第一篇:2014-2-30導(dǎo)數(shù)證明不等式答案
1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個難點,也是近幾年高考的熱點。
2、解題技巧是構(gòu)造輔助函數(shù),把不等式的證明轉(zhuǎn)化為利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性或求最值,從而證得不等式,而如何根據(jù)不等式的結(jié)構(gòu)特征構(gòu)造一個可導(dǎo)函數(shù)是用導(dǎo)數(shù)證明不等式的關(guān)鍵。
【例2】已知函數(shù)f(x)?12x?lnx.求證:在區(qū)間(1,??)上,函數(shù)f(x)的圖象在函數(shù)
223x的圖象的下方;
3分析:函數(shù)f(x)的圖象在函數(shù)g(x)的圖象的下方?不等式f(x)?g(x)問題,1212即x2?lnx?x3,只需證明在區(qū)間(1,??)上,恒有x2?lnx?x3成立,設(shè)2323
1F(x)?g(x)?f(x),x?(1,??),考慮到F(1)??0 6
要證不等式轉(zhuǎn)化變?yōu)椋寒攛?1時,F(xiàn)(x)?F(1),這只要證明: g(x)在區(qū)間(1,??)是g(x)?增函數(shù)即可。
【解】設(shè)F(x)?g(x)?f(x),即F(x)?
22312x?x?lnx,321(x?1)(2x2?x?1)則F?(x)?2x?x?= xx
(x?1)(2x2?x?1)當x?1時,F(xiàn)?(x)= x
從而F(x)在(1,??)上為增函數(shù),∴F(x)?F(1)?
∴當x?1時 g(x)?f(x)?0,即f(x)?g(x),故在區(qū)間(1,??)上,函數(shù)f(x)的圖象在函數(shù)g(x)?1?0 623x的圖象的下方。3
【警示啟迪】本題首先根據(jù)題意構(gòu)造出一個函數(shù)(可以移項,使右邊為零,將移項后的左式
設(shè)為函數(shù)),并利用導(dǎo)數(shù)判斷所設(shè)函數(shù)的單調(diào)性,再根據(jù)函數(shù)單調(diào)性的定義,證明要證的不等式。讀者也可以設(shè)F(x)?f(x)?g(x)做一做,深刻體會其中的思想方法。
熟悉化-------------到簡單化進行思考
通過對所求結(jié)果的等量變形----------從一個命題等量轉(zhuǎn)化為另一個自己所熟悉的命題 從而使問題得到解決
在坐標系中表示上下關(guān)系的是Y軸,表示左右關(guān)系的是X軸。所求問題轉(zhuǎn)化為Yg >Yf即為轉(zhuǎn)化為g(x)>f(x)轉(zhuǎn)化為證明不等式
不等式F(x)=g(x)-f(x)>0
【例3】(2007年,山東卷)證明:對任意的正整數(shù)n,不等式ln(?1)?基本題型利用導(dǎo)數(shù)證明
1n11 都成立.?n2n3
分析:本題是山東卷的第(II)問,從所證結(jié)構(gòu)出發(fā),只需令
231?x,則問題轉(zhuǎn)化為:n32當x?0時,恒有l(wèi)n(x?1)?x?x成立,現(xiàn)構(gòu)造函數(shù)h(x)?x?x?ln(x?1),求導(dǎo)即可達到證明。
【解】令h(x)?x?x?ln(x?1),32
13x3?(x?1)2
則h?(x)?3x?2x?在x?(0,??)上恒正,?x?1x?12
所以函數(shù)h(x)在(0,??)上單調(diào)遞增,∴x?(0,??)時,恒有h(x)?h(0)?0,即x?x?ln(x?1)?0,∴l(xiāng)n(x?1)?x?x
對任意正整數(shù)n,取x?32231111?(0,??),則有l(wèi)n(?1)?2?3 nnnn
【警示啟迪】我們知道,當F(x)在[a,b]上單調(diào)遞增,則x?a時,有F(x)?F(a).如果f(a)=?(a),要證明當x?a時,f(x)??(x),那么,只要令F(x)=f(x)-?(x),就可以利用F(x)的單調(diào)增性來推導(dǎo).也就是說,在F(x)可導(dǎo)的前提下,只要證明F'(x)?0即可.
