欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      利用導(dǎo)數(shù)證明不等式(全文5篇)

      時間:2019-05-12 20:33:43下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《利用導(dǎo)數(shù)證明不等式》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《利用導(dǎo)數(shù)證明不等式》。

      第一篇:利用導(dǎo)數(shù)證明不等式

      克維教育(82974566)中考、高考培訓(xùn)專家鑄就孩子輝煌的未來

      函數(shù)與導(dǎo)數(shù)

      (三)核心考點(diǎn)

      五、利用導(dǎo)數(shù)證明不等式

      一、函數(shù)類不等式證明

      函數(shù)類不等式證明的通法可概括為:證明不等式f(x)?g(x)(f(x)?g(x))的問題轉(zhuǎn)化為證明f(x)?g(x)?0(f(x)?g(x)?0),進(jìn)而構(gòu)造輔助函數(shù)h(x)?f(x)?g(x),然后利用導(dǎo)數(shù)證明函數(shù)h(x)的單調(diào)性或證明函數(shù)h(x)的最小值(最大值)大于或等于零(小于或等于零)。

      1、已知函數(shù)f(x)?lnx?ax2?(2?a)x

      (1)討論函數(shù)f(x)的單調(diào)性;

      (2)設(shè)a?0,證明:當(dāng)0?x?111時,f(?x)?f(?x); aaa

      (3)若函數(shù)f(x)的圖像與x軸交于A、B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0,證明:f`(x0)?0

      【變式1】已知函數(shù)f(x)?ln(x?1)?x,求證:恒有1?1?ln(x?1)?x成立。x?

      1x【變式2】(1)x?0,證明:e?1?x

      x

      2?ln(1?x)(2)x?0時,求證:x?2

      二、常數(shù)類不等式證明

      常數(shù)類不等式證明的通法可概括為:證明常數(shù)類不等式的問題等價轉(zhuǎn)化為證明不等式 f(a)?f(b)的問題,在根據(jù)a,b的不等式關(guān)系和函數(shù)f(x)的單調(diào)性證明不等式。例

      2、已知m?n?e,,求證:n?m

      3、已知函數(shù)f(x)?ln(x?1)?

      (1)求f(x)的極小值;

      (2)若a,b?0,求證:lna?lnb?1?

      mnx,1?xb a

      【變式3】已知f(x)?lnx,g(x)?127,直線l與函數(shù)f(x)、g(x)的 x?mx?(m?0)22

      圖像都相切,且與函數(shù)f(x)的圖像的切點(diǎn)的橫坐標(biāo)為1.

      (Ⅰ)求直線l的方程及m的值;

      (Ⅱ)若h(x)?f(x?1)?g?(x)(其中g(shù)?(x)是g(x)的導(dǎo)函數(shù)),求函數(shù)h(x)的最大值;(Ⅲ)當(dāng)0?b?a時,求證:f(a?b)?f(2a)?b?a. 2a

      【變式4】求證:

      b?ab?lnba?b?aa(0?a?b)

      1?x)?x?0(x??1)【變式5】證明:ln(ln22ln32lnn2(n?1)(2n?1)【引申】求證: 2?2???2?(n?2,n?N*)23n2(n?1)

      【變式6】當(dāng)t?1時,證明:1??lnt?t?1 1t

      x21(x?1),各項不為零的數(shù)列?an?滿足4Sn?f()?1,【引申】已知函數(shù)f(x)?an2(x?1)

      1n?11(1)求證:??ln??; an?1nan

      (2)設(shè)bn??1,Tn為數(shù)列?bn?的前n項和,求證:T2008?1?ln2008?T2007。an

      第二篇:利用導(dǎo)數(shù)證明不等式

      利用導(dǎo)數(shù)證明不等式

      例1.已知x>0,求證:x>ln(1+x)分析:設(shè)f(x)=x-lnx。x?[0,+????紤]到f(0)=0,要證不等式變?yōu)椋簒>0時,f(x)>f(0),這只要證明:

      f(x)在區(qū)間[0,??)是增函數(shù)。

      證明:令:f(x)=x-lnx,容易看出,f(x)在區(qū)間[0,??)上可導(dǎo)。

      且limf(x)?0?f(0)?x?0 由f'(x)?1?1x 可得:當(dāng)x?(0,??)時,f'(x)?f(0)?0 ?x?1x?1 即x-lnx>0,所以:x>0時,x>lnx 評注:要證明一個一元函數(shù)組成的不等式成立,首先根據(jù)題意構(gòu)造出一個

