第一篇:2015河南特崗教師面試熱點(diǎn):初中數(shù)學(xué)面試說課稿《反比例函數(shù)》
一、說教材
1.內(nèi)容分析:本節(jié)課是“反比例函數(shù)”的第一節(jié)課,是繼正比例函數(shù)、一次函數(shù)之后,二次函數(shù)之前的又一類型函數(shù),本節(jié)課主要通過豐富的生活事 例,讓學(xué)生歸納出反比例函數(shù)的概念,并進(jìn)一步體會(huì)函數(shù)是刻畫變量之間關(guān)系的數(shù)學(xué)模型,從中體會(huì)函數(shù)的模型思想。因此本節(jié)課重點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概 念,所滲透的數(shù)學(xué)思想方法有:類比,轉(zhuǎn)化,建模。
2.學(xué)情分析:對八年級學(xué)生來說,雖然他們已經(jīng)對函數(shù),正比例函數(shù),一次函數(shù)的概念、圖象、性質(zhì)以及應(yīng)用有所掌握,但他們面對新的一次函數(shù)時(shí),還可能存在一些思維障礙,如學(xué)生不能準(zhǔn)確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結(jié)出反比例函數(shù)的概念,因此,本節(jié)課的難點(diǎn)是理解和領(lǐng) 悟反比例函數(shù)的概念。
二、說教學(xué)目標(biāo)
根據(jù)本人對《數(shù)學(xué)課程標(biāo)準(zhǔn)》的理解與分析,考慮學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我把本課的目標(biāo)定為:
1.從現(xiàn)實(shí)的情境和已有的知識(shí)經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對函數(shù)概念的理解。
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念。
三、說教法
本節(jié)課從知識(shí)結(jié)構(gòu)呈現(xiàn)的角度看,為了實(shí)現(xiàn)教學(xué)目標(biāo),我建立了“創(chuàng)設(shè)情境→建立模型→解釋知識(shí)→應(yīng)用知識(shí)”的學(xué)習(xí)模式,這種模式清晰地再現(xiàn)了知識(shí) 的生成與發(fā)展的過程,也符合學(xué)生的認(rèn)知規(guī)律。于是,從教學(xué)內(nèi)容的性質(zhì)出發(fā),我設(shè)計(jì)了如下的課堂結(jié)構(gòu):創(chuàng)設(shè)出電流、行程等情境問題讓學(xué)生發(fā)現(xiàn)新知,把上述問 題進(jìn)行類比,導(dǎo)出概念,獲得新知,最后總結(jié)評價(jià)、內(nèi)化新知。
四、說學(xué)法
我認(rèn)為學(xué)生將實(shí)際問題轉(zhuǎn)化成函數(shù)的能力是有限的,所以我借助多媒體輔助教學(xué),指導(dǎo)學(xué)生通過類比、轉(zhuǎn)化、直觀形象的觀察與演示,親身經(jīng)歷函數(shù)模型 的轉(zhuǎn)化過程,為學(xué)生攻克難點(diǎn)創(chuàng)造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數(shù)概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過事例幫助完成定義。因此,我 采用了“問題式探究法”的教法,利用多媒體設(shè)置豐富的問題情境,讓學(xué)生的思維由問題開始,到問題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著問題的 深入而跳躍。
五、說教學(xué)過程
(一)創(chuàng)設(shè)情境,發(fā)現(xiàn)新知
首先提出問題
問題1:小明同學(xué)用50元錢買學(xué)習(xí)用品,單價(jià)y(元)與數(shù)量x(件)之間的關(guān)系式是什么?
【設(shè)計(jì)意圖及教法說明】
在課開頭,我認(rèn)為以一個(gè)簡單的數(shù)字問題引入,目的是讓學(xué)生在很快的時(shí)間里說出顯而易見的答案,便于增強(qiáng)學(xué)生學(xué)好本課的自信心,使他們能愉快地進(jìn)行新知的學(xué)習(xí)。
問題2:我們知道,電流I、電阻R、電壓U之間滿足關(guān)系式U=IR,當(dāng)U=220V,(1)你能用含有R的代數(shù)式表示I嗎?
(2)利用寫出的關(guān)系式完成下表。
R/Ω 20 40 60 80 100
I/A
當(dāng)R越來越大時(shí),I怎樣變化?當(dāng)R越來越小呢?
(3)變量I是R的函數(shù)嗎?為什么?
【設(shè)計(jì)意圖及教法說明】
因?yàn)閿?shù)學(xué)來源于生活,并服務(wù)于生活,問題2是一個(gè)與物理有關(guān)的數(shù)學(xué)問題,這樣設(shè)計(jì)便于使學(xué)生把數(shù)學(xué)知識(shí)和物理知識(shí)相聯(lián)系,增加學(xué)科的相通性,另 外通過本題的學(xué)習(xí),可以讓學(xué)生在情境中體會(huì)變量之間的關(guān)系,問題2先讓學(xué)生獨(dú)立思考,然后再同桌交流,最后小組討論并匯報(bào),此問題中的(1)(2)問題比 較簡單,學(xué)生可以獨(dú)立完成,但對于問題(3),老師要給適當(dāng)?shù)闹笇?dǎo)。
問題2的深化:舞臺(tái)燈光可以在很短的時(shí)間內(nèi)將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝,這樣的效果是通過什么來實(shí)現(xiàn)的?
【設(shè)計(jì)意圖及教法說明】
學(xué)生可以根據(jù)問題2以及學(xué)過的物理知識(shí)來解釋這個(gè)問題,這樣既增強(qiáng)學(xué)生學(xué)習(xí)新知的積極性,又達(dá)到了解決問題的目的。
問題3:京滬高速公路全長約為1262km,汽車沿京滬高速公路從上海駛往北京,汽車行完全程所需時(shí)間t(h)與行駛的平均速度v(km/h)之間有怎樣的關(guān)系?變量t是v的函數(shù)嗎?為什么?
【設(shè)計(jì)意圖及教法說明】
問題3是一個(gè)行程問題,先讓學(xué)生獨(dú)立思考、同桌討論,最后列出正確的函數(shù)關(guān)系式,進(jìn)一步體會(huì)函數(shù)是刻畫變量之間關(guān)系的數(shù)學(xué)模型,為形成反比例函數(shù)的概念打基礎(chǔ)。
(二)合作探究,獲得新知
1.出示問題
想一想,你還能舉出類似的例子嗎?
【設(shè)計(jì)意圖及教法說明】
這個(gè)環(huán)節(jié)目的在于讓學(xué)生親身經(jīng)歷觀察、思考、抽象、概括、補(bǔ)充、完善的過程,讓學(xué)生嘗試用自己的語言說明他們的新發(fā)現(xiàn),培養(yǎng)他們的歸納能力和自主探索與合作交流的良好學(xué)習(xí)習(xí)慣,在這期間教師就是他們的合作者、引路人,邊聽、邊問、邊指導(dǎo),初步形成反比例函數(shù)的概念。
2.啟發(fā)學(xué)生建構(gòu)新知
反比例函數(shù)的定義:一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y=k/x(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù)。
反比例函數(shù)自變量不能為0!