4、(2007年,陜西卷)f(x)是定義在(0,+∞)上的非負可導(dǎo)函數(shù),且滿足xf?(x)?f(x)≤0,對任意正數(shù)a、b,若a < b,則必有()
(A)af(b)≤bf(a)
(C)af(a)≤f(b)(B)bf(a)≤af(b)(D)bf(b)≤f(a)
xf'(x)?f(x)f(x)f(x)?04、提示:F(x)?,F(xiàn)?(x)?,故在(0,+∞)上F(x)?2xxx
是減函數(shù),由a?b 有f(a)f(b)?? af(b)≤bf(a)故選(A)ab
第二篇:導(dǎo)數(shù)證明不等式
導(dǎo)數(shù)證明不等式
一、當x>1時,證明不等式x>ln(x+1)
f(x)=x-ln(x+1)
f'(x)=1-1/(x+1)=x/(x+1)
x>1,所以f'(x)>0,增函數(shù)
所以x>1,f(x)>f(1)=1-ln2>0
f(x)>0
所以x>0時,x>ln(x+1)
二、導(dǎo)數(shù)是近些年來高中課程加入的新內(nèi)容,是一元微分學(xué)的核心部分。本文就談?wù)剬?dǎo)數(shù)在一元不等式中的應(yīng)用。
例1.已知x∈(0,),求證:sinx
第三篇:應(yīng)用導(dǎo)數(shù)證明不等式
應(yīng)用導(dǎo)數(shù)證明不等式
常澤武指導(dǎo)教師:任天勝
(河西學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院 甘肅張掖 734000)
摘要: 不等式在初等數(shù)學(xué)和高等代數(shù)中有廣泛的應(yīng)用,證明方法很多,本文以函數(shù)的觀點來認識不等式,以導(dǎo)數(shù)為工具來證明不等式。
關(guān)鍵字: 導(dǎo)數(shù) 不等式最值中值定理單調(diào)性泰勒公式
中圖分類號: O13
Application derivative to testify inequality
ChangZeWu teachers: RenTianSheng
(HeXi institute of mathematics and statistics Gansu zhang ye 734000)Abstract: He inequality in elementary mathematics and higher algebra is widely used, proved many methods, based on the function point of view to know inequality to derivative tools to prove to inequality.Key words: The most value of derivative inequality value theorem monotonicity Taylor formula
1.利用微分中值定理來證明不等式
在數(shù)學(xué)分析中,我們學(xué)到了拉格朗日中值定理,其內(nèi)容為:
定理1.如果函數(shù)f?x?在閉區(qū)間?a,b?上連續(xù),在開區(qū)間?a,b?上可導(dǎo),則至少存在一點???a,b?,使得f'(?)?
拉格朗日中值定理是探討可微函數(shù)的的幾何特性及證明不等式的重要工具,我們可以根據(jù)以下兩種方法來證明。
(1)首先,分析不等式通過變形,將其特殊化。其次,選取合適的函數(shù)和范圍。第三,利用拉格朗日中值定理。最后,在根據(jù)函數(shù)的單調(diào)性和最大值和最小值。
(2)我們可根據(jù)其兩種等價表述方式
①f(b)?f(a)?f'(a??(b?a))(b?a),0???1
②f?a?h??f?a??f'?a??h?h,0???1
我們可以?的范圍來證明不等式。f(b)?f(a)。b?a
11(x?0)例1.1證明不等式ln(1?)?x1?x
證明第一步變形1 ln(1?)?ln(1?x)?ln(x)x
第二步選取合適的函數(shù)和范圍
令f(x)?lntt??x,1?x?
