions.The concentrations of Gd3+ were determined by ICP-OES.The relaxivity r1 was calculated from eqn(1).In the absence of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] was 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).64 Upon addition of up to 1 equiv.of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] increased to 11.28 mM1 s1(76% relaxivity enhancement).As shown in Fig.1, the relaxivity gradually increased with the copper ion concentration, reaching a maximum value of approximately 1.2 equivalents of Cu2+.Due to the use of triuoroacetic acid in the synthesis of Compound 4, triuoroacetic acid residues produced CF3COO in the [Gd2(DO3A)2BMPNA] solution, allowing CF3COO to partially coordinate with Cu2+ to form “Chinese lantern” type structure complexes.65 When the amount of added copper ions was further increased to above 1.2 equiv., the relaxivity was maintained at the same level.The observed difference in Cu2+-triggered relaxivity enhancement demonstrated the ability of this contrast agent to sense Cu2+ in vivo by means of MRI.Our designed contrast agent not only exhibited a higher relaxivity, but also displayed a Cu2+-responsive relaxivity enhancement.Selectivity studies The relaxivity response of [Gd2(DO3A)2BMPNA] exhibited excellent selectivity for Cu2+ over a variety of other competing, biologically-relevant metal ions at physiological levels.As depicted in Fig.2(white bars), the addition of alkali metal cations(10 mM Na+, 2 mM K+)and alkaline earth metal cations(2 mM Mg2+, 2 mM Ca2+)did not generate an increase in relaxivity compared to the copper ion turn-on response;even the introduction of d-block metal cations(0.2 mM Fe2+, 0.2 mM Fe3+, 0.2 mM or 2 mM Zn2+)did not trigger relaxivity enhancements.We noted that Zn2+ is also known to replace Gd3+ in transmetalation experiments;however, studies with analogous Gd3+-DO3A complexes demonstrated that this ligand is more kinetically inert to metal-ion exchange.66 To ensure the kinetic stability of the complex, we used MS to monitor [Gd2(DO3A)2BMPNA] in the presence of 1 equiv.of Zn2+.No metal-ion exchange was observed at room temperature after 7 days(Fig.S13?).Relaxivity interference experiments for [Gd2(DO3A)2BMPNA] in the presence of both Cu2+(0.2 mM)and other biologically-relevant metal ions were also conducted;the results are shown as black bars in Fig.2, indicating that these biologically-relevant metal ions(Na+, K+, Mg2+, Ca2+, Fe2+, Fe3+, Zn2+)had no interference on the Cu2+-triggered relaxivity enhancement.In addition, we also tested the Cu2+ response for [Gd2(DO3A)2BMPNA] in the presence of physiologically-relevant concentrations of common biological