第一篇:高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
一、集合與簡(jiǎn)易邏輯
集合具有四個(gè)性質(zhì):
廣泛性:集合的元素什么都可以
確定性:集合中的元素必須是確定的,比如說(shuō)是好學(xué)生就不具有這種性質(zhì),因?yàn)樗母拍钍悄:磺宓幕ギ愋裕杭现械脑乇仨毷腔ゲ幌嗟鹊模粋€(gè)元素不能重復(fù)出現(xiàn)
無(wú)序性:集合中的元素與順序無(wú)關(guān)
二、函數(shù)這是個(gè)重點(diǎn),但是說(shuō)起來(lái)也不好說(shuō),要作專題訓(xùn)練,比如說(shuō)二次函數(shù),指數(shù)對(duì)數(shù)函數(shù)等等做這一類型題的時(shí)候,要掌握幾個(gè)函數(shù)思想如 構(gòu)造函數(shù) 函數(shù)與方程結(jié)合 對(duì)稱思想,換元等等。
三、數(shù)列這也是個(gè)比較重要的題型,做體的時(shí)候要有整體思想,整體代換,等比等差要分開(kāi)來(lái),也要注意聯(lián)系,這樣才能做好,注意觀察數(shù)列的形式判斷是什么數(shù)列,還要掌握求數(shù)列通向公式的幾種方法,和求和公式,求和方法,比如裂項(xiàng)相消,錯(cuò)位相減,公式法,分組求和法等等。
四、三角函數(shù)三角函數(shù)不是考試題型,只是個(gè)應(yīng)用的知識(shí)點(diǎn),所以只要記熟特殊角的三角函數(shù)值和一些重要的定理就行五平面向量這是個(gè)比較抽象的把幾何與代數(shù)結(jié)合起來(lái)的重難點(diǎn),結(jié)體的時(shí)候要有技巧,主要就是把基本知識(shí)掌握到位,注意拓展,另外要多做題,見(jiàn)的題型多,結(jié)體的時(shí)候就有思路,能夠把問(wèn)題簡(jiǎn)單化,有利于提高做題。
效率:高一的數(shù)學(xué)只是入門(mén),只要把基礎(chǔ)的掌握了,做題就沒(méi)什么大問(wèn)題了,數(shù)學(xué)就可以上130。
轉(zhuǎn)自百度文庫(kù)。。
第二篇:數(shù)學(xué)高一知識(shí)點(diǎn)總結(jié)
有質(zhì)量的知識(shí)才是名校的真實(shí)力,每一所這樣的大學(xué),至少都有十種左右高質(zhì)知識(shí)儲(chǔ)備在教授門(mén)手中,儲(chǔ)備在這些學(xué)校與世界的多重聯(lián)系中,正是這高質(zhì)量知識(shí)的儲(chǔ)備。下面小編給大家分享一些數(shù)學(xué)高一知識(shí)點(diǎn),希望能夠幫助大家,歡迎閱讀!
數(shù)學(xué)高一知識(shí)點(diǎn)1
統(tǒng)計(jì)
2.1.1簡(jiǎn)單隨機(jī)抽樣
1.總體和樣本
在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體.把每個(gè)研究對(duì)象叫做個(gè)體.把總體中個(gè)體的總數(shù)叫做總體容量.為了研究總體 的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量.2.簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。
就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
3.簡(jiǎn)單隨機(jī)抽樣常用的方法:
(1)抽簽法;⑵隨機(jī)數(shù)表法;⑶計(jì)算機(jī)模擬法;⑷使用統(tǒng)計(jì)軟件直接抽取。
在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
4.抽簽法:
(1)給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);
(2)準(zhǔn)備抽簽的工具,實(shí)施抽簽
(3)對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查
例:請(qǐng)調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動(dòng)情況。
5.隨機(jī)數(shù)表法:
例:利用隨機(jī)數(shù)表在所在的班級(jí)中抽取10位同學(xué)參加某項(xiàng)活動(dòng)。
2.1.2系統(tǒng)抽樣
1.系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):
把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個(gè)樣本采用簡(jiǎn)單隨機(jī)抽樣的辦法抽取。
K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
前提條件:總體中個(gè)體的排列對(duì)于研究的變量來(lái)說(shuō),應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開(kāi)始抽樣,對(duì)比幾次樣本的特點(diǎn)。如果有明顯差別,說(shuō)明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
2.系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘?duì)抽樣框的要求較低,實(shí)施也比較簡(jiǎn)單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊(duì)的話,使用系統(tǒng)抽樣可以大大提高估計(jì)精度。
2.1.3分層抽樣
1.分層抽樣(類型抽樣):
先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個(gè)類型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構(gòu)成總體的樣本。
兩種方法:
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
分層標(biāo)準(zhǔn):
(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。
(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
3.分層的比例問(wèn)題:
(1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來(lái)抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對(duì)不同層次的子總體進(jìn)行專門(mén)研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對(duì)各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。
2.2.2用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征
1、本均值:
2、樣本標(biāo)準(zhǔn)差:
3.用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。
雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個(gè)估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時(shí),它們確實(shí)反映了總體的信息。
4.(1)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)共同的常數(shù),標(biāo)準(zhǔn)差不變
(2)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)乘以一個(gè)共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉?lái)的k倍
(3)一組數(shù)據(jù)中的最大值和最小值對(duì)標(biāo)準(zhǔn)差的影響,區(qū)間 的應(yīng)用;
“去掉一個(gè)最高分,去掉一個(gè)最低分”中的科學(xué)道理
2.3.2兩個(gè)變量的線性相關(guān)
1、概念:
(1)回歸直線方程
(2)回歸系數(shù)
2.最小二乘法
3.直線回歸方程的應(yīng)用
(1)描述兩變量之間的依存關(guān)系;利用直線回歸方程即可定量描述兩個(gè)變量間依存的數(shù)量關(guān)系
(2)利用回歸方程進(jìn)行預(yù)測(cè);把預(yù)報(bào)因子(即自變量x)代入回歸方程對(duì)預(yù)報(bào)量(即因變量Y)進(jìn)行估計(jì),即可得到個(gè)體Y值的容許區(qū)間。
(3)利用回歸方程進(jìn)行統(tǒng)計(jì)控制規(guī)定Y值的變化,通過(guò)控制x的范圍來(lái)實(shí)現(xiàn)統(tǒng)計(jì)控制的目標(biāo)。如已經(jīng)得到了空氣中NO2的濃度和汽車(chē)流量間的回歸方程,即可通過(guò)控制汽車(chē)流量來(lái)控制空氣中NO2的濃度。
4.應(yīng)用直線回歸的注意事項(xiàng)
(1)做回歸分析要有實(shí)際意義;
(2)回歸分析前,最好先作出散點(diǎn)圖;
(3)回歸直線不要外延。
數(shù)學(xué)高一知識(shí)點(diǎn)2
概 率
3.1.1 —3.1.2隨機(jī)事件的概率及概率的意義
1、基本概念:
(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;
(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率
3.1.3概率的基本性質(zhì)
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對(duì)立事件;
(4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)= P(A)+ P(B);若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+ P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質(zhì):
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)= P(A)+ P(B);
3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。
3.2.1 —3.2.2古典概型及隨機(jī)數(shù)的產(chǎn)生
1、(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事件數(shù);
②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=
3.3.1—3.3.2幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生
1、基本概念:
(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:
P(A)=;
(3)幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等。
數(shù)學(xué)高一知識(shí)點(diǎn)3
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:XKb1.Com
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N-或N+
整數(shù)集:Z
有理數(shù)集:Q
實(shí)數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合{x?R|x-3>2},{x|x-3>2}
3)語(yǔ)言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個(gè)元素的集合(2)無(wú)限集含有無(wú)限個(gè)元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能
(1)A是B的一部分,;
(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)實(shí)
例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:
①任何一個(gè)集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同時(shí)BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個(gè)數(shù):
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集
三、集合的運(yùn)算
運(yùn)算類型交集并集補(bǔ)集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).數(shù)學(xué)高一知識(shí)點(diǎn)4
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈-.當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand).當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.2、指數(shù)函數(shù)的圖象和性質(zhì)
數(shù)學(xué)高一知識(shí)點(diǎn)51、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).3、函數(shù)零點(diǎn)的求法:
求函數(shù)的零點(diǎn):
(1)(代數(shù)法)求方程的實(shí)數(shù)根;
(2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).4、二次函數(shù)的零點(diǎn):
二次函數(shù).1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).數(shù)學(xué)高一知識(shí)點(diǎn)總結(jié)
第三篇:高一數(shù)學(xué)期末知識(shí)點(diǎn)總結(jié)