反比例函數(shù)的一般形式:y= k/x(k為常數(shù),k≠0)
反比例函數(shù)的變式形式:k=yx,x=k/y(k為常數(shù),k≠0)
【設(shè)計(jì)意圖及教法說明】
這種從不同的問題情境中抽象出相同的數(shù)學(xué)模型,再進(jìn)行抽象得出概念的過程,并非教師所強(qiáng)加,而是學(xué)生通過自己分析走向概念,突破本節(jié)課的難點(diǎn),使學(xué)生的自豪感和成功感在活動(dòng)中得以提升,體現(xiàn)類比、轉(zhuǎn)化、建模等數(shù)學(xué)思想,把本節(jié)課推向高潮。
(三)反饋練習(xí),應(yīng)用新知
根據(jù)學(xué)生認(rèn)知的差異性,我設(shè)計(jì)了基礎(chǔ)過關(guān)和拓展訓(xùn)練兩類練習(xí)題。
1.基礎(chǔ)過關(guān)
(1)下列函數(shù)的表達(dá)式中,x表示自變量,那么哪些是反比例函數(shù)?每一個(gè)反比例函數(shù)相應(yīng)的k的值是多少?
①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2
【設(shè)計(jì)意圖及教法說明】
此題較簡單,以口答的形式進(jìn)行,設(shè)計(jì)的目的是重視基礎(chǔ)知識(shí)的教學(xué)和面向全體學(xué)生的教學(xué),并告誡學(xué)生判斷一個(gè)函數(shù)是否是反比例函數(shù)不能單從形式上判斷,一定要嚴(yán)謹(jǐn)認(rèn)真,同時(shí)也完成了隨堂練習(xí)1。
(2)做一做
①一個(gè)矩形的面積為20cm2,相鄰的兩條邊長分別是xcm和ycm,那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
②某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
③y是x的反比例函數(shù),下表給出了x和y的一些值:
a.寫出這個(gè)反比例函數(shù)的表達(dá)式;
b.根據(jù)函數(shù)表達(dá)式完成下表。
表略。
【設(shè)計(jì)意圖及教法說明】
通過三個(gè)實(shí)際問題的解決,培養(yǎng)了學(xué)生“發(fā)現(xiàn)問題”、“解決問題”的能力,也達(dá)到了學(xué)以致用的目的。
2.能力拓展
(1)你能舉個(gè)反比例函數(shù)的實(shí)例嗎?與同學(xué)進(jìn)行交流。
(2)y=5xm是反比例函數(shù),求m的值。
【設(shè)計(jì)意圖及教法說明】
問題(1)是一個(gè)開放性的題,既解決了隨堂練習(xí)2,也培養(yǎng)了學(xué)生的發(fā)散性思維。問題(2)能助于學(xué)生抓住關(guān)鍵點(diǎn),澄清易錯(cuò)點(diǎn)(反比例函數(shù)中k≠0),并且加強(qiáng)了新舊知識(shí)的聯(lián)系。
(四)歸納總結(jié),反思提高
通過這節(jié)課的學(xué)習(xí)你有哪些收獲?還有哪些問題?與同伴進(jìn)行討論。
(如:你學(xué)到了什么?懂得了什么?你發(fā)現(xiàn)了什么?還有什么困惑?應(yīng)注意什么?還想知道什么?)
【設(shè)計(jì)意圖及教法說明】通過問題式的小結(jié),讓學(xué)生再次歸納、總結(jié)本節(jié)課的重點(diǎn),彌補(bǔ)教學(xué)中的不足。
(五)推薦作業(yè),分層落實(shí)
必做題:課本第134頁習(xí)題1、2題。
選做題:已知y與2x成反比例,且當(dāng)x=2時(shí),y=-1,求:
(1)y與x的函數(shù)關(guān)系式。
(2)當(dāng)x=4時(shí),y的值。
(3)當(dāng)y=4時(shí),x的值。
【設(shè)計(jì)意圖及教法說明】作業(yè)以推薦的形式進(jìn)行,必做題體現(xiàn)了對新課標(biāo)下“學(xué)有價(jià)值的數(shù)學(xué)”、“人人能獲得必要的數(shù)學(xué)”的落實(shí),選做題體現(xiàn)了讓“不同的人在數(shù)學(xué)上得到不同的發(fā)展”。
第二篇:2012河南特崗教師面試
2012河南特崗教師面試:說課4大要點(diǎn)
所謂說課,就是讓教師以語言為主要表述工具,在備課的基礎(chǔ)上,面對同行、專家、系統(tǒng)而概括地解說自己對具體課程的理解,闡述自己的教學(xué)觀點(diǎn),表述自己具體執(zhí)教某課題的教學(xué)設(shè)想、方法、策略以及組織教學(xué)的理論依據(jù)等,然后由大家進(jìn)行評說。說課活動(dòng)由解說和評說兩部分組成,重點(diǎn)在解說,評說則是針對解說而進(jìn)行的評議、交流和研討。
說課是一種教研活動(dòng),具有教研活動(dòng)的一般性質(zhì)。首先,它具有群體性,即由眾多教師、同行參與。其次,說課具有交流性,即說課者與聽講者要彼此進(jìn)行意見交流。再次,具有一定的研究性,即交流的內(nèi)容是各自經(jīng)過一定研究的結(jié)果。最后,還具有可操作性。
說課不是備課,不能按教案來說課。說課不是講課,教師不能把聽說課的領(lǐng)導(dǎo)和老師視為學(xué)生,如正常上課那樣講。
一、突出“說”字
說課不是“背課”,也不是“讀課”,要突出“說”字。既不能按教案一字不差地背下來,也不能按說課稿一字不差地讀下來。說課不等于讀課,不能拿事先寫好的說課稿去讀。說課一定是按自己的教學(xué)設(shè)計(jì)思路,有重點(diǎn),有層次,有理有據(jù)。說課時(shí),要抓住一節(jié)課的基本環(huán)節(jié)去說,說思路、說方法、說過程、說內(nèi)容、說學(xué)生,緊緊圍繞一個(gè)“說”字,突出說課特點(diǎn),完成說課進(jìn)程。
二、說出自己的亮點(diǎn)
說課的對象不是學(xué)生,而是教師同行。所以說課時(shí)不宜把每個(gè)過程說得過于詳細(xì),應(yīng)重點(diǎn)說出如何實(shí)施教學(xué)過程、如何引導(dǎo)學(xué)生理解概念、掌握規(guī)律的方法,說出培養(yǎng)學(xué)生學(xué)習(xí)能力與提高教學(xué)效果的途徑。說課要重理性,講課注重感性和實(shí)踐,因此,用極有限的時(shí)間完成說課內(nèi)容不容易,必須做到詳略得當(dāng)、簡繁適宜、準(zhǔn)確把握說度。說得太詳太繁,時(shí)間不允許,也沒必要;說得過略過簡,說不出基本內(nèi)容,聽眾無法接受。
三、說課要有科學(xué)的預(yù)見性
說課要求教師不僅講出怎樣教,還要說出學(xué)生怎樣學(xué)。所以,說課者要對所教學(xué)生的知識(shí)技能、智力水平、學(xué)習(xí)態(tài)度、思想狀況、心理特點(diǎn)、非智力因素等方面的差異,進(jìn)行分析。估計(jì)學(xué)生對新知識(shí)的學(xué)習(xí)會(huì)有什么困難,說出根據(jù)不同情況采取相應(yīng)的措施和解決的辦法。說課者還要說出自己設(shè)計(jì)提問的關(guān)鍵問
