第一篇:福建師范大學(xué)英語專業(yè)論文格式
附件3 福建師范大學(xué)外國語學(xué)院本科生
畢業(yè)論文寫作指南
(第三次修訂稿,2006年4月25日)
1.選題 Selecting a topic
學(xué)生在經(jīng)過統(tǒng)一動員及論文寫作初步指導(dǎo)之后,先自行選題,選題時請考慮以下因素: 1)選題的難度適中、對內(nèi)容熟悉或有興趣、范圍恰當(dāng),切忌太大或太泛;
2)題目力求新穎,忌老生常談或重復(fù)他人研究結(jié)論;
3)題目要具有可行性,是否有充足的資料,或能否落實具體的調(diào)查和實驗;論文所需的篇幅能否在規(guī)定時間內(nèi)完成,并有足夠的時間和導(dǎo)師商討;
4)學(xué)生應(yīng)該在教師指導(dǎo)下完成開題報告(包括本論題的意義、工作內(nèi)容、大致進(jìn)度、預(yù)期達(dá)到的效果或擬解決的問題等)。開題報告經(jīng)指導(dǎo)教師簽字同意后上交學(xué)院教學(xué)秘書,方可開始撰寫論文。
2.論文要求 Requirements of theses 1)論文應(yīng)與本專業(yè)有關(guān); 2)獨立完成; 3)用英文撰寫;
4)字?jǐn)?shù)8000字左右〖計算方法:word文檔中“字?jǐn)?shù)統(tǒng)計”欄中的字符數(shù)(不計空格)除以2〗
5)如系翻譯方面的研究,可以接受翻譯評論,但不接受單純的翻譯文本。6)學(xué)生務(wù)必在規(guī)定時間內(nèi)提交正式論文定稿,過期不予受理。3.論文結(jié)構(gòu) Format of the Thesis 根據(jù)福建師范大學(xué)師大教[2005]6號文件以及本專業(yè)特點,對畢業(yè)論文格式提出以下要求:
1)所有畢業(yè)論文一律用計算機(jī)打印。具體格式見附件1;
2)論文結(jié)構(gòu)依次包括(裝訂順序):①封面(學(xué)校統(tǒng)一制作,由學(xué)生填寫)②英文標(biāo)題③學(xué)院、專業(yè)、學(xué)號、作者姓名、指導(dǎo)教師姓名④英文論文摘要(約400字—--排版后約十行,主要概述論題的背景介紹、目的,以及研究所要解決的主要問題、可能產(chǎn)生的主要結(jié)果、結(jié)論和建議等)⑤英文關(guān)鍵詞(3 至6個)⑥目錄(可省項)國際經(jīng)濟(jì)與貿(mào)易等專業(yè)學(xué)生可以用漢語撰寫論文,論文的結(jié)構(gòu)及裝訂順序做相應(yīng)調(diào)整,即下文中的第②④⑤與⑩的順序進(jìn)行前后對調(diào)調(diào)整。⑦正文⑧注釋(可省項)⑨參考文獻(xiàn)⑩中文論文題目、中文摘要、中文關(guān)鍵詞(此項單獨一頁);
3)所有論文要求有一定數(shù)量和分量的參考文獻(xiàn),文章中所引用的數(shù)據(jù)和觀點應(yīng)用恰當(dāng)?shù)姆绞奖砻骶唧w出處(有關(guān)格式詳見附件1的第(十)點及附件2); 4)嚴(yán)禁任何抄襲或復(fù)制他人論文的不道德行為,違者按不及格處理;
5)所有學(xué)生在提交打印定稿的同時必須提交一份word格式電子文檔(文件名為:學(xué)號.DOC),由指導(dǎo)教師統(tǒng)一交給學(xué)院教學(xué)秘書。
4.論文質(zhì)量和評分標(biāo)準(zhǔn) Quality of theses and Grading standard
1)論文評分依據(jù):選題的理論價值和現(xiàn)實意義,內(nèi)容的開拓性和深度、廣度,分析方法,綜合表達(dá)能力,文字質(zhì)量,論文的格式,等。
2)論文評分等級:成績分為“優(yōu)”、“良”、“中”、“及格”和“不及格”五個等級(每級不再分等)。所有學(xué)生論文必須進(jìn)行答辯,小組答辯成績不是“優(yōu)”的,小組成績作為學(xué)生最終成績;小組答辯成績?yōu)椤皟?yōu)”的,需參加學(xué)院答辯委員會組織的評優(yōu)論文答辯,答辯成績作為學(xué)生最終成績。畢業(yè)論文成績?yōu)椤凹案瘛钡牟荒塬@得學(xué)士學(xué)位資格。畢業(yè)論文成績?yōu)椤安患案瘛钡膶W(xué)生不能畢業(yè)。
附件1 畢業(yè)論文(設(shè)計)打印格式要求
一、畢業(yè)設(shè)計(論文)用紙、頁面設(shè)置要求
畢業(yè)設(shè)計(論文)應(yīng)按規(guī)定格式單面打印,紙張大小一律使用國際標(biāo)準(zhǔn)A4型復(fù)印紙。
頁面設(shè)置:版心為297×210mm;頁邊距要求:每一面的上方(T)2.5 cm,下方(B)2.5cm,左(L)2.5 cm,右(R)1.5 cm,裝訂線(T)0.5 cm,裝訂線位置(T)左側(cè),頁眉1.5cm,頁腳1.75cm,頁碼設(shè)置為:插入頁碼,居中;其余設(shè)置采取系統(tǒng)默認(rèn)設(shè)置。
二、畢業(yè)設(shè)計(論文)內(nèi)容打印要求
(一)論文題目:英文用二號“Times New Roman”字體,加粗,居中放置;中文使用二號黑體字,加粗。居中放置。
(二)學(xué)院、專業(yè)、學(xué)號、作者姓名、指導(dǎo)教師姓名(小四號宋體字,加粗),依次排印在論文題目下(上空二行,居中)。
×××學(xué)院
×××專業(yè)×××(學(xué)號)×××(姓名)
指導(dǎo)教師 ×××
(三)摘要(上空二行)
英文摘要:題目采用五號“Times New Roman”字體,加粗,置于粗體方括號【】內(nèi),頂格放置;隨后的內(nèi)容與前面的粗體方括號【】之間空一格,不用其他任何標(biāo)點符號,采用五號“Times New Roman”字體,不加粗;單倍行距。如:
【Abstract】(Times New Roman,五號字,加粗)××××××××××××××××(Times New Roman,五號字,不加粗)
中文摘要:題目采用黑體五號字,加粗,置于粗體方括號【】內(nèi),縮進(jìn)2個漢字字符,方括號中的“摘要”兩個字之間空一格;隨后的內(nèi)容與前面的粗體方括號【】之間空一格,不用其他任何標(biāo)點符號,采用楷體五號字,不加粗,單倍行距;此項內(nèi)容單獨一頁,放置于論文的最后;如:
【摘 要】(黑體,五號字,加粗)××××××××××××××××(楷體五號字,不加粗)
(四)關(guān)鍵詞
英文關(guān)鍵詞:題目采用五號“Times New Roman”字體,加粗,兩個單詞的首字母要大寫,置于粗體方括號【】內(nèi),頂格放置;隨后的內(nèi)容與前面的粗體方括號【】之間空一格,不用任何其他標(biāo)點符號,采用五號“Times New Roman”字體,不加粗,除了專有名詞外,其他單詞的首字母不大寫,各單詞之間用分號“;”隔開,分號之后空一格;最后一個關(guān)鍵詞之后不用任何標(biāo)點符號;單倍行距。如: 【Key Words】 xxxx;xxxx;xxxx;xxxx 中文關(guān)鍵詞:題目采用黑體五號字,加粗,置于粗體方括號【】內(nèi),縮進(jìn)2個漢字字符;隨后的內(nèi)容與前面的粗體方括號【】之間空一格,不用其他任何標(biāo)點符號,采用楷體五號字,不加粗,單倍行距;各單詞之間用分號“;”隔開,分號之后不空格;最后一個關(guān)鍵詞之后不用任何標(biāo)點符號;單倍行距。如:
【關(guān)鍵詞】 ××××;××××;×××;×××
(五)目錄(可省項:根據(jù)實際情況確定是否需要此項)
采用Times New Roman字體,其中每章題目用小四號,加粗,每節(jié)題目用正常字體,并注明各章節(jié)起始頁碼,題目和頁碼用“??”相連,如下所示:
Table of Contents(三號字,加粗)
(自然空二行)
1.×××××××
??????????????(1)(小四號字,加粗)1.1 ××××××
??????????????(2)(小四號)
1.1.1 ××××××
??????????????(6)(小四號)2.……
(六)正文字體要求、每章題目左頂格,小四號字,加粗;每節(jié)(及小節(jié)以下)題目左頂格,小四號字,不加粗但要斜體;正文所有英文文字采用小四號Times New Roman字體,涉及的漢語文字用小四號宋體;每自然段首行縮進(jìn)4個英文字符。
(七)行間距要求
正文行距設(shè)置:設(shè)1.5倍行距。
(八)正文章節(jié)序號編制 章,編寫為:1.,2.,3.,?。
節(jié),編寫為:1.1、1.2?,2.1、2.2?。
小節(jié),編寫為:1.1.1, 1.1.2?。
小節(jié)以下層次,采用希臘數(shù)字加括號為序,如(i),(ii)?;之后再采用字母加括號,如(a),(b),?;另外,正文中的例子以(1),(2)?為序號排列,直至最后一個例子;而①, ②?則為腳注或尾注的上標(biāo)序號〕
(九)畢業(yè)設(shè)計(論文)的公式、圖與表
(略)
(十)中文參考文獻(xiàn)(適用于用漢語撰寫論文的國貿(mào)等專業(yè)學(xué)生,也適用于英語論文中涉及漢語的參考文獻(xiàn),但相關(guān)作者在英語論文夾注中出現(xiàn)的時候,作者姓名必須以拼音××××××