高一新生要根據(jù)自己的條件,以及高中階段學(xué)科知識(shí)交叉多、綜合性強(qiáng),以及考查的知識(shí)和思維觸點(diǎn)廣的特點(diǎn),找尋一套行之有效的學(xué)習(xí)方法。下面給大家?guī)?lái)一些關(guān)于高一數(shù)學(xué)期末知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。
高一數(shù)學(xué)期末知識(shí)點(diǎn)總結(jié)1
棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐。
棱錐的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個(gè)特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
高一數(shù)學(xué)期末知識(shí)點(diǎn)總結(jié)2
定義域
(高中函數(shù)定義)設(shè)A,B是兩個(gè)非空的數(shù)集,如果按某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A--B為集合A到集合B的一個(gè)函數(shù),記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數(shù)的定義域;
值域
名稱定義
函數(shù)中,應(yīng)變量的取值范圍叫做這個(gè)函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量所有值的集合常用的求值域的方法
(1)化歸法;(2)圖象法(數(shù)形結(jié)合);(3)函數(shù)單調(diào)性法;(4)配方法;(5)換元法;(6)反函數(shù)法(逆求法);(7)判別式法;(8)復(fù)合函數(shù)法;(9)三角代換法;(10)基本不等式法等
關(guān)于函數(shù)值域誤區(qū)
定義域、對(duì)應(yīng)法則、值域是函數(shù)構(gòu)造的三個(gè)基本“元件”。平時(shí)數(shù)學(xué)中,實(shí)行“定義域優(yōu)先”的原則,無(wú)可置疑。然而事物均具有二重性,在強(qiáng)化定義域問(wèn)題的同時(shí),往往就削弱或談化了,對(duì)值域問(wèn)題的探究,造成了一手“硬”一手“軟”,使學(xué)生對(duì)函數(shù)的掌握時(shí)好時(shí)壞,事實(shí)上,定義域與值域二者的位置是相當(dāng)?shù)?,絕不能厚此薄皮,何況它們二者隨時(shí)處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無(wú)限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運(yùn)算性質(zhì)有時(shí)并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來(lái)考慮函數(shù)的取值情況。才能獲得正確答案,從這個(gè)角度來(lái)講,求值域的問(wèn)題有時(shí)比求定義域問(wèn)題難,實(shí)踐證明,如果加強(qiáng)了對(duì)值域求法的研究和討論,有利于對(duì)定義域內(nèi)函的理解,從而深化對(duì)函數(shù)本質(zhì)的認(rèn)識(shí)。
“范圍”與“值域”相同嗎?
“范圍”與“值域”是我們?cè)趯W(xué)習(xí)中經(jīng)常遇到的兩個(gè)概念,許多同學(xué)常常將它們混為一談,實(shí)際上這是兩個(gè)不同的概念?!爸涤颉笔撬泻瘮?shù)值的集合(即集合中每一個(gè)元素都是這個(gè)函數(shù)的取值),而“范圍”則只是滿足某個(gè)條件的一些值所在的集合(即集合中的元素不一定都滿足這個(gè)條件)。也就是說(shuō):“值域”是一個(gè)“范圍”,而“范圍”卻不一定是“值域”。
高一數(shù)學(xué)期末知識(shí)點(diǎn)總結(jié)3
集合集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門(mén)研究集合的理論叫做集合論??低?Cantor,G.F.P.,1845年—1918年,德國(guó)數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。
集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過(guò)直觀、公理的方法來(lái)下“定義”。集合集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對(duì)象稱為這一集合的元素(或簡(jiǎn)稱為元)。
集合與集合之間的關(guān)系
某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無(wú)限個(gè)元素叫無(wú)限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(說(shuō)明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱作是B的子集,寫(xiě)作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫(xiě)作A?B。中學(xué)教材課本里將?符號(hào)下加了一個(gè)≠符號(hào),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)
高一數(shù)學(xué)期末知識(shí)點(diǎn)總結(jié)4
集合具有某種特定性質(zhì)的事物的總體。這里的事物可以是人,物品,也可以是數(shù)學(xué)元素。
例如:
1、分散的人或事物聚集到一起;使聚集:緊急~。
2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。
3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門(mén)研究集合的理論叫做集合論。康托(Cantor,G.F.P.,1845年1918年,德國(guó)數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。
集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過(guò)直觀、公理的方法來(lái)下定義。
集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對(duì)象稱為這一集合的元素(或簡(jiǎn)稱為元)。
集合與集合之間的關(guān)系
某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無(wú)限個(gè)元素叫無(wú)限集,空集是不含任何元素的集,記做??占侨魏渭系淖蛹侨魏畏强占恼孀蛹?。任何集合是它本身的子集。子集,真子集都具有傳遞性。
(說(shuō)明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱作是B的子集,寫(xiě)作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫(xiě)作AB。中學(xué)教材課本里將符號(hào)下加了一個(gè)符號(hào),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)
高一數(shù)學(xué)期末知識(shí)點(diǎn)總結(jié)