四、把握“說“的方法和技巧
說課的方法和方式很多,但是必須做到從學(xué)生的具體情況出發(fā),因教材施說,針對內(nèi)容,針對學(xué)生情況,找準(zhǔn)重難點(diǎn),設(shè)計(jì)教學(xué)方法,用什么樣的方法來實(shí)現(xiàn)以上目標(biāo),如何引導(dǎo)學(xué)生完成學(xué)習(xí)任務(wù),體現(xiàn)教師的主導(dǎo)和學(xué)生的主體作用。
第三篇:淺談河南特崗教師招聘考試面試經(jīng)驗(yàn)
淺談河南特崗教師招聘考試面試經(jīng)驗(yàn) 1.說課要不要板書。
有老師說,說課不需要板書,我的理解是,沒有硬性規(guī)定,要板書或不要板書,任其自然,該板書就要板書,關(guān)健在于板書是否有助于你的說課。
2.說課材料的積累。
一是在理論上,說句實(shí)話,在寫說課時(shí)時(shí)間非常緊,根本來不及你去“搜腸刮肚”地想那些“似曾相識(shí)”的理論知識(shí),所以說,我們在平時(shí)應(yīng)該對新的理念、新的方法進(jìn)行收集、整理。
二是加強(qiáng)經(jīng)驗(yàn)積累。3.說課中的創(chuàng)新。
說課時(shí)我們不能拘泥于平常的套路。如:導(dǎo)入、新授、鞏固、總結(jié)、作業(yè)等,教師導(dǎo)學(xué)生學(xué),較為統(tǒng)一。但有一點(diǎn)要強(qiáng)調(diào),你要得高分,或是要得到A,那么你的說課一定要具備二條中的一條:
一是在說課中,你對教材處理獨(dú)到,有新意,有創(chuàng)意,使評委眼前一亮。二是新意、創(chuàng)意談不上,但你素質(zhì)全面,自信、自如,很圓滿。4.功夫在平時(shí)
平時(shí)強(qiáng)化自我訓(xùn)練,這一點(diǎn),打個(gè)比方。就像我們一開始學(xué)習(xí)游泳,說得再多,不去下水游一游,不吃幾口水,恐怕是很難學(xué)會(huì)的。
比如平時(shí)怎么備課,平時(shí)怎么處理教材。5.時(shí)間的把握
說課時(shí)間一般為15分鐘左右,有的是15分,有的是20分,肯定會(huì)事先告知,老師不可趕時(shí)間,更不可拖時(shí)間,在現(xiàn)場說課中,有教師說課在趕場子,因?yàn)橛幸欢ǖ臅r(shí)間要求的,所以只見講者心急如焚“超速行駛”,聽者云里霧里都跟不上趟。而我們有相當(dāng)一部分老師在說課中準(zhǔn)備不充分只用了三五分鐘。
我們講把握時(shí)間,是在說課的過程中有主有次,對重點(diǎn)、難點(diǎn),教學(xué)設(shè)計(jì)過程要講深,講透,不可過分飽滿,剩余出1—2分種左右。
河南招教網(wǎng)http://he.zgjsks.com/ 河南招教網(wǎng),發(fā)布河南教師考試信息和備考資料。
微信號:hejsks
第四篇:初中數(shù)學(xué)反比例函數(shù)說課稿(通用)
初中數(shù)學(xué)反比例函數(shù)說課稿(通用5篇)
作為一名為他人授業(yè)解惑的教育工作者,常常要根據(jù)教學(xué)需要編寫說課稿,說課稿有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么優(yōu)秀的說課稿是什么樣的呢?下面是小編精心整理的初中數(shù)學(xué)反比例函數(shù)說課稿(通用5篇),歡迎大家借鑒與參考,希望對大家有所幫助。
初中數(shù)學(xué)反比例函數(shù)說課稿1一、說教學(xué)內(nèi)容
(一)、本課時(shí)的內(nèi)容、地位及作用
本課內(nèi)容是北師大版九年級(上)數(shù)學(xué)第五章《反比例函數(shù)》的第一課時(shí),是繼一次函數(shù)學(xué)習(xí)之后又一類新的函數(shù)——反比例函數(shù),它位居初中階段三大函數(shù)中的第二,區(qū)別于一次函數(shù),但又建立在一次函數(shù)之上,而又為以后更高層次函數(shù)的學(xué)習(xí),函數(shù)、方程、不等式間的關(guān)系的處理奠定了基礎(chǔ)。函數(shù)本身是數(shù)學(xué)學(xué)習(xí)中的重要內(nèi)容,而反比例函數(shù)則是基礎(chǔ)函數(shù),因此,本節(jié)內(nèi)容有著舉足輕重的地位。
(二)、本課題的教學(xué)目標(biāo):
教學(xué)目標(biāo)是教學(xué)的出發(fā)點(diǎn)和歸宿。因此,我根據(jù)新課標(biāo)的知識(shí)、能力和德育目標(biāo)的要求,以學(xué)生的認(rèn)知點(diǎn),心理特點(diǎn)和本課的特點(diǎn)來制定教學(xué)目標(biāo):
1、知識(shí)目標(biāo)
(1)通過對實(shí)際問題的探究,理解反比例函數(shù)的實(shí)際意義。
(2)體會(huì)反比例函數(shù)的不同表示法。
(3)會(huì)判斷反比例函數(shù)。
2、能力目標(biāo)
(1)通過兩個(gè)實(shí)際問題,培養(yǎng)學(xué)生勤于思考和分析歸納能力。
(2)在思考、歸納過程中,發(fā)展學(xué)生的合情說理能力。
(3)讓學(xué)生會(huì)求反比例函數(shù)關(guān)系式。
3、情感目標(biāo)
(1)通過創(chuàng)設(shè)情境讓學(xué)生經(jīng)歷在實(shí)際問題中探索數(shù)量關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)與人類的生活的密切聯(lián)系,養(yǎng)成用數(shù)學(xué)思維方式解決實(shí)際問題的習(xí)慣。
(2)理論聯(lián)系實(shí)際,讓學(xué)生有學(xué)有所用的感性認(rèn)識(shí)。
4、本課題的重點(diǎn)、難點(diǎn)和關(guān)鍵
重點(diǎn):反比例函數(shù)的概念
難點(diǎn):求反比例函數(shù)的解析式。
關(guān)鍵:如何由實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型。
二、說教學(xué)方法:
本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,并分層教學(xué)將顧及到全體學(xué)生,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果。同時(shí)在教學(xué)中將理論聯(lián)系實(shí)際,讓學(xué)生用所學(xué)的知識(shí)去解決身邊的實(shí)際問題。
