欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      高一函數(shù)知識(shí)點(diǎn)總結(jié)范文

      時(shí)間:2019-05-15 13:01:17下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《高一函數(shù)知識(shí)點(diǎn)總結(jié)范文》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《高一函數(shù)知識(shí)點(diǎn)總結(jié)范文》。

      第一篇:高一函數(shù)知識(shí)點(diǎn)總結(jié)范文

      (一)、映射、函數(shù)、反函數(shù)

      1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射。

      2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):

      (1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù)。

      (2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問(wèn)題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式。

      (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù)。

      3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

      (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

      (2)由y=f(x)的解析式求出x=f—1(y);

      (3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f—1(x),并注明定義域。

      注意①:對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起。

      ②熟悉的應(yīng)用,求f—1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過(guò)程,從而簡(jiǎn)化運(yùn)算。

      (二)、函數(shù)的解析式與定義域

      1、函數(shù)及其定義域是不可分割的整體,沒(méi)有定義域的函數(shù)是不存在的,因此,要正確地寫(xiě)出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域。求函數(shù)的定義域一般有三種類(lèi)型:

      (1)有時(shí)一個(gè)函數(shù)來(lái)自于一個(gè)實(shí)際問(wèn)題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;

      (2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可。如:

      ①分式的分母不得為零;

      ②偶次方根的被開(kāi)方數(shù)不小于零;

      ③對(duì)數(shù)函數(shù)的真數(shù)必須大于零;

      ④指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

      ⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等。

      應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集)。

      (3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可。

      已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域。

      2、求函數(shù)的解析式一般有四種情況

      (1)根據(jù)某實(shí)際問(wèn)題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式。

      (2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法。比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可。

      (3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域。

      (4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(—x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式。

      (三)、函數(shù)的值域與最值

      1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

      (1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域。

      (2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元。

      (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f—1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得。

      (4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問(wèn)題可考慮用配方法。

      (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過(guò)應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧。

      (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。

      (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域。

      (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域。

      2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

      求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最?。ù螅?shù),這個(gè)數(shù)就是函數(shù)的最?。ù螅┲?。因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同,因而答題的方式就有所相異。

      如函數(shù)的值域是(0,16],最大值是16,無(wú)最小值。再如函數(shù)的值域是(—∞,—2]∪[2,+∞),但此函數(shù)無(wú)最大值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2??梢?jiàn)定義域?qū)瘮?shù)的值域或最值的影響。

      3、函數(shù)的最值在實(shí)際問(wèn)題中的應(yīng)用

      函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問(wèn)題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)最大”或“面積(體積)最大(最?。钡戎T多現(xiàn)實(shí)問(wèn)題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的制約,以便能正確求得最值。

      (四)、函數(shù)的奇偶性

      1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù))。

      正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數(shù)定義域上的整體性質(zhì))。

      2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式:

      注意如下結(jié)論的運(yùn)用:

      (1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);

      (2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類(lèi)似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

      (3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù);

      (4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。

      3、有關(guān)奇偶性的幾個(gè)性質(zhì)及結(jié)論

      (1)一個(gè)函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)對(duì)稱;一個(gè)函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對(duì)稱。

      (2)如要函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù)。

      (3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立。

      (4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對(duì)稱區(qū)間上的單調(diào)性是相同(反)的。

      (5)若f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則F(x)=f(x)+f(—x)是偶函數(shù),G(x)=f(x)—f(—x)是奇函數(shù)。

      (6)奇偶性的推廣

      函數(shù)y=f(x)對(duì)定義域內(nèi)的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關(guān)于直線x=a對(duì)稱,即y=f(a+x)為偶函數(shù)。函數(shù)y=f(x)對(duì)定義域內(nèi)的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對(duì)稱圖形,即y=f(a+x)為奇函數(shù)。

      (五)、函數(shù)的單調(diào)性

      1、單調(diào)函數(shù)

      對(duì)于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點(diǎn)x1,x2,當(dāng)x1>x2時(shí),都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調(diào)遞增(或遞減);增函數(shù)或減函數(shù)統(tǒng)稱為單調(diào)函數(shù)。

      對(duì)于函數(shù)單調(diào)性的定義的理解,要注意以下三點(diǎn):

      (1)單調(diào)性是與“區(qū)間”緊密相關(guān)的概念。一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。

      (2)單調(diào)性是函數(shù)在某一區(qū)間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替。

      (3)單調(diào)區(qū)間是定義域的子集,討論單調(diào)性必須在定義域范圍內(nèi)。

      (4)注意定義的兩種等價(jià)形式:

      設(shè)x1、x2∈[a,b],那么:

      ①在[a、b]上是增函數(shù);

      在[a、b]上是減函數(shù)。

      ②在[a、b]上是增函數(shù)。

      在[a、b]上是減函數(shù)。

      需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(diǎn)(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零。

      (5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說(shuō)明單調(diào)性使得自變量間的不等關(guān)系和函數(shù)值之間的不等關(guān)系可以“正逆互推”。