??????????????(40)(小四號字,加粗)
方式出現(xiàn),不能以漢語形式出現(xiàn))參考文獻(xiàn)(黑體,小四號字,上空二行)
×××,×××××××××××××××××××××××××××××××××× ×××,××××××××××××××××××××××××××××××××××
參考文獻(xiàn)中各文獻(xiàn)的排列以作者的姓氏拼音為序;宋體小四號字;參考文獻(xiàn)的編寫方式為:
期刊文獻(xiàn)的格式:“作者,發(fā)表時間,文章題目名,《發(fā)表的期刊名》,卷號(期數(shù)):引文頁碼.如有第二行,則須縮進(jìn)4個英文字符”例如:
楊揚,王玉,周洲,2000,油田儲層非均質(zhì)性研究,《高校地質(zhì)學(xué)報》,第3期223-230頁。
圖書或碩士、博士文獻(xiàn)的格式:“作者,出版時間,《著作題目名(碩博論文名)》。出版社名稱(碩博畢業(yè)院校名),引文頁碼。如有第二行,則須縮進(jìn)4個英文字符”例如: 徐通鏘,1997,《語言論》。長春:東北師范大學(xué)出版社,第222頁。張三四,2005,《論非作格動詞的習(xí)得路徑》。江南大學(xué)博士論文,第88頁。
會議文獻(xiàn)的格式:“作者,發(fā)表時間,文章題目名。會議名稱,卷號(期數(shù)):引文頁碼.如有第二行,則須縮進(jìn)4個英文字符” 例如:
孫力等,2000,儲層條件下水淹油層測井響應(yīng)機(jī)理實驗研究。北京國際學(xué)術(shù)討論會,第 10-11頁。
附件2 英文注釋和參考文獻(xiàn)格式要求
(說明:本格式主要參閱了Applied Linguistics,《外語教學(xué)與研究》等雜志以及部分大學(xué)外語學(xué)院畢業(yè)論文格式要求;日語畢業(yè)論文格式另列。)I.注釋Endnotes and In-text Citations 1. 腳注(尾注)
在正文需詳細(xì)注釋處的右上方按順序加注數(shù)碼①②③……,在全文之后寫注文,每條加對應(yīng)數(shù)碼, 回行時與上一行注文對齊(注:腳注和尾注主要用以對有關(guān)問題、論點做補(bǔ)充說明;偶爾也用以標(biāo)明、指示參考文獻(xiàn);而以下的夾注則主要只針對參考文獻(xiàn))。
2. 夾注
某些引文或所依據(jù)的文獻(xiàn)無須詳細(xì)注釋者,以夾注的形式隨文在括號內(nèi)注明。
1)來自文章、專著的直接引語,作者姓名在文中已經(jīng)出現(xiàn): 格式:出版年份:頁碼
例:
Rees said, “As key aspects of …in the process”(1986:241).2)來自文章、專著的直接引語,作者姓名在文中沒有出現(xiàn):
格式:作者姓名,出版年份:頁碼
例: The underlying assumption is that language “bound up with culture in multiple and
complex ways”(Elli, 1968: 3).3)來自文章、專著的間接引語,作者姓名在文中已經(jīng)出現(xiàn):
格式:出版年份:引文頁碼
例:According to Alun Rees(1986:234)〔也可位于引語的最后〕, the writers focus on
the unique contribution that each individual learner brings to the learning situation 〔(1986:234)〕.4)來自文章、專著的間接引語,作者姓名在文中沒有提到:
格式:作者姓名 出版年份:引文頁碼
例:It may be true that in the appreciation of medieval art the attitude of the observer is of primary importance(Robertson, 1987: 136).5)互聯(lián)網(wǎng)資料: 格式:編號
例: “A deconstructive reading is a reading which analyses the specificity of a text’s critical difference from itself”(Net.2).(注::Net.1, Net.2, Net.3,……只是為了便于注明文內(nèi)引語的出處,具體格式見下文參考文獻(xiàn)中的相關(guān)內(nèi)容)
II.Bibliography(References)(“Times New Roman”字體,小四號,加粗,后面不加任何標(biāo)點符號;另外,參考文獻(xiàn)必須與夾注形成一一對應(yīng)關(guān)系,即文章夾注、腳注中出現(xiàn)的作者必須出現(xiàn)在參考文獻(xiàn)中,反之亦然,參考文獻(xiàn)中的文獻(xiàn)也必須是在文章中出現(xiàn)過的,二者相比,不多也不少)
1.專著:
1).基本格式(還要注意標(biāo)點符號):作者的姓名(英文作者的姓,名).年份.書名(要斜體).出版地:出版商.如果同一作者兩本以上同年出版的參考書,在年份后用a,b,c 等標(biāo)出; 如有第二行,則須縮進(jìn)4個英文字符。例:
Chomsky, N.1981a.Lectures on government and binding.Dordrecht: Foris.Chomsky, N.1981b.Theory of markedness in generative grammar.Pisa, Italy: Scuola Normale Superiore.2).書的主編(格式:各項信息的排列順序基本同上):
例:Hall, David, ed.1981.The Oxford book of American literary anecdotes.New York: OUP.3).機(jī)構(gòu)作者(格式:各項信息的排列順序基本同上):
例:American library association.1983.Intellectual freedom manual.2nd ed.Chicago: ALA.4).翻譯著作(格式:各項信息的排列順序基本同上):
例:Calvino, Ian.1986.The uses of literature.P.Creagh Trans.San Diego: Harcourt.2.文章:
1)期刊:文章基本格式(還要注意標(biāo)點符號):作者姓名.年份.篇名.刊名(要斜體).刊物的卷號和期號:文章的起止頁碼。例:
Boling, D.1965.The atomization of meaning.Language 41:555-573.2)論文集的文章:基本格式(還要注意標(biāo)點符號):作者姓名.年份.篇名.論文集作者姓名.eds.論文集名稱(要斜體).出版地:出版商.文章的起止頁碼。例:
Peters, M & T.B.Stephen.1986.Interaction routines as cultural influences upon language acquisition.In Schieffelin, B.B.& E.Ochs, eds.Language Socialization Across Cultures.Cambridge: CUP, 80-96.3.文字資料:(注意:此部分涉及的文獻(xiàn)既可能是中文的,也可能是英語的,請使用相應(yīng)的中、英文標(biāo)點符號!))電腦軟件
基本格式:制作人姓名,年份,軟件名稱,型號。2)電影、電視、廣播、錄像、錄音、藝術(shù)品等:
基本格式:片名(或節(jié)目名),年份或播出日期,導(dǎo)演(或制作者)姓名,出品地(或播出臺、地)。3)互聯(lián)網(wǎng)資料:
基本格式:如果是中文的參考中文參考文獻(xiàn)的格式,英文的則參考英文參考文獻(xiàn)的格式,例如:
Net 1.Steven Pinker.2006.Second language acquisition of Spanish and French unaccusative verbs.http://。
【論文最后的參考文獻(xiàn)中所有文獻(xiàn)的排列順序:英文文獻(xiàn)----網(wǎng)絡(luò)文獻(xiàn)----漢語文獻(xiàn),各個文獻(xiàn)的先后以作者的姓氏字母或拼音為序;“Times New Roman”字體,1.5倍行距,小四號,不加粗】 日語專業(yè)本科畢業(yè)論文的格式要求
(空2行)外國語學(xué)院
日語專業(yè)
2001123 張三
指導(dǎo)教師
李四2
(空2行)
4【摘 要】3 200字左右。內(nèi)容:處理的對象及主要結(jié)論。摘要使用楷體,五號字。第二行開頭的位置如本摘要。
【關(guān)鍵詞】5 3~5個
論文格式
注釋
參考文獻(xiàn)6
目錄7
1.前言82.正文
2.1 結(jié)構(gòu)2.2 學(xué)術(shù)史研究3.注釋
3.1 引用3.2 夾注3.3 腳注4.版式