anions to determine whether the Cu2+-triggered relaxivity enhancement was affected by biological anions at physiological levels.As previously mentioned, Cu2+ binding induced an enhancement in relaxivity from 6.40 mM1 s1 to 11.28 mM1 s1(a 76% increase).As shown in Fig.3, in the presence of citrate(0.13 mM), lactate(0.9 mM), H2PO4(0.9 mM), or HCO3(10 mM), the Cu2+-triggered relaxivity enhancement was approximately 61%(from 6.01 mM1 s1 to 9.66mM1 s1), 66%(from 6.13mM1 s1 to 10.16 mM1 s1), 20%(from 5.88 mM1 s1 to 7.02 mM1 s1), or 55%(from 6.15 mM1 s1 to 9.55 mM1 s1), respectively.Additionally, 100 mM NaCl had almost no effect(an approximately 75% increase), and a simulated extracellular anion solution(EAS, contain 30 mM NaHCO3, 100 mM NaCl, 0.9 mM KH2PO4, 2.3 mM sodium lactate, and 0.13 mM sodium citrate, pH =7),67 resulted in a Cu2+-triggered relaxivity enhancement of approximately 26%(from 6.02 mM1 s1 to 7.56 mM1 s1).Generally, the results revealed that lactate, citrate, and HCO3 had slight impacts on the Cu2+-triggered relaxivity enhancement, while H2PO4 and EAS influenced the enhancement to a greater degree.As shown in Scheme 2, [Gd2(DO3A)2BMPNA] possessed two water molecules after the addition of 1 equiv.Of Cu2+.According to the work of Dickins and coworkers, in lanthanide complexes with two water molecules, the waters can be partially displaced by phosphate, carbonate, acetate, carboxylate, lactate and citrate at different levels.68–70 The influence of these anions on the Cu2+-triggered relaxivity enhancement may be attributed to the partial replacement of coordinated water molecules by these anions.The relatively high concentration of phosphate could likely replace coordinated water molecules to reduce the increased number of water molecules surrounding the paramagnetic Gd3+ centre induced by Cu2+.As shown in Table 1, we measured the number of water molecules in the rst coordination sphere of Tb3+ in the presence of phosphate;the number of coordinated water molecules(q)decreased from 1.5 to 0.8.Coordination features Luminescence lifetime experiments were performed to explore the mechanism of the Cu2+-triggered relaxivity enhancement.Luminescence lifetime measurements of lanthanide complexes have been widely used to quantify the number of inner-sphere water molecules.71 In particular, Tb3+ and Eu3+ have commonly been applied for lifetime measurements because their emission spectra are in the visible region when their 4f electrons are relaxed from higher energy levels to the lowest energy multiplets.72,73 Therefore, the Tb3+ analogue of [Gd2(DO3A)2BMPNA], [Tb2(DO3A)2BMPNA], was prepared according to a similar method, and the