      5、復(fù)合函數(shù)y=f[g(x)]的單調(diào)性

      若u=g(x)在區(qū)間[a,b]上的單調(diào)性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調(diào)性相同,則復(fù)合函數(shù)y=f[g(x)]在[a,b]上單調(diào)遞增;否則,單調(diào)遞減。簡(jiǎn)稱“同增、異減”。

      在研究函數(shù)的單調(diào)性時(shí),常需要先將函數(shù)化簡(jiǎn),轉(zhuǎn)化為討論一些熟知函數(shù)的單調(diào)性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,將大大縮短我們的判斷過(guò)程。

      6、證明函數(shù)的單調(diào)性的方法

      (1)依定義進(jìn)行證明。其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據(jù)定義,得出結(jié)論。

      (2)設(shè)函數(shù)y=f(x)在某區(qū)間內(nèi)可導(dǎo)。

      如果f′(x)>0,則f(x)為增函數(shù);如果f′(x)<0,則f(x)為減函數(shù)。

      (六)、函數(shù)的圖象

      函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應(yīng)加強(qiáng)對(duì)作圖、識(shí)圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結(jié)合的思想方法解決問(wèn)題的意識(shí)。

      求作圖象的函數(shù)表達(dá)式

      與f(x)的關(guān)系

      由f(x)的圖象需經(jīng)過(guò)的變換

      y=f(x)±b(b>0)

      沿y軸向平移b個(gè)單位

      y=f(x±a)(a>0)

      沿x軸向平移a個(gè)單位

      y=—f(x)

      作關(guān)于x軸的對(duì)稱圖形

      y=f(|x|)

      右不動(dòng)、左右關(guān)于y軸對(duì)稱

      y=|f(x)|

      上不動(dòng)、下沿x軸翻折

      y=f—1(x)

      作關(guān)于直線y=x的對(duì)稱圖形

      y=f(ax)(a>0)

      橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變

      y=af(x)

      縱坐標(biāo)伸長(zhǎng)到原來(lái)的|a|倍,橫坐標(biāo)不變

      y=f(—x)

      作關(guān)于y軸對(duì)稱的圖形

      【例】定義在實(shí)數(shù)集上的函數(shù)f(x),對(duì)任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。

      ①求證:f(0)=1;

      ②求證:y=f(x)是偶函數(shù);

      ③若存在常數(shù)c,使求證對(duì)任意x∈R,有f(x+c)=—f(x)成立;試問(wèn)函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個(gè)周期;如果不是,請(qǐng)說(shuō)明理由。

      思路分析:我們把沒(méi)有給出解析式的函數(shù)稱之為抽象函數(shù),解決這類(lèi)問(wèn)題一般采用賦值法。

      解答:①令x=y=0,則有2f(0)=2f2(0),因?yàn)閒(0)≠0,所以f(0)=1。

      ②令x=0,則有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),這說(shuō)明f(x)為偶函數(shù)。

      ③分別用(c>0)替換x、y,有f(x+c)+f(x)=

      所以,所以f(x+c)=—f(x)。

      兩邊應(yīng)用中的結(jié)論,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函數(shù),2c就是它的一個(gè)周期。

      [高一函數(shù)知識(shí)點(diǎn)總結(jié)]相關(guān)文章:

      第二篇:初中函數(shù)知識(shí)點(diǎn)總結(jié)

      千承培訓(xùn)學(xué)校

      函數(shù)知識(shí)點(diǎn)總結(jié)(掌握函數(shù)的定義、性質(zhì)和圖像)

      (一)平面直角坐標(biāo)系

      1、定義:平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系

      2、各個(gè)象限內(nèi)點(diǎn)的特征: 第一象限:(+,+)點(diǎn)P(x,y),則x>0,y>0; 第二象限:(-,+)點(diǎn)P(x,y),則x<0,y>0; 第三象限:(-,-)點(diǎn)P(x,y),則x<0,y<0; 第四象限:(+,-)點(diǎn)P(x,y),則x>0,y<0;

      3、坐標(biāo)軸上點(diǎn)的坐標(biāo)特征:

      x軸上的點(diǎn),縱坐標(biāo)為零;y軸上的點(diǎn),橫坐標(biāo)為零;原點(diǎn)的坐標(biāo)為(0 , 0)。兩坐標(biāo)軸的點(diǎn)不屬于任何象限。

      4、點(diǎn)的對(duì)稱特征:已知點(diǎn)P(m,n), 關(guān)于x軸的對(duì)稱點(diǎn)坐標(biāo)是(m,-n), 橫坐標(biāo)相同,縱坐標(biāo)反號(hào) 關(guān)于y軸的對(duì)稱點(diǎn)坐標(biāo)是(-m,n)縱坐標(biāo)相同,橫坐標(biāo)反號(hào) 關(guān)于原點(diǎn)的對(duì)稱點(diǎn)坐標(biāo)是(-m,-n)橫,縱坐標(biāo)都反號(hào)