4.1 紙張4.2 排版4.2.1 頁面設(shè)置4.2.2 字體及字號 2 小四號宋體字,加粗。黑體,五號字。4 楷體,五號字。5 黑體,五號字。6 楷體,五號字。7 黑體,四號字。可省項,即作者可根據(jù)實際情況確定是否需要設(shè)立此項。8 宋體,小四號字。3 8 4.2.3 正文格式4.2.4 編號
5.關(guān)于參考文獻(xiàn)
5.1 范圍5.2 排列順序
5.2.1 語種之間5.2.2 語種內(nèi)部5.3 時間5.4 列舉的項目及格式5.5 參考文獻(xiàn)中的“[類別]”
5.6 例證出處
6.裝訂順序7.結(jié)論
(空2行)
1.前言
提出問題。明確問題所在,提出大致的思路。
2.正文
2.1 結(jié)構(gòu)
正文可根據(jù)需要分成若干部分。2.2 學(xué)術(shù)史研究
介紹前人對這個問題的研究,并表明自己的研究與前人研究的不同之處。
對學(xué)術(shù)史的回顧,可以在“前言”中進(jìn)行,也可以在前言之后單獨設(shè)一個章節(jié)處理。
3.注釋
3.1 引用
文章在涉及前人研究成果時,不論是否贊同,都必須聲明。引用方法有:
1、用引號直 接引用;
2、通過概括間接引用。不論以哪一種方式引用,都必須注明出處。3.2 夾注
文章中的注釋使用夾注(張三2000:35)的形式。這里,“張三”是作者名,“2000”是文獻(xiàn)的首次出版時間。如果這個文獻(xiàn)是著作,那么有必要注明引文出現(xiàn)的頁碼,即“35”。
如果張三在1998年發(fā)表的兩個文獻(xiàn)都被引用,則采用“(張三1998a)”和“(張三1998b)”的形式注釋。
如果被引用者張三是句子的某個成分,則采取以下方式注釋,即:張三(1998a)還指出,??。
3.3 腳注
如果需要在正文之外進(jìn)行某種說明,可以使用腳注。腳注以頁為單位標(biāo)注9。
4.版式
4.1 紙張
使用A4紙張(版心為297×210mm)打印。4.2 排版
4.2.1 頁面設(shè)置
打開“頁面設(shè)置”對話框,將頁邊距設(shè)定為:上方(T)2.5 cm,下方(B)2.5cm,左(L)2.5 cm,右(R)1.5 cm,裝訂線(T)0.5 cm,裝訂線位置(T)左,頁眉1.5cm,頁腳1.75cm。
每行字?jǐn)?shù)和每頁行數(shù)均設(shè)定為“38”。4.2.2 字體及字號
字體及字號使用以下(1)~(6)的設(shè)置。
(1)a.漢語論文題目:黑體,二號字,加粗,居中。
b.如果有副標(biāo)題,其設(shè)置為:黑體,三號字,居中。
(2)a.日語論文題目:MS Gothic字體,二號字,加粗,居中。
b.如果有副標(biāo)題,其設(shè)置為:MS Gothic字體,三號字,居中。
(3)a.每一章的標(biāo)題,即第1級標(biāo)題的漢語部分使用“黑體”,四號字。
b.每一章的標(biāo)題,即第1級標(biāo)題的日語部分使用「MS Gothic」,四號字。
(4)a.第2級及以下的標(biāo)題,漢語部分使用“黑體”,小四號字。
b.第2級及以下的標(biāo)題,日語部分使用「MS Gothic」,小四號字。
(5)a.正文的漢語部分使用“宋體”,小四號字。
b.正文的日語部分使用「MS Mincho」,小四號字。
c.腳注使用小五號字體。
(6)
英語部分使用“Times New Roman”,字號同(1)~(5)。4.2.3 正文格式
如果正文是漢語,則段落的開頭縮進(jìn)2個漢字字符。
如果正文是日語,則段落的開頭縮進(jìn)1個漢字字符。4.2.4 編號
“章節(jié)編號”參照本格式,一律使用半角數(shù)字。
“例證編號”使用半角的括弧編號,縮進(jìn)2個漢字字符,如4.2.2中的(1)~(6)。例證實行全文統(tǒng)一編號。
點擊word的“插入”,選擇“腳注或尾注”。(i)在“插入”欄,選擇“腳注”;在“編號方式”欄,選擇“自動編號”。(ii)單擊“選項”按鈕,在“編號方式”欄中,選擇“每頁重新編號”。
“腳注編號”參照本格式。
“頁碼編號”的參照本格式10。
5.關(guān)于參考文獻(xiàn)
5.1 范圍
文中提到的他人的研究成果(包括夾注中出現(xiàn)的文獻(xiàn))必須列入“參考文獻(xiàn)”。語言詞典一般不列入?yún)⒖嘉墨I(xiàn)。
參考文獻(xiàn)中列舉的項目必須是實際閱讀過的。如果是從李四(1992)的論文中看到王五(1985)的觀點,那么王五的成果不應(yīng)列入?yún)⒖嘉墨I(xiàn)。參考文獻(xiàn)中列入的是李四(1992),王五(1985)的出處用腳注說明。處理辦法是:王五(1985)11指出,??。5.2 排列順序 5.2.1 語種之間
首先是漢語的文獻(xiàn),其次是日語的文獻(xiàn),最后是西方語言的文獻(xiàn)。5.2.2 語種內(nèi)部
漢語:按照人名的漢語拼音字母序排列。
日語:按照人名的五十音圖序排列。
英語:按照字母序排列。5.3 時間
參考文獻(xiàn)中列舉的時間,以該文獻(xiàn)的首發(fā)時間為準(zhǔn)。5.4 列舉的項目及格式
期刊文獻(xiàn):[編號](空一格)作者名。文章題目名[類別]。期刊名,年份,卷號(或期數(shù)):頁碼范圍。
圖書文獻(xiàn):[編號](空一格)作者名。書名[類別]。出版地:出版社名,出版年份。
論文集文獻(xiàn):[編號](空一格)作者名。文章題目名[類別]。論文集名[類別]。出版地:出版社名,出版年份,引文頁碼。
互聯(lián)網(wǎng)資料:[編號](空一格)作者名。篇名。網(wǎng)址 5.5 參考文獻(xiàn)中的“[類別]”
5.4中,文獻(xiàn)名之后的“[類別]”,使用代碼標(biāo)注,規(guī)則如(7)。
(7)文獻(xiàn)類別: A--論文集中的文章;J—期刊;C—論文集;M—書;D—學(xué)位論文;
EB/OL—電子文檔
5.6 例證出處
例證的出處不列入?yún)⒖嘉墨I(xiàn),而是單列“資料出處”。
6.裝訂順序
論文按照(i)封面、(ii)論文、(iii)附加信息的順序裝訂。
其中,(i)由學(xué)校統(tǒng)一制作,作者填寫。(ii)論文和(iii)附加信息由作者使用不同的語言寫作。
本格式中,(ii)使用漢語,見p1~p5;(iii)使用日語,見p6。(iii)必須單獨設(shè)一頁。
1011 單擊“視圖”按鈕,然后單擊“頁眉和頁腳”;進(jìn)入頁腳,單擊“插入自動圖文集”按鈕,選擇“-頁碼-”。
轉(zhuǎn)引自李四(1992: 123)。7.結(jié)論
通過本文的分析,得出哪些結(jié)論。只要以條目方式羅列即可。
附記
畢業(yè)論文除提交紙質(zhì)文本外,還必須提交電子文本。電子文本以“WORD文檔”格式保存,文件名以自己的學(xué)號命名,即:123.doc
參考文獻(xiàn)
[1] 侯精一(主編)。現(xiàn)代漢語方言概論[M]。上海:上海教育出版社,2002。
[2] 李如龍。閩南方言的介詞[A]。介詞[C]。廣州:暨南大學(xué)出版社,2000,122-138。[3] 李艷慧、陸丙甫。數(shù)目短語[J]。中國語文,2002,4:326-336。
[4] 張濟(jì)卿。論現(xiàn)代漢語的時制與體結(jié)構(gòu)(上)[J]。語文研究,1998a,3:17-25。[5] 張濟(jì)卿。論現(xiàn)代漢語的時制與體結(jié)構(gòu)(下)[J]。語文研究,1998b,4:18-26 [6] 張濟(jì)卿。對漢語時間系統(tǒng)三元結(jié)構(gòu)的一點看法[J]。漢語學(xué)習(xí),1998c,5:20-23 [7] 趙元任。A Grammar of Spoken Chinese[M].1968;呂叔湘譯。漢語口語語法[M]。北京:商務(wù)印書館,1979。
[8] 木村英樹。付著の“著/zhe/”と「消失」の“了/le/”[J]。中國語,1981,258:24-27/12。[9] 寺村秀夫。日本語のシンタクスと意味 Ⅰ[M]。東京:くろしお出版,1982。[10] Comrie, Bernard.Aspect[M].London: Cambridge University Press, 1976.資料出處
[1] 川端康成。『雪國』,新潮文庫。[2] 倉野憲司(校注)?!汗攀掠洝唬毡竟诺湮膶W(xué)大系,巖波書店,1958。[3] 『広辭苑』(第五版),巖波書店。
卒業(yè)論文の様式について
——學(xué)部生用の場合
外國語學(xué)院 日本語科 2001123 張三 指導(dǎo)教官 李四
【要旨】(MS Gothic)200字前後。內(nèi)容:扱う対象及び主な結(jié)論(MS Mincho)
【キーワード】(MS Gothic)3つ~5つ 論文様式 注釈 參考文獻(xiàn)(MS Mincho)
第二篇:英語專業(yè)論文
英語專業(yè)文學(xué)方向本科畢業(yè)論文寫作問題探究
[摘 要]英語畢業(yè)論文由于從事英美文學(xué)教學(xué)的教師理論水平參差不齊、教師對學(xué)生文藝?yán)碚摻邮苣芰Φ膽岩伞⑸唐方?jīng)濟(jì)時代文學(xué)和文藝?yán)碚撉吆凸训纫蛩?造成文學(xué)學(xué)習(xí)和文學(xué)方向畢業(yè)論文寫作中缺乏科學(xué)的分析方法。本研究將探索將文藝?yán)碚撘氡究飘厴I(yè)生的論文寫作課程中的必要性和可行性,從而建構(gòu)以文藝?yán)碚摓橹行牡挠⒄Z專業(yè)文學(xué)方向畢業(yè)論文寫作的新模式。