luminescence lifetimes of the Tb3+ analogue in HEPES-buffered H2O and D2O in the absence and presence of Cu2+ were measured.As shown in Fig.S9,? the luminescence decay curve of [Tb2(DO3A)2BMPNA] was tted to obtain the luminescence lifetimes74(Table 1), and the number of coordinated water molecules(q)was calculated by eqn(2).The analysis results(Table 1)for [Tb2(DO3A)2BMPNA] in HEPES-bufferedH2OandD2O in the absence and presence of Cu2+ indicated that q increased from 0.6 to 1.5 upon the addition of 1 equiv.of Cu2+;this result indicated that the Cu2+-triggered relaxivity enhancement for [Gd2(DO3A)2BMPNA] was most likely due to the increased number of coordinated water molecules around the Gd3+ ion upon Cu2+ binding to the pyrazole centre(Scheme 2).Aer the addition of Cu2+, Cu2+ removed the pyrazole centre N atom from the paramagnetic Gd3+ ion to generate an open coordination site available for a water molecule.Luminescence emission titrations of [Tb2(DO3A)2BMPNA] towards Cu2+ were also performed to investigate the binding properties of the contrast agent towards Cu2+.Upon addition of 1 equiv.Cu2+, the luminescence of [Tb2(DO3A)2BMPNA] at 545 nm decreased gradually and reached a minimum due to the quenching nature of the paramagnetic Cu2+(Fig.S10?).The titration data indicated a 1 : 1 binding stoichiometry(Scheme 2)Copper-responsive T1-weighted phantom MRI in vitro To demonstrate the potential feasibility of this Cu2+-responsive [Gd2(DO3A)2BMPNA] for copper-imaging applications, T1-weighted phantom images of [Gd2(DO3A)2BMPNA] were acquired in the absence and presence of copper ions.The phantom images depicted in Fig.4 displayed distinct increases in image intensity in the presence of 1 equiv.Cu2+ compared with those without Cu2+(Fig.4D).Moreover, some of the other competing metal ions were also tested to further verify the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+.Discernible differences were not observed upon the addition of Mg2+(Fig.4C), Zn2+(Fig.4E), or Ca2+(Fig.4F).In addition, we also tested the clinical contrast agent Magnevist(Fig.4G);the image intensity was a bit darker than that of our contrast agent.Conclusions
In conclusion, we designed and synthesized a novel bismacrocyclic DO3A-type Cu2+-responsive MRI contrast agent, [Gd2(DO3A)2BMPNA].The new Cu2+-responsive MRI contrast agent comprised two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold(BMPNA)that functioned as a Cu2+ receptor switch to induce a distinct relaxivity enhancement in response to Cu2+;the relaxivity was increased up to 76%.Importantly, the complex exhibited high selectivity for Cu2+ over a range of other biologically-relevant metal ions at