      5、平行于坐標(biāo)軸的直線上的點(diǎn)的坐標(biāo)特征:平行于x軸的直線上的任意兩點(diǎn):縱坐標(biāo)相等;平行于y軸的直線上的任意兩點(diǎn):橫坐標(biāo)相等。

      6、各象限角平分線上的點(diǎn)的坐標(biāo)特征:

      第一、三象限角平分線上的點(diǎn)橫、縱坐標(biāo)相等。

      第二、四象限角平分線上的點(diǎn)橫、縱坐標(biāo)互為相反數(shù)。

      7、點(diǎn)P(x,y)的幾何意義: 點(diǎn)P(x,y)到x軸的距離為 |y|,點(diǎn)P(x,y)到y(tǒng)軸的距離為 |x|。點(diǎn)P(x,y)到坐標(biāo)原點(diǎn)的距離為

      8、兩點(diǎn)之間的距離:

      X軸上兩點(diǎn)為A(x1,0)、B(x2,0)|AB|?|x2?x1|

      x2?y2 Y軸上兩點(diǎn)為C(0,y1)、D(0,y2)|CD|已知A(x1,y1)、B(x2,y2)AB|=

      ?|y2?y1|

      (x2?x1)2?(y2?y1)

      29、中點(diǎn)坐標(biāo)公式:已知A(x1,y1)、B(x2,y2)M為AB的中點(diǎn)

      則:M=(x2?x1y?y1 , 2)2210、點(diǎn)的平移特征: 在平面直角坐標(biāo)系中,將點(diǎn)(x,y)向右平移a個(gè)單位長(zhǎng)度,可以得到對(duì)應(yīng)點(diǎn)(x-a,y); 將點(diǎn)(x,y)向左平移a個(gè)單位長(zhǎng)度,可以得到對(duì)應(yīng)點(diǎn)(x+a,y); 將點(diǎn)(x,y)向上平移b個(gè)單位長(zhǎng)度,可以得到對(duì)應(yīng)點(diǎn)(x,y+b); 將點(diǎn)(x,y)向下平移b個(gè)單位長(zhǎng)度,可以得到對(duì)應(yīng)點(diǎn)(x,y-b)。

      注意:對(duì)一個(gè)圖形進(jìn)行平移,這個(gè)圖形上所有點(diǎn)的坐標(biāo)都要發(fā)生相應(yīng)的變化;反過(guò)來(lái),從圖形上點(diǎn)的坐標(biāo)的加減變化,我們也可以看出對(duì)這個(gè)圖形進(jìn)行了怎樣的平移。

      (二)函數(shù)的基本知識(shí): 基本概念

      1、變量:在一個(gè)變化過(guò)程中可以取不同數(shù)值的量。

      常量:在一個(gè)變化過(guò)程中只能取同一數(shù)值的量。

      2、函數(shù):一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。*判斷A是否為B的函數(shù),只要看B取值確定的時(shí)候,A是否有唯一確定的值與之對(duì)應(yīng)

      3、定義域:一般的,一個(gè)函數(shù)的自變量允許取值的范圍,叫做這個(gè)函數(shù)的定義域。

      4、確定函數(shù)定義域的方法:

      (1)關(guān)系式為整式時(shí),函數(shù)定義域?yàn)槿w實(shí)數(shù);

      (2)關(guān)系式含有分式時(shí),分式的分母不等于零;

      (3)關(guān)系式含有二次根式時(shí),被開(kāi)放方數(shù)大于等于零;

      (4)關(guān)系式中含有指數(shù)為零的式子時(shí),底數(shù)不等于零;

      (5)實(shí)際問(wèn)題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。

      5、函數(shù)的圖像 一般來(lái)說(shuō),對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象.

      6、函數(shù)解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做解析式。

      7、描點(diǎn)法畫(huà)函數(shù)圖形的一般步驟

      第一步:列表(表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值);

      第二步:描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn));

      第三步:連線(按照橫坐標(biāo)由小到大的順序把所描出的各點(diǎn)用平滑曲線連接起來(lái))。

      8、函數(shù)的表示方法

      列表法:一目了然,使用起來(lái)方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。

      解析式法:簡(jiǎn)單明了,能夠準(zhǔn)確地反映整個(gè)變化過(guò)程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問(wèn)題中的函數(shù)關(guān)系,不能用解析式表示。

      圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。

      (三)正比例函數(shù)和一次函數(shù)

      1、正比例函數(shù)及性質(zhì)

      一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式 y=kx(k不為零)① k不為零 ② x指數(shù)為1 ③ b取零 當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)三、一象限,從左向右上升,即隨x的增大y也增大;當(dāng)k<0時(shí),?直線y=kx經(jīng)過(guò)二、四象限,從左向右下降,即隨x增大y反而減?。?1)解析式:y=kx(k是常數(shù),k≠0)(2)必過(guò)點(diǎn):(0,0)、(1,k)