[關(guān)鍵詞]文學(xué)理論;讀者反映理論;認(rèn)知教學(xué)法
依據(jù)《高等教育法》(1998)的本科教育學(xué)業(yè)標(biāo)準(zhǔn),學(xué)生應(yīng)比較系統(tǒng)地掌握本專業(yè)所必需的基礎(chǔ)理論知識、基本技能和相關(guān)知識,并“具有從事本專業(yè)實際工作和研究工作的初步能力”。這一標(biāo)準(zhǔn)強(qiáng)調(diào)了研究性教學(xué)(research-oriented teaching)的重要性,無疑為英美文學(xué)教學(xué)中理論研究與實踐的有機(jī)融合提出了要求,而這種融合往往體現(xiàn)在學(xué)生文學(xué)論文寫作的能力之中。然而,高校中實用主義風(fēng)氣、急功近利思想和“重技能,輕人文”弊端的集中體現(xiàn)沖擊著文學(xué)課教學(xué),助長了學(xué)生輕視與人文修養(yǎng)有關(guān)的課程,助長了他們對文學(xué)作品敬而遠(yuǎn)之的傾向(馬愛華, 2006)。作為全面考核畢業(yè)生綜合素質(zhì)的有效途徑,畢業(yè)論文寫作是本科學(xué)生畢業(yè)前必須經(jīng)受的考驗關(guān)口,是師生教學(xué)相長的過程。本文將從文學(xué)課教學(xué)的現(xiàn)狀出發(fā),通過畢業(yè)論文寫作的過程,在揭示現(xiàn)象、總結(jié)經(jīng)驗的基礎(chǔ)上,提出重視文藝?yán)碚摰慕虒W(xué),提高學(xué)生的文學(xué)素養(yǎng),培養(yǎng)研究性學(xué)習(xí)能力的意義。
一、研究現(xiàn)狀
部分專家認(rèn)為英語專業(yè)(張沖, 2003)是“英語語言技能的專業(yè)訓(xùn)練和對英語語言文化的專門研究”,其特征為“技能加專業(yè),復(fù)合而開放”,其培養(yǎng)目標(biāo)為“純熟的語言能力,深度的專題研究”。這一專業(yè)定位除了強(qiáng)調(diào)語言技能之外,著重強(qiáng)調(diào)了“文化”和“研究”。文化理解和專題研究的基礎(chǔ)在于學(xué)生文學(xué)課程的給養(yǎng)過程,其中,文學(xué)理論分析則既指導(dǎo)了文學(xué)課程的學(xué)習(xí),又加深了學(xué)生對文學(xué)作品的理解。文學(xué)作品的學(xué)習(xí)與文藝?yán)碚摰年P(guān)系好比材料和工具的關(guān)系,“工欲善其事,必先利其器”,如果學(xué)生沒有相關(guān)的文藝?yán)碚摰膶W(xué)習(xí),就好比一個沒有工具的工匠,只能望天興嘆。
二、問題成因
文藝?yán)碚撌菍W(xué)習(xí)英美文學(xué)的分析和鑒賞工具,研究生階段的文藝?yán)碚摻虒W(xué)已經(jīng)有了一定的歷史,但在英語專業(yè)本科教學(xué)中文藝?yán)碚摰慕虒W(xué)目前尚未展開。這直接導(dǎo)致學(xué)生的文學(xué)畢業(yè)論文的寫作難度增大,出現(xiàn)了許多亟待解決的問題。主要成因如下:
1.從事英美文學(xué)教學(xué)的教師理論水平參差不齊。部分教師講授英美文學(xué),而其自身很少涉及文藝?yán)碚摰氖褂?或者說自己的文學(xué)批評理論知識匱乏,因此不可能在授課時有意識地將文藝?yán)碚撊谌氲浇虒W(xué)中去。
2.輕視或放低對學(xué)生的人文素質(zhì)和評析能力的生成要求。有些教師擔(dān)心學(xué)生的接受能力,甚至害怕因為學(xué)生不能正確理解文藝?yán)碚摰木瓒鴮⑵湔`用或者濫用?!陡叩葘W(xué)校英語專業(yè)英語教學(xué)大綱》(2000)明確規(guī)定了文學(xué)課程的教學(xué)目的“在于培養(yǎng)學(xué)生閱讀、欣賞、理解英語文學(xué)原著的能力,掌握文學(xué)批評的基本知識和方法。通過閱讀和分析英美文學(xué)作品,促進(jìn)學(xué)生語言基本功和人文素質(zhì)的提高,增強(qiáng)學(xué)生對西方文學(xué)及文化的了解”,顯而易見,加大文學(xué)批評理論的講授和研討是符合《大綱》要求的。
3.所學(xué)知識與研究性寫作存在三個“不和諧”關(guān)系:文學(xué)課的教與學(xué)脫節(jié);文學(xué)課與語言實踐脫節(jié);文學(xué)教學(xué)理論的研究與外語教學(xué)實踐脫節(jié)(馬愛華, 2006)。學(xué)生習(xí)得的知識孤立于其寫作實踐之外。人才培養(yǎng)目標(biāo)不明確,學(xué)生急功近利,一成不變的文學(xué)課程教學(xué)脫離實際人才
培養(yǎng)模式。學(xué)生將文藝?yán)碚撘暈榧埳险劚?。因?導(dǎo)致“文學(xué)理論教材和教學(xué)實踐逐漸偏離當(dāng)今消費時代的審美精神”以及“文學(xué)理論的教學(xué)被大學(xué)生們冷落”(李迪江, 2002)。
三、文藝?yán)碚撛谖膶W(xué)論文寫作中的意義
1.文學(xué)理論的專業(yè)知識學(xué)習(xí),鋪墊了文學(xué)論文的研究能力?!拔膶W(xué)理論教學(xué)應(yīng)該優(yōu)先地培養(yǎng)大學(xué)生的理論素養(yǎng),更多地培養(yǎng)大學(xué)生的應(yīng)用能力,如從文學(xué)作品的分析討論中,來培養(yǎng)大學(xué)生的理解能力、分析能力和表達(dá)能力等(李迪江, 2002)”。本科學(xué)生已經(jīng)有了一定的文學(xué)常識,至少對于著名作品的情節(jié)有了一定程度的了解,文學(xué)名著選讀課使用文學(xué)名著的原版書籍作為教材,使得學(xué)生有機(jī)會對文學(xué)文本進(jìn)行仔細(xì)研讀,為文藝?yán)碚摰膶W(xué)習(xí)奠定了基礎(chǔ)。
2.畢業(yè)論文寫作,完成學(xué)生從讀者到理論分析的升華。Guerin認(rèn)為,“讀者參與在文本的創(chuàng)作中”。作品的意義是文本和讀者相互作用的結(jié)果,它強(qiáng)調(diào)讀者在閱讀過程中的不同參與方式。這一理論代表人物之一伊瑟爾指出,所有文學(xué)篇章都有“空白”或“缺口”,這些空白和缺口必須由讀者在解讀過程中填補(bǔ)或具體化(劉辰誕, 1999)。文學(xué)作品須由接受者內(nèi)化和心靈化,即需要接受者的理解、體驗、加工、補(bǔ)充和創(chuàng)造,融入接受者的思想和情感、傾向和評價,只有這樣,作品中的時間、人物形象等才會活生生地呈現(xiàn)在自己的頭腦中(郭宏安, 1997)。從這個角度暴露了英語專業(yè)教育中一貫的“知識單一和技能單一”問題,帶來的思考是應(yīng)該如何培養(yǎng)學(xué)生多種語言技能,滿足其獨立學(xué)習(xí)的需要。
3.文學(xué)史學(xué)習(xí)為文藝?yán)碚摰膶W(xué)習(xí)奠定基礎(chǔ)。心理學(xué)、原型批判、女權(quán)主義、馬克思主義的文學(xué)評論等可將傳統(tǒng)文學(xué)史中作家、作品按照時間排序的方式打破。從各種文藝?yán)碚摰慕嵌葘ψ骷?、作品重新排?不同的文學(xué)作品可以用相同的文藝?yán)碚撨M(jìn)行分析,既起到梳理文學(xué)史和文學(xué)作品的目的,又使學(xué)生對文學(xué)作品甚至文學(xué)史的認(rèn)識提升到一個新的高度。如:莎士比亞的《哈姆雷特》,尤金?奧尼爾《榆樹下的欲望》,勞倫斯的《兒子與情人》等作品中都蘊含著戀母情結(jié)的心理學(xué)分析。以此為基礎(chǔ),給學(xué)生補(bǔ)充講述古希臘劇作家索福克里斯的著名悲劇作品《俄狄浦斯王》,能幫助學(xué)生探究作品人物的內(nèi)心世界,為論文寫作奠定基礎(chǔ)的同時,也有助于選擇一個更為可行的題目。
4.結(jié)合文本與文藝?yán)碚?豐富學(xué)生的論文選題。學(xué)生文學(xué)專業(yè)畢業(yè)論文選題往往單一,如選擇:《偉大的蓋茨比》中美國夢破滅的主題或美國夢的悲劇一類的主題;《呼嘯山莊》、《傲慢與偏見》中的愛情主題等。選擇經(jīng)典作家的代表作品為研究對象并不是不可以,但對于一般本科生而言,要就這些作品的某一方面進(jìn)行較為深入、有創(chuàng)意的探討,還是有相當(dāng)難度的。因為,對于某一經(jīng)典文本的某些問題,國內(nèi)外評論界可能早有定論,而一般的學(xué)生“尚不能用當(dāng)代文論的新視角去解讀,很難提出自己的新解”(杜志卿, 2005)。
5.研讀詩歌,理論先行。在歷屆本科英語專業(yè)畢業(yè)生的論文中,有關(guān)詩歌的論文很少有人涉及。究其成因,主要是在較短篇幅的詩歌中大量運用意象和象征等寫作手法,再加上詩人用特有的音韻感和
第三篇:福建師范大學(xué)協(xié)和學(xué)院2010級英語專業(yè)就業(yè)問卷調(diào)查
福建師范大學(xué)協(xié)和學(xué)院2010級英語專業(yè)就業(yè)問卷調(diào)查
首先感謝您在百忙之中抽空填寫本問卷!
