欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      初中數(shù)學(xué)幾何證明題畫輔助線的技巧

      時(shí)間:2019-05-15 07:58:38下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫小編為你整理了多篇相關(guān)的《初中數(shù)學(xué)幾何證明題畫輔助線的技巧》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《初中數(shù)學(xué)幾何證明題畫輔助線的技巧》。

      第一篇:初中數(shù)學(xué)幾何證明題畫輔助線的技巧

      初中數(shù)學(xué)幾何證明題畫輔助線的技巧

      在初中數(shù)學(xué)幾何學(xué)習(xí)中,如何添加輔助線是許多同學(xué)感到頭疼的問題,許多同學(xué)常因輔助線的添加方法不當(dāng),造成解題困難。以下是常見的輔助線作法編成了一些“順口溜” 歌訣。

      人人都說幾何難,難就難在輔助線。輔助線,如何添?把握定理和概念。

      還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。圖中有角平分線,可向兩邊作垂線。

      角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。三角形中兩中點(diǎn),連接則成中位線。

      三角形中有中線,延長(zhǎng)中線等中線。平行四邊形出現(xiàn),對(duì)稱中心等分點(diǎn)。

      梯形里面作高線,平移一腰試試看。平行移動(dòng)對(duì)角線,補(bǔ)成三角形常見。

      證相似,比線段,添線平行成習(xí)慣。等積式子比例換,尋找線段很關(guān)鍵。直接證明有困難,等量代換少麻煩。斜邊上面作高線,比例中項(xiàng)一大片。

      半徑與弦長(zhǎng)計(jì)算,弦心距來中間站。圓上若有一切線,切點(diǎn)圓心半徑連。

      切線長(zhǎng)度的計(jì)算,勾股定理最方便。要想證明是切線,半徑垂線仔細(xì)辨。

      是直徑,成半圓,想成直角徑連弦?;∮兄悬c(diǎn)圓心連,垂徑定理要記全。圓周角邊兩條弦,直徑和弦端點(diǎn)連。弦切角邊切線弦,同弧對(duì)角等找完。

      如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點(diǎn)公切線。

      若是添上連心線,切點(diǎn)肯定在上面。輔助線,是虛線,畫圖注意勿改變。

      基本作圖很關(guān)鍵,平時(shí)掌握要熟練。解題還要多心眼,經(jīng)??偨Y(jié)方法顯。

      切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會(huì)減。

      虛心勤學(xué)加苦練,成績(jī)上升成直線。

      第二篇:初中數(shù)學(xué)幾何證明題作輔助線的技巧

      人說幾何很困難,難點(diǎn)就在輔助線。初中數(shù)學(xué)幾何證明題輔助線怎么畫?

      輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長(zhǎng)中線等中線。平行四邊形出現(xiàn),對(duì)稱中心等分點(diǎn)。梯形里面作高線,平移一腰試試看。平行移動(dòng)對(duì)角線,補(bǔ)成三角形常見。證相似,比線段,添線平行成習(xí)慣。等積式子比例換,尋找線段很關(guān)鍵。

      斜邊上面作高線,比例中項(xiàng)一大片。半徑與弦長(zhǎng)計(jì)算,弦心距來中間站。

      圓上若有一切線,切點(diǎn)圓心半徑連。切線長(zhǎng)度的計(jì)算,勾股定理最方便。要想證明是切線,半徑垂線仔細(xì)辨。是直徑,成半圓,想成直角徑連弦?;∮兄悬c(diǎn)圓心連,垂徑定理要記全。圓周角邊兩條弦,直徑和弦端點(diǎn)連。弦切角邊切線弦,同弧對(duì)角等找完。要想作個(gè)外接圓,各邊作出中垂線。還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢(mèng)圓。如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點(diǎn)公切線。若是添上連心線,切點(diǎn)肯定在上面。要作等角添個(gè)圓,證明題目少困難。輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)?;咀鲌D很關(guān)鍵,平時(shí)掌握要熟練。解題還要多心眼,經(jīng)??偨Y(jié)方法顯。切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會(huì)減。虛心勤學(xué)加苦練,成績(jī)上升成直線。幾何證題難不難,關(guān)鍵常在輔助線;知中點(diǎn)、作中線,中線處長(zhǎng)加倍看;