由于學(xué)生在前面已學(xué)過“變量之間的關(guān)系”和“一次函數(shù)”的內(nèi)容,對函數(shù)已經(jīng)有了初步的認(rèn)識(shí)。因此,在教這節(jié)課時(shí),要注意和一次函數(shù),尤其是正比例函數(shù)一反比例的類比。引導(dǎo)學(xué)生從函函數(shù)的意義、自變量的取值范圍等方面辨明相應(yīng)的差別,在學(xué)生探索過程中,讓學(xué)生體會(huì)到在探索的途徑和方法上與一次函數(shù)相似。
對于所設(shè)置的兩個(gè)問題為學(xué)生熟悉,盡量貼近學(xué)生生活,或者進(jìn)入學(xué)生生活的圈子里,讓學(xué)生感受到親切、自然,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生思考問題的積極主動(dòng)性和解決問題的能力,從而培養(yǎng)對數(shù)學(xué)學(xué)科的濃厚興趣,使部分學(xué)生由不愛學(xué)變得愛學(xué)。讓學(xué)生真正體會(huì)到:生活處處皆數(shù)學(xué),生活處處有函數(shù)。
三、說學(xué)法指導(dǎo):
課堂,只有寶貴的四十分鐘,有相當(dāng)一部分學(xué)生注意力不能集中。針對這種情況,從學(xué)生身邊的生活和已有的知識(shí)出發(fā)創(chuàng)設(shè)情境,目的是讓學(xué)生感受到生活中處處有數(shù)學(xué),激發(fā)學(xué)生對數(shù)學(xué)的興趣和愿望,同時(shí)也為抽象反比例函數(shù)概念做好鋪墊。讓學(xué)生自己舉例,討論總結(jié)規(guī)律,抽象概念,便于學(xué)生理解和掌握反比例函數(shù)的概念,同時(shí),培養(yǎng)和提高了學(xué)生的總結(jié)歸納能力和抽象能力。
為了讓學(xué)生對反比例函數(shù)的意義牢牢掌握和深刻理解,啟發(fā)學(xué)生回憶正比例函數(shù)并與之相類比,從內(nèi)容到形式,學(xué)生自主地體會(huì)出反比例函數(shù)的真正內(nèi)涵。
在本課時(shí)的師生互動(dòng)過程中,積極創(chuàng)造條件和機(jī)會(huì),關(guān)注個(gè)體差異,讓學(xué)困生發(fā)表見解,使他們有成功的學(xué)習(xí)體驗(yàn),激發(fā)他們的學(xué)習(xí)興趣,增強(qiáng)他們的自信心,提高他們學(xué)習(xí)的主動(dòng)性。
教師要善于捕捉學(xué)生的反饋信息,并能立即反饋給學(xué)生,矯正學(xué)生的學(xué)法和知識(shí)錯(cuò)誤。力求體現(xiàn)以學(xué)生為主體,教師為主導(dǎo)的原則,在輕松愉快的氛圍中,順利地“消化”本節(jié)課的內(nèi)容。同時(shí),讓學(xué)生體會(huì)到理論來自于實(shí)踐,而理論又反過來指導(dǎo)實(shí)踐的哲學(xué)思想。從而培養(yǎng)和提高學(xué)生分析問題和解決問題的能力。
四、說教學(xué)過程:
1、復(fù)習(xí)引入:
師生共同回憶前一階段所學(xué)知識(shí),再次強(qiáng)調(diào)函數(shù)和重要性,同時(shí)啟開新的課題——反比例函數(shù)(教師板書)。
(一)創(chuàng)設(shè)情景,激發(fā)熱情
我經(jīng)常在思考:長期以來,我們的學(xué)生為什么對數(shù)學(xué)不感興趣,甚至害怕數(shù)學(xué),其中的一個(gè)重要因素就是數(shù)學(xué)離學(xué)生的生活實(shí)際太遠(yuǎn)了。事實(shí)上,數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來,從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識(shí)并掌握數(shù)學(xué)。
因而用兩個(gè)最貼近學(xué)生生活實(shí)例引出反比例函數(shù)的概念;從而讓學(xué)生感受數(shù)學(xué)與生活的緊密聯(lián)系。
多媒體課件展示
(問題1)我校車棚工程已經(jīng)啟動(dòng),規(guī)劃地基為36平方米的矩形,設(shè)連長為X(米),則另一連長Y(米)與X(米)的函數(shù)關(guān)系式。
讓學(xué)生分析變量關(guān)系,然后教師總結(jié):依矩形面積可得
XY=36 即Y=36/X
(問題2)昨天在放學(xué)回家時(shí),小明的車胎爆了。第二天,小明的爸爸騎摩托車送小明來學(xué)校。中午放學(xué)小明不得不走回家。(小明家距學(xué)校2000米)
(1)、在這個(gè)故事中,有幾種交通工具?
(2)、兩種交通工具的正常行駛速度一樣嗎?來去的路程一樣嗎?時(shí)間呢?
師生共同探究,時(shí)間的變化是由速度所引起的,設(shè)時(shí)間為T,速度為V,則有T=2000/V
(二)觀察歸納——形成概念
由實(shí)例XY=36 即Y=36/X和T=2000/V 兩個(gè)式子教師引導(dǎo)學(xué)生概括總結(jié)出本課新的知識(shí)點(diǎn):
一般地,形如Y=K/X或XY=K(K是常數(shù),K不為0)的函數(shù)叫做反比例函數(shù)。
在此教師對該函數(shù)做些說明。
(三)討論研究——深化概念
學(xué)生通過對例1的觀察、討論、交流后更進(jìn)一步理解和掌握反比例函數(shù)的概念
多媒體課件展示、例1、下列函數(shù)關(guān)系中,哪些是反比例函數(shù)?
(1)、一個(gè)矩形面積是20平方厘米,相鄰兩條連長分別為X厘米和Y厘米那么變量Y是變量X的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
(2)、滑動(dòng)變阻器兩端的電壓為U,移動(dòng)滑片時(shí)通過變阻器的電流I和電阻R之間的關(guān)系;
(3)、某地有耕地346.2公頃,人口數(shù)量N逐年發(fā)生變化,那么該村人均占有耕地面積M(公頃?(人))是全村人口數(shù)N的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
(4)某鄉(xiāng)糧食總產(chǎn)量M噸,那么該鄉(xiāng)每人平均糧食Y(噸)與該鄉(xiāng)人口數(shù)X的函數(shù)關(guān)系。
學(xué)生回答后教師給出正確答案。
為了使學(xué)生達(dá)到對知識(shí)的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,把課本的習(xí)題熔入即時(shí)訓(xùn)練題中,通過學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來鞏固新知識(shí)。
多媒體課件展示
(鞏固練習(xí):)
(口答)下列函數(shù)關(guān)系中,X均表示自變量,那么哪些是反比例函數(shù)?每一個(gè)反比例函數(shù)的K的值是多少?