      函數(shù)(可以移項,使右邊為零,將移項后的左式設(shè)為函數(shù)),并利 用導(dǎo)數(shù)判斷所設(shè)函數(shù)的單調(diào)性,再根據(jù)函數(shù)單調(diào)性的定義,證明要 證的不等式。

      例2:當(dāng)x??0,??時,證明不等式sinx?x成立。證明:設(shè)f(x)?sinx?x,則f'(x)?cosx?1.∵x?(0,?),∴f'(x)?0.∴f(x)?sinx?x在x?(0,?)內(nèi)單調(diào)遞減,而f(0)?0.∴f(x)?sinx?x?f(0)?0, 故當(dāng)x?(0,?)時,sinx?x成立。

      點(diǎn)評:一般地,證明f(x)?g(x),x?(a,b),可以構(gòu)造函數(shù)F(x)?f(x)?g(x),如果F'(x)?0,,則F(x)在(a,b)上是減函數(shù),同時若F(a)?0,由減函數(shù)的定義可知,x?(a,b)時,有F(x)?0,即證明了f(x)?g(x)。

      x練習(xí):1.當(dāng)x?0時,證明不等式e?1?x?12x成立。2證明:設(shè)f?x??e?1?x?x12x,則f'?x??ex?1?x.2xxx令g(x)?e?1?x,則g'(x)?e?1.當(dāng)x?0時,g'?x??e?1?0.?g(x)在?0,???上單調(diào)遞增,而g(0)?0.?g?x??g(0)?0,?g(x)?0在?0,???上恒成立,?f(x)在即f'(x)?0在?0,???恒成立。?0,???上單調(diào)遞增,又f(0)?0,?ex?1?x?1x2?0,即x?0時,ex222.證明:當(dāng)x?1時,有l(wèi)n(x?1)?lnx?ln(x?2).?1?x?12x成立。2分析 只要把要證的不等式變形為

      ln(x?1)ln(x?2)?,然后把x相對固定看作常數(shù),并選取輔助函

      lnxln(x?1)數(shù)f(x)?ln(x?1).則只要證明f(x)在(0,??)是單調(diào)減函數(shù)即可.lnx證明: 作輔助函數(shù)f(x)?ln(x?1)(x?1)lnxlnxln(x?1)?xlnx?(x?1)ln(x?1)?于是有f?(x)?x?12x

      lnxx(x?1)ln2x因為 1?x?x?1, 故0?lnx?ln(x?1)所以 xlnx?(x?1)ln(x?1)

      (1,??)因而在內(nèi)恒有f'(x)?0,所以f(x)在區(qū)間(1,??)內(nèi)嚴(yán)格遞減.又因為1?x?1?x,可知f(x)?f(x?1)即 ln(x?1)ln(x?2)?lnxln(x?1)所以 ln2(x?1)?lnx?ln(x?2).利用導(dǎo)數(shù)知識證明不等式是導(dǎo)數(shù)應(yīng)用的一個重要方面,也成為高考的一個新熱點(diǎn),其關(guān)鍵是構(gòu)造適當(dāng)?shù)暮瘮?shù),判斷區(qū)間端點(diǎn)函數(shù)值與0的關(guān)系,其實質(zhì)就是利用求導(dǎo)的方法研究函數(shù)的單調(diào)性,通過單調(diào)性證明不等式。

      x2例3.證明不等式x??ln(1?x)?x,其中x?0.2x2分析 因為例6中不等式的不等號兩邊形式不一樣,對它作差ln(1?x)?(x?),則發(fā)現(xiàn)作差以后

      21?x)求導(dǎo)得不容易化簡.如果對ln(1,這樣就能對它進(jìn)行比較.1?xx2證明: 先證 x??ln(1?x)

      2x2設(shè) f(x)?ln(1?x)?(x?)(x?0)

      21x21?0)?0?0 f(x)?則 f(0)?ln(?1?x?1?x1?x'? x?0 即 1?x?0 x2?0

      x2? f?(x)??0 ,即在(0,??)上f(x)單調(diào)遞增

      1?xx2? f(x)?f(0)?0 ? ln(1?x)?x?