      底角倍半角分線,有時(shí)也作處長(zhǎng)線;

      公共角、公共邊,隱含條件須挖掘; 全等圖形多變換,旋轉(zhuǎn)平移加折疊; 中位線、常相連,出現(xiàn)平行就好辦; 四邊形、對(duì)角線,比例相似平行線;梯形問題好解決,平移腰、作高線;兩腰處長(zhǎng)義一點(diǎn),亦可平移對(duì)角線;正余弦、正余切,有了直角就方便;特殊角、特殊邊,作出垂線就解決;實(shí)際問題莫要慌,數(shù)學(xué)建模幫你忙;圓中問題也不難,下面我們慢慢談;弦心距、要垂弦,遇到直徑周角連;切點(diǎn)圓心緊相連,切線常把半徑添;兩圓相切公共線,兩圓相交公共弦;切割線,連結(jié)弦,兩圓三圓連心線;基本圖形要熟練,復(fù)雜圖形多分解;以上規(guī)律屬一般,靈活應(yīng)用才方便。

      第三篇:初中幾何證明技巧

      初中幾何證明技巧(分類)

      證明兩線段相等

      1.兩全等三角形中對(duì)應(yīng)邊相等。

      2.同一三角形中等角對(duì)等邊。

      3.等腰三角形頂角的平分線或底邊的高平分底邊。

      4.平行四邊形的對(duì)邊或?qū)蔷€被交點(diǎn)分成的兩段相等。

      5.直角三角形斜邊的中點(diǎn)到三頂點(diǎn)距離相等。

      6.線段垂直平分線上任意一點(diǎn)到線段兩段距離相等。

      7.角平分線上任一點(diǎn)到角的兩邊距離相等。

      8.過三角形一邊的中點(diǎn)且平行于第三邊的直線分第二邊所成的線段相等。

      *9.同圓(或等圓)中等弧所對(duì)的弦或與圓心等距的兩弦或等圓心角、圓周角所對(duì)的弦相等。*10.圓外一點(diǎn)引圓的兩條切線的切線長(zhǎng)相等或圓內(nèi)垂直于直徑的弦被直徑分成的兩段相等。