      (3)走向:k>0時(shí),圖像經(jīng)過(guò)一、三象限;k<0時(shí),?圖像經(jīng)過(guò)二、四象限(4)增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小(5)傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸

      2、一次函數(shù)及性質(zhì)

      一般地,形如y=kx+b(k,b是常數(shù),k≠0),那么y叫做x的一次函數(shù).當(dāng)b=0時(shí),y=kx+b即y=kx,所以說(shuō)正比例函數(shù)是一種特殊的一次函數(shù).注:一次函數(shù)一般形式 y=kx+b(k不為零)① k不為零 ②x指數(shù)為1 ③ b取任意實(shí)數(shù)

      一次函數(shù)y=kx+b的圖象是經(jīng)過(guò)(0,b)和(-

      b,0)兩點(diǎn)的一條直線,我們稱它為直k線y=kx+b,它可以看作由直線y=kx平移|b|個(gè)單位長(zhǎng)度得到.(當(dāng)b>0時(shí),向上平移;當(dāng)b<0時(shí),向下平移)

      (1)解析式:y=kx+b(k、b是常數(shù),k?0)(2)必過(guò)點(diǎn):(0,b)和(-

      b,0)k(3)走向: k>0,圖象經(jīng)過(guò)第一、三象限;k<0,圖象經(jīng)過(guò)第二、四象限 b>0,圖象經(jīng)過(guò)第一、二象限;b<0,圖象經(jīng)過(guò)第三、四象限

      ?k?0?k?0直線經(jīng)過(guò)第一、二、三象限 ??直線經(jīng)過(guò)第一、三、四象限 ???b?0?b?0?k?0?k?0?直線經(jīng)過(guò)第一、二、四象限 ??直線經(jīng)過(guò)第二、三、四象限 ?b?0b?0??注:y=kx+b中的k,b的作用:

      1、k決定著直線的變化趨勢(shì)

      ① k>0 直線從左向右是向上的 ② k<0 直線從左向右是向下的

      2、b決定著直線與y軸的交點(diǎn)位置

      ① b>0 直線與y軸的正半軸相交 ② b<0 直線與y軸的負(fù)半軸相交

      (4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.(5)傾斜度:|k|越大,圖象越接近于y軸;|k|越小,圖象越接近于x軸.(6)圖像的平移: 當(dāng)b>0時(shí),將直線y=kx的圖象向上平移b個(gè)單位;

      當(dāng)b<0時(shí),將直線y=kx的圖象向下平移b個(gè)單位.3、一次函數(shù)y=kx+b的圖象的畫(huà)法.根據(jù)幾何知識(shí):經(jīng)過(guò)兩點(diǎn)能畫(huà)出一條直線,并且只能畫(huà)出一條直線,即兩點(diǎn)確定一條直線,所以畫(huà)一次函數(shù)的圖象時(shí),只要先描出兩點(diǎn),再連成直線即可.一般情況下:是先選取它與兩坐標(biāo)軸的交點(diǎn):(0,b),.即橫坐標(biāo)或縱坐標(biāo)為0的點(diǎn).注:對(duì)于y=kx+b 而言,圖象共有以下四種情況:

      1、k>0,b>0

      2、k>0,b<0

      3、k<0,b<0

      4、k<0,b>0

      4、直線y=kx+b(k≠0)與坐標(biāo)軸的交點(diǎn).

      (1)直線y=kx與x軸、y軸的交點(diǎn)都是(0,0);

      (2)直線y=kx+b與x軸交點(diǎn)坐標(biāo)為

      5、用待定系數(shù)法確定函數(shù)解析式的一般步驟:

      與 y軸交點(diǎn)坐標(biāo)為(0,b).

      (1)根據(jù)已知條件寫(xiě)出含有待定系數(shù)的函數(shù)關(guān)系式;

      (2)將x、y的幾對(duì)值或圖象上的幾個(gè)點(diǎn)的坐標(biāo)代入上述函數(shù)關(guān)系式中得到以待定系數(shù)為未知數(shù)的方程;

      (3)解方程得出未知系數(shù)的值;

      (4)將求出的待定系數(shù)代回所求的函數(shù)關(guān)系式中得出所求函數(shù)的解析式.6、兩條直線交點(diǎn)坐標(biāo)的求法:

      方法:聯(lián)立方程組求x、y 例題:已知兩直線y=x+6 與y=2x-4交于點(diǎn)P,求P點(diǎn)的坐標(biāo)?