      21?x)?x;令 g(x)?ln(1?x)?x 再證 ln(則 g(0)?0 g?(x)?1?1 1?x1?ln(1?x)?x ? x?0 ? ?1 ? g?(x)?0 1?xx2? x??ln(1?x)?x 練習(xí):3(2001年全國卷理20)已知i,m,n是正整數(shù),且1?i?m?n

      證明:(1?m)n?(1?n)m

      分析:要證(1?m)n?(1?n)m成立,只要證

      ln(1?m)n?ln(1?n)m

      即要證11ln(1?m)?ln(1?n)成立。因為m

      11ln(1?m)?ln(1?n); mn從而:(1?m)n?(1?n)m。

      評注:這類非明顯一元函數(shù)式的不等式證明問題,首先變換成某一個一元函數(shù)式分別在兩個不同點(diǎn)處的函數(shù)值的大小比較問題,只要將這個函數(shù)式找到了,通過設(shè)函數(shù),求導(dǎo)判斷它的單調(diào)性,就可以解決不等式證明問題。難點(diǎn)在于找這個一元函數(shù)式,這就是“構(gòu)造函數(shù)法”,通過這類數(shù)學(xué)方法的練習(xí),對培養(yǎng)分析問題、解決問題的能力是有很大好處的,這也是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)所需要的。

      第三篇:利用導(dǎo)數(shù)證明不等式

      利用導(dǎo)數(shù)證明不等式

      沒分都沒人答埃。覺得可以就給個好評!

      最基本的方法就是將不等式的的一邊移到另一邊,然后將這個式子令為一個函數(shù)f(x).對這個函數(shù)求導(dǎo),判斷這個函數(shù)這各個區(qū)間的單調(diào)性,然后證明其最大值(或者是最小值)大于0.這樣就能說明原不等式了成立了!

      1.當(dāng)x>1時,證明不等式x>ln(x+1)

      設(shè)函數(shù)f(x)=x-ln(x+1)

      求導(dǎo),f(x)'=1-1/(1+x)=x/(x+1)>0

      所以f(x)在(1,+無窮大)上為增函數(shù)

      f(x)>f(1)=1-ln2>o

      所以x>ln(x+

      12..證明:a-a^2>0其中0

      F(a)=a-a^

      2F'(a)=1-2a

      當(dāng)00;當(dāng)1/2

      因此,F(xiàn)(a)min=F(1/2)=1/4>0

      即有當(dāng)00

      3.x>0,證明:不等式x-x^3/6

      先證明sinx

      因為當(dāng)x=0時,sinx-x=0

      如果當(dāng)函數(shù)sinx-x在x>0是減函數(shù),那么它一定<在0點(diǎn)的值0,求導(dǎo)數(shù)有sinx-x的導(dǎo)數(shù)是cosx-1

      因為cosx-1≤0

      所以sinx-x是減函數(shù),它在0點(diǎn)有最大值0,知sinx

      再證x-x3/6

      對于函數(shù)x-x3/6-sinx

      當(dāng)x=0時,它的值為0

      對它求導(dǎo)數(shù)得

      1-x2/2-cosx如果它<0那么這個函數(shù)就是減函數(shù),它在0點(diǎn)的值是最大值了。

      要證x2/2+cosx-1>0x>0

      再次用到函數(shù)關(guān)系,令x=0時,x2/2+cosx-1值為0

      再次對它求導(dǎo)數(shù)得x-sinx

      根據(jù)剛才證明的當(dāng)x>0sinx

      x2/2-cosx-1是減函數(shù),在0點(diǎn)有最大值0

      x2/2-cosx-1<0x>0

      所以x-x3/6-sinx是減函數(shù),在0點(diǎn)有最大值0

      得x-x3/6

      利用函數(shù)導(dǎo)數(shù)單調(diào)性證明不等式X-X2>0,X∈(0,1)成立

      令f(x)=x-x2x∈

      則f'(x)=1-2x

      當(dāng)x∈時,f'(x)>0,f(x)單調(diào)遞增

      當(dāng)x∈時,f'(x)<0,f(x)單調(diào)遞減

      故f(x)的最大值在x=1/2處取得,最小值在x=0或1處取得

      f(0)=0,f(1)=0

      故f(x)的最小值為零

      故當(dāng)x∈(0,1)f(x)=x-x2>0。

      i、m、n為正整數(shù),且1

      第四篇:談利用導(dǎo)數(shù)證明不等式.