第四篇:高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納
高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納
總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),它可以提升我們發(fā)現(xiàn)問(wèn)題的能力,不妨讓我們認(rèn)真地完成總結(jié)吧。總結(jié)怎么寫(xiě)才不會(huì)流于形式呢?以下是小編幫大家整理的高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納1圓錐曲線性質(zhì):
1.橢圓:到兩個(gè)定點(diǎn)的距離之和等于定長(zhǎng)(定長(zhǎng)大于兩個(gè)定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡叫做橢圓.2.雙曲線:到兩個(gè)定點(diǎn)的距離的差的絕對(duì)值為定值(定值小于兩個(gè)定點(diǎn)的距離)的動(dòng)點(diǎn)軌跡叫做雙曲線.即.3.圓錐曲線的統(tǒng)一定義:到定點(diǎn)的距離與到定直線的距離的比e是常數(shù)的點(diǎn)的軌跡叫做圓錐曲線.當(dāng)01時(shí)為雙曲線.
1.橢圓:+ =1(a>b>0)或+ =1(a>b>0)(其中,a2=b2+c2)
2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)
3.拋物線:y2=±2px(p>0),x2=±2py(p>0)
1.橢圓:+ =1(a>b>0)
(1)范圍:|x|≤a,|y|≤b(2)頂點(diǎn):(±a,0),(0,±b)(3)焦點(diǎn):(±c,0)(4)離心率:e= ∈(0,1)(5)準(zhǔn)線:x=±
2.雙曲線:-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點(diǎn):(±a,0)(3)焦點(diǎn):(±c,0)(4)離心率:e= ∈(1,+∞)(5)準(zhǔn)線:x=±(6)漸近線:y=± x
3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點(diǎn):(0,0)(3)焦點(diǎn):(,0)(4)離心率:e=1(5)準(zhǔn)線:x=-
高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納2集合與元素
一個(gè)東西是集合還是元素并不是絕對(duì)的,很多情況下是相對(duì)的,集合是由元素組成的集合,元素是組成集合的元素。
例如:你所在的班級(jí)是一個(gè)集合,是由幾十個(gè)和你同齡的同學(xué)組成的集合,你相對(duì)于這個(gè)班級(jí)集合來(lái)說(shuō),是它的一個(gè)元素;
而整個(gè)學(xué)校又是由許許多多個(gè)班級(jí)組成的集合,你所在的班級(jí)只是其中的一分子,是一個(gè)元素。
班級(jí)相對(duì)于你是集合,相對(duì)于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見(jiàn),是集合還是元素,并不是絕對(duì)的。
.解集合問(wèn)題的關(guān)鍵
解集合問(wèn)題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問(wèn)題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來(lái)表示,或用韋恩圖來(lái)表示抽象的集合,或用圖形來(lái)表示集合;比如用數(shù)軸來(lái)表示集合,或是集合的元素為有序?qū)崝?shù)對(duì)時(shí),可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。
高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納3一:函數(shù)及其表示
知識(shí)點(diǎn)詳解文檔包含函數(shù)的概念、映射、函數(shù)關(guān)系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等
1.函數(shù)與映射的區(qū)別:
2.求函數(shù)定義域
常見(jiàn)的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:
①當(dāng)f(x)為整式時(shí),函數(shù)的定義域?yàn)镽.②當(dāng)f(x)為分式時(shí),函數(shù)的定義域?yàn)槭狗质椒帜覆粸榱愕膶?shí)數(shù)集合。
③當(dāng)f(x)為偶次根式時(shí),函數(shù)的定義域是使被開(kāi)方數(shù)不小于0的實(shí)數(shù)集合。
④當(dāng)f(x)為對(duì)數(shù)式時(shí),函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實(shí)數(shù)集合。
⑤如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合,即求各部分有意義的實(shí)數(shù)集合的交集。
⑥復(fù)合函數(shù)的定義域是復(fù)合的各基本的函數(shù)定義域的交集。
⑦對(duì)于由實(shí)際問(wèn)題的背景確定的函數(shù),其定義域除上述外,還要受實(shí)際問(wèn)題的制約。
3.求函數(shù)值域
(1)、觀察法:通過(guò)對(duì)函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;
(2)、配方法;如果一個(gè)函數(shù)是二次函數(shù)或者經(jīng)過(guò)換元可以寫(xiě)成二次函數(shù)的形式,那么將這個(gè)函數(shù)的右邊配方,通過(guò)自變量的范圍可以求出該函數(shù)的值域;
(3)、判別式法:
(4)、數(shù)形結(jié)合法;通過(guò)觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域;
(5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域;
(6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來(lái)求出值域;
(7)、利用基本不等式:對(duì)于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;
(8)、最值法:對(duì)于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;
(9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。
高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納4函數(shù)的概念
函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A---B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.(1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;