      7、直線y=k1x+b1與y=k2x+b2的位置關(guān)系(1)兩條直線平行:k1=k2且b1?b2(2)兩直線相交:k1?k2(3)兩直線重合:k1=k2且b1=b2平行于軸(或重合)的直線記作

      .特別地,軸記作直線

      8、正比例函數(shù)與一次函數(shù)圖象之間的關(guān)系

      一次函數(shù)y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個(gè)單位長(zhǎng)度而得到(當(dāng)b>0時(shí),向上平移;當(dāng)b<0時(shí),向下平移).9、一元一次方程與一次函數(shù)的關(guān)系

      任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值.從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點(diǎn)的橫坐標(biāo)的值.10、一次函數(shù)與一元一次不等式的關(guān)系

      任何一個(gè)一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b<0(a,b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(?。┯?時(shí),求自變量的取值范圍.11、一次函數(shù)與二元一次方程組

      (1)以二元一次方程ax+by=c的解為坐標(biāo)的點(diǎn)組成的圖象與一次函數(shù)y=?acx?的bb圖象相同.(2)二元一次方程組??a1x?b1y?c1ac的解可以看作是兩個(gè)一次函數(shù)y=?1x?1和

      b1b1?a2x?b2y?c2y=?a2cx?2的圖象交點(diǎn).b2b212、函數(shù)應(yīng)用問(wèn)題(理論應(yīng)用 實(shí)際應(yīng)用)

      (1)利用圖象解題 通過(guò)函數(shù)圖象獲取信息,并利用所獲取的信息解決簡(jiǎn)單的實(shí)際問(wèn)題.(2)經(jīng)營(yíng)決策問(wèn)題 函數(shù)建模的關(guān)鍵是將實(shí)際問(wèn)題數(shù)學(xué)化,從而解決最佳方案,最佳策略等問(wèn)題.建立一次函數(shù)模型解決實(shí)際問(wèn)題,就是要從實(shí)際問(wèn)題中抽象出兩個(gè)變量,再尋求出兩個(gè)變量之間的關(guān)系,構(gòu)建函數(shù)模型,從而利用數(shù)學(xué)知題.(四)反比例函數(shù)

      一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y=k/x(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù)。

      取值范圍: ① k ≠ 0;②在一般的情況下 , 自變量 x 的取值范圍可以是 不等于0的任意實(shí)數(shù);③函數(shù) y 的取值范圍也是任意非零實(shí)數(shù)。反比例函數(shù)的圖像屬于以原點(diǎn)為對(duì)稱中心的中心對(duì)稱的雙曲線

      反比例函數(shù)圖像中每一象限的每一支曲線會(huì)無(wú)限接近X軸Y軸但不會(huì)與坐標(biāo)軸相交(K≠0)。

      反比例函數(shù)的性質(zhì):

      1.當(dāng)k>0時(shí),圖象分別位于第一、三象限,同一個(gè)象限內(nèi),y隨x的增大而減??;當(dāng)k<0時(shí),圖象分別位于二、四象限,同一個(gè)象限內(nèi),y隨x的增大而增大。

      2.k>0時(shí),函數(shù)在x<0和 x>0上同為減函數(shù);k<0時(shí),函數(shù)在x<0和x>0上同為增函數(shù)。

      定義域?yàn)閤≠0;值域?yàn)閥≠0。

      3.因?yàn)樵趛=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數(shù)的圖象不可能與x軸相交,也不可能與y軸相交。

      4.在一個(gè)反比例函數(shù)圖象上任取兩點(diǎn)P,Q,過(guò)點(diǎn)P,Q分別作x軸,y軸的平行線,與坐標(biāo)軸圍成的矩形面積為S1,S2,則S1=S2=|K| 5.反比例函數(shù)的圖象既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,它有兩條對(duì)稱軸

      y=x y=-x(即第一三,二四象限角平分線),對(duì)稱中心是坐標(biāo)原點(diǎn)。

      6.若設(shè)正比例函數(shù)y=mx與反比例函數(shù)y=n/x交于A、B兩點(diǎn)(m、n同號(hào)),那么A B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱。

      7.設(shè)在平面內(nèi)有反比例函數(shù)y=k/x和一次函數(shù)y=mx+n,要使它們有公共交點(diǎn),則n2 +4k·m≥(不小于)0。(k/x=mx+n,即mx^2+nx-k=0)

      8.反比例函數(shù)y=k/x的漸近線:x軸與y軸。

      9.反比例函數(shù)關(guān)于正比例函數(shù)y=x,y=-x軸對(duì)稱,并且關(guān)于原點(diǎn)中心對(duì)稱.(第5點(diǎn)的同義不同表述)

      10.反比例上一點(diǎn)m向x、y軸分別做垂線,交于q、w,則矩形mwqo(o為原點(diǎn))的面積為|k|

      11.k值相等的反比例函數(shù)重合,k值不相等的反比例函數(shù)永不相交。

      12.|k|越大,反比例函數(shù)的圖象離坐標(biāo)軸的距離越遠(yuǎn)。

      (五)二次函數(shù)

      二次函數(shù)是指未知數(shù)的最高次數(shù)為二次的多項(xiàng)式函數(shù)。二次函數(shù)可以表示為f(x)=ax^2+bx+c(a不為0)。其圖像是一條主軸平行于y軸的拋物線。

      一般式(已知圖像上三點(diǎn)或三對(duì)、的值,通常選擇一般式.)

      y=ax^2+bx+c(a≠0,a、b、c為常數(shù)),頂點(diǎn)坐標(biāo)為(-b/2a,(4ac-b^2/4a);