      談利用導(dǎo)數(shù)證明不等式

      數(shù)學(xué)組

      鄒黎華

      在高考試題中,不等式的證明往往與函數(shù)、導(dǎo)數(shù)、數(shù)列的內(nèi)容綜合,屬于在知識網(wǎng)絡(luò)的交匯處設(shè)計的試題,有一定的綜合性和難度,突出體現(xiàn)對理性思維的考查,特別是利用高中新增內(nèi)容的導(dǎo)數(shù)來證明不等式,體現(xiàn)了導(dǎo)數(shù)的工具,也是與高等數(shù)學(xué)接軌的有力點(diǎn)。本文通過一些實例,來說明利用導(dǎo)數(shù)增證明不等式的基本方法。

      例1.已知x>0,求證:x>ln(1+x)

      分析:設(shè)f(x)=x-lnx。x?[0,+????紤]到f(0)=0,要證不等式變?yōu)椋簒>0時,f(x)>f(0),這只要證明:

      f(x)在區(qū)間[0,??)是增函數(shù)。

      證明:令:f(x)=x-lnx,容易看出,f(x)在區(qū)間[0,??)上可導(dǎo)。

      且limf(x)?0?f(0)?x?0

      由f'(x)?1?1x

      可得:當(dāng)x?(0,??)時,f'(x)?f(0)?0 ?x?1x?

      1即x-lnx>0,所以:x>0時,x>lnx

      評注:要證明一個一元函數(shù)組成的不等式成立,首先根據(jù)題意構(gòu)造出一個

      函數(shù)(可以移項,使右邊為零,將移項后的左式設(shè)為函數(shù)),并利 用導(dǎo)數(shù)判斷所設(shè)函數(shù)的單調(diào)性,再根據(jù)函數(shù)單調(diào)性的定義,證明要 證的不等式。

      例2:(2001年全國卷理20)已知i,m,n是正整數(shù),且1?i?m?n

      證明:(1?m)n?(1?n)m

      分析:要證(1?m)n?(1?n)m成立,只要證

      ln(1?m)n?ln(1?n)m

      11ln(1?m)?ln(1?n)成立。因為m

      x1111'

      證明:設(shè)函數(shù)f(x)?ln(1?x),則f(x)??2ln(1?x)??

      xx1?xx1x'?ln(1?x)] 即:f(x)?2[x1?xx?1,ln(1?x)?ln3?1 因為:x?2,0?1?x即要證所以:f(x)?0,所以f(x)在[2,??)是減函數(shù),而m?n 所以f(m)?f(n),即n''11ln(1?m)?ln(1?n); mnm從而:(1?m)?(1?n)。

      評注:這類非明顯一元函數(shù)式的不等式證明問題,首先變換成某一個一元函數(shù)式分別在兩個不同點(diǎn)處的函數(shù)值的大小比較問題,只要將這個函數(shù)式找到了,通過設(shè)函數(shù),求導(dǎo)判斷它的單調(diào)性,就可以解決不等式證明問題。難點(diǎn)在于找這個一元函數(shù)式,這就是“構(gòu)造函數(shù)法”,通過這類數(shù)學(xué)方法的練習(xí),對培養(yǎng)分析問題、解決問題的能力是有很大好處的,這也是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)所需要的。

      例3.(2004年全國卷理工22題)已知函數(shù)f(x)?ln(1?x)?x,g(x)?xlnx,設(shè)0?a?b

      證明:0?g(a)?g(b)?2g(a?b)?(b?a)ln2 2證明:設(shè)g(x)?xlnx,g'(x)?lnx?1 設(shè)F(x)?g(a)?g(x)?2g(a?x)2則F'(x)?g'(x)?2[g(a?xa?x)]?lnx?ln22