      11.兩前項(xiàng)(或兩后項(xiàng))相等的比例式中的兩后項(xiàng)(或兩前項(xiàng))相等。

      *12.兩圓的內(nèi)(外)公切線的長(zhǎng)相等。

      13.等于同一線段的兩條線段相等。

      證明兩個(gè)角相等

      1.兩全等三角形的對(duì)應(yīng)角相等。

      2.同一三角形中等邊對(duì)等角。

      3.等腰三角形中,底邊上的中線(或高)平分頂角。

      4.兩條平行線的同位角、內(nèi)錯(cuò)角或平行四邊形的對(duì)角相等。

      5.同角(或等角)的余角(或補(bǔ)角)相等。

      *6.同圓(或圓)中,等弦(或?。┧鶎?duì)的圓心角相等,圓周角相等,弦切角等于它所夾的弧對(duì)的圓周角。

      *7.圓外一點(diǎn)引圓的兩條切線,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

      8.相似三角形的對(duì)應(yīng)角相等。

      *9.圓的內(nèi)接四邊形的外角等于內(nèi)對(duì)角。

      10.等于同一角的兩個(gè)角相等。

      證明兩條直線互相垂直

      1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。

      2.三角形中一邊的中線若等于這邊一半,則這一邊所對(duì)的角是直角。

      3.在一個(gè)三角形中,若有兩個(gè)角互余,則第三個(gè)角是直角。

      4.鄰補(bǔ)角的平分線互相垂直。

      5.一條直線垂直于平行線中的一條,則必垂直于另一條。

      6.兩條直線相交成直角則兩直線垂直。

      7.利用到一線段兩端的距離相等的點(diǎn)在線段的垂直平分線上。

      8.利用勾股定理的逆定理。

      9.利用菱形的對(duì)角線互相垂直。

      *10.在圓中平分弦(或弧)的直徑垂直于弦。

      *11.利用半圓上的圓周角是直角。

      證明兩直線平行

      1.垂直于同一直線的各直線平行。

      2.同位角相等,內(nèi)錯(cuò)角相等或同旁內(nèi)角互補(bǔ)的兩直線平行。

      3.平行四邊形的對(duì)邊平行。

      4.三角形的中位線平行于第三邊。

      5.梯形的中位線平行于兩底。

      6.平行于同一直線的兩直線平行。

      7.一條直線截三角形的兩邊(或延長(zhǎng)線)所得的線段對(duì)應(yīng)成比例,則這條直線平行于第三邊。證明線段的和差倍分

      1.作兩條線段的和,證明與第三條線段相等。

      2.在第三條線段上截取一段等于第一條線段,證明余下部分等于第二條線段。

      3.延長(zhǎng)短線段為其二倍,再證明它與較長(zhǎng)的線段相等。

      4.取長(zhǎng)線段的中點(diǎn),再證其一半等于短線段。

      5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質(zhì)等)。

      證明 角的和差倍分

      1.與證明線段的和、差、倍、分思路相同。

      2.利用角平分線的定義。

      3.三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。

      證明線段不等

      1.同一三角形中,大角對(duì)大邊。

      2.垂線段最短。

      3.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。

      4.在兩個(gè)三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。

      *5.同圓或等圓中,弧大弦大,弦心距小。

      6.全量大于它的任何一部分。

      證明兩角的不等

      1.同一三角形中,大邊對(duì)大角。

      2.三角形的外角大于和它不相鄰的任一內(nèi)角。

      3.在兩個(gè)三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。*4.同圓或等圓中,弧大則圓周角、圓心角大。

      5.全量大于它的任何一部分。

      證明比例式或等積式

      1.利用相似三角形對(duì)應(yīng)線段成比例。

      2.利用內(nèi)外角平分線定理。

      3.平行線截線段成比例。

      4.直角三角形中的比例中項(xiàng)定理即射影定理。

      *5.與圓有關(guān)的比例定理---相交弦定理、切割線定理及其推論。

      6.利用比利式或等積式化得。

      證明四點(diǎn)共圓

      *1.對(duì)角互補(bǔ)的四邊形的頂點(diǎn)共圓。

      *2.外角等于內(nèi)對(duì)角的四邊形內(nèi)接于圓。

      *3.同底邊等頂角的三角形的頂點(diǎn)共圓(頂角在底邊的同側(cè))。

      *4.同斜邊的直角三角形的頂點(diǎn)共圓。

      *5.到頂點(diǎn)距離相等的各點(diǎn)共圓

      第四篇:初中教你如何做幾何輔助線

      初中幾何輔助線做法

      三角形

      圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長(zhǎng)中線等中線。四邊形

      平行四邊形出現(xiàn),對(duì)稱中心等分點(diǎn)。梯形里面作高線,平移一腰試試看。平行移動(dòng)對(duì)角線,補(bǔ)成三角形常見。證相似,比線段,添線平行成習(xí)慣。等積式子比例換,尋找線段很關(guān)鍵。直接證明有困難,等量代換少麻煩。斜邊上面作高線,比例中項(xiàng)一大片。

      半徑與弦長(zhǎng)計(jì)算,弦心距來中間站。圓上若有一切線,切點(diǎn)圓心半徑連。切線長(zhǎng)度的計(jì)算,勾股定理最方便。要想證明是切線,半徑垂線仔細(xì)辨。是直徑,成半圓,想成直角徑連弦?;∮兄悬c(diǎn)圓心連,垂徑定理要記全。圓周角邊兩條弦,直徑和弦端點(diǎn)連。弦切角邊切線弦,同弧對(duì)角等找完。要想作個(gè)外接圓,各邊作出中垂線。還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢(mèng)圓。如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點(diǎn)公切線。若是添上連心線,切點(diǎn)肯定在上面。要作等角添個(gè)圓,證明題目少困難。

      輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)?;咀鲌D很關(guān)鍵,平時(shí)掌握要熟練。解題還要多心眼,經(jīng)??偨Y(jié)方法顯。切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會(huì)減。

      一、見中點(diǎn)引中位線,見中線延長(zhǎng)一倍

      在幾何題中,如果給出中點(diǎn)或中線,可以考慮過中點(diǎn)作中位線或把中線延長(zhǎng)一倍來解決相關(guān)問題。

      二、在比例線段證明中,常作平行線。

      作平行線時(shí)往往是保留結(jié)論中的一個(gè)比,然后通過一個(gè)中間比與結(jié)論中的另一個(gè)比聯(lián)系起來。

      三、對(duì)于梯形問題,常用的添加輔助線的方法有

      1、過上底的兩端點(diǎn)向下底作垂線

      2、過上底的一個(gè)端點(diǎn)作一腰的平行線

      3、過上底的一個(gè)端點(diǎn)作一對(duì)角線的平行線

      4、過一腰的中點(diǎn)作另一腰的平行線

      5、過上底一端點(diǎn)和一腰中點(diǎn)的直線與下底的延長(zhǎng)線相交

      6、作梯形的中位線

      7、延長(zhǎng)兩腰使之相交

      四、在解決圓的問題中

      1、兩圓相交連公共弦。

      2、兩圓相切,過切點(diǎn)引公切線。

      3、見直徑想直角

      4、遇切線問題,連結(jié)過切點(diǎn)的半徑是常用輔助線

      5、解決有關(guān)弦的問題時(shí),常常作弦心距。

      第五篇:初中幾何證明技巧2

      初中幾何證明技巧(分類)

      證明兩線段相等

      1.兩全等三角形中對(duì)應(yīng)邊相等。2.同一三角形中等角對(duì)等邊。

      3.等腰三角形頂角的平分線或底邊的高平分底邊。

      等腰三角形兩腰相等;兩腰上的高相等;兩腰上的中線相等 4.平行四邊形的對(duì)邊相等。

      平行四邊形的對(duì)角線被交點(diǎn)分成的兩段相等。等腰梯形兩腰相等

      等邊三角形三條邊相等;三條角平分線相等;三條高相等;三條中線相等

      長(zhǎng)方形對(duì)邊相等

      正方形四條邊相等 5.直角三角形斜邊的中點(diǎn)到三頂點(diǎn)距離相等。6.線段垂直平分線上任意一點(diǎn)到線段兩端的距離相等。線段垂直平分線平分該線段 7.角平分線上任一點(diǎn)到角的兩邊距離相等。8.過三角形一邊的中點(diǎn)且平行于第三邊的直線分第二邊所成的線段相等。9.等于同一線段的兩條線段相等。

      10.軸對(duì)稱圖形中,兩個(gè)對(duì)稱點(diǎn)到對(duì)稱軸的距離相等 11.軸對(duì)稱圖形中,對(duì)稱線段相等 12.平移后得到的線段和原線段相等

      13.繞同一旋轉(zhuǎn)中心旋轉(zhuǎn)重合的兩線段相等經(jīng)旋轉(zhuǎn)得到的線段和原線段相等

      證明兩個(gè)角相等

      1.兩全等三角形的對(duì)應(yīng)角相等。2.同一三角形中等邊對(duì)等角。

      3.等腰三角形中,底邊上的中線(或高)平分頂角。

      等腰三角形中,底邊上高平分頂角。等腰三角形兩底角相等

      4.兩條平行線的同位角相等。兩條平行線的內(nèi)錯(cuò)角相等。平行四邊形的對(duì)角相等。

      等腰梯形兩底角相等;其余兩角相等 5.相似三角形的對(duì)應(yīng)角相等。6.等于同一角的兩個(gè)角相等。7.成軸對(duì)稱的兩個(gè)角相等

