第一篇:初中數(shù)學(xué)平行線知識(shí)點(diǎn)
一個(gè)人的知識(shí)面是一個(gè)圓圈,知識(shí)儲(chǔ)備越多,圓圈越大,接觸到的面積便越廣闊,便能掌握和窺視更多的機(jī)會(huì)。下面小編給大家分享一些初中數(shù)學(xué)平行線知識(shí),希望能夠幫助大家,歡迎閱讀!
初中數(shù)學(xué)平行線知識(shí)1
相交線
1、兩條直線相交,有且只有一個(gè)交點(diǎn)。(反之,若兩條直線只有一個(gè)交點(diǎn),則這兩條直線相交。)
兩條直線相交,產(chǎn)生鄰補(bǔ)角和對(duì)頂角的概念:
鄰補(bǔ)角:兩角共一邊,另一邊互為反向延長(zhǎng)線。鄰補(bǔ)角互補(bǔ)。要注意區(qū)分互為鄰補(bǔ)角與互為補(bǔ)角的異同。
對(duì)頂角:兩角共頂點(diǎn),一角兩邊分別為另一角兩邊的反向延長(zhǎng)線。對(duì)頂角相等。
注:①、同角或等角的余角相等;同角或等角的補(bǔ)角相等;等角的對(duì)頂角相等。反過來亦成立。
②、表述鄰補(bǔ)角、對(duì)頂角時(shí),要注意相對(duì)性,即“互為”,要講清誰是誰的鄰補(bǔ)角或?qū)斀?。例如?/p>
判斷對(duì)錯(cuò): 因?yàn)椤螦BC +∠DBC = 180°,所以∠DBC是鄰補(bǔ)角。()
相等的兩個(gè)角互為對(duì)頂角。()
2、垂直是兩直線相交的特殊情況。注意:兩直線垂直,是互相垂直,即:若線a垂直線b,則線b垂直線a。
垂足:兩條互相垂直的直線的交點(diǎn)叫垂足。垂直時(shí),一定要用直角符號(hào)表示出來。
過一點(diǎn)有且只有一條直線與已知直線垂直。(注:這一點(diǎn)可以在已知直線上,也可以在已知直線外)
3、點(diǎn)到直線的距離。
垂線段:過線外一點(diǎn),作已知線的垂線,這點(diǎn)到垂足之間的線段叫垂線段。
垂線與垂線段:垂線是一條直線,而垂線段是一條線段,是垂線的一部分。
垂線段最短:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。(或說直角三角形中,斜邊大于直角邊。)
點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫這點(diǎn)到直線的距離。注:距離指的是垂線段的長(zhǎng)度,而不是這條垂線段的本身。所以,如果在判斷時(shí),若沒有“長(zhǎng)度”兩字,則是錯(cuò)誤的。
4、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角
三線六面八角:平面內(nèi),兩條直線被第三條直線所截,將平面分成了六個(gè)部分,形成八個(gè)角,其中有:4對(duì)同位角,2對(duì)內(nèi)錯(cuò)角和2對(duì)同旁內(nèi)角。注意:要熟練地認(rèn)識(shí)并找出這三種角:① 根據(jù)三種角的概念來區(qū)分 ② 借助模型來區(qū)分,即:同位角——F型,內(nèi)錯(cuò)角——Z型,同旁內(nèi)角——U型。
特別注意:
① 三角形的三個(gè)內(nèi)角均互為同旁內(nèi)角;
②同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的稱呼并不一定要建立在兩條平行的直線被第三條直線所截的前提上才有的,這兩條直線也可以不平行,也同樣的有同位角、內(nèi)錯(cuò)角、同旁內(nèi)角。
5、幾何計(jì)數(shù):
①平面內(nèi)n條直線兩兩相交,共有n(n – 1)組對(duì)頂角。(或?qū)懗?n^2 – n 組)
②平面內(nèi)n條直線兩兩相交,最多有n(n–1)/2個(gè)交點(diǎn)。(或?qū)懗?n^2–n)/2個(gè))
③平面內(nèi)n條直線兩兩相交,最多把平面分割成[n(n+1)/2]+1個(gè)面。
④ 當(dāng)平面內(nèi)n個(gè)點(diǎn)中任意三點(diǎn)均不共線時(shí),一共可以作n(n–1)/2 條直線。
回顧:
ⅰ、一條直線上n個(gè)點(diǎn)之間,一共有n(n–1)/2 條線段;
ⅱ、若從一個(gè)點(diǎn)引出n條射線,則一共有n(n–1)/2 個(gè)角。
初中數(shù)學(xué)平行線知識(shí)2
平行線
同一平面內(nèi),兩條直線若沒有公共點(diǎn)(即交點(diǎn)),那么這兩條直線平行。注:平行線永不相交。
1、平行公理:過直線外一點(diǎn),有且只有一條直線與已知直線平行。(注:這一點(diǎn)是在直線外)
推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。(或叫平行線的傳遞性)
2、平行線的畫法:借助三角板和直尺。具體略。(此基本作圖方法一定要掌握,多練習(xí)。)
3、平行線的判定:
① 同位角相等,兩直線平行;
② 內(nèi)錯(cuò)角相等,兩直線平行;
③ 同旁內(nèi)角互補(bǔ),兩直線平行。
注意:是先看角如何,再判斷兩直線是否平行,前提是“角相等/ 互補(bǔ)”。
一個(gè)重要結(jié)論:同一平面內(nèi),垂直于同一直線的兩條直線互相平行。
4、平行線的性質(zhì):
① 兩直線平行,同位角相等;
② 兩直線平行,內(nèi)錯(cuò)角相等;
③ 兩直線平行,同旁內(nèi)角互補(bǔ)。
注意:是先有兩直線平行,才有以上的性質(zhì),前提是“線平行”。
一個(gè)結(jié)論:平行線間的距離處處相等。例如:應(yīng)用于說明矩形(包括長(zhǎng)方形、正方形)的對(duì)邊相等,還有梯形的對(duì)角線把梯形分成分別以上底為底的兩等面積的三角形,或以下底為底的兩等面積的三角形。(因?yàn)樘菪蔚纳系着c下底平行,平行線間的高相等,所以,就有等底等高的三角形。)
※此章難度最大就在如何利用平行線的判定或性質(zhì)來進(jìn)行解析幾何的初步推理,要在熟練掌握好基本知識(shí)點(diǎn)的基礎(chǔ)上,學(xué)會(huì)邏輯推理,既要條理清晰,又要簡(jiǎn)潔明了。
5、命題
判斷一件事情的語句叫命題。命題包括“題設(shè)”和“結(jié)論”兩部分,可寫成“如果……那么……”的形式。
例如:“明天可能下雨?!边@句語句______命題,而“今天很熱,明天可能下雨?!边@句語句_____命題。(填“是”或“不是”)