      當(dāng)0?x?a時,F(xiàn)'(x)?0,當(dāng)x?a時,F(xiàn)'(x)?0 因此,F(xiàn)(x)

      在區(qū)間(0,a)內(nèi)是減函數(shù),在區(qū)間[a,??)內(nèi)為增函數(shù),于是在x?a 時,F(xiàn)(x)有最小值F(a)?0又b?a,所以0?g(a)?g(b)?2g(a?b)2設(shè)G(x)?g(a)?g(x)?2g(a?x)?(x?a)ln2,則G'(x)?lnx?lna?x?ln2?lnx?ln(a?x)2當(dāng)x?0時,G'(x)?0,因此G(x)在區(qū)間(0,??)內(nèi)為減函數(shù); 因為G(a)?0,b?a,所以G(b)?0,即:g(a)?g(b)?2g(a?b)?(b?a)ln2。2評注:本題在設(shè)輔助函數(shù)時,考慮到不等式涉及的變量是區(qū)間的兩個端點(diǎn),因此,設(shè)輔助函數(shù)時就把其中一個端點(diǎn)設(shè)為自變量,范例中選用右

      端點(diǎn),讀者不妨設(shè)為左端點(diǎn)試一試,就更能體會到其中的奧妙了。

      通過以上例題,我們可以體會到用導(dǎo)數(shù)來證明不等式的基本要領(lǐng)和它的簡捷。總之,利用導(dǎo)數(shù)證明不等式的關(guān)鍵是“構(gòu)造函數(shù)”,解決問題的依據(jù)是函數(shù)的單調(diào)性,這一方法在高等數(shù)學(xué)中應(yīng)用的非常廣泛,因此,希望同學(xué)門能認(rèn)真對待,并通過適當(dāng)?shù)木毩?xí)掌握它。

      第五篇:第五講 利用導(dǎo)數(shù)證明不等式

      利用導(dǎo)數(shù)證明不等式的兩種通法

      利用導(dǎo)數(shù)證明不等式是高考中的一個熱點(diǎn)問題,利用導(dǎo)數(shù)證明不等式主要有兩種通法,即函數(shù)類不等式證明和常數(shù)類不等式證明。下面就有關(guān)的兩種通法用列舉的方式歸納和總結(jié)。

      一、函數(shù)類不等式證明

      函數(shù)類不等式證明的通法可概括為:證明不等式f(x)?g(x)(f(x)?g(x))的問題轉(zhuǎn)化為證明f(x)?g(x)?0(f(x)?g(x)?0),進(jìn)而構(gòu)造輔助函數(shù)h(x)?f(x)?g(x),然后利用導(dǎo)數(shù)證明函數(shù)h(x)的單調(diào)性或證明函數(shù)h(x)的最小值(最大值)大于或等于零(小于或等于零)。例1 已知x?(0,?2),求證:sinx?x?tanx

      證明這個變式題可采用兩種方法:

      第一種證法:運(yùn)用本例完全相同的方法證明每個不等式以后再放縮或放大,即證明不等式 sinx?x以后,根據(jù)sinx?1?sinx?x來證明不等式sinx?1?x;

      第二種證法:直接構(gòu)造輔助函數(shù)f(x)?sinx?1?x和g(x)?x?tanx?1,其中x?(0,然后證明各自的單調(diào)性后再放縮或放大(如:f(x)?sinx?1?x?f(0)??1?0)例2 求證:ln(x?1)?x

      ?2)

      技巧

      一、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再由單調(diào)性來證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個難點(diǎn)。

      二、解題技巧是構(gòu)造輔助函數(shù),把不等式的證明轉(zhuǎn)化為利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性或求最值,從而證得不等式,而如何根據(jù)不等式的結(jié)構(gòu)特征構(gòu)造一個可導(dǎo)函數(shù)是用導(dǎo)數(shù)證明不等式的關(guān)鍵。

      1、利用題目所給函數(shù)證明

      【例1】 已知函數(shù)f(x)?ln(x?1)?x,求證:當(dāng)x??1時,恒有1?