(2)與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.函數(shù)的三要素:定義域、值域、對(duì)應(yīng)法則
函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域
(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點(diǎn)等等。
(3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。
4、函數(shù)圖象知識(shí)歸納
(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.(2)畫(huà)法
A、描點(diǎn)法:B、圖象變換法:平移變換;伸縮變換;對(duì)稱變換,即平移。
(3)函數(shù)圖像平移變換的特點(diǎn):
1)加左減右——————只對(duì)x
2)上減下加——————只對(duì)y
3)函數(shù)y=f(x)關(guān)于X軸對(duì)稱得函數(shù)y=-f(x)
4)函數(shù)y=f(x)關(guān)于Y軸對(duì)稱得函數(shù)y=f(-x)
5)函數(shù)y=f(x)關(guān)于原點(diǎn)對(duì)稱得函數(shù)y=-f(-x)
6)函數(shù)y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動(dòng)得
函數(shù)y=|f(x)|
7)函數(shù)y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對(duì)稱的圖像得函數(shù)f(|x|)
高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納5【(一)、映射、函數(shù)、反函數(shù)】
1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射.2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):
(1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù).(2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問(wèn)題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:
(1)確定原函數(shù)的值域,也就是反函數(shù)的.定義域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f-1(x),并注明定義域.注意①:對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.②熟悉的應(yīng)用,求f-1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過(guò)程,從而簡(jiǎn)化運(yùn)算.【(二)、函數(shù)的解析式與定義域】
1、函數(shù)及其定義域是不可分割的整體,沒(méi)有定義域的函數(shù)是不存在的,因此,要正確地寫(xiě)出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:
(1)有時(shí)一個(gè)函數(shù)來(lái)自于一個(gè)實(shí)際問(wèn)題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;
(2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:
①分式的分母不得為零;
②偶次方根的被開(kāi)方數(shù)不小于零;
③對(duì)數(shù)函數(shù)的真數(shù)必須大于零;
④指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;
⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集).(3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可.已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域.2、求函數(shù)的解析式一般有四種情況
(1)根據(jù)某實(shí)際問(wèn)題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式.(2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.(3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.(4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式.【(三)、函數(shù)的值域與最值】
1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
(1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.(2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.(4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問(wèn)題可考慮用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過(guò)應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.(7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系
求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同,因而答題的方式就有所相異.如函數(shù)的值域是(0,16],值是16,無(wú)最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無(wú)值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2.可見(jiàn)定義域?qū)瘮?shù)的值域或最值的影響.3、函數(shù)的最值在實(shí)際問(wèn)題中的應(yīng)用
函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問(wèn)題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)”或“面積(體積)(最小)”等諸多現(xiàn)實(shí)問(wèn)題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的制約,以便能正確求得最值.【(四)、函數(shù)的奇偶性】
1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式:
注意如下結(jié)論的運(yùn)用:
(1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);