      頂點(diǎn)式(已知圖像的頂點(diǎn)或?qū)ΨQ軸,通常選擇頂點(diǎn)式.)

      y=a(x+m)^2+k(a≠0,a、m、k為常數(shù))或y=a(x-h)^2+k(a≠0,a、h、k為常數(shù)),頂點(diǎn)坐標(biāo)為(-m,k)或(h,k)對(duì)稱軸為x=-m或x=h,有時(shí)題目會(huì)指出讓你用配方法把一般式化成頂點(diǎn)式;

      交點(diǎn)式(已知圖像與軸的交點(diǎn)坐標(biāo)、,通常選用交點(diǎn)式)

      y=a(x-x1)(x-x2)[僅限于與x軸有交點(diǎn)A(x1,0)和 B(x2,0)的拋物線] ;

      拋物線的三要素:開(kāi)口方向、對(duì)稱軸、頂點(diǎn) 頂點(diǎn)

      拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P(-b/2a,4ac-b^2/4a),當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b^2-4ac=0時(shí),P在x軸上。開(kāi)口

      二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。|a|越大,則拋物線的開(kāi)口越小。決定對(duì)稱軸位置的因素

      一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

      當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。(左同右異)

      c的大小決定拋物線當(dāng)①時(shí),∴拋物線,與與

      軸交點(diǎn)的位置.與

      軸有且只有一個(gè)交點(diǎn)(0,): ,與

      軸交于負(fù)半軸.,拋物線經(jīng)過(guò)原點(diǎn);②軸交于正半軸;③直線與拋物線的交點(diǎn)(1)(2)與(,軸與拋物線軸平行的直線).得交點(diǎn)為(0,).與拋物線

      有且只有一個(gè)交點(diǎn)(3)拋物線與軸的交點(diǎn) 二次函數(shù)程根的判別式判定:

      ①有兩個(gè)交點(diǎn)

      拋物線與軸相交;

      拋物線與軸相切; 的圖像與軸的兩個(gè)交點(diǎn)的橫坐標(biāo)、,是對(duì)應(yīng)一元二次方的兩個(gè)實(shí)數(shù)根.拋物線與軸的交點(diǎn)情況可以由對(duì)應(yīng)的一元二次方程的 ②有一個(gè)交點(diǎn)(頂點(diǎn)在軸上)③沒(méi)有交點(diǎn)

      拋物線與軸相離.(4)平行于軸的直線與拋物線的交點(diǎn)同(3)一樣可能有0個(gè)交點(diǎn)、1個(gè)交點(diǎn)、2個(gè)交點(diǎn).當(dāng)有2個(gè)交點(diǎn)時(shí),兩交點(diǎn)的縱坐標(biāo)相等,設(shè)縱坐標(biāo)為,則橫坐標(biāo)是個(gè)實(shí)數(shù)根.(5)一次函數(shù)的圖像與二次函數(shù)的圖像的交的兩點(diǎn),由方程組

      ①方程組有兩組不同的解時(shí)一個(gè)交點(diǎn);③方程組無(wú)解時(shí)的解的數(shù)目來(lái)確定: 與與

      有兩個(gè)交點(diǎn);②方程組只有一組解時(shí)沒(méi)有交點(diǎn).與

      只有(6)拋物線與軸兩交點(diǎn)之間的距離:若拋物線,由于、是方程

      與軸兩交點(diǎn)為的兩個(gè)根,故

      千承培訓(xùn)學(xué)校

      第三篇:初中函數(shù)知識(shí)點(diǎn)總結(jié)

      一次函數(shù)

      1、表達(dá)式:y=kx+b(k≠0)圖象呈一條直線

      b2、與坐標(biāo)軸交點(diǎn):x軸:(?,0)k

      y軸:(0,b)

      3、系數(shù)k和b的意義:

      ① 當(dāng)k>0時(shí),y隨x的增大而增大,函數(shù)圖象成上坡趨勢(shì)且過(guò)一三象限

      當(dāng)k<0時(shí),y隨x的增大而減小,函數(shù)圖象成下坡趨勢(shì)且過(guò)二四象限 ② 當(dāng)b>0時(shí),圖象與y軸交于正半軸,且圖象過(guò)一二象限

      當(dāng)b<0時(shí),圖象與y軸交于負(fù)半軸,且圖象過(guò)三四象限

      4、正比列函數(shù):當(dāng)一次函數(shù)b=0時(shí),該函數(shù)為正比列函數(shù),即表達(dá)式為: y=kx(k≠0),該函數(shù)圖象恒過(guò)原點(diǎn)

      反比列函數(shù)

      k(k?0)x2、圖象:雙曲線且與坐標(biāo)軸沒(méi)有交點(diǎn)

      3、系數(shù)k的意義:

      ① k>0時(shí),圖象兩支在一三象限內(nèi),且在各個(gè)象限內(nèi)y隨x的增大而減小,圖象呈下坡趨勢(shì)