Y=5/X Y=0.4/X Y=X/2 XY=2
5)Y=-1/X(給學(xué)困生發(fā)表見解的機(jī)會(huì),激發(fā)他們的學(xué)習(xí)興趣)
學(xué)生回答后教師給出正確答案。
初中數(shù)學(xué)反比例函數(shù)說課稿2一、說教材
1.內(nèi)容分析:本節(jié)課是“反比例函數(shù)”的第一節(jié)課,是繼正比例函數(shù)、一次函數(shù)之后,二次函數(shù)之前的又一類型函數(shù),本節(jié)課主要通過豐富的生活事例,讓學(xué)生歸納出反比例函數(shù)的概念,并進(jìn)一步體會(huì)函數(shù)是刻畫變量之間關(guān)系的數(shù)學(xué)模型,從中體會(huì)函數(shù)的模型思想。因此本節(jié)課重點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概念,所滲透的數(shù)學(xué)思想方法有:類比,轉(zhuǎn)化,建模。
2.學(xué)情分析:對八年級學(xué)生來說,雖然他們已經(jīng)對函數(shù),正比例函數(shù),一次函數(shù)的概念、圖象、性質(zhì)以及應(yīng)用有所掌握,但他們面對新的一次函數(shù)時(shí),還可能存在一些思維障礙,如學(xué)生不能準(zhǔn)確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結(jié)出反比例函數(shù)的概念,因此,本節(jié)課的難點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概念。
二、說教學(xué)目標(biāo)
根據(jù)本人對《數(shù)學(xué)課程標(biāo)準(zhǔn)》的理解與分析,考慮學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我把本課的目標(biāo)定為:
1.從現(xiàn)實(shí)的情境和已有的知識(shí)經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對函數(shù)概念的理解。
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念。
三、說教法
本節(jié)課從知識(shí)結(jié)構(gòu)呈現(xiàn)的角度看,為了實(shí)現(xiàn)教學(xué)目標(biāo),我建立了“創(chuàng)設(shè)情境→建立模型→解釋知識(shí)→應(yīng)用知識(shí)”的學(xué)習(xí)模式,這種模式清晰地再現(xiàn)了知識(shí)的生成與發(fā)展的過程,也符合學(xué)生的認(rèn)知規(guī)律。于是,從教學(xué)內(nèi)容的性質(zhì)出發(fā),我設(shè)計(jì)了如下的課堂結(jié)構(gòu):創(chuàng)設(shè)出電流、行程等情境問題讓學(xué)生發(fā)現(xiàn)新知,把上述問題進(jìn)行類比,導(dǎo)出概念,獲得新知,最后總結(jié)評價(jià)、內(nèi)化新知。
四、說學(xué)法
我認(rèn)為學(xué)生將實(shí)際問題轉(zhuǎn)化成函數(shù)的能力是有限的,所以我借助多媒體輔助教學(xué),指導(dǎo)學(xué)生通過類比、轉(zhuǎn)化、直觀形象的觀察與演示,親身經(jīng)歷函數(shù)模型的轉(zhuǎn)化過程,為學(xué)生攻克難點(diǎn)創(chuàng)造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數(shù)概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過事例幫助完成定義。因此,我采用了“問題式探究法”的教法,利用多媒體設(shè)置豐富的問題情境,讓學(xué)生的思維由問題開始,到問題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著問題的深入而跳躍。
五、說教學(xué)過程
(一)創(chuàng)設(shè)情境,發(fā)現(xiàn)新知
首先提出問題
問題1:小明同學(xué)用50元錢買學(xué)習(xí)用品,單價(jià)y(元)與數(shù)量x(件)之間的關(guān)系式是什么?
【設(shè)計(jì)意圖及教法說明】
在課開頭,我認(rèn)為以一個(gè)簡單的數(shù)字問題引入,目的是讓學(xué)生在很快的時(shí)間里說出顯而易見的答案,便于增強(qiáng)學(xué)生學(xué)好本課的自信心,使他們能愉快地進(jìn)行新知的學(xué)習(xí)。
問題2:我們知道,電流I、電阻R、電壓U之間滿足關(guān)系式U=IR,當(dāng)U=220V,(1)你能用含有R的代數(shù)式表示I嗎?
(2)利用寫出的關(guān)系式完成下表。
R/Ω 20 40 60 80 100
I/A
當(dāng)R越來越大時(shí),I怎樣變化?當(dāng)R越來越小呢?
(3)變量I是R的函數(shù)嗎?為什么?
【設(shè)計(jì)意圖及教法說明】
因?yàn)閿?shù)學(xué)來源于生活,并服務(wù)于生活,問題2是一個(gè)與物理有關(guān)的數(shù)學(xué)問題,這樣設(shè)計(jì)便于使學(xué)生把數(shù)學(xué)知識(shí)和物理知識(shí)相聯(lián)系,增加學(xué)科的相通性,另外通過本題的學(xué)習(xí),可以讓學(xué)生在情境中體會(huì)變量之間的關(guān)系,問題2先讓學(xué)生獨(dú)立思考,然后再同桌交流,最后小組討論并匯報(bào),此問題中的(1)(2)問題比較簡單,學(xué)生可以獨(dú)立完成,但對于問題(3),老師要給適當(dāng)?shù)闹笇?dǎo)。
問題2的深化:舞臺(tái)燈光可以在很短的時(shí)間內(nèi)將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝,這樣的效果是通過什么來實(shí)現(xiàn)的?
【設(shè)計(jì)意圖及教法說明】
學(xué)生可以根據(jù)問題2以及學(xué)過的物理知識(shí)來解釋這個(gè)問題,這樣既增強(qiáng)學(xué)生學(xué)習(xí)新知的積極性,又達(dá)到了解決問題的目的。
問題3:京滬高速公路全長約為1262km,汽車沿京滬高速公路從上海駛往北京,汽車行完全程所需時(shí)間t(h)與行駛的平均速度v(km/h)之間有怎樣的關(guān)系?變量t是v的函數(shù)嗎?為什么?
【設(shè)計(jì)意圖及教法說明】
問題3是一個(gè)行程問題,先讓學(xué)生獨(dú)立思考、同桌討論,最后列出正確的`函數(shù)關(guān)系式,進(jìn)一步體會(huì)函數(shù)是刻畫變量之間關(guān)系的數(shù)學(xué)模型,為形成反比例函數(shù)的概念打基礎(chǔ)。
(二)合作探究,獲得新知
1.出示問題
想一想,你還能舉出類似的例子嗎?
【設(shè)計(jì)意圖及教法說明】
這個(gè)環(huán)節(jié)目的在于讓學(xué)生親身經(jīng)歷觀察、思考、抽象、概括、補(bǔ)充、完善的過程,讓學(xué)生嘗試用自己的語言說明他們的新發(fā)現(xiàn),培養(yǎng)他們的歸納能力和自主探索與合作交流的良好學(xué)習(xí)習(xí)慣,在這期間教師就是他們的合作者、引路人,邊聽、邊問、邊指導(dǎo),初步形成反比例函數(shù)的概念。
2.啟發(fā)學(xué)生建構(gòu)新知
反比例函數(shù)的定義:一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y=k/x(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù)。
反比例函數(shù)自變量不能為0!