(2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù);
(4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。
3、有關(guān)奇偶性的幾個(gè)性質(zhì)及結(jié)論
(1)一個(gè)函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)對(duì)稱;一個(gè)函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對(duì)稱.(2)如要函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).(3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.(4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對(duì)稱區(qū)間上的單調(diào)性是相同(反)的。
(5)若f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).(6)奇偶性的推廣
函數(shù)y=f(x)對(duì)定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線x=a對(duì)稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對(duì)定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對(duì)稱圖形,即y=f(a+x)為奇函數(shù)。
【(五)、函數(shù)的單調(diào)性】
1、單調(diào)函數(shù)
對(duì)于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點(diǎn)x1,x2,當(dāng)x1>x2時(shí),都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調(diào)遞增(或遞減);增函數(shù)或減函數(shù)統(tǒng)稱為單調(diào)函數(shù).對(duì)于函數(shù)單調(diào)性的定義的理解,要注意以下三點(diǎn):
(1)單調(diào)性是與“區(qū)間”緊密相關(guān)的概念.一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性.(2)單調(diào)性是函數(shù)在某一區(qū)間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替.(3)單調(diào)區(qū)間是定義域的子集,討論單調(diào)性必須在定義域范圍內(nèi).(4)注意定義的兩種等價(jià)形式:
設(shè)x1、x2∈[a,b],那么:
①在[a、b]上是增函數(shù);
在[a、b]上是減函數(shù).②在[a、b]上是增函數(shù).在[a、b]上是減函數(shù).需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(diǎn)(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零.(5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說(shuō)明單調(diào)性使得自變量間的不等關(guān)系和函數(shù)值之間的不等關(guān)系可以“正逆互推”.5、復(fù)合函數(shù)y=f[g(x)]的單調(diào)性
若u=g(x)在區(qū)間[a,b]上的單調(diào)性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調(diào)性相同,則復(fù)合函數(shù)y=f[g(x)]在[a,b]上單調(diào)遞增;否則,單調(diào)遞減.簡(jiǎn)稱“同增、異減”.在研究函數(shù)的單調(diào)性時(shí),常需要先將函數(shù)化簡(jiǎn),轉(zhuǎn)化為討論一些熟知函數(shù)的單調(diào)性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,將大大縮短我們的判斷過(guò)程.6、證明函數(shù)的單調(diào)性的方法
(1)依定義進(jìn)行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據(jù)定義,得出結(jié)論.(2)設(shè)函數(shù)y=f(x)在某區(qū)間內(nèi)可導(dǎo).如果f′(x)>0,則f(x)為增函數(shù);如果f′(x)<0,則f(x)為減函數(shù).【(六)、函數(shù)的圖象】
函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應(yīng)加強(qiáng)對(duì)作圖、識(shí)圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結(jié)合的思想方法解決問(wèn)題的意識(shí).求作圖象的函數(shù)表達(dá)式
與f(x)的關(guān)系
由f(x)的圖象需經(jīng)過(guò)的變換
y=f(x)±b(b>0)
沿y軸向平移b個(gè)單位
y=f(x±a)(a>0)
沿x軸向平移a個(gè)單位
y=-f(x)
作關(guān)于x軸的對(duì)稱圖形
y=f(|x|)
右不動(dòng)、左右關(guān)于y軸對(duì)稱
y=|f(x)|
上不動(dòng)、下沿x軸翻折
y=f-1(x)
作關(guān)于直線y=x的對(duì)稱圖形
y=f(ax)(a>0)
橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變
y=af(x)
縱坐標(biāo)伸長(zhǎng)到原來(lái)的|a|倍,橫坐標(biāo)不變
y=f(-x)
作關(guān)于y軸對(duì)稱的圖形
【例】定義在實(shí)數(shù)集上的函數(shù)f(x),對(duì)任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.①求證:f(0)=1;
②求證:y=f(x)是偶函數(shù);
③若存在常數(shù)c,使求證對(duì)任意x∈R,有f(x+c)=-f(x)成立;試問(wèn)函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個(gè)周期;如果不是,請(qǐng)說(shuō)明理由.思路分析:我們把沒(méi)有給出解析式的函數(shù)稱之為抽象函數(shù),解決這類問(wèn)題一般采用賦值法.解答:①令x=y=0,則有2f(0)=2f2(0),因?yàn)閒(0)≠0,所以f(0)=1.②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說(shuō)明f(x)為偶函數(shù).③分別用(c>0)替換x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=-f(x).兩邊應(yīng)用中的結(jié)論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),所以f(x)是周期函數(shù),2c就是它的一個(gè)周期.