① 命題分為真命題 與假命題,真命題指題設(shè)成立,結(jié)論也成立的命題(或說正確的命題)。假命題指題設(shè)成立,但結(jié)論不一定或根本不成立的命題(或說錯(cuò)誤的命題)。
② 逆命題:將一個(gè)命題的題設(shè)與結(jié)論互換位置之后,形成新的命題,就叫原命題的逆命題。
注:原命題是真命題,其逆命題不一定仍為真命題,同理,原命題為假命題,其逆命題也不一定為假命題。
初中數(shù)學(xué)平行線知識(shí)3
平移
1、概念:把圖形的整體沿著某一方向移動(dòng)一定的距離,得到一個(gè)新的圖形,這種圖形的移動(dòng),叫平移。
確定平移,關(guān)鍵是要弄清平移的方向(并不一定是水平移動(dòng)或垂直移動(dòng)哦)與平移的距離。如果是斜著平移的,則需把由起始位置至最終位置拆分為先水平移動(dòng),再上下移動(dòng),或拆分為先上下移動(dòng),再水平移動(dòng)。當(dāng)然,如果是在格點(diǎn)圖內(nèi)平移,則可利用已知點(diǎn)的平移距離是某一矩形的對(duì)角線這一特點(diǎn)來對(duì)應(yīng)完成其它頂點(diǎn)的平移。
2、特征:
① 發(fā)生平移時(shí),新圖形與原圖形的形狀、大小完全相同(即:對(duì)應(yīng)線段、對(duì)應(yīng)角均相等);
② 對(duì)應(yīng)點(diǎn)之間的線段互相平行(或在同一直線上)且相等,均等于平移距離。
3、畫法:掌握平移方向與平移距離,利用對(duì)應(yīng)點(diǎn)(一般指圖形的頂點(diǎn))之間連線段平行、連線段相等性質(zhì)描出原圖形頂點(diǎn)的對(duì)應(yīng)點(diǎn),再依次連接,就形成平移后的新圖形。
初中數(shù)學(xué)平行線知識(shí)點(diǎn)
第二篇:初中數(shù)學(xué)知識(shí)點(diǎn)
定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑
推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
圓的外切四邊形的兩組對(duì)邊的和相等
弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角
推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
第三篇:初二數(shù)學(xué)知識(shí)點(diǎn)歸納:平行線的判定
初二數(shù)學(xué)知識(shí)點(diǎn)歸納:平行線的判定、定義:在同一平面內(nèi),不相交的兩條直線叫做平行線。
說明:也可以說兩條射線或兩條線段平行,這實(shí)際上是指它們所在的直線平行。
2、平行線的判定:
同位角相等,兩直線平行。
內(nèi)錯(cuò)角相等,兩直線平行。
同旁內(nèi)角互補(bǔ)兩直線平行。
3、平行線的性質(zhì)
兩直線平行,同位角相等。
兩直線平行,內(nèi)錯(cuò)角相等。
兩直線平行,同旁內(nèi)角互補(bǔ)。
說明:要證明兩條直線平行,用判定公理在已知條中有兩條直線平行時(shí),則應(yīng)用性質(zhì)定理。
4、如果一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,那么這兩個(gè)角_________________、如果一個(gè)角的兩邊分別垂直于另一個(gè)角的兩邊,那么這兩個(gè)角_____________、平行線的定義:在同一平面內(nèi),永不相交的兩條直線叫做平行線
如:AB平行于D,寫作AB∥D
2、平行公理:過直線外一點(diǎn)有且只有一條直線與已知直線平行
推論(平行線的傳遞性):平行同一直線的兩直線平行
∵a∥,∥b
∴a∥b
平行線的判定
兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行
簡(jiǎn)單說成:同位角相等,兩直線平行
2兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行
簡(jiǎn)單說成:內(nèi)錯(cuò)角相等,兩直線平行
3兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行
簡(jiǎn)單說成:同旁內(nèi)角互補(bǔ),兩直線平行
4在同一平面內(nèi),垂直于同一直線的兩條直線互相平行
、平行線間的距離,處處相等
6、如果兩個(gè)角的兩邊分別平行,那么這兩個(gè)角相等或互補(bǔ)
平行線的性質(zhì)
兩條平行被第三條直線所截,同位角相等
簡(jiǎn)單說成:兩直線平行,同位角相等
2兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等
簡(jiǎn)單說成:兩直線平行,內(nèi)錯(cuò)角相等
3兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)
簡(jiǎn)單說成:兩直線平行,同旁內(nèi)角互補(bǔ)
梯形知識(shí)點(diǎn)總結(jié),初中數(shù)學(xué)梯形知識(shí)點(diǎn)
第四篇:初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
一、基本知識(shí)
一、數(shù)與代數(shù)A、數(shù)與式:
1、有理數(shù)有理數(shù):①整數(shù)→正整數(shù)/0/負(fù)整數(shù)②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸。②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對(duì)值:①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。
有理數(shù)的運(yùn)算:
加法:①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。③一個(gè)數(shù)與0相加不變。
減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。