      ② k<0時(shí),圖象兩支在二四象限內(nèi),且在各個(gè)象限內(nèi)y隨x的增大而增大,圖象呈上坡趨勢(shì)

      4、圖象特點(diǎn):在圖像上任意一點(diǎn)向坐標(biāo)軸引垂線與坐標(biāo)軸所圍成的矩形面積都

      1、表達(dá)式:y?為k

      二次函數(shù)

      第四篇:高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

      高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

      (1)高中函數(shù)公式的變量:因變量,自變量。

      在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

      (2)一次函數(shù):①若兩個(gè)變量,間的關(guān)系式可以表示成(為常數(shù),不等于0)的形式,則稱 是的一次函數(shù)。②當(dāng)=0時(shí),稱是的正比例函數(shù)。

      (3)高中函數(shù)的一次函數(shù)的圖象及性質(zhì)

      ①把一個(gè)函數(shù)的自變量與對(duì)應(yīng)的因變量的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。

      ②正比例函數(shù)=的圖象是經(jīng)過(guò)原點(diǎn)的一條直線。

      ③在一次函數(shù)中,當(dāng)0,O,則經(jīng)2、3、4象限;當(dāng)0,0時(shí),則經(jīng)1、2、4象限;當(dāng)0,0時(shí),則經(jīng)1、3、4象限;當(dāng)0,0時(shí),則經(jīng)1、2、3象限。

      ④當(dāng)0時(shí),的值隨值的增大而增大,當(dāng)0時(shí),的值隨值的增大而減少。

      (4)高中函數(shù)的二次函數(shù):

      ①一般式:(),對(duì)稱軸是

      頂點(diǎn)是;

      ②頂點(diǎn)式:(),對(duì)稱軸是頂點(diǎn)是;

      ③交點(diǎn)式:(),其中(),()是拋物線與x軸的交點(diǎn)

      (5)高中函數(shù)的二次函數(shù)的性質(zhì)

      ①函數(shù)的圖象關(guān)于直線對(duì)稱。

      隨時(shí),在對(duì)稱軸()左側(cè),值隨值的增大而減少;在對(duì)稱軸()右側(cè);的值值的增大而增大。當(dāng)時(shí),取得最小值時(shí),在對(duì)稱軸()左側(cè),值隨值的增大而增大;在對(duì)稱軸()右側(cè);的值值的增大而減少。當(dāng)時(shí),取得最大值高中函數(shù)的圖形的對(duì)稱

      (1)軸對(duì)稱圖形:①如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。②軸對(duì)稱圖形上關(guān)于對(duì)稱軸對(duì)稱的兩點(diǎn)確定的線段被對(duì)稱軸垂直平分。

      (2)中心對(duì)稱圖形:①在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做他的對(duì)稱中心。②中心對(duì)稱圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱中心平分。

      2012高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):函數(shù)公式大全

      9高中函數(shù)的圖形的對(duì)稱

      (1)軸對(duì)稱圖形:①如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。②軸對(duì)稱圖形上關(guān)于對(duì)稱軸對(duì)稱的兩點(diǎn)確定的線段被對(duì)稱軸垂直平分。

      (2)中心對(duì)稱圖形:①在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做他的對(duì)稱中心。②中心對(duì)稱圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱中心平分

      第五篇:高一數(shù)學(xué)知識(shí)點(diǎn)歸納:指數(shù)函數(shù)、函數(shù)奇偶性

      指數(shù)函數(shù)的一般形式為,從上面我們對(duì)于冪函數(shù)的討論就可以知道,要想使得x能夠取整個(gè)實(shí)數(shù)集合為定義域,則只有使得

      如圖所示為a的不同大小影響函數(shù)圖形的情況。

      可以看到:

      (1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

      (2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

      (3)函數(shù)圖形都是下凹的。

      (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

      (5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無(wú)窮大的過(guò)程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過(guò)渡位置。

      (6)函數(shù)總是在某一個(gè)方向上無(wú)限趨向于X軸,永不相交。

      (7)函數(shù)總是通過(guò)(0,1)這點(diǎn)。

      (8)顯然指數(shù)函數(shù)無(wú)界。

      奇偶性

      注圖:(1)為奇函數(shù)(2)為偶函數(shù)

      1.定義

      一般地,對(duì)于函數(shù)f(x)

      (1)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

      (2)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

      (3)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

      (4)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

      說(shuō)明:①奇、偶性是函數(shù)的整體性質(zhì),對(duì)整個(gè)定義域而言

      ②奇、偶函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱,如果一個(gè)函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則這個(gè)函數(shù)一定不是奇(或偶)函數(shù)。

      (分析:判斷函數(shù)的奇偶性,首先是檢驗(yàn)其定義域是否關(guān)于原點(diǎn)對(duì)稱,然后再嚴(yán)格按照奇、偶性的定義經(jīng)過(guò)化簡(jiǎn)、整理、再與f(x)比較得出結(jié)論)