      1?ln(x?1)?x x?

      1如果f(a)是函數(shù)f(x)在區(qū)間上的最大(小)值,則有f(x)?f(a)(或f(x)?f(a)),那么要證不等式,只要求函數(shù)的最大值不超過0就可得證.

      2、直接作差構(gòu)造函數(shù)證明

      123【例2】已知函數(shù)f(x)?x2?lnx.求證:在區(qū)間(1,??)上,函數(shù)f(x)的g(x)?x23的圖象的下方;

      首先根據(jù)題意構(gòu)造出一個函數(shù)(可以移項,使右邊為零,將移項后的左式設(shè)為函數(shù)),并利用導(dǎo)數(shù)判斷所設(shè)函數(shù)的單調(diào)性,再根據(jù)函數(shù)單調(diào)性的定義,證明要證的不等式。

      3、換元后作差構(gòu)造函數(shù)證明

      111【例3】證明:對任意的正整數(shù)n,不等式ln(?1)?2?3 都成立.nnn

      當(dāng)F(x)在[a,b]上單調(diào)遞增,則x?a時,有F(x)?F(a).如果f(a)=?(a),要證明當(dāng)x?a時,f(x)??(x),那么,只要令F(x)=f(x)-?(x),就可以利用F(x)的單調(diào)增性來推導(dǎo).也就是說,在F(x)可導(dǎo)的前提下,只要證明F'(x)?0即可.

      4、從條件特征入手構(gòu)造函數(shù)證明

      【例4】若函數(shù)y=f(x)在R上可導(dǎo)且滿足不等式xf?(x)>-f(x)恒成立,且常數(shù)a,b滿足a>b,求證:.a(chǎn)f(a)>bf(b)

      由條件移項后xf?(x)?f(x),容易想到是一個積的導(dǎo)數(shù),從而可以構(gòu)造函數(shù)F(x)?xf(x),求導(dǎo)即可完成證明。若題目中的條件改為xf?(x)?f(x),則移項后xf?(x)?f(x)

      練習(xí)

      21.設(shè)a?0,f(x)?x?1?ln2x?2alnx求證:當(dāng)x?1時,恒有x?lnx?2alnx?1

      2.已知定義在正實數(shù)集上的函數(shù)f(x)?12x?2ax,g(x)?3a2lnx?b,其中a>0,且2b?

      52a?3a2lna,求證:f(x)?g(x)2(?x)?3.已知函數(shù)f(x)?ln1blna?lnb?1?.a

      x,求證:對任意的正數(shù)a、b,恒有1?x4.f(x)是定義在(0,+∞)上的非負(fù)可導(dǎo)函數(shù),且滿足xf?(x)?f(x)≤0,對任意正數(shù)a、b,若a < b,則必有

      ()

      (A)af(b)≤bf(a)(C)af(a)≤f(b)

      (B)bf(a)≤af(b)(D)bf(b)≤f(a)

      二、常數(shù)類不等式證明

      常數(shù)類不等式證明的通法可概括為:證明常數(shù)類不等式的問題等價轉(zhuǎn)化為證明不等式

      f(a)?f(b)的問題,在根據(jù)a,b的不等式關(guān)系和函數(shù)f(x)的單調(diào)性證明不等式。

      例3已知m?n?0,a,b?R且(a?1)(b?1)?0

      ?求證:(an?bn)m?(am?bm)n

      利用導(dǎo)數(shù)證明常數(shù)類不等式的關(guān)鍵是經(jīng)過適當(dāng)?shù)淖冃?,將不等式證明的問題轉(zhuǎn)化為函數(shù)單調(diào)性證明問題,其中關(guān)鍵是構(gòu)造輔助函數(shù),如何構(gòu)造輔助函數(shù)也是這種通法運(yùn)用的難點(diǎn)和關(guān)鍵所在。構(gòu)造輔助函數(shù)關(guān)鍵在于不等式轉(zhuǎn)化為左右兩邊是相同結(jié)構(gòu)的式子這樣根據(jù)“相同結(jié)構(gòu)”可以構(gòu)造輔助函數(shù)。例4 已知0?????