1.請問您的性別是?()
A男B女
2.您是什么時候開始關(guān)注就業(yè)問題?()
A初中B高中C大學(xué)D目前還未關(guān)注
3.您當(dāng)初選擇英語專業(yè)的想法是來自?()
A自己對英語有濃厚的興趣,并打算繼續(xù)深造。
B為了以后就業(yè)方便才選英語專業(yè)。
C聽從他人或者父母的意見。
D被迫無奈的選擇。
4.您對將來畢業(yè)就職單位有何取向?()
A國家單位B事業(yè)單位C中外企業(yè)D私企E無所謂
5.在找工作時您是怎樣看待專業(yè)和工作性質(zhì)問題?()A一定要找與專業(yè)對口的工作。
B可以與專業(yè)有關(guān)聯(lián)性,不一定對口。
C專業(yè)與工作性質(zhì)無關(guān),先找一份工作在再說。
D根據(jù)自己的興趣喜好選擇行業(yè)。
6.您對就業(yè)地區(qū)的選擇原因?(可多選,兩項以內(nèi))()
A工作待遇好,可觀的收入B與國際接軌C崗位多元化D生活條件好
E提供再學(xué)習(xí)的機(jī)會,有較大的發(fā)展機(jī)會F看重創(chuàng)業(yè)環(huán)境
7.您認(rèn)為當(dāng)今就業(yè)困難的主要原因是?(可多選,兩項以內(nèi))()A缺乏實際技巧與精練B就業(yè)期望過高C就業(yè)人數(shù)太多D企業(yè)的要求過高
E沒有找到合適自己的崗位F金融危機(jī)帶來的企業(yè)倒閉
8.您對求職渠道的選擇是?(可多選,兩項以內(nèi))()
A人才招聘市場B校園招聘會C網(wǎng)上投寫簡歷D父母親戚朋友介紹
E報紙廣播媒體報導(dǎo)F其他
9.您對您第一份工作的薪水期望是多少?()
A 1000元以內(nèi)B 1000-1500元C 1500-2000元D 2000-3000 元E 3000元以上
F無所謂多少,只有能夠鍛煉就可以。
10.工作一段時間后,您發(fā)現(xiàn)工作與您理想中的有較大差別,您會?()
A馬上重新找新的工作B先做等有機(jī)會再跳槽
C看看再說,或許過段時間會加薪D無所謂,反正都要經(jīng)歷
11.你應(yīng)聘某企業(yè)時,著重該企業(yè)哪個方面?(可多選,兩項以內(nèi))()A公司的發(fā)展前景B薪水的高低C個人的發(fā)展空間D公司重視人才的程度E公司的名氣
12.您會考慮自主創(chuàng)業(yè)嗎?()
A工作難找,就會考慮自主創(chuàng)業(yè)B不會,剛剛畢業(yè)沒什么經(jīng)驗C暫時沒考慮
13.如果自主創(chuàng)業(yè),您會選擇哪些行業(yè)?
A食品飲料等B IT業(yè)C網(wǎng)上開店D其他 非常感謝您完成本問卷,祝您身體健康,學(xué)業(yè)有成?。?/p>
第四篇:愛麗絲夢游仙境英語專業(yè)論文
Alice adventures in wonder land 主要內(nèi)容
《愛麗絲奇境歷險記》講述了小姑娘愛麗絲追趕一只揣著懷表、會說話的白兔,掉進(jìn)了一個兔子洞,由此墜入了神奇的地下世界。在這個世界里,喝一口水就能縮得如同老鼠大小,吃一塊蛋糕又會變成巨人,在這個世界里,似乎所有吃的東西都有古怪。她還遇到了一大堆人和動物:渡渡鳥、蜥蜴比爾、柴郡貓、瘋帽匠、三月野兔、睡鼠、素甲魚、鷹頭獅、丑陋的公爵夫人。兔子洞里還另有乾坤,她在一扇小門后的大花園里遇到了一整副的撲克牌,牌里粗暴的紅桃王后、老好人紅桃國王和神氣活現(xiàn)的紅桃杰克(J)等等。在這個奇幻瘋狂的世界里,似乎只有愛麗絲是唯一清醒的人,她不斷探險,同時又不斷追問“我是誰”,在探險的同時不斷認(rèn)識自我,不斷成長,終于成長為一個“大”姑娘的時候,猛然驚醒,才發(fā)現(xiàn)原來這一切都是自己的一個夢境。
《愛麗絲穿鏡奇幻記》講述的是小姑娘愛麗絲剛下完一盤國際象棋,又對鏡子里反映的東西好奇不已,以致穿鏡而入,進(jìn)入了鏡子中的象棋世界。在這里,整個世界就是一個大棋盤,愛麗絲本人不過是這個棋盤中的一個小卒。小姑娘從自己所處的棋格開始,一步一步向前走,每一步棋都有奇妙的遭遇:愛麗絲會腳不沾地地飛著走路,那里的花朵和昆蟲都會說話,白王后變成了綿羊女店主,她手中的編織針變成劃船的槳,等等。鏡中的故事大多取材于英國傳統(tǒng)童謠,作者通過自己的想象加以展開,并詳細(xì)敘述,童謠里的人和物活靈活現(xiàn)地呈現(xiàn)在讀者面前:為一丁點兒小事打架的對頭兄弟,行止傲慢的憨蛋和為爭奪王冠而戰(zhàn)的獅子和獨角獸??磥碇挥邪l(fā)明家兼廢品收藏家白騎士無法歸類,但他恰好是作者本人的化身。等到愛麗絲終于走到第八格,當(dāng)了王后之后,為所有這些人準(zhǔn)備了一次盛大的宴會,宴會上的烤羊腿會鞠躬,布丁會說話,盛宴最終變成了一片混亂,忍無可忍的愛麗絲緊緊捉住搖晃的紅后最后變成了一只小黑貓,愛麗絲也在搖晃中醒來,開始追問這到底是自己的夢呢,還是紅國王的夢? 作者介紹
劉易斯·卡羅爾(Lewis Carroll),原名查爾斯·路德維?!さ榔孢d,與安徒生、格林兄弟齊名的世界頂尖兒童文學(xué)大師。原名查爾斯·路德維?!さ榔孢d。1832年1月出生于英國柴郡的一個 牧師家庭,1898年卒于薩里。曾在牛津大學(xué)基督堂學(xué)院任教達(dá)30年之久,業(yè)余愛好非常廣泛,尤其喜愛兒童肖像攝影。他的第一本童書《愛麗絲奇境歷險記》于1865年出版,當(dāng)時就引起了巨大轟動,1871年又推出了續(xù)篇《愛麗絲穿鏡奇幻記》,更是好評如潮。兩部童書旋即風(fēng)靡了整個世界,成為一代又一代孩子們乃至成人最喜愛的讀物。
如果說劉易斯·卡羅爾因為這兩部童書而被稱為現(xiàn)代童話之父,絲毫沒有夸大的成分。至少他的兩部《愛麗絲》一改此前傳統(tǒng)童話(包括《安徒生童話》、《格林童話》)充斥著殺戮和說教的風(fēng)格,從而奠定了怪誕、奇幻的現(xiàn)代童話基調(diào)。僅從這點來說,就堪稱跨時代的里程碑。故事簡介
Alice, sitting with her sister, is bored.A White Rabbit scurries by, muttering to himself and pulling a watch from his waistcoat pocket.Curious, Alice follows the animal down a rabbit hole, the first of many instances in which she is propelled by her curiosity.Alice falls, landing in a pile of leaves.She finds herself in a hall and discovers a tiny key to a tiny door leading to a garden.She drinks from a bottle labeled DRINK ME, and shrinks down to ten inches tall.Too short to unlock the garden door, Alice begins to cry.She eats some cake, grows unusually tall, then fans herself and becomes exceedingly small.She finds herself swimming in a pool of her own giant tears.A group of animals gathers around her on the shore.A Mouse gives a speech and then a foot race ensues.Alice is soon left alone and begins to cry again.The White Rabbit approaches.Thinking Alice is his housemaid, he sends her on an errand to fetch some things from his house.Alice drinks from a bottle she finds inside and grows until she fills the house, spilling out windows and bumping her head against the ceiling.Frightened, the Rabbit and his friends throw pebbles at Alice.The pebbles become cakes, which Alice eats to shrink.She escapes and meets a Caterpillar sitting on a mushroom, smoking.While he questions her identity and learning, Alice experiments with eating parts of the mushroom to alter her height.After a brief conversation with a Pigeon, she visits the highly
peppered house of the ill-tempered Duchess and encounters the Cheshire Cat, traveling next to the house of the March Hare.Here the Hare, the Mad Hatter, and the Dormouse have tea.Confused, she leaves the party in disgust and finds her way to the garden she could not reach earlier.In the garden, Alice encounters a very curious croquet game and a Queen of Hearts who threatens to chop off everyone's heads.Alice talks with the moralizing Duchess until the Queen threatens to execute the woman.At the Queen's orders, a Gryphon leads Alice to the Mock Turtle.She listens to his life story and his instructions for dancing the Lobster
Quadrille.The two creatures ask Alice to recount her own adventures, which she does, until a Trial is announced in the distance.The Trial concerns some tarts stolen from the Queen.When she is called to the witness stand, Alice begins to grow again and knocks over the jury box.The King orders her to leave the court because of her height.She refuses and continues to grow as the White Rabbit introduces more evidence.The Queen threatens to chop off Alice's head.Having grown to her full size, Alice calls the Queen and her soldiers a mere deck of cards, at which point the entire pack of them rises up and flies down upon her.Alice awakes.Her sister is brushing off some leaves from Alice's face.She recounts her Adventures and runs off.Her sister watches Alice and begins to dream herself, imagining that the White Rabbit rushes by through the grass.梗概:Alice's Adventures in Wonderland(commonly shortened to Alice in Wonderland)is an 1865 novel written by English author Charles Lutwidge Dodgson under the pseudonym LewisCarroll。[1]It tells of a girl named Alice who falls down a rabbit hole into a fantasy world(Wonderland)populated by peculiar, anthropomorphic creatures.The tale plays with logic, giving the story lasting popularity with adults as well as children.[2] It is considered to be one of the best examples of the literary nonsense genre,[2][3] and its narrative course and structure have been enormously influential,[3] especially in the fantasy genre.
第五篇:英語專業(yè)論文翻譯
A smart copper(II)-responsive binucleargadolinium(III)complex-based magnetic resonanceimaging contrast agent?