反比例函數(shù)的一般形式:y= k/x(k為常數(shù),k≠0)
反比例函數(shù)的變式形式:k=yx,x=k/y(k為常數(shù),k≠0)
【設(shè)計(jì)意圖及教法說明】
這種從不同的問題情境中抽象出相同的數(shù)學(xué)模型,再進(jìn)行抽象得出概念的過程,并非教師所強(qiáng)加,而是學(xué)生通過自己分析走向概念,突破本節(jié)課的難點(diǎn),使學(xué)生的自豪感和成功感在活動(dòng)中得以提升,體現(xiàn)類比、轉(zhuǎn)化、建模等數(shù)學(xué)思想,把本節(jié)課推向高潮。
(三)反饋練習(xí),應(yīng)用新知
根據(jù)學(xué)生認(rèn)知的差異性,我設(shè)計(jì)了基礎(chǔ)過關(guān)和拓展訓(xùn)練兩類練習(xí)題。
1.基礎(chǔ)過關(guān)
(1)下列函數(shù)的表達(dá)式中,x表示自變量,那么哪些是反比例函數(shù)?每一個(gè)反比例函數(shù)相應(yīng)的k的值是多少?
①y=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2
【設(shè)計(jì)意圖及教法說明】
此題較簡單,以口答的形式進(jìn)行,設(shè)計(jì)的目的是重視基礎(chǔ)知識(shí)的教學(xué)和面向全體學(xué)生的教學(xué),并告誡學(xué)生判斷一個(gè)函數(shù)是否是反比例函數(shù)不能單從形式上判斷,一定要嚴(yán)謹(jǐn)認(rèn)真,同時(shí)也完成了隨堂練習(xí)1。
(2)做一做
①一個(gè)矩形的面積為20cm2,相鄰的兩條邊長分別是xcm和ycm,那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
②某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
③y是x的反比例函數(shù),下表給出了x和y的一些值:
a.寫出這個(gè)反比例函數(shù)的表達(dá)式;
b.根據(jù)函數(shù)表達(dá)式完成下表。
表略。
【設(shè)計(jì)意圖及教法說明】
通過三個(gè)實(shí)際問題的解決,培養(yǎng)了學(xué)生“發(fā)現(xiàn)問題”、“解決問題”的能力,也達(dá)到了學(xué)以致用的目的。
2.能力拓展
(1)你能舉個(gè)反比例函數(shù)的實(shí)例嗎?與同學(xué)進(jìn)行交流。
(2)y=5xm是反比例函數(shù),求m的值。
【設(shè)計(jì)意圖及教法說明】
問題(1)是一個(gè)開放性的題,既解決了隨堂練習(xí)2,也培養(yǎng)了學(xué)生的發(fā)散性思維。問題(2)能助于學(xué)生抓住關(guān)鍵點(diǎn),澄清易錯(cuò)點(diǎn)(反比例函數(shù)中k≠0),并且加強(qiáng)了新舊知識(shí)的聯(lián)系。
(四)歸納總結(jié),反思提高
通過這節(jié)課的學(xué)習(xí)你有哪些收獲?還有哪些問題?與同伴進(jìn)行討論。
(如:你學(xué)到了什么?懂得了什么?你發(fā)現(xiàn)了什么?還有什么困惑?應(yīng)注意什么?還想知道什么?)
【設(shè)計(jì)意圖及教法說明】通過問題式的小結(jié),讓學(xué)生再次歸納、總結(jié)本節(jié)課的重點(diǎn),彌補(bǔ)教學(xué)中的不足。
(五)推薦作業(yè),分層落實(shí)
必做題:課本第134頁習(xí)題1、2題。
選做題:已知y與2x成反比例,且當(dāng)x=2時(shí),y=-1,求:
(1)y與x的函數(shù)關(guān)系式。
(2)當(dāng)x=4時(shí),y的值。
(3)當(dāng)y=4時(shí),x的值。
【設(shè)計(jì)意圖及教法說明】作業(yè)以推薦的形式進(jìn)行,必做題體現(xiàn)了對新課標(biāo)下“學(xué)有價(jià)值的數(shù)學(xué)”、“人人能獲得必要的數(shù)學(xué)”的落實(shí),選做題體現(xiàn)了讓“不同的人在數(shù)學(xué)上得到不同的發(fā)展”。
初中數(shù)學(xué)反比例函數(shù)說課稿3一、說教學(xué)設(shè)計(jì)意圖
首先由學(xué)生嘗試舉出實(shí)際生活中某兩個(gè)量出租反比例關(guān)系的例子,自然地引入利用所學(xué)的反比例函數(shù)來解決實(shí)際問題,在數(shù)學(xué)課上引用一個(gè)用“杠桿規(guī)律”的實(shí)際問題,一下子抓住學(xué)生的好奇心理。激發(fā)了他們的學(xué)習(xí)興趣。利用了公元前3世紀(jì)古希臘科學(xué)家阿基米德發(fā)現(xiàn)的“杠桿定律”中力與力臂兩個(gè)量的反比關(guān)系,將他們運(yùn)用到用數(shù)學(xué)來解決問題,激發(fā)學(xué)生求知熱情。也培養(yǎng)他們科學(xué)探索精神。
實(shí)際問題向數(shù)學(xué)問題他轉(zhuǎn)化是解決問題的關(guān)鍵。教師有理有據(jù)地引學(xué)生通過反比例函數(shù)模型實(shí)現(xiàn)這一目的。讓學(xué)生體會(huì)其中的轉(zhuǎn)化思想,逐步掌握轉(zhuǎn)化的方法。函數(shù)模型沒有變,但兩個(gè)量的角色發(fā)生變化,體會(huì)變與不變的思想。通過這種方法的學(xué)習(xí),讓學(xué)生學(xué)會(huì)歸納、總結(jié)所學(xué)的知識(shí)。使學(xué)生初步形成運(yùn)用反比例函數(shù)解決實(shí)際問題的意識(shí)打好基礎(chǔ)。
通過以學(xué)生身邊熟悉的星海湖水利工程為實(shí)際問題創(chuàng)設(shè)練習(xí)題,讓學(xué)生進(jìn)一步加深對反比例函數(shù)的運(yùn)用和理解,更深層次形成反比例函數(shù)模型來解決實(shí)際問題的意識(shí),鞏固和提高所學(xué)知識(shí)。給學(xué)生足夠的時(shí)間和空間,為他們創(chuàng)造展示能力和應(yīng)用所學(xué)知識(shí)的機(jī)會(huì)。
最后,通過小結(jié),使學(xué)生把所學(xué)知識(shí)進(jìn)一步內(nèi)化、系統(tǒng)化。
二、說內(nèi)容
本章的反比例函數(shù)的內(nèi)容屬于《全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)——數(shù)學(xué)》是在已經(jīng)學(xué)習(xí)了平面直角坐標(biāo)系和一次函數(shù)的基礎(chǔ)上,再一次進(jìn)入函數(shù)范疇。反比例函數(shù)是基本的函數(shù)之一,本章共分為兩節(jié),第17-2節(jié)的內(nèi)容是如何用反比例函數(shù)解決實(shí)際問題或如何用反比例函數(shù)解釋現(xiàn)實(shí)世界中的一些現(xiàn)象。本節(jié)課主要涉及在使用杠桿時(shí),如果阻力和阻力臂不變,則動(dòng)力是動(dòng)力臂的反比例函數(shù)。
三、說目標(biāo)
本節(jié)課的目標(biāo)是通過“杠桿原理”等實(shí)際問題與反比例函數(shù)關(guān)系的探究,使學(xué)生能夠從函數(shù)的觀點(diǎn)來解決一些實(shí)際問題。教學(xué)重點(diǎn):運(yùn)用反比例函數(shù)解釋生活中的一些規(guī)律,解決一些實(shí)際問題。教學(xué)難點(diǎn):把實(shí)際問題利用反比例函數(shù)轉(zhuǎn)化為數(shù)學(xué)問題加以解決。
四、說教法
本節(jié)課是實(shí)際問題與反比例函數(shù)的學(xué)習(xí),我采用的教學(xué)方法是,要培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,并且精心引導(dǎo)學(xué)生通過反比例函數(shù)模型來實(shí)現(xiàn)解決實(shí)際問題。在這引導(dǎo)過程中讓學(xué)生體會(huì)老師是如何將實(shí)際問題向數(shù)學(xué)問題轉(zhuǎn)化的。
五、說學(xué)情
從學(xué)生初步接觸函數(shù)所蘊(yùn)含的“變化與對應(yīng)”思想,至今已經(jīng)半年有余,學(xué)生對與函數(shù)相關(guān)的概念不可避免會(huì)有些遺忘,再加上我們的學(xué)生大多數(shù)都是外來務(wù)工子女,好的習(xí)慣沒有養(yǎng)成,所以基礎(chǔ)知識(shí)差。特別是分析能力和計(jì)算能力。在進(jìn)行活動(dòng)中可能達(dá)不到預(yù)期的效果。
六、說教學(xué)安排
活動(dòng)一、創(chuàng)設(shè)情境,引入新課目的老師提出生活中遇到的問題,請學(xué)生幫助解決,激發(fā)學(xué)生的興趣。
活動(dòng)二、分析解決問題 目的與學(xué)生共同分析實(shí)際問題中的變量關(guān)系,引導(dǎo)學(xué)生利用反比例函數(shù)解決問題。
活動(dòng)三、從函數(shù)的觀點(diǎn) 進(jìn)一步激發(fā)學(xué)生學(xué)習(xí)興趣目的是引導(dǎo)學(xué)生利用“杠桿規(guī)律”培養(yǎng)科學(xué)探索精神。