高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納6定義:
從平面解析幾何的角度來(lái)看,平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形。求兩條直線的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當(dāng)這個(gè)聯(lián)立方程組無(wú)解時(shí),兩直線平行;有無(wú)窮多解時(shí),兩直線重合;只有一解時(shí),兩直線相交于一點(diǎn)。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來(lái)表示平面上直線(對(duì)于X軸)的傾斜程度??梢酝ㄟ^(guò)斜率來(lái)判斷兩條直線是否互相平行或互相垂直,也可計(jì)算它們的交角。直線與某個(gè)坐標(biāo)軸的交點(diǎn)在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個(gè)截距完全確定。在空間,兩個(gè)平面相交時(shí),交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個(gè)表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
表達(dá)式:
斜截式:y=kx+b
兩點(diǎn)式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)
點(diǎn)斜式:y-y1=k(x-x1)
截距式:(x/a)+(y/b)=0
補(bǔ)充一下:最基本的標(biāo)準(zhǔn)方程不要忘了,AX+BY+C=0,因?yàn)?上面的四種直線方程不包含斜率K不存在的情況,如x=3,這條直線就不能用上面的四種形式表示,解題過(guò)程中尤其要注意,K不存在的情況。
高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納7冪函數(shù)定義:
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞?,指?shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì):
對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:
如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。
在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.可以看到:
(1)所有的圖形都通過(guò)(1,1)這點(diǎn)。
(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。
(6)顯然冪函數(shù)。
第五篇:高一數(shù)學(xué)(必修一)知識(shí)點(diǎn)總結(jié)
高一數(shù)學(xué)必修1各章知識(shí)點(diǎn)總結(jié)
(拂曉搜集整理)
第一章
集合與函數(shù)概念
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)
元素的確定性如:世界上最高的山
(2)
元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)
元素的無(wú)序性:
如:{a,b,c}和{a,c,b}是表示同一個(gè)集合3.集合的表示:{
…
}
如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)
用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)
集合的表示方法:列舉法與描述法。
u
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)
記作:N
正整數(shù)集
N*或
N+
整數(shù)集Z
有理數(shù)集Q
實(shí)數(shù)集R
1)
列舉法:{a,b,c……}
2)
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。{x?R|
x-3>2},{x|
x-3>2}
3)
語(yǔ)言描述法:例:{不是直角三角形的三角形}
4)
Venn圖:
4、集合的分類:
(1)
有限集
含有有限個(gè)元素的集合(2)
無(wú)限集
含有無(wú)限個(gè)元素的集合(3)
空集
不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:
集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B
(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)
A={x|x2-1=0}
B={-1,1}
“元素相同則兩集合相等”
即:①
任何一個(gè)集合是它本身的子集。AíA
②真子集:如果AíB,且A1
B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
③如果
AíB,BíC,那么
AíC
④
如果AíB
同時(shí)
BíA
那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:
空集是任何集合的子集,空集是任何非空集合的真子集。
u
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
三、集合的運(yùn)算
運(yùn)算類型
交
集
并
集
補(bǔ)
集
定
義
由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB
={x|xA,或xB}).
設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
S
A
記作,即
CSA=
韋
恩
圖
示
S
A
性
質(zhì)
AA=A
AΦ=Φ
AB=BA
ABA
ABB
AA=A
AΦ=A
AB=BA
ABA
ABB
(CuA)
(CuB)
=
Cu
(AB)
(CuA)
(CuB)
=
Cu(AB)
A
(CuA)=U
A
(CuA)=
Φ.
例題:
1.下列四組對(duì)象,能構(gòu)成集合的是
()
A某班所有高個(gè)子的學(xué)生
B著名的藝術(shù)家
C一切很大的書(shū)
D
倒數(shù)等于它自身的實(shí)數(shù)
2.集合{a,b,c
}的真子集共有
個(gè)
3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關(guān)系是
.4.設(shè)集合A=,B=,若AB,則的取值范圍是
5.50名學(xué)生做的物理、化學(xué)兩種實(shí)驗(yàn),已知物理實(shí)驗(yàn)做得正確得有40人,化學(xué)實(shí)驗(yàn)做得正確得有31人,兩種實(shí)驗(yàn)都做錯(cuò)得有4人,則這兩種實(shí)驗(yàn)都做對(duì)的有
人。
6.用描述法表示圖中陰影部分的點(diǎn)(含邊界上的點(diǎn))組成的集合M=
.7.已知集合A={x|
x2+2x-8=0},B={x|
x2-5x+6=0},C={x|
x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值
二、函數(shù)的有關(guān)概念
1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:
y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|
x∈A
}叫做函數(shù)的值域.