      練習(xí)

      2.當(dāng)x?1時,求證:2x?3?證明:a?b

      ba?2,求證:

      tan??tan??1???1 tan??tan?1已知a,b為實數(shù),并且e

      3.已知函數(shù)f(x)?ex?ln(x?1)?1?x?0?(1)求函數(shù)f(x)的最小值;

      (2)若0?y?x,求證:ex?y?1?ln(x?1)?ln(y?1)

      求證:(?e?ee)??(???e?)e

      下載利用導(dǎo)數(shù)證明不等式(全文5篇)word格式文檔
      下載利用導(dǎo)數(shù)證明不等式(全文5篇).doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        構(gòu)造函數(shù),利用導(dǎo)數(shù)證明不等式

        構(gòu)造函數(shù),利用導(dǎo)數(shù)證明不等式湖北省天門中學(xué)薛德斌2010年10月例1、設(shè)當(dāng)x??a,b?時,f/(x)?g/(x),求證:當(dāng)x??a,b?時,f(x)?f(a)?g(x)?g(a).例2、設(shè)f(x)是R上的可導(dǎo)函數(shù),且當(dāng)x?1時(x?1)f/(x)?0.求證:(1)f(......

        導(dǎo)數(shù)證明不等式

        導(dǎo)數(shù)證明不等式一、當(dāng)x>1時,證明不等式x>ln(x+1)f(x)=x-ln(x+1)f'(x)=1-1/(x+1)=x/(x+1)x>1,所以f'(x)>0,增函數(shù)所以x>1,f(x)>f(1)=1-ln2>0f(x)>0所以x>0時,x>ln(x+1)二、導(dǎo)......

        導(dǎo)數(shù)的應(yīng)用——利用導(dǎo)數(shù)證明不等式15則范文

        導(dǎo) 數(shù) 的 應(yīng) 用 --------利用導(dǎo)數(shù)證明不等式 教學(xué)目標(biāo):1、進(jìn)一步熟練并加深導(dǎo)數(shù)在函數(shù)中的應(yīng)用并學(xué)會利用導(dǎo)數(shù)證明不等式 2、培養(yǎng)學(xué)生的分析問題、解決問題及知識的綜合運(yùn)用......

        利用導(dǎo)數(shù)證明不等式的四種常用方法

        利用導(dǎo)數(shù)證明不等式的四種常用方法 楊玉新 (紹興文理學(xué)院 數(shù)學(xué)系, 浙江 紹興 312000) 摘要: 通過舉例闡述了用導(dǎo)數(shù)證明不等式的四種方法,由此說明了導(dǎo)數(shù)在不等式證明中的重......

        利用導(dǎo)數(shù)證明不等式的常見題型經(jīng)典[★]

        利用導(dǎo)數(shù)證明不等式的常見題型及解題技巧技巧精髓1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再由單調(diào)性來證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個難點(diǎn),也是近幾年高考的熱點(diǎn)。2、解題......

        應(yīng)用導(dǎo)數(shù)證明不等式

        應(yīng)用導(dǎo)數(shù)證明不等式常澤武指導(dǎo)教師:任天勝(河西學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院 甘肅張掖 734000)摘要: 不等式在初等數(shù)學(xué)和高等代數(shù)中有廣泛的應(yīng)用,證明方法很多,本文以函數(shù)的觀點(diǎn)來認(rèn)識不等......

        利用導(dǎo)數(shù)證明不等式的兩種通法

        利用導(dǎo)數(shù)證明不等式的兩種通法吉林省長春市東北師范大學(xué)附屬實驗學(xué)校金鐘植岳海學(xué)利用導(dǎo)數(shù)證明不等式是高考中的一個熱點(diǎn)問題,利用導(dǎo)數(shù)證明不等式主要有兩種通法,即函數(shù)類不等......

        一題多解專題三:利用導(dǎo)數(shù)證明不等式問題

        一題多解專題三:利用導(dǎo)數(shù)證明不等式問題1.構(gòu)造函數(shù)證明不等式的方法(1)對于(或可化為)左右兩邊結(jié)構(gòu)相同的不等式,構(gòu)造函數(shù)f(x),使原不等式成為形如f(a)>f(b)的形式.(2)對形如......