第三步應(yīng)用拉格朗日中值定理
存在???x,1?x?使得f'(?)?f(1?x)?f(x)(1?x)?(x)
即ln(1?x)?ln(x)?1
?而 ?<1+x 1 1?x
1?x1)?而0?x??? 即ln(x1?x?ln(1?x)?ln(x)?
例 1.2證明:?h>-1且h?0都有不等式成立:
h?ln(1?h)?h 1?h
證明:令f(x)=ln(1+x),有拉格朗日中值定理,????0,1?使得
ln(1?h)?f(h)?f(0)?f'(?h)h?
當h>0時有
1??h?1?1?h,當?1?h?0時有
1?1??h?1?h?0,即h.1??h1h??h;1?h1??h1h??h.1?h1??h
2.利用函數(shù)單調(diào)性證明不等式
我們在初等數(shù)學(xué)當中學(xué)習(xí)不等式的證明時用到了兩種方法:一種是判斷它們差的正負,另一種是判斷它們的商大于1還是小于1.而我們今天所要討論的是根據(jù)函數(shù)的導(dǎo)數(shù)的思想來判斷大小。
定理:設(shè)函數(shù)f(x)在?a,b?上連續(xù),在?a,b?可導(dǎo),那么
(1)若在?a,b?內(nèi)f'(x)?0則f(x)在?a,b?內(nèi)單調(diào)遞增。
(2)若在?a,b?內(nèi)f'(x)?0則f(x)在?a,b?內(nèi)單調(diào)遞減。
使用定理:要證明區(qū)間?a,b?上的不等式f(x)?g(x),只需令F(x)?f(?x)。g使在(x)?a,b?上F'(x)>0(F'(x)<0)且F(a)=0或(F(b)=0)例2.1 設(shè)x?0證明不等式ln(1?x)?xe?x
證明:令F(x)?ln(1?x)?xe?x(x>0)
顯然F(0)?0
1ex?x2?1?x?x(x>0)F'(x)??e?xe?x1?x(1?x)e
現(xiàn)在來證明ex?x2?1?0
令f(x)?ex?x2?1顯然f(0)?0
當x?0時f'(x)?ex?2x?0
于是得f(x)在x?0上遞增
故對x?0有f(x)?f(0)?f(x)?0
而(1?x)ex?0
所以F'(x)?0故F(x)遞增
又因為F(0)?0
所以F(x)?0
所以ln(1?x)?xe?x成立
3.利用函數(shù)的最大值和最小值證明不等式
當?shù)仁街泻小?”號時,不等式f(x)?g(x)(或f(x)?g(x))? g(x)?f(x)?0(或g(x)?f(x)?0),亦即等價于函數(shù)G(x)?g(x)?f(x)有最小值或F(x)?f(x?)g(有最大值。x)
證明思路:由待正不等式建立函數(shù),通過導(dǎo)數(shù)求出極值并判斷時極大值還是極小值,在求出最大值或最小值,從而證明不等式。
1例3.1證明若p>1,則對于?0,1?中的任意x有p?1?xp?(1?x)p?1 2
證明:構(gòu)造函數(shù)f(x)?xp?(1?x)p(0?x?1)
則有f'(x)?pxp?1?p(1?x)p?1?p(xp?1?(1?x)p?1)
令f'(x)?0,可得xp?1?(1?x)p?1,于是有x?1?x,從而求得x?1。由于2
函數(shù)f(x)在閉區(qū)間?0,1?上連續(xù),因而在閉區(qū)間?0,1?上有最小值和最大值。
由于函數(shù)f(x)內(nèi)只有一個駐點,沒有不可導(dǎo)點,又函數(shù)f(x)在駐點x?1和2
111p1?)?p?1,f(0)?f(1),區(qū)間端點(x?0和x?1)的函數(shù)值為f()?)p?(1所以2222
1f(x)在?0,1?的最小值為p?1,最大值為1,從而對于?0,1?中的任意x有2
11?f(x)?1?xp?(1?x)p?1。,既有p?1p?122
4.利用函數(shù)的泰勒展式證明不等式
若函數(shù)f(x)在含有x0的某區(qū)間有定義,并且有直到(n?1)階的各階導(dǎo)數(shù),又在x0處有n階導(dǎo)數(shù)f(n)(x0),則有展式: f'(x0)f''(x0)fn(x0)2(x?x0)?(x?x0)??(x?x0)n?Rn(x)f(x)?f(x0)?1!2!n!