活動(dòng)四、鞏固練習(xí)目的通過課堂練習(xí),提高學(xué)生運(yùn)用反比例函數(shù)解決實(shí)際問題能力。
活動(dòng)五、課堂小結(jié) 布置作業(yè) 目的歸納總結(jié)所學(xué)的知識(shí),體會(huì)利用函數(shù)的觀點(diǎn)解決實(shí)際問題。
初中數(shù)學(xué)反比例函數(shù)說課稿4今天我說課的內(nèi)容是華東師大版八年級數(shù)學(xué)下冊第十七章反比例函數(shù)及其圖象。
一、說教材分析:
本課時(shí)的內(nèi)容是在已經(jīng)學(xué)習(xí)了平面直角坐標(biāo)系和一次函數(shù)的基礎(chǔ)上,再一次進(jìn)入函數(shù)范疇,讓學(xué)生進(jìn)一步理解函數(shù)的內(nèi)涵,并感受到現(xiàn)實(shí)世界中存在各種函數(shù)。反比例函數(shù)的圖象與性質(zhì)是對正比例函數(shù)圖象與性質(zhì)的復(fù)習(xí)和對比,也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ)。本課時(shí)的學(xué)習(xí)是學(xué)生對函數(shù)的圖象與性質(zhì)一個(gè)再知的過程,由于初二學(xué)生是首次接觸雙曲線這種函數(shù)圖象,所以教學(xué)時(shí)應(yīng)注意引導(dǎo)學(xué)生抓住反比例函數(shù)圖象的特征,讓學(xué)生對反比例函數(shù)有一個(gè)形象和直觀的認(rèn)識(shí)。
二、說教學(xué)目標(biāo)分析:
根據(jù)新課改“以學(xué)生為主體,激活課堂氣氛,充分調(diào)動(dòng)起學(xué)生參與教學(xué)過程”的精神。在教學(xué)設(shè)計(jì)上,我設(shè)想通過使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識(shí)的同時(shí)激發(fā)學(xué)生的學(xué)習(xí)興趣和探究欲望,引導(dǎo)學(xué)生積極參與和主動(dòng)探索。
因此把教學(xué)目標(biāo)確定為:
(一)知識(shí)目標(biāo):
1、使學(xué)生了解反比例函數(shù)的概念
2、使學(xué)生能夠根據(jù)問題中的條件確定反比例函數(shù)的解析式。
3、使學(xué)生理解反比例函數(shù)的性質(zhì),會(huì)畫出它們的圖象,以及根據(jù)圖象指出函數(shù)值隨自變量的增加或減少而變化的情況。
4、會(huì)用待定系數(shù)法確定反比例函數(shù)的解析式。
(二)能力目標(biāo):
培養(yǎng)學(xué)生的觀察能力,分析能力,獨(dú)立解決問題的能力。
(三)德育目標(biāo):
1、向?qū)W生滲透數(shù)學(xué)來源于實(shí)踐又反過去作用于實(shí)踐的觀點(diǎn)。
2、使學(xué)生體會(huì)事物是有規(guī)律地變化著的觀點(diǎn)。
(四)美育目標(biāo):
通過反比例函數(shù)圖象的研究,滲透反映其性質(zhì)的圖象的直觀形象美,激發(fā)學(xué)生的興趣,也培養(yǎng)了學(xué)生積極探索知識(shí)的能力。
三、說教學(xué)重點(diǎn),難點(diǎn)。
(一)教學(xué)重點(diǎn):反比例的概念、圖象、性質(zhì),以及用待定系數(shù)法確定反比例函數(shù)的解析性。
(二)教學(xué)難點(diǎn):畫反比例函數(shù)的圖象。
(三)解決方法
(1)由分組討論,積極思考,分析問題,發(fā)現(xiàn)結(jié)論。
(2)訓(xùn)練,研究,總結(jié)
因?yàn)榉幢壤瘮?shù)的圖象有兩個(gè)分支,而且這兩個(gè)分支的變化趨勢又不同,學(xué)生初次接觸,一定會(huì)感到困難。為了突出重點(diǎn)、突破難點(diǎn)。我設(shè)計(jì)并制作了能動(dòng)態(tài)演示函數(shù)圖象的多媒體課件。讓學(xué)生親手操作,積極參與并主動(dòng)探索函數(shù)性質(zhì),幫助學(xué)生直觀地理解反比例函數(shù)的性質(zhì)。
四、說教學(xué)方法:
初中學(xué)生好動(dòng)、好奇、好表現(xiàn),抓住學(xué)生特點(diǎn),積極采用形象生動(dòng)、形式多樣的教學(xué)方法和學(xué)生廣泛的、積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上,青少年好動(dòng),注意力易分散,愛發(fā)表見解,希望得到老師的表揚(yáng),所以在教學(xué)中應(yīng)抓住學(xué)生這一生理特點(diǎn),一方面要運(yùn)用直觀生動(dòng)的形象,引發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要?jiǎng)?chuàng)造條件和機(jī)會(huì),讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。鑒于教材和初二學(xué)生的年齡特點(diǎn)、心理特征和認(rèn)知水平,設(shè)想采用問題教學(xué)法和對比教學(xué)法,用層層推進(jìn)的提問啟發(fā)學(xué)生深入思考,主動(dòng)探究,主動(dòng)獲取知識(shí)。同時(shí)注意與學(xué)生已有知識(shí)的聯(lián)系,減少學(xué)生對新概念接受的困難,給學(xué)生充分的自主探索時(shí)間。通過教師的引導(dǎo),啟發(fā)調(diào)動(dòng)學(xué)生的積極性,讓學(xué)生在課堂上多活動(dòng)、多觀察,主動(dòng)參與到整個(gè)教學(xué)活動(dòng)中來,組織學(xué)生參與“探究。
初中數(shù)學(xué)反比例函數(shù)說課稿5說教學(xué)目標(biāo):
1、理解反比例函數(shù),并能從實(shí)際問題中抽象出反比例關(guān)系的函數(shù)解析式;
2、會(huì)畫出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;
4、體會(huì)數(shù)學(xué)從實(shí)踐中來又到實(shí)際中去的研究、應(yīng)用過程;
5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力.說教學(xué)重點(diǎn):
結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
教學(xué)難點(diǎn):描點(diǎn)畫出反比例函數(shù)的圖象
說教學(xué)用具:直尺
教學(xué)方法:小組合作、探究式
說教學(xué)過程:
1、從實(shí)際引出反比例函數(shù)的概念
我們在小學(xué)學(xué)過反比例關(guān)系.例如:當(dāng)路程S一定時(shí),時(shí)間t與速度v成反比例
即vt=S(S是常數(shù));
當(dāng)矩形面積S一定時(shí),長a與寬b成反比例,即ab=S(S是常數(shù))
從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫成:
(S是常數(shù))
(S是常數(shù))
一般地,函數(shù)(k是常數(shù),)叫做反比例函數(shù).如上例,當(dāng)路程S是常數(shù)時(shí),時(shí)間t就是v的反比例函數(shù).當(dāng)矩形面積S是常數(shù)時(shí),長a是寬b的反比例函數(shù).在現(xiàn)實(shí)生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進(jìn)行討論.下面的例子僅供
2、列表、描點(diǎn)畫出反比例函數(shù)的圖象
例1、畫出反比例函數(shù) 與 的圖象
解:列表
說明:由于學(xué)生第一次接觸反比例函數(shù),無法推測出它的大致圖象.取點(diǎn)的時(shí)候最好多取幾個(gè),正負(fù)可以對稱著取分別畫點(diǎn)描圖
一般地反比例函數(shù)(k是常數(shù),)的圖象由兩條曲線組成,叫做雙曲線.3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)
前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí).顯示這兩個(gè)函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)
(1)的圖象在第一、三象限.可以擴(kuò)展到k 0時(shí)的情形,即k0時(shí),雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號,因此,圖象在第一、三象限.的討論與此類似.抓住機(jī)會(huì),說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過程.(2)函數(shù) 的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小;