Yan-meng Xiao,ab Gui-yan Zhao,ab Xin-xiu Fang,ab Yong-xia Zhao,ab Guan-hua Wang,c Wei Yang*a and Jing-wei Xu*a A novel Gd-DO3A-type bismacrocyclic complex, [Gd2(DO3A)2BMPNA], with a Cu2+-selective binding unitwas synthesized as a potential “smart” copper(II)-responsive magnetic resonance imaging(MRI)contrast agent.The relaxivity of the complex was modulated by the presence or absence of Cu2+;in the absence of Cu2+, the complex exhibited a relatively low relaxivity value(6.40 mM1 s1), while the addition of Cu2+ triggered an approximately 76% enhancement in relaxivity(11.28 mM1 s1).Moreover, this Cu2+-responsive contrast agent was highly selective in its response to Cu2+ over other biologically-relevant metal ions.The influence of some common biological anions on the Cu2+-responsive contrast agent and the luminescence lifetime of the complex were also studied.The results of the luminescence lifetime measurements indicated that the enhancement in relaxivity was mainly ascribed to the increased number of inner-sphere water molecules binding to the paramagnetic Gd3+ core upon the addition of Cu2+.In addition, the visual change associated with the significantly enhanced relaxivity due to the addition of Cu2+ was observed from T1-weighted phantom images.Introduction Copper(II)ion is a vital metal nutrient for the metabolism of life and plays a critical role in various biological processes.1,2 Its homeostasis is critical for the metabolism and development of living organisms.3,4 On the other hand, the disruption of its homeostasis may lead to a variety of physical diseases and neurological problems such as Alzheimer's disease,5 Menkes and Wilson's disease,6 amyotrophic lateral sclerosis,7,8 and prion disease.9,10 Therefore, the assessment and understanding of the distribution of biological copper in living systems by noninvasive imaging is crucial to provide more insight into copper homeostasis and better understand the relationship between copper regulation and its physiological function.A wide variety of organic uorescent dyes have been exploited for the optical detection of ions in the last few decades.11–13However, optical imaging using organic uorescent dyes hasseveral limitations such as photobleaching, light scattering,limited penetration, low spatial resolution and the disturbance of auto uorescence.14 By comparison, magnetic resonance imaging(MRI)is an increasingly accessible technique used as a noninvasive clinical diagnostic modality for medical diagnosis and biomedical research.15 It can provide high spatial resolution three-dimensional anatomical images with information about physiological signals and biochemical events.16 As a powerful diagnostic imaging tool in medicine, MRI can distinguish normal tissue from diseased tissue and lesions in a noninvasive manner,17–19 which avoids diagnostic thoracotomy or laparotomy surgery for medical diagnoses and greatly improves the diagnostic efficiency.Multiple MRI imaging parameters can provide a wealth of diagnostic information.In addition, the desired cross-section for acquiring multi-angle and multi-planar images of various parts of the entire body can be freely chosen by adjusting the MRI magnetic eld;this ability makes medical diagnostics and studies of the body's metabolism and function more and more effective and convenient.Contrast agents are often used in MRI examinations to improve the resolution and sensitivity;the image quality can be signicantly improved by applying contrast agents which enhance the MRI signal intensity by increasing the relaxation rates of the surrounding water protons.20 Due to the high magnetic moment(seven unpaired electrons)and slow electronic relaxation of the
paramagnetic gadolinium(III)ion, gadolinium(III)-based MRI contrast agents are commonly employed to increase the relaxation rate of the surrounding water protons.16,21 However, most of these contrast agents are nonspecific and provide only anatomical information.On the basis of Solomon–Bloembergen–Morgan theory,22–24 several parameters can be manipulated to alter the relaxivity of gadolinium(III)-based MRI contrast agents.These parameters include the number of coordinated water molecules(q), the rotational correlation time(sR)and the residence lifetime of coordinated water molecules bound to the paramagnetic Gd3+ center(sM).Adjusting any of these three factors provides the opportunity to design “smart” MRI contrast agents for specific biochemical events.25–27 In recent years, there have been many studies on the development of responsive gadolinium(III)-based MRI contrast agents;most of them have focused on the development of targeted, high relaxivity and bioactivated contrast agents.These responsive gadolinium(III)-based MRI contrast agents can be modulated by particular in vivo stimuli including pH,28–35 metal ion concentration36–43 and enzyme activity.44–50 Notably, a number of copper-responsive MRI contrast agents have been reported to detect uctuations of copper ions in vivo.51–58 These activated contrast agents exploit the modulation of the number of coordinated water molecules to generate distinct enhancements in longitudinal relaxivity in response to copper ions(Cu+ or Cu2+).In this study, we designed and synthesized a binuclear gadolinium-based MRI contrast agent, [Gd2(DO3A)2BMPNA], that is specically responsive to Cu2+ over other biologicallyrelevant metal ions.The new copper-responsive MRI contrast agent comprises two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold59,60(BMPNA), which functions as a receptor for copper-induced relaxivity switching.The synthetic strategy for [Gd2(DO3A)2BMPNA] is depicted in Scheme 1.Subsequently, the T1 relaxivity of [Gd2(DO3A)2BMPNA] was studied at 25 C and 60 MHz in the absence or presence of Cu2+.Experiments to determine the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+ over other biologically-relevant ions were carried out as well.Luminescence lifetime was measured to determine the number of coordinated water molecules(q)of [Gd2(DO3A)2BMPNA] in the absence or presence of Cu2+.In addition, T1-weighted phantom images were collected to visualize the relaxivity enhancement caused by Cu2+, suggesting potential in vivo applications.Experimental section
Materials and instruments
All materials for synthesis were purchased from commercial suppliers and used without further purication.1H and 13C NMR spectra were taken on an AMX600 Bruker FT-NMR spectrometer with tetramethylsilane(TMS)as an internal standard.Luminescence measurements were performed on a Hitachi Fluorescence spectrophotometer-F-4600.The time-resolved luminescence emission spectra were recorded on a Perkin-Elmer LS-55 uorimeter with the following conditions: excitation wavelength, 295 nm;emission wavelength, 545 nm;dela time, 0.02 ms;gate time, 2.00 ms;cycle time, 20 ms;excitation slit, 5 nm;emission slit, 10 nm.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Mass spectra(MS)were obtained on an auto ex III TOF/TOF MALDI-MS and anIonSpec ESI-FTICR mass spectrometer.Elemental analyses were performed on a Vario EL Element Analyzer.Synthesis Synthesis of compound 3.Methyl 2,6-bis(3-(bromomethyl)-1H-pyrazol-1-yl)isonicotinate(Compound1)59,60 and 4,7,10-tris(2-(tert-butoxy)-2-oxoethyl)-4,7,10-triaza-azoniacyclododecan-1-ium bromide(Compound 2)61 were prepared following thereported methods.Compound 2(0.25 g, 0.296 mmol)was suspended in 2 ml anhydrous acetonitrile with 6 equivalents of NaHCO3(0.1492 g)and the mixture was stirred at room temperature for 0.5 h.Compound 1(0.0675 g, 0.148 mmol)was added, and the mixture was slowly heated to reflux(80 C)and stirred overnight.After the reaction was terminated, the mixture was cooled to room temperature, and the solution was ltered.The precipitate was washed several times with anhydrous acetonitrile, and the collected ltrate solution was evaporated under reduced pressure.The residue was puried using silicagel column chromatography eluted with CH2Cl2–n-hexane–CH3OH(10 : 3 : 1, v/v/v)to afford Compound 3(0.1038 g, 53%)as a pale yellow solid.1H NMR(600 MHz, DMSO): 8.22(s, 2H), 8.15(s, 2H), 6.62(s, 2H), 4.53(s, 4H), 3.82(s, 3H), 3.42(m, 4H), 2.98(m, 8H), 2.85(s, 8H), 2.71(m, 24H), 1.33(s, 54H)(Fig.S1?).13C NMR(151 MHz, CDCl3): d 173.21, 172.44, 163.99, 152.38, 150.11, 143.13, 128.07, 109.83, 108.36, 82.59, 57.84, 56.52, 56.06, 55.56, 52.98, 50.55, 48.91, 47.30, 27.96(Fig.S2?).HRMS(ESI): m/z calc.for C67H111N13O14 [M + 2H]2+ 661.92650, [M + H + Na]2+ 672.91747, [M + 2Na]2+ 683.90844, found [M + 2H]2+ 661.92584, [M+ H + Na]2+ 672.91690, [M + 2Na]2+ 683.90682(Fig.S3?).Synthesis of compound 4.Compound 3(0.1 g, 0.0756 mmol)was stirred with triuoroacetic acid in methylene chloride solution(2 ml)at room temperature for 24 h.The solvent was then evaporated under reduced pressure, and the residue was washed three times in CH3OH and CH2Cl2 to eliminate excess acid.The obtained residue was dissolved with a minimum