在泰勒公式中,取x0=0,變?yōu)辂溈藙诹止?/p>
f'(0)f''(0)2fn(0)nf(x)?f(0)?(x)?(x)??(x)?Rn(x)1!2!n!
在上述公式中若Rn(x)?0(或?0)則可得
f'(0)f''(0)2fn(0)nf(x)?f(0)?(x)?(x)??(x),1!2!n!
f'(0)f''(0)2fn(0)n(x)?(x)??(x)?;騠(x)?f(0)?1!2!n!
帶有拉格朗日余項的泰勒公式的實質(zhì)是拉格朗日微分中值定理的深化,他是一個定量估計式,該公式在不等式證明和微分不等式證明及較為復(fù)雜的極限計算中有廣泛的應(yīng)用。
用此公式證明不等式就是要把所證不等式化簡,其中函數(shù)用此公式,在把公式右邊放大或縮小得到所證不等式。
例4.1若函數(shù)f(x)滿足:(1)在區(qū)間?a,b?上有二階導(dǎo)函數(shù)f''(x),(2)
f'(a)?f'(b)?0,則在區(qū)間?a,b?內(nèi)至少存在一點c,使
f''(c)?4f(b)?f(a)。2(b?a)
證明:由f(x)在x?a和x?b處的泰勒公式,并利用f'(a)?f'(b)?0,得f(x)?f(a)?f''(?)(x?a)2
2!f''(?)f(x)?f(b)?(x?b)2,于是2!
a?bf''(?)(b?a)2a?bf()?f(a)??(a???),22!42
a?bf''(?)(b?a)2a?bf()?f(b)??(a???),22!42
f''(?)?f''(?)(b?a)2
相減,得f(b)-f(a)=,24
4f(b)?f(a)1(b?a)2
即?f''(?)?f(?)?,(b?a)224
當f''(?)?f''(?)時,記c??否則記c=?,那么
f''(c)?4f(b)?f(a)(a?b?c)(b?a)2
參 考 文 獻
《數(shù)學(xué)分析》上冊,高等教育出版社,1990.?1?鄭英元,毛羽輝,宋國棟編,?2?趙煥光,林長勝編《數(shù)學(xué)分析》上冊,四川大學(xué)出版社,2006。?3?歐陽光中,姚允龍,周淵編《數(shù)學(xué)分析》上冊,復(fù)旦大學(xué)出版社,2004.?4?華東師范大學(xué)數(shù)學(xué)系編《數(shù)學(xué)分析》上冊,第三版,高等教育出版社2001.