physiological levels.Luminescence lifetime experiment results showed that the number of inner-sphere water molecules(q)increased from 0.6 to 1.5 upon the addition of 1 equiv.Cu2+.When Cu2+ was coordinated in the central part of the complex, the donor N atom of the pyrazole centre was removed from the paramagnetic Gd3+ ion and replaced by a water molecule(Scheme 2).Consequently, the Cu2+-triggered relaxivity enhancement could be ascribed to the increase in the number of inner-sphere water molecules.The designed contrast agent had a longitudinal relaxivity of 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).In addition, the visual change associated with the signicantly enhanced relaxivity from the addition of Cu2+ was observed in T1-weighted phantom images.Acknowledgements We are grateful to the State Key Laboratory of Electroanalytical Chemistry for nancial support.Notes and references 1 S.Puig and D.J.Thiele, Curr.Opin.Chem.Biol., 2002, 6, 171.2 S.C.Leary, D.R.Winge and P.A.Cobine, Biochim.Biophys.Acta, Gen.Subj., 2009, 146, 1793.3 D.D.Agranoff and S.Krishna, Mol.Microbiol., 1998, 28, 403.4 H.Kozlowski, A.Janicka-Klos, J.Brasun, E.Gaggelli, D.Valensin and G.Valensin, Coord.Chem.Rev., 2009, 253, 2665.5 K.J.Barnham, C.L.Masters and A.I.Bush, Nat.Rev.Drug Discovery, 2004, 3, 205.6 D.J.Waggoner, T.B.Bartnikas and J.D.Gitlin, Neurobiol.Dis., 1999, 6, 221.7 J.S.Valentine and P.J.Hart, Proc.Natl.Acad.Sci.U.S.A., 2003, 100, 3617.8 L.I.Bruijn, T.M.Miller and D.W.Cleveland, Annu.Rev.Neurosci., 2004, 27, 723.9 G.L.Millhauser, Acc.Chem.Res., 2004, 37, 79.10 D.R.Brown and H.Kozlowski, Dalton Trans., 2004, 1907.11 A.W.Czarnik, Acc.Chem.Res., 1994, 27, 302.12 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.13 H.N.Kim, M.H.Lee, H.J.Kim, J.S.Kim and J.Yoon, Chem.Soc.Rev., 2008, 37, 1465.14 M.Mahmoudi, V.Serpooshan and S.Laurent, Nanoscale, 2011, 3, 3007.15 P.A.Rinck, Magnetic Resonance Imaging, Blackwell Science, Berlin, 4th edn, 2001, p.149.16 A.E.Merbach and ′E.T′oth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, Ltd., New York, 2001.17 S.Aime, E.Terreno, D.D.Castelli and A.Viale, Chem.Rev., 2010, 110, 3019.18 S.Aime, M.Fasano and E.Terreno, Chem.Soc.Rev., 1998, 27, 19.19 M.Woods, D.E.Woessner and A.D.Sherry, Chem.Soc.Rev., 2006, 35, 500.20 R.B.Lauffer, Chem.Rev., 1987, 87, 901.21 J.Kowalewski, D.Kruk and J.Parigi, Adv.Inorg.Chem., 2005, 57, 42.22 I.Solomon, Phys.Rev., 1955, 99, 559.23 N.Bloembergen, J.Chem.Phys., 1957, 27, 572.24 N.Bloembergen and L.O.Morgan, J.Chem.Phys., 1961, 34, 842.25 E.L.Que and C.J.Chang, Chem.Soc.Rev., 2010, 39, 51.26 C.S.Bonnet and ′E.T′oth, Future Med.Chem., 2010, 2, 367.27 