      8.平移后所得到的角和原角相等

      9.繞同一旋轉(zhuǎn)中心旋轉(zhuǎn)重合的兩角相等 經(jīng)旋轉(zhuǎn)得到的角和原角相等 證明兩條直線互相垂直

      1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。2.三角形中一邊的中線若等于這邊一半,則這一邊所對(duì)的角是直角。3.在一個(gè)三角形中,若有兩個(gè)角互余,則第三個(gè)角是直角。4.鄰補(bǔ)角的平分線互相垂直。5.一條直線垂直于平行線中的一條,則必垂直于另一條。6.兩條直線相交成直角則兩直線垂直。7.利用到一線段兩端的距離相等的點(diǎn)在線段的垂直平分線上。8.利用勾股定理的逆定理。9.利用菱形的對(duì)角線互相垂直。證明兩直線平行

      1.垂直于同一直線的各直線平行。

      2.同位角相等,內(nèi)錯(cuò)角相等或同旁內(nèi)角互補(bǔ)的兩直線平行。3.平行四邊形的對(duì)邊平行。

      4.三角形的中位線平行于第三邊。5.梯形的中位線平行于兩底。6.平行于同一直線的兩直線平行。

      下載初中數(shù)學(xué)幾何證明題畫輔助線的技巧word格式文檔
      下載初中數(shù)學(xué)幾何證明題畫輔助線的技巧.doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        初中幾何題作輔助線的方法和技巧

        題中有角平分線,可向兩邊作垂線。線段垂直平分線,可向兩端把線連。 三角形中兩中點(diǎn),連結(jié)則成中位線。三角形中有中線,延長(zhǎng)中線同樣長(zhǎng)。 成比例,正相似,經(jīng)常要作平行線。圓外若有一......

        輔助線幾何證明題

        輔助線的幾何證明題 三角形輔助線做法 圖中有角平分線,可向兩邊作垂線。 也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。 角平分線平行線,等腰三角形來添。 角平分線加垂線,三線合一試試看。......

        初中幾何常見輔助線作法口訣

        初中幾何常見輔助線作法口訣三角形 圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂......

        幾何證明方法(初中數(shù)學(xué))

        初中數(shù)學(xué)幾何證明題技巧,歸類 一、證明兩線段相等 1.兩全等三角形中對(duì)應(yīng)邊相等。 2.同一三角形中等角對(duì)等邊。 3.等腰三角形頂角的平分線或底邊的高平分底邊。(三線合一) 4.平......

        初中數(shù)學(xué) 全等輔助線

        第13講常見全等輔助線中考說明內(nèi)容ABC全等三角形了解全等三角形的概念,了解相似三角形與全等三角形之間的關(guān)系掌握兩個(gè)三角形全等的條件和全等三角形的性質(zhì);會(huì)應(yīng)用全等三角形......

        初中數(shù)學(xué)輔助線總結(jié)

        初中數(shù)學(xué)幾何做輔助線的口訣-----作輔助線的方法和技巧 題中有角平分線,可向兩邊作垂線。線段垂直平分線,可向兩端把線連。三角形中兩中點(diǎn),連結(jié)則成中位線。三角形中有中線,延......

        八年級(jí)數(shù)學(xué)幾何題證明技巧

        能達(dá)培訓(xùn)學(xué)校內(nèi)部資料第 1 頁 共 4 頁能達(dá)學(xué)校八年級(jí)數(shù)學(xué)講義姓名:日期: 2006-1-24輔助線的添加技巧人說幾何很困難,難點(diǎn)就在輔助線。 輔助線,如何添?把握定理和概念。 還要刻苦......

        初中幾何輔助線的連接方法5篇

        初中幾何輔助線的連接方法鹽中數(shù)學(xué)中考沖刺 人說幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。圖中有角平分線,可向兩邊作垂線。......