第四篇:利用導(dǎo)數(shù)證明不等式
利用導(dǎo)數(shù)證明不等式
例1.已知x>0,求證:x>ln(1+x)分析:設(shè)f(x)=x-lnx。x?[0,+????紤]到f(0)=0,要證不等式變?yōu)椋簒>0時,f(x)>f(0),這只要證明:
f(x)在區(qū)間[0,??)是增函數(shù)。
證明:令:f(x)=x-lnx,容易看出,f(x)在區(qū)間[0,??)上可導(dǎo)。
且limf(x)?0?f(0)?x?0 由f'(x)?1?1x 可得:當x?(0,??)時,f'(x)?f(0)?0 ?x?1x?1 即x-lnx>0,所以:x>0時,x>lnx 評注:要證明一個一元函數(shù)組成的不等式成立,首先根據(jù)題意構(gòu)造出一個
函數(shù)(可以移項,使右邊為零,將移項后的左式設(shè)為函數(shù)),并利 用導(dǎo)數(shù)判斷所設(shè)函數(shù)的單調(diào)性,再根據(jù)函數(shù)單調(diào)性的定義,證明要 證的不等式。
例2:當x??0,??時,證明不等式sinx?x成立。證明:設(shè)f(x)?sinx?x,則f'(x)?cosx?1.∵x?(0,?),∴f'(x)?0.∴f(x)?sinx?x在x?(0,?)內(nèi)單調(diào)遞減,而f(0)?0.∴f(x)?sinx?x?f(0)?0, 故當x?(0,?)時,sinx?x成立。
點評:一般地,證明f(x)?g(x),x?(a,b),可以構(gòu)造函數(shù)F(x)?f(x)?g(x),如果F'(x)?0,,則F(x)在(a,b)上是減函數(shù),同時若F(a)?0,由減函數(shù)的定義可知,x?(a,b)時,有F(x)?0,即證明了f(x)?g(x)。
x練習(xí):1.當x?0時,證明不等式e?1?x?12x成立。2證明:設(shè)f?x??e?1?x?x12x,則f'?x??ex?1?x.2xxx令g(x)?e?1?x,則g'(x)?e?1.當x?0時,g'?x??e?1?0.?g(x)在?0,???上單調(diào)遞增,而g(0)?0.?g?x??g(0)?0,?g(x)?0在?0,???上恒成立,?f(x)在即f'(x)?0在?0,???恒成立。?0,???上單調(diào)遞增,又f(0)?0,?ex?1?x?1x2?0,即x?0時,ex222.證明:當x?1時,有l(wèi)n(x?1)?lnx?ln(x?2).?1?x?12x成立。2分析 只要把要證的不等式變形為
ln(x?1)ln(x?2)?,然后把x相對固定看作常數(shù),并選取輔助函
lnxln(x?1)數(shù)f(x)?ln(x?1).則只要證明f(x)在(0,??)是單調(diào)減函數(shù)即可.lnx證明: 作輔助函數(shù)f(x)?ln(x?1)(x?1)lnxlnxln(x?1)?xlnx?(x?1)ln(x?1)?于是有f?(x)?x?12x
lnxx(x?1)ln2x因為 1?x?x?1, 故0?lnx?ln(x?1)所以 xlnx?(x?1)ln(x?1)
(1,??)因而在內(nèi)恒有f'(x)?0,所以f(x)在區(qū)間(1,??)內(nèi)嚴格遞減.又因為1?x?1?x,可知f(x)?f(x?1)即 ln(x?1)ln(x?2)?lnxln(x?1)所以 ln2(x?1)?lnx?ln(x?2).利用導(dǎo)數(shù)知識證明不等式是導(dǎo)數(shù)應(yīng)用的一個重要方面,也成為高考的一個新熱點,其關(guān)鍵是構(gòu)造適當?shù)暮瘮?shù),判斷區(qū)間端點函數(shù)值與0的關(guān)系,其實質(zhì)就是利用求導(dǎo)的方法研究函數(shù)的單調(diào)性,通過單調(diào)性證明不等式。
x2例3.證明不等式x??ln(1?x)?x,其中x?0.2x2分析 因為例6中不等式的不等號兩邊形式不一樣,對它作差ln(1?x)?(x?),則發(fā)現(xiàn)作差以后
21?x)求導(dǎo)得不容易化簡.如果對ln(1,這樣就能對它進行比較.1?xx2證明: 先證 x??ln(1?x)
2x2設(shè) f(x)?ln(1?x)?(x?)(x?0)
21x21?0)?0?0 f(x)?則 f(0)?ln(?1?x?1?x1?x'? x?0 即 1?x?0 x2?0
x2? f?(x)??0 ,即在(0,??)上f(x)單調(diào)遞增
1?xx2? f(x)?f(0)?0 ? ln(1?x)?x?