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.28 S.Aime, S.G.Crich, M.Botta, G.Giovenzana, G.Palmisano and M.Sisti, Chem.Commun., 1999, 1577.29 J.Hall, R.Haner, S.Aime, M.Botta, S.Faulkner, D.Parker and A.S.de Sousa, New J.Chem., 1998, 22, 627.30 M.P.Lowe and D.Parker, Chem.Commun., 2000, 707.31 S.Aime, A.Barge, M.Botta, D.Parker and A.S.De Sousa, J.Am.Chem.Soc., 1997, 119, 4767.32 S.Aime, F.Fedeli, A.Sanino and E.Terreno, J.Am.Chem.Soc., 2006, 128, 11326.33 M.P.Lowe, D.Parker, O.Reany, S.Aime, M.Botta, G.Castellano, E.Gianolio and R.Pagliarin, J.Am.Chem.Soc., 2001, 123, 7601.34 R.Hovland, C.Glogard, A.J.Aasen and J.Klaveness, J.Chem.Soc., Perkin Trans.2, 2001, 929.35 ′E.T′oth, R.D.Bolskar, A.Borel, G.Gonz′alez, L.Helm, A.E.Merbach, B.Sitharaman and L.J.Wilson, J.Am.Chem.Soc., 2004, 127, 799.36 W.H.Li, S.E.Fraser and T.J.Meade, J.Am.Chem.Soc., 1999, 121, 1413.37 K.Dhingra, M.E.Maier, M.Beyerlein, G.Angelovski and N.K.Logothetis, Chem.Commun., 2008, 3444.38 H.Hifumi, A.Tanimoto, D.Citterio, H.Komatsu and K.Suzuki, Analyst, 2007, 132, 1153.39 L.M.De Le′on-Rodr′?guez, A.J.M.Lubag, J.A.L′opez, G.Andreu-de-Riquer, J.C.Alvarado-Monz′on and A.D.Sherry, MedChemComm, 2012, 3, 480.40 R.Trokowski, J.Ren, F.K.Kalman and A.D.Sherry, Angew.Chem., Int.Ed., 2005, 44, 6920.41 W.S.Li, J.Luo, F.Jiang and Z.N.Chen, Dalton Trans., 2012, 41, 9405.42 K.Hanaoka, K.Kikuchi, Y.Urano and T.Nagano, J.Chem.Soc., Perkin Trans.2, 2001, 1840.43 R.Ruloff, G.v.Koten and A.E.Merbach, Chem.Commun., 2004, 842.44 M.Giardiello, M.P.Lowe and M.Botta, Chem.Commun., 2007, 4044.45 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.46 W.Xu and Y.Lu, Chem.Commun., 2011, 47, 4998.47 R.A.Moats, S.E.Fraser and T.J.Meade, Angew.Chem., Int.Ed., 1997, 36, 726.48 A.Y.Louie, M.M.Huber, E.T.Ahrens, U.Rothbacher, R.Moats, R.E.Jacobs, S.E.Fraser and T.J.Meade, Nat.Biotechnol., 2000, 18, 321.49 B.Yoo and M.D.Pagel, J.Am.Chem.Soc., 2006, 128, 14032.50 Q.Wei, G.K.Seward, P.A.Hill, B.Patton, I.E.Dimitrov, N.N.Kuzma and I.J.Dmochowski, J.Am.Chem.Soc., 2006, 128, 13274.51 E.L.Que and C.J.Chang, J.Am.Chem.Soc., 2006, 128, 15942.52 E.L.Que, E.Gianolio, S.L.Baker, A.P.Wong, S.Aime and C.J.Chang, J.Am.Chem.Soc., 2009, 131, 8527.53 E.L.Que, E.Gianolio, S.L.Baker, S.Aime and C.J.Chang, Dalton Trans., 2010, 39, 469.54 W.S.Li, J.Luo and Z.N.Chen, Dalton Trans., 2011, 484.55 E.L.Que, E.J.New and C.J.Chang, Chem.Sci., 2012, 3, 1829.56 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.57 D.Kasala, T.S.Lin, C.Y.Chen, G.C.Liu, C.L.Kao, T.L.Cheng and Y.M.Wang, Dalton Trans., 2011, 5018.58 D.Patel, A.Kell, B.Simard, B.Xiang, H.Y.Lin and G.Tian, Biomaterials, 2011, 32, 1167.59 E.Brunet, O.Juanes, R.Sedano and