注意:
1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開(kāi)方數(shù)不小于零;
(3)對(duì)數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零,(7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.u
相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致
(兩點(diǎn)必須同時(shí)具備)
(見(jiàn)課本21頁(yè)相關(guān)例2)
2.值域
:
先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3.函數(shù)圖象知識(shí)歸納
(1)定義:在平面直角坐標(biāo)系中,以函數(shù)
y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)
y=f(x),(x
∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上
.(2)
畫(huà)法
A、描點(diǎn)法:
B、圖象變換法
常用變換方法有三種
1)
平移變換
2)
伸縮變換
3)
對(duì)稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間
(2)無(wú)窮區(qū)間
(3)區(qū)間的數(shù)軸表示.
5.映射
一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從集合A到集合B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”
對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿足:
(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;
(2)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);
(3)不要求集合B中的每一個(gè)元素在集合A中都有原象。
6.分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
補(bǔ)充:復(fù)合函數(shù)
如果y=f(u)(u∈M),u=g(x)(x∈A),則
y=f[g(x)]=F(x)(x∈A)
稱為f、g的復(fù)合函數(shù)。
二.函數(shù)的性質(zhì)
1.函數(shù)的單調(diào)性(局部性質(zhì))
(1)增函數(shù)
設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1 時(shí),都有f(x1)>f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì); (2) 圖象的特點(diǎn) 如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法 (A) 定義法: 任取x1,x2∈D,且x1 作差f(x1)-f(x2); 變形(通常是因式分解和配方); 定號(hào)(即判斷差f(x1)-f(x2)的正負(fù)); 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性). (B)圖象法(從圖象上看升降) (C)復(fù)合函數(shù)的單調(diào)性 復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減” 注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集.8.函數(shù)的奇偶性(整體性質(zhì)) (1)偶函數(shù) 一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù). (2).奇函數(shù) 一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù). (3)具有奇偶性的函數(shù)的圖象的特征 偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱. 利用定義判斷函數(shù)奇偶性的步驟: 首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱; 確定f(-x)與f(x)的關(guān)系; 作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù). 注意:函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不對(duì)稱則函數(shù)是非奇非偶函數(shù).若對(duì)稱,(1)再根據(jù)定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定; (3)利用定理,或借助函數(shù)的圖象判定 .9、函數(shù)的解析表達(dá)式 (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.(2)求函數(shù)的解析式的主要方法有: 1) 湊配法 2) 待定系數(shù)法 3) 換元法 4) 消參法 10.函數(shù)最大(?。┲担ǘx見(jiàn)課本p36頁(yè)) 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值 利用圖象求函數(shù)的最大(?。┲?/p> 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值: 如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b); 如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b); 例題: 1.求下列函數(shù)的定義域: ⑴ ⑵ 2.設(shè)函數(shù)的定義域?yàn)椋瑒t函數(shù)的定義域?yàn)開(kāi) _ 3.若函數(shù)的定義域?yàn)?,則函數(shù)的定義域是 4.函數(shù),若,則= 5.求下列函數(shù)的值域: ⑴ ⑵ (3) (4) 6.已知函數(shù),求函數(shù),的解析式 7.已知函數(shù)滿足,則=。 8.設(shè)是R上的奇函數(shù),且當(dāng)時(shí),則當(dāng)時(shí)= 在R上的解析式為 9.求下列函數(shù)的單調(diào)區(qū)間: ⑴ ⑵ ⑶ 10.判斷函數(shù)的單調(diào)性并證明你的結(jié)論. 11.設(shè)函數(shù)判斷它的奇偶性并且求證:. 第二章 基本初等函數(shù) 一、指數(shù)函數(shù) (一)指數(shù)與指數(shù)冪的運(yùn)算 1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*. u 負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。 當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),2.分?jǐn)?shù)指數(shù)冪 正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:,u 0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義 3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì) (1)·; (2); (3) . (二)指數(shù)函數(shù)及其性質(zhì) 1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域?yàn)镽. 注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1. 2、指數(shù)函數(shù)的圖象和性質(zhì) a>1