volume of CH3OH and precipitated with cold Et2O.The precipitate was ltered to afford a brown yellow solid(0.1022 g).1H NMR(600 MHz, DMSO): 9.06(s, 2H), 8.17(s, 2H), 6.84(s, 2H), 4.33(s, 4H), 3.98(s, 3H), 3.56(b, 20H), 3.09(m, 24H)(Fig.S4?).13C NMR(151 MHz, D2O): d 174.11, 169.13, 164.64, 150.75, 148.85, 142.10, 129.88, 109.75, 107.99, 55.69, 54.01, 53.10, 52.43, 51.15, 49.59, 48.22, 47.69(Fig.S5?).MALDI-TOFMS spectrum(CH3OH): m/z calc.for C43H63N13O14 [M H] 984.46, found 984.7(Fig.S6?).Anal calc.for C43H63N13O14-$3CF3COOH$2H2O: C, 43.14;H, 5.17;N, 13.35;found C, 42.34;H, 4.999;N, 13.29%.Preparation of [Gd2(DO3A)2BMPNA] and [Tb2(DO3A)2-BMPNA].Compound 4(0.05 mmol)was dissolved in 2 ml of highly-puried water.GdCl3 or TbCl3(0.1 mmol)was added dropwise.The pH was maintained at 6.5–7.0 with NaOH during the whole process.The solution was then stirred at 75 C for 24 h.MALDI-MS(H2O): m/z calc.for C42H55N13O14Gd2 [M + H]+ 1281.46, found 1281.4(Fig.S7?).MALDI-MS(H2O): m/z calc.for C42H55N13O14Tb2 [M + H]+ 1284.3, found 1284.4(Fig.S8?).T1 measurements.The longitudinal relaxation times(T1)of aqueous solutions of [Gd2(DO3A)2BMPNA] were measured on an HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd)at 1.5 T.All of the tested samples were prepared in HEPES-buffered aqueous solutions at pH 7.4.All of the metal ions(Na+, K+, Ca2+, Mg2+, Cu2+, Zn2+, Fe3+, Fe2+)were used as chloride salts.Concentrations of Gd3+ were determined by ICP-OES.Relaxivities were determined from the slope of the plot of 1/T1 vs.[Gd].The data were tted to the following eqn(1),20
(1/T1)obs ?(1/T1)d + r1[M](1)
where(1/T1)obs and(1/T1)d are the observed values in the presence and absence of the paramagnetic species, respectively, and [M] is the concentration of paramagnetic [Gd].Luminescence measurements.Luminescence emission spectra were collected on a Hitachi uorescence spectrophotometer-F-4600.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ? 4 ns, gate ? 50 ns)as the excitation(Continuum Sunlite OPO).Samples were excited at 290 nm, and the emission maximum(545 nm)was used to determine luminescence lifetimes.The Tb(III)-based emission spectra were measured using 0.1 mM solutions of Tb complex analog in 100 mM HEPES buffer at pH 7.4 in H2O and D2O in the absence and presence of Cu2+.The number of coordinated water molecules(q)was calculated according to eqn(2):62,63 q= ? 5(sH2O1 sD2O1 0.06)(2)T1-weighted MRI phantom images.Phantom images were collected on a 1.5 T HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd).Instrument parameter settings were as follows: 1.5 T magnet;matrix =256 256;slice thickness =1 mm;TE= 13 ms;TR= 100 ms;and number of acquisitions =1.Results and discussion Longitudinal relaxivity of [Gd2(DO3A)2BMPNA] in response to copper(II)ion To investigate the inuence of Cu2+ on the relaxivity of [Gd2(DO3A)2BMPNA], the longitudinal relaxivity r1 for the [Gd2(DO3A)2BMPNA] contrast agent was determined using T1 measurements in the absence or presence of Cu2+ at 60 MHz and 25 C using a 0.2mMGd3+ solution of [Gd2(DO3A)2BMPNA] in 100 mM HEPES buffer(pH 7.4)under simulated physiological conditions.The concentrations of Gd3+ were determined by ICP-OES.The relaxivity r1 was calculated from eqn(1).In the absence of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] was 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).64 Upon addition of up to 1 equiv.of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] increased to 11.28 mM1 s1(76% relaxivity enhancement).As shown in Fig.1, the relaxivity gradually increased with the copper ion concentration, reaching a maximum value of approximately 1.2 equivalents of Cu2+.Due to the use of triuoroacetic acid in the synthesis of Compound 4, triuoroacetic acid residues produced CF3COO in the [Gd2(DO3A)2BMPNA] solution, allowing CF3COO to partially coordinate with Cu2+ to form “Chinese lantern” type structure complexes.65 When the amount of added copper ions was further increased to above 1.2 equiv., the relaxivity was maintained at the same level.The observed difference in Cu2+-triggered relaxivity enhancement demonstrated the ability of this contrast agent to sense Cu2+ in vivo by means of MRI.Our designed contrast agent not only exhibited a higher relaxivity, but also displayed a Cu2+-responsive relaxivity enhancement.Selectivity studies The relaxivity response of [Gd2(DO3A)2BMPNA] exhibited excellent selectivity for Cu2+ over a variety of other competing, biologically-relevant metal ions at physiological levels.As depicted in Fig.2(white bars), the addition of alkali metal cations(10 mM Na+, 2 mM K+)and alkaline earth metal cations(2 mM Mg2+, 2 mM Ca2+)did not generate an increase in relaxivity compared to the copper ion turn-on response;even the introduction of d-block metal cations(0.2 mM Fe2+, 0.2 mM Fe3+, 0.2 mM or 2 mM Zn2+)did not trigger relaxivity enhancements.We noted that Zn2+ is also known to replace Gd3+ in transmetalation experiments;however, studies with analogous Gd3+-DO3A complexes demonstrated that this ligand is more kinetically inert to metal-ion exchange.66 To ensure the kinetic stability of the complex, we used MS to monitor [Gd2(DO3A)2BMPNA] in the presence of 1 equiv.of Zn2+.No metal-ion exchange was observed at room temperature after 7 days(Fig.S13?).Relaxivity interference experiments for [Gd2(DO3A)2BMPNA] in the presence of both Cu2+(0.2 mM)and other biologically-relevant metal ions were also conducted;the results are shown as black bars in Fig.2, indicating that these biologically-relevant metal ions(Na+, K+, Mg2+, Ca2+, Fe2+, Fe3+, Zn2+)had no interference on the Cu2+-triggered relaxivity enhancement.In addition, we also tested the Cu2+ response for [Gd2(DO3A)2BMPNA] in the presence of physiologically-relevant concentrations of common biological anions to determine whether the Cu2+-triggered relaxivity enhancement was affected by biological anions at physiological levels.As previously mentioned, Cu2+ binding induced an enhancement in relaxivity from 6.40 mM1 s1 to 11.28 mM1 s1(a 76% increase).As shown in Fig.3, in the presence of citrate(0.13 mM), lactate(0.9 mM), H2PO4(0.9 mM), or HCO3(10 mM), the Cu2+-triggered relaxivity enhancement was approximately 61%(from 6.01 mM1 s1 to 9.66mM1 s1), 66%(from 6.13mM1 s1 to 10.16 mM1 s1), 20%(from 5.88 mM1 s1 to 7.02 mM1 s1), or 55%(from 6.15 mM1 s1 to 9.55 mM1 s1), respectively.Additionally, 100 mM NaCl had almost no effect(an approximately 75% increase), and a simulated extracellular anion solution(EAS, contain 30 mM NaHCO3, 100 mM NaCl, 0.9 mM KH2PO4, 2.3 mM sodium lactate, and 0.13 mM sodium citrate, pH =7),67 resulted in a Cu2+-triggered relaxivity enhancement of approximately 26%(from 6.02 mM1 s1 to 7.56 mM1 s1).Generally, the results revealed that lactate, citrate, and HCO3 had slight impacts on the Cu2+-triggered relaxivity enhancement, while H2PO4 and EAS influenced the enhancement to a greater degree.As shown in Scheme 2, [Gd2(DO3A)2BMPNA] possessed two water molecules after the addition of 1 equiv.Of Cu2+.According to the work of Dickins and coworkers, in lanthanide complexes with two water molecules, the waters can be partially displaced by phosphate, carbonate, acetate, carboxylate, lactate and citrate at different levels.68–70 The influence of these anions on the Cu2+-triggered relaxivity enhancement may be attributed to the partial replacement of coordinated water molecules by these anions.The relatively high concentration of phosphate could likely replace coordinated water molecules to reduce the increased number of water molecules surrounding the paramagnetic Gd3+ centre induced by Cu2+.As shown in Table 1, we measured the number of water molecules in the rst coordination sphere of Tb3+ in the presence of phosphate;the number of coordinated water molecules(q)decreased from 1.5 to 0.8.Coordination features Luminescence lifetime experiments were performed to explore the mechanism of the Cu2+-triggered relaxivity enhancement.Luminescence lifetime measurements of lanthanide complexes have been widely used to quantify the number of inner-sphere water molecules.71 In particular, Tb3+ and Eu3+ have commonly been applied for lifetime measurements because their emission spectra are in the visible region when their 4f electrons are relaxed from higher energy levels to the lowest energy multiplets.72,73 Therefore, the Tb3+ analogue of [Gd2(DO3A)2BMPNA], [Tb2(DO3A)2BMPNA], was prepared according to a similar method, and the luminescence lifetimes of the Tb3+ analogue in HEPES-buffered H2O and D2O in the absence and presence of Cu2+ were measured.As shown in Fig.S9,? the luminescence decay curve of [Tb2(DO3A)2BMPNA] was tted to obtain the luminescence lifetimes74(Table 1), and the number of coordinated water molecules(q)was calculated by eqn(2).The analysis results(Table 1)for [Tb2(DO3A)2BMPNA] in HEPES-bufferedH2OandD2O in the absence and presence of Cu2+ indicated that q increased from 0.6 to 