J.C.Rodr′?guez-Ubis, Photochem.Photobiol.Sci., 2002, 1, 613.60 Z.Q.Ye, G.L.Wang, J.X.Chen, X.Y.Fu, W.Z.Zhang and J.L.Yuan, Biosens.Bioelectron., 2010, 26, 1043.61 S.Mizukami, K.Tonai, M.Kaneko and K.Kikuchi, J.Am.Chem.Soc., 2008, 130, 14376.62 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.63 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.64 P.Caravan, J.J.Ellison, T.J.McMurry and R.B.Laufer, Chem.Rev., 1999, 99, 2293.65 O.G.Polyakov, B.G.Nolan, B.P.Fauber, S.M.Miller, O.P.Anderson and S.H.Strauss, Inorg.Chem., 2000, 39, 1735.66 M.F.Tweedle, J.J.Hagan, K.Kumar, S.Mantha and C.A.Chang, Magn.Reson.Imaging, 1991, 9, 409.67 D.Parker, Coord.Chem.Rev., 2000, 205, 109.68 R.S.Dickins, T.Gunnlaugsson, D.Parker and R.D.Peacock, Chem.Commun., 1998, 1643.69 J.I.Bruce, R.S.Dickins, L.J.Govenlock, T.Gunnlaugsson, S.Lopinski, M.P.Lowe, D.Parker, R.D.Peacock, J.J.B.Perry, S.Aime and M.Botta, J.Am.Chem.Soc., 2000, 122, 9674.70 R.S.Dickins, S.Aime, A.S.Batsanov, A.Beeby, M.Botta, J.I.Bruce, J.A.K.Howard, C.S.Love, D.Parker, R.D.Peacock and H.Puschmann, J.Am.Chem.Soc., 2002, 124, 12697–12705.71 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.72 C.C.Bryden and C.N.Reilley, Anal.Chem., 1982, 54, 610.73 K.Binnemans, Chem.Rev., 2009, 109, 4283.74 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.This journal is ? The Royal Society of Chemistry 2014 RSC Adv., 2014, 4, 34421–34427 | 34427
第五篇:英語(yǔ)專業(yè)論文選題
從中英禮貌原則的角度談?wù)摽缥幕浑H的失誤 如何處理廣告英譯中的跨文化英譯失誤 試論中西文化習(xí)慣在商務(wù)談判中的作用 淺析中美家庭教育的差異 翻譯研究參考選題
翻譯中語(yǔ)法關(guān)系之變換
論翻譯的層次
翻譯過程中原作者一譯者一譯文讀者的三元關(guān)系
論譯者在翻譯活動(dòng)中的身份
翻譯中的不確定性問題
英漢思維差異對(duì)翻譯的影響
對(duì)翻譯等值問題的思考
導(dǎo)游翻譯中的文化背景和心理因素
法律英語(yǔ)的文體特點(diǎn)及英譯技巧
論中國(guó)酒類名稱的翻譯
翻譯:對(duì)外來(lái)文化的闡釋
文化語(yǔ)境與翻譯——尋求文化的共生與融合 文學(xué)翻譯與節(jié)奏美學(xué)
諺語(yǔ)、外來(lái)語(yǔ)和俗語(yǔ)的翻譯技巧 探討科技翻譯中詞義的確定 論奈達(dá)的翻譯觀
談?dòng)⒄Z(yǔ)電影名漢譯
評(píng)《簡(jiǎn)?愛》的五種漢譯本 中國(guó)古典詩(shī)歌標(biāo)題英譯
論機(jī)器翻譯的準(zhǔn)確度與可讀性
外國(guó)文學(xué)研究參考選題
論勞倫斯?斯特恩敘述模式
論《青年藝術(shù)家的肖像》的文體風(fēng)格
評(píng)福克納《獻(xiàn)給愛米麗的玫瑰》中的時(shí)間關(guān)系
論伊夫林?沃的反諷
《喧嘩與騷動(dòng)》中變異時(shí)空的美學(xué)價(jià)值
論《印度之行》中的文化取向
《尤利西斯》中的神話與歷史
??思{作品中的黑人形象
威廉?華茲華斯詩(shī)歌中的生態(tài)意識(shí)
雪萊與柏拉圖哲學(xué)思想
論美國(guó)華裔文學(xué)的多樣性
民族主義和本土主義的錯(cuò)置——華裔美國(guó)文學(xué)中的男性沙文主義解釋
析勞倫斯的《虹》的象征意義
《黑暗的心臟》,對(duì)西方殖民主義的反思
T.S.艾略特的象征主義理論
多麗斯?萊辛筆下的兩性世界
世界華文文學(xué)中的“中國(guó)形象”論析
談《女勇士》中的兩種文化沖突與交融
透析譚恩美《靈感女孩》中的迷信現(xiàn)象
從“斑點(diǎn)”到“燈塔”:弗?沃爾芙小說(shuō)結(jié)構(gòu)管窺
邊緣對(duì)中心的解構(gòu):伍爾夫《到燈塔去》的另一種闡釋視角
鄭聲衡(574383061)22:43:51 外語(yǔ)教學(xué)研究參考選題
課堂口頭練習(xí)中學(xué)生的錯(cuò)誤及其糾正 教師反饋形式對(duì)學(xué)生書面表達(dá)的影響 研究中國(guó)學(xué)生英文書信請(qǐng)求策略的語(yǔ)用研究 母語(yǔ)對(duì)英語(yǔ)句子結(jié)構(gòu)習(xí)得影響的研究 學(xué)生聽力理解中推理能力的調(diào)查研究