      ③判斷或證明函數(shù)是否具有奇偶性的根據(jù)是定義

      2.奇偶函數(shù)圖像的特征:

      定理奇函數(shù)的圖像關(guān)于原點(diǎn)成中心對(duì)稱圖表,偶函數(shù)的圖象關(guān)于y軸或軸對(duì)稱圖形。

      f(x)為奇函數(shù)《==》f(x)的圖像關(guān)于原點(diǎn)對(duì)稱

      點(diǎn)(x,y)→(-x,-y)

      奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對(duì)稱區(qū)間上也是單調(diào)遞增。

      偶函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對(duì)稱區(qū)間上單調(diào)遞減。

      3.奇偶函數(shù)運(yùn)算

      (1).兩個(gè)偶函數(shù)相加所得的和為偶函數(shù).(2).兩個(gè)奇函數(shù)相加所得的和為奇函數(shù).(3).一個(gè)偶函數(shù)與一個(gè)奇函數(shù)相加所得的和為非奇函數(shù)與非偶函數(shù).(4).兩個(gè)偶函數(shù)相乘所得的積為偶函數(shù).(5).兩個(gè)奇函數(shù)相乘所得的積為偶函數(shù).(6).一個(gè)偶函數(shù)與一個(gè)奇函數(shù)相乘所得的積為奇函數(shù).

      下載高一函數(shù)知識(shí)點(diǎn)總結(jié)范文word格式文檔
      下載高一函數(shù)知識(shí)點(diǎn)總結(jié)范文.doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        C語(yǔ)言函數(shù)知識(shí)點(diǎn)總結(jié)

        函數(shù) 本章重點(diǎn):本章難點(diǎn)://函數(shù)相關(guān)內(nèi)容: *語(yǔ)法:包括定義,聲明,調(diào)用, *語(yǔ)義 語(yǔ)句包括:表達(dá)式語(yǔ)句,空語(yǔ)句,控制語(yǔ)句,復(fù)合語(yǔ)句,函數(shù)調(diào)形參與實(shí)參的意義、作用與區(qū)別; 參數(shù)的兩種傳遞方式;......

        初中2次函數(shù)知識(shí)點(diǎn)總結(jié)

        導(dǎo)語(yǔ):對(duì)初中2次函數(shù)知識(shí)點(diǎn),同學(xué)們有必要進(jìn)行總結(jié)。以下是初中2次函數(shù)知識(shí)點(diǎn)總結(jié),供大家閱讀。I、定義與定義表達(dá)式一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c(a,b,c為常......

        函數(shù)的應(yīng)用知識(shí)點(diǎn)總結(jié)

        函數(shù)的應(yīng)用類(lèi)型問(wèn)題一直是期末數(shù)學(xué)重要題型之一,那一起來(lái)看看函數(shù)的應(yīng)用的知識(shí)點(diǎn)吧,下面是小編為大家收集整理的函數(shù)的應(yīng)用知識(shí)點(diǎn)總結(jié),歡迎閱讀。函數(shù)的應(yīng)用知識(shí)點(diǎn)總結(jié):函數(shù)圖象......

        高一歷史知識(shí)點(diǎn)總結(jié)

        高一歷史知識(shí)點(diǎn)總結(jié) 必修一 必修一 第一單元古代中國(guó)的政治制度一、分封制 目的:鞏固國(guó)家政權(quán) 內(nèi)容:①分封對(duì)象——王族、功臣、先代的貴族,②受封者義務(wù)——服從周王的命令、......

        高一英語(yǔ)知識(shí)點(diǎn)總結(jié)

        必修I--unit 1 I---1 Friendship 一、知識(shí)點(diǎn) 1. be good to 對(duì)??友好 be good for 對(duì)??有益;be bad to?/be bad for? I will be good to other people.我會(huì)善良的對(duì)待......

        高一生物知識(shí)點(diǎn)總結(jié)

        高一生物知識(shí)點(diǎn)總結(jié) 第一章、生命的物質(zhì)基礎(chǔ)第一節(jié)、組成生物體的化學(xué)元素 1、微量元素:生物體必需的,含量很少的元素。如:Fe(鐵)、Mn(門(mén))、B(碰)、Zn(醒)、Cu(銅)、Mo(母) ,巧記:鐵門(mén)碰醒銅......

        高一政治知識(shí)點(diǎn)總結(jié)

        第一課 神奇的貨幣1、 商品:用于交換的勞動(dòng)產(chǎn)品。商品的基本屬性:價(jià)值和使用價(jià)值。2、 貨幣的本質(zhì)是一般等價(jià)物3、 貨幣的基本職能:價(jià)值尺度、流通手段。貨幣在執(zhí)行價(jià)值尺度職......

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 一 、集合與簡(jiǎn)易邏輯 集合具有四個(gè)性質(zhì): 廣泛性:集合的元素什么都可以 確定性:集合中的元素必須是確定的,比如說(shuō)是好學(xué)生就不具有這種性質(zhì),因?yàn)樗母拍钍悄?.....