1.5 upon the addition of 1 equiv.of Cu2+;this result indicated that the Cu2+-triggered relaxivity enhancement for [Gd2(DO3A)2BMPNA] was most likely due to the increased number of coordinated water molecules around the Gd3+ ion upon Cu2+ binding to the pyrazole centre(Scheme 2).Aer the addition of Cu2+, Cu2+ removed the pyrazole centre N atom from the paramagnetic Gd3+ ion to generate an open coordination site available for a water molecule.Luminescence emission titrations of [Tb2(DO3A)2BMPNA] towards Cu2+ were also performed to investigate the binding properties of the contrast agent towards Cu2+.Upon addition of 1 equiv.Cu2+, the luminescence of [Tb2(DO3A)2BMPNA] at 545 nm decreased gradually and reached a minimum due to the quenching nature of the paramagnetic Cu2+(Fig.S10?).The titration data indicated a 1 : 1 binding stoichiometry(Scheme 2)Copper-responsive T1-weighted phantom MRI in vitro To demonstrate the potential feasibility of this Cu2+-responsive [Gd2(DO3A)2BMPNA] for copper-imaging applications, T1-weighted phantom images of [Gd2(DO3A)2BMPNA] were acquired in the absence and presence of copper ions.The phantom images depicted in Fig.4 displayed distinct increases in image intensity in the presence of 1 equiv.Cu2+ compared with those without Cu2+(Fig.4D).Moreover, some of the other competing metal ions were also tested to further verify the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+.Discernible differences were not observed upon the addition of Mg2+(Fig.4C), Zn2+(Fig.4E), or Ca2+(Fig.4F).In addition, we also tested the clinical contrast agent Magnevist(Fig.4G);the image intensity was a bit darker than that of our contrast agent.Conclusions
In conclusion, we designed and synthesized a novel bismacrocyclic DO3A-type Cu2+-responsive MRI contrast agent, [Gd2(DO3A)2BMPNA].The new Cu2+-responsive MRI contrast agent comprised two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold(BMPNA)that functioned as a Cu2+ receptor switch to induce a distinct relaxivity enhancement in response to Cu2+;the relaxivity was increased up to 76%.Importantly, the complex exhibited high selectivity for Cu2+ over a range of other biologically-relevant metal ions at physiological levels.Luminescence lifetime experiment results showed that the number of inner-sphere water molecules(q)increased from 0.6 to 1.5 upon the addition of 1 equiv.Cu2+.When Cu2+ was coordinated in the central part of the complex, the donor N atom of the pyrazole centre was removed from the paramagnetic Gd3+ ion and replaced by a water molecule(Scheme 2).Consequently, the Cu2+-triggered relaxivity enhancement could be ascribed to the increase in the number of inner-sphere water molecules.The designed contrast agent had a longitudinal relaxivity of 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).In addition, the visual change associated with the signicantly enhanced relaxivity from the addition of Cu2+ was observed in T1-weighted phantom images.Acknowledgements We are grateful to the State Key Laboratory of Electroanalytical Chemistry for nancial support.Notes and references 1 S.Puig and D.J.Thiele, Curr.Opin.Chem.Biol., 2002, 6, 171.2 S.C.Leary, D.R.Winge and P.A.Cobine, Biochim.Biophys.Acta, Gen.Subj., 2009, 146, 1793.3 D.D.Agranoff and S.Krishna, Mol.Microbiol., 1998, 28, 403.4 H.Kozlowski, A.Janicka-Klos, J.Brasun, E.Gaggelli, D.Valensin and G.Valensin, Coord.Chem.Rev., 2009, 253, 2665.5 K.J.Barnham, C.L.Masters and A.I.Bush, Nat.Rev.Drug Discovery, 2004, 3, 205.6 D.J.Waggoner, T.B.Bartnikas and J.D.Gitlin, Neurobiol.Dis., 1999, 6, 221.7 J.S.Valentine and P.J.Hart, Proc.Natl.Acad.Sci.U.S.A., 2003, 100, 3617.8 L.I.Bruijn, T.M.Miller and D.W.Cleveland, Annu.Rev.Neurosci., 2004, 27, 723.9 G.L.Millhauser, Acc.Chem.Res., 2004, 37, 79.10 D.R.Brown and H.Kozlowski, Dalton Trans., 2004, 1907.11 A.W.Czarnik, Acc.Chem.Res., 1994, 27, 302.12 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.13 H.N.Kim, M.H.Lee, H.J.Kim, J.S.Kim and J.Yoon, Chem.Soc.Rev., 2008, 37, 1465.14 M.Mahmoudi, V.Serpooshan and S.Laurent, Nanoscale, 2011, 3, 3007.15 P.A.Rinck, Magnetic Resonance Imaging, Blackwell Science, Berlin, 4th edn, 2001, p.149.16 A.E.Merbach and ′E.T′oth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, Ltd., New York, 2001.17 S.Aime, E.Terreno, D.D.Castelli and A.Viale, Chem.Rev., 2010, 110, 3019.18 S.Aime, M.Fasano and E.Terreno, Chem.Soc.Rev., 1998, 27, 19.19 M.Woods, D.E.Woessner and A.D.Sherry, Chem.Soc.Rev., 2006, 35, 500.20 R.B.Lauffer, Chem.Rev., 1987, 87, 901.21 J.Kowalewski, D.Kruk and J.Parigi, Adv.Inorg.Chem., 2005, 57, 42.22 I.Solomon, Phys.Rev., 1955, 99, 559.23 N.Bloembergen, J.Chem.Phys., 1957, 27, 572.24 N.Bloembergen and L.O.Morgan, J.Chem.Phys., 1961, 34, 842.25 E.L.Que and C.J.Chang, Chem.Soc.Rev., 2010, 39, 51.26 C.S.Bonnet and ′E.T′oth, Future Med.Chem., 2010, 2, 367.27 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.28 S.Aime, S.G.Crich, M.Botta, G.Giovenzana, G.Palmisano and M.Sisti, Chem.Commun., 1999, 1577.29 J.Hall, R.Haner, S.Aime, M.Botta, S.Faulkner, D.Parker and A.S.de Sousa, New J.Chem., 1998, 22, 627.30 M.P.Lowe and D.Parker, Chem.Commun., 2000, 707.31 S.Aime, A.Barge, M.Botta, D.Parker and A.S.De Sousa, J.Am.Chem.Soc., 1997, 119, 4767.32 S.Aime, F.Fedeli, A.Sanino and E.Terreno, J.Am.Chem.Soc., 2006, 128, 11326.33 M.P.Lowe, D.Parker, O.Reany, S.Aime, M.Botta, G.Castellano, E.Gianolio and R.Pagliarin, J.Am.Chem.Soc., 2001, 123, 7601.34 R.Hovland, C.Glogard, A.J.Aasen and J.Klaveness, J.Chem.Soc., Perkin Trans.2, 2001, 929.35 ′E.T′oth, R.D.Bolskar, A.Borel, G.Gonz′alez, L.Helm, A.E.Merbach, B.Sitharaman and L.J.Wilson, J.Am.Chem.Soc., 2004, 127, 799.36 W.H.Li, S.E.Fraser and T.J.Meade, J.Am.Chem.Soc., 1999, 121, 1413.37 K.Dhingra, M.E.Maier, M.Beyerlein, G.Angelovski and N.K.Logothetis, Chem.Commun., 2008, 3444.38 H.Hifumi, A.Tanimoto, D.Citterio, H.Komatsu and K.Suzuki, Analyst, 2007, 132, 1153.39 L.M.De Le′on-Rodr′?guez, A.J.M.Lubag, J.A.L′opez, G.Andreu-de-Riquer, J.C.Alvarado-Monz′on and A.D.Sherry, MedChemComm, 2012, 3, 480.40 R.Trokowski, J.Ren, F.K.Kalman and A.D.Sherry, Angew.Chem., Int.Ed., 2005, 44, 6920.41 W.S.Li, J.Luo, F.Jiang and Z.N.Chen, Dalton Trans., 2012, 41, 9405.42 K.Hanaoka, K.Kikuchi, Y.Urano and T.Nagano, J.Chem.Soc., Perkin Trans.2, 2001, 1840.43 R.Ruloff, G.v.Koten and A.E.Merbach, Chem.Commun., 2004, 842.44 M.Giardiello, M.P.Lowe and M.Botta, Chem.Commun., 2007, 4044.45 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.46 W.Xu and Y.Lu, Chem.Commun., 2011, 47, 4998.47 R.A.Moats, S.E.Fraser and T.J.Meade, Angew.Chem., Int.Ed., 1997, 36, 726.48 A.Y.Louie, M.M.Huber, E.T.Ahrens, U.Rothbacher, R.Moats, R.E.Jacobs, S.E.Fraser and T.J.Meade, Nat.Biotechnol., 2000, 18, 321.49 B.Yoo and M.D.Pagel, J.Am.Chem.Soc., 2006, 128, 14032.50 Q.Wei, G.K.Seward, P.A.Hill, B.Patton, I.E.Dimitrov, N.N.Kuzma and I.J.Dmochowski, J.Am.Chem.Soc., 2006, 128, 13274.51 E.L.Que and C.J.Chang, J.Am.Chem.Soc., 2006, 128, 15942.52 E.L.Que, E.Gianolio, S.L.Baker, A.P.Wong, S.Aime and C.J.Chang, J.Am.Chem.Soc., 2009, 131, 8527.53 E.L.Que, E.Gianolio, S.L.Baker, S.Aime and C.J.Chang, Dalton Trans., 2010, 39, 469.54 W.S.Li, J.Luo and Z.N.Chen, Dalton Trans., 2011, 484.55 E.L.Que, E.J.New and C.J.Chang, Chem.Sci., 2012, 3, 1829.56 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.57 D.Kasala, T.S.Lin, C.Y.Chen, G.C.Liu, C.L.Kao, T.L.Cheng and Y.M.Wang, Dalton Trans., 2011, 5018.58 D.Patel, A.Kell, B.Simard, B.Xiang, H.Y.Lin and G.Tian, Biomaterials, 2011, 32, 1167.59 E.Brunet, O.Juanes, R.Sedano and J.C.Rodr′?guez-Ubis, Photochem.Photobiol.Sci., 2002, 1, 613.60 Z.Q.Ye, G.L.Wang, J.X.Chen, X.Y.Fu, W.Z.Zhang and J.L.Yuan, Biosens.Bioelectron., 2010, 26, 1043.61 S.Mizukami, K.Tonai, M.Kaneko and K.Kikuchi, J.Am.Chem.Soc., 2008, 130, 14376.62 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.63 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.64 P.Caravan, J.J.Ellison, T.J.McMurry and R.B.Laufer, Chem.Rev., 1999, 99, 2293.65 O.G.Polyakov, B.G.Nolan, B.P.Fauber, S.M.Miller, O.P.Anderson and S.H.Strauss, Inorg.Chem., 2000, 39, 1735.66 M.F.Tweedle, J.J.Hagan, K.Kumar, S.Mantha and C.A.Chang, Magn.Reson.Imaging, 1991, 9, 409.67 D.Parker, Coord.Chem.Rev., 2000, 205, 109.68 R.S.Dickins, T.Gunnlaugsson, D.Parker and R.D.Peacock, Chem.Commun., 1998, 1643.69 J.I.Bruce, R.S.Dickins, L.J.Govenlock, T.Gunnlaugsson, S.Lopinski, M.P.Lowe, D.Parker, R.D.Peacock, J.J.B.Perry, S.Aime and M.Botta, J.Am.Chem.Soc., 2000, 122, 9674.70 R.S.Dickins, S.Aime, A.S.Batsanov, A.Beeby, M.Botta, J.I.Bruce, J.A.K.Howard, C.S.Love, D.Parker, R.D.Peacock and H.Puschmann, J.Am.Chem.Soc., 2002, 124, 12697–12705.71 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.72 C.C.Bryden and C.N.Reilley, Anal.Chem., 1982, 54, 610.73 K.Binnemans, Chem.Rev., 2009, 109, 4283.74 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.This journal is ? The Royal Society of Chemistry 2014 RSC Adv., 2014, 4, 34421–34427 | 34427