背景知識(shí)對(duì)聽力理解的影響
研究詞匯學(xué)習(xí)策略和詞匯習(xí)得結(jié)果關(guān)系的研究 英語(yǔ)閱讀與詞匯偶得研究
認(rèn)知語(yǔ)義學(xué)理論在英語(yǔ)詞匯教學(xué)中的應(yīng)用 以學(xué)生為中心的英語(yǔ)詞匯教學(xué)研究 背景知識(shí)對(duì)閱讀理解的影響研究
大學(xué)生閱讀中語(yǔ)用推理能力的調(diào)查研究
篇章分析在中學(xué)英語(yǔ)閱讀教學(xué)中的應(yīng)用研究
Krashen的“輸入假設(shè)”理論在英語(yǔ)閱讀教學(xué)的應(yīng)用 回譯法在英漢翻譯教學(xué)中運(yùn)用的效果研究 測(cè)試對(duì)英語(yǔ)教學(xué)的反撥研究 提問在課堂教學(xué)中的作用
文化研究參考選題
德里達(dá)的解構(gòu)主義
威廉姆斯的大眾文化研究
大眾文化的商業(yè)特性
英語(yǔ)語(yǔ)法結(jié)構(gòu)的文化成因
英漢互譯中的文化傳遞
文化傳遞中的誤讀
莎士比亞悲劇的文化基礎(chǔ)
英美文化的實(shí)用主義傾向
啟蒙時(shí)期英國(guó)文學(xué)中的中國(guó)文化
中國(guó)文化對(duì)意象派的影響
??思{作品中的南方文化
好萊塢電影批判
麥當(dāng)勞的文化批判
全球化與本土化的關(guān)系
后現(xiàn)代主義的多元化傾向
網(wǎng)絡(luò)文化批判
網(wǎng)絡(luò)文化對(duì)傳統(tǒng)倫理的挑戰(zhàn)
網(wǎng)絡(luò)文學(xué)的特性
校園文化的最新動(dòng)向 馬可?波羅的中國(guó)文化觀
語(yǔ)言學(xué)研究參考選題
英語(yǔ)的書面語(yǔ)或口頭語(yǔ)特征研究
漢語(yǔ)方言對(duì)英語(yǔ)發(fā)音的影響
談?dòng)⒄Z(yǔ)語(yǔ)調(diào)的特點(diǎn)及其用途
從語(yǔ)音學(xué)角度對(duì)英語(yǔ)VI語(yǔ)中常見錯(cuò)誤的嘗試性分析
英語(yǔ)的語(yǔ)義,語(yǔ)法或語(yǔ)音語(yǔ)調(diào)特征研究
英語(yǔ)的言語(yǔ)表達(dá)與語(yǔ)境關(guān)系研究
英或美標(biāo)準(zhǔn)語(yǔ)與方言,黑人英語(yǔ)或其他移民英語(yǔ)語(yǔ)法,語(yǔ)音對(duì)比研究
淺談?dòng)?guó)英語(yǔ)與美國(guó)英語(yǔ)的語(yǔ)法差異
英語(yǔ)典故和英語(yǔ)學(xué)習(xí)
英漢詞匯對(duì)比
英語(yǔ)詞語(yǔ)的接應(yīng)關(guān)系
英語(yǔ)語(yǔ)篇中的詞匯銜接手段
中英諺語(yǔ)比較研究
英語(yǔ)修辭手法研究
美國(guó)俗語(yǔ)與現(xiàn)代語(yǔ)言的區(qū)別
論英語(yǔ)專有名詞普通化
英語(yǔ)擬聲詞淺談 論英語(yǔ)中的歧義 論英語(yǔ)否定句 談?dòng)⒄Z(yǔ)無(wú)動(dòng)詞句
英漢定語(yǔ)和狀語(yǔ)的位置比較
英語(yǔ)的含蓄條件句
中英省略比較研究
英語(yǔ)新詞構(gòu)詞分析
英語(yǔ)因果復(fù)合句與漢語(yǔ)因果復(fù)句的對(duì)比研究
英語(yǔ)中來(lái)源于希臘羅馬神話詞匯的研究。
語(yǔ)篇連貫的無(wú)形網(wǎng)絡(luò)
從功能語(yǔ)言學(xué)角度對(duì)摘要的體裁分析
英漢語(yǔ)篇詞匯銜接模式
英漢指示代詞的功能對(duì)比研究
隱喻中的語(yǔ)義遷移問題研究
英漢情態(tài)對(duì)比研究及其在語(yǔ)篇中的反映
言語(yǔ)行為中的禮貌策略
中國(guó)英語(yǔ)課堂言語(yǔ)行為的習(xí)得
中國(guó)學(xué)生對(duì)英語(yǔ)被動(dòng)結(jié)構(gòu)的習(xí)得
隱喻的認(rèn)知功能
從認(rèn)知的角度分析比較英漢空間隱喻
跨文化交際中的語(yǔ)用失誤
新聞?dòng)⒄Z(yǔ)的文體學(xué)分析
禮貌原則的普遍性和特殊性
專門用途英語(yǔ)參考選題
商務(wù)翻譯的語(yǔ)用分析
法律語(yǔ)言與法律文體翻譯
廣播新聞?dòng)⒄Z(yǔ)的詞匯特點(diǎn)
英語(yǔ)廣播新聞與報(bào)刊新聞文體對(duì)比
英語(yǔ)新聞標(biāo)題的特色與文體風(fēng)格
廣播新聞?dòng)⒄Z(yǔ)的詞匯特點(diǎn)
網(wǎng)絡(luò)廣告英語(yǔ)與報(bào)紙雜志廣告英語(yǔ)的詞匯量化比較
科技英語(yǔ)中wh—words的分析
科技英語(yǔ)中時(shí)間狀語(yǔ)從句的量化分析
語(yǔ)言在談判中的作用——威脅
英漢法規(guī)中的詞匯復(fù)現(xiàn)
論廣告英語(yǔ)的語(yǔ)言特點(diǎn)
廣告人的目標(biāo)在英文廣告中的體現(xiàn)
廣告英語(yǔ)中的雙關(guān)語(yǔ)
廣告語(yǔ)中對(duì)讀者的心理順應(yīng)
報(bào)紙雜志廣告中用面子技巧進(jìn)行社會(huì)距離操縱的分析
間接表達(dá)策略在國(guó)際商務(wù)淡判中的運(yùn)用
專門用途英語(yǔ)透視——專門用途英語(yǔ)課程設(shè)計(jì)中以學(xué)習(xí)者為中心的套路 出口商標(biāo)說(shuō)明中漢英研究 外貿(mào)函電英語(yǔ)特點(diǎn) 科技英語(yǔ)中的代用式
系動(dòng)詞在科技英語(yǔ)中的量化分析
經(jīng)濟(jì)類英文期刊中隱喻理解的有效途徑
商務(wù)英語(yǔ)的語(yǔ)言特征
國(guó)際貿(mào)易書信文體的量化分析
論網(wǎng)絡(luò)聊天室縮略語(yǔ)及其原詞語(yǔ)的特點(diǎn)
公務(wù)語(yǔ)境下的電話語(yǔ)篇分析
學(xué)術(shù)論文提要研究
試論法律英語(yǔ)文獻(xiàn)的修辭
矛盾修辭中的對(duì)立與統(tǒng)一及其在商務(wù)英語(yǔ)中的應(yīng)用
以上選題供大家參考