從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢.從列表中也可以看出這樣的變化趨勢.有理數(shù)除法說明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k0時(shí),函數(shù) 的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小.同樣可以推出 的圖象的性質(zhì).(3)函數(shù) 的圖象不經(jīng)過原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來越大時(shí),y的值越來越小,趨近于零;如果x取負(fù)值且越來越小時(shí),y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出 圖象的性質(zhì).函數(shù) 的圖象性質(zhì)的討論與次類似.4、小結(jié):
本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中.5、布置作業(yè)習(xí)題13.8 1-4
第五篇:2015年特崗教師招聘(初中)數(shù)學(xué)面試說課稿《二次函數(shù)》
一、教材分析
1.教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。
2.教學(xué)目標(biāo)和要求
(1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力。
(3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心。
3.教學(xué)重點(diǎn):對二次函數(shù)概念的理解。
4.教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。
二、教法學(xué)法設(shè)計(jì)
1.從創(chuàng)設(shè)情境入手,通過知識(shí)再現(xiàn),孕伏教學(xué)過程。
2.從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢教學(xué)過程。
3.利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
三、教學(xué)過程
(一)復(fù)習(xí)提問
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx,k≠0;y=k/x,k≠0)
青年人網(wǎng)(004km.cn)提供
3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對函數(shù)性質(zhì)有什么影響?
【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較。
(二)引入新課
函數(shù)是研究兩個(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)??聪旅嫒齻€(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)
例1圓的半徑是r(cm)時(shí),面積s(cm2)與半徑之間的關(guān)系是什么?
解:s=πr2(r>0)
例2設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解: y=100(1+x)2
=100(x2+2x+1)
= 100x2+200x+100(0
教師提問:以上兩個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
【設(shè)計(jì)意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系:(1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
(三)講解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a≠0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
鞏固對二次函數(shù)概念的理解:
1.強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
2.在 y=ax2+bx+c 中自變量是x,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)
青年人網(wǎng)(004km.cn)提供
3.為什么二次函數(shù)定義中要求a≠0 ?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)
4.在例2中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100。
5.b和c是否可以為零?
由例1可知,b和c均可為零。
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2。
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式。
【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c。
(1)y=3(x-1)2+1
(2)s=3-2t2
(3)y=(x+3)2-x2
(4)s=10πr2
(5)y=22+2x
(6)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))
【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。
(四)鞏固練習(xí)
1.已知一個(gè)直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時(shí),求這個(gè)直角三角形的面積;
(2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)于x的函數(shù)關(guān)系式。
青年人網(wǎng)(004km.cn)提供
【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。
(1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;
(2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?
【設(shè)計(jì)意圖】簡單的實(shí)際問題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長為Ccm,圓柱的體積為Vcm3
(1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;
(2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?
【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來。
4.籬笆墻長30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍。
【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。
(五)拓展延伸
1.已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時(shí),y=0;x=1時(shí),y=2;x=-1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式。
【設(shè)計(jì)意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個(gè)鋪墊。
2.確定下列函數(shù)中k的值
(1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______
(2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______
【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0。
(六)小結(jié)思考
青年人網(wǎng)(004km.cn)提供
本節(jié)課你有哪些收獲?還有什么不清楚的地方?
【設(shè)計(jì)意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。
(七)作業(yè)布置
必做題:
1.正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?
2.在長20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。
選做題:
1.已知函數(shù) 是二次函數(shù),求m的值。
2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象
【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。
四、教學(xué)設(shè)計(jì)思考
以實(shí)現(xiàn)教學(xué)目標(biāo)為前提
以現(xiàn)代教育理論為依據(jù)
以現(xiàn)代信息技術(shù)為手段
貫穿一個(gè)原則——以學(xué)生為主體的原則
突出一個(gè)特色——充分鼓勵(lì)表揚(yáng)的特色
滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)
青年人網(wǎng)(004km.cn)提供