21?x)?x;令 g(x)?ln(1?x)?x 再證 ln(則 g(0)?0 g?(x)?1?1 1?x1?ln(1?x)?x ? x?0 ? ?1 ? g?(x)?0 1?xx2? x??ln(1?x)?x 練習(xí):3(2001年全國卷理20)已知i,m,n是正整數(shù),且1?i?m?n
證明:(1?m)n?(1?n)m
分析:要證(1?m)n?(1?n)m成立,只要證
ln(1?m)n?ln(1?n)m
即要證11ln(1?m)?ln(1?n)成立。因為m 11ln(1?m)?ln(1?n); mn從而:(1?m)n?(1?n)m。 評注:這類非明顯一元函數(shù)式的不等式證明問題,首先變換成某一個一元函數(shù)式分別在兩個不同點處的函數(shù)值的大小比較問題,只要將這個函數(shù)式找到了,通過設(shè)函數(shù),求導(dǎo)判斷它的單調(diào)性,就可以解決不等式證明問題。難點在于找這個一元函數(shù)式,這就是“構(gòu)造函數(shù)法”,通過這類數(shù)學(xué)方法的練習(xí),對培養(yǎng)分析問題、解決問題的能力是有很大好處的,這也是進一步學(xué)習(xí)高等數(shù)學(xué)所需要的。 利用導(dǎo)數(shù)證明不等式 沒分都沒人答埃。覺得可以就給個好評! 最基本的方法就是將不等式的的一邊移到另一邊,然后將這個式子令為一個函數(shù)f(x).對這個函數(shù)求導(dǎo),判斷這個函數(shù)這各個區(qū)間的單調(diào)性,然后證明其最大值(或者是最小值)大于0.這樣就能說明原不等式了成立了! 1.當x>1時,證明不等式x>ln(x+1) 設(shè)函數(shù)f(x)=x-ln(x+1) 求導(dǎo),f(x)'=1-1/(1+x)=x/(x+1)>0 所以f(x)在(1,+無窮大)上為增函數(shù) f(x)>f(1)=1-ln2>o 所以x>ln(x+ 12..證明:a-a^2>0其中0 F(a)=a-a^ 2F'(a)=1-2a 當00;當1/2 因此,F(xiàn)(a)min=F(1/2)=1/4>0 即有當00 3.x>0,證明:不等式x-x^3/6 先證明sinx 因為當x=0時,sinx-x=0 如果當函數(shù)sinx-x在x>0是減函數(shù),那么它一定<在0點的值0,求導(dǎo)數(shù)有sinx-x的導(dǎo)數(shù)是cosx-1 因為cosx-1≤0 所以sinx-x是減函數(shù),它在0點有最大值0,知sinx 再證x-x3/6 對于函數(shù)x-x3/6-sinx 當x=0時,它的值為0 對它求導(dǎo)數(shù)得 1-x2/2-cosx如果它<0那么這個函數(shù)就是減函數(shù),它在0點的值是最大值了。 要證x2/2+cosx-1>0x>0 再次用到函數(shù)關(guān)系,令x=0時,x2/2+cosx-1值為0 再次對它求導(dǎo)數(shù)得x-sinx 根據(jù)剛才證明的當x>0sinx x2/2-cosx-1是減函數(shù),在0點有最大值0 x2/2-cosx-1<0x>0 所以x-x3/6-sinx是減函數(shù),在0點有最大值0 得x-x3/6 利用函數(shù)導(dǎo)數(shù)單調(diào)性證明不等式X-X2>0,X∈(0,1)成立 令f(x)=x-x2x∈ 則f'(x)=1-2x 當x∈時,f'(x)>0,f(x)單調(diào)遞增 當x∈時,f'(x)<0,f(x)單調(diào)遞減 故f(x)的最大值在x=1/2處取得,最小值在x=0或1處取得 f(0)=0,f(1)=0 故f(x)的最小值為零 故當x∈(0,1)f(x)=x-x2>0。 i、m、n為正整數(shù),且1第五篇:利用導(dǎo)數(shù)證明不等式