除法:①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。②0不能作除數(shù)。乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。
2、實(shí)數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。
3、代數(shù)式
代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。
合并同類項(xiàng):①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式 整式:①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。
整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。冪的運(yùn)算:AN+AM=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN
除法一樣。
整式的乘法:①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。
分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。
方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運(yùn)算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。
二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程 1)一元二次方程的二次函數(shù)的關(guān)系 大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y的0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點(diǎn)。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數(shù)有頂點(diǎn)式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦?,在用直接開平方法去求出解(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a 3)解一元二次方程的步驟:(1)配方法的步驟:
先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟: 把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c 4)韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a 也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2-4ac,這里可以分為3種情況:
I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根; II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;
III當(dāng)△<0時(shí),一元二次方程沒有實(shí)數(shù)根(在這里,學(xué)到高中就會(huì)知道,這里有2個(gè)虛數(shù)根)
2、不等式與不等式組
不等式:①用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。②不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)的方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。不等式的解集:①能使不等式成立的未知數(shù)的值,叫做不等式的解。②一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:①關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號(hào)方向:
在一元一次不等式中,不像等式那樣,等號(hào)是不變的,他是隨著你加或乘的運(yùn)算改變。
在不等式中,如果加上同一個(gè)數(shù)(或加上一個(gè)正數(shù)),不等式符號(hào)不改向;例如:A>B,A+C>B+C 在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;例如:A>B,A-C>B-C 在不等式中,如果乘以同一個(gè)正數(shù),不等號(hào)不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;例如:A>B,A*C
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;
3、函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。
一次函數(shù):①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。②當(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。
一次函數(shù)的圖象:①把一個(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過原點(diǎn)的一條直線。③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。
二空間與圖形 A、圖形的認(rèn)識(shí)
1、點(diǎn),線,面
點(diǎn),線,面:①圖形是由點(diǎn),線,面構(gòu)成的。②面與面相交得線,線與線相交得點(diǎn)。③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
展開與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。②N棱柱就是底面圖形有N條邊的棱柱。截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個(gè)扇形。
2、角
線:①線段有兩個(gè)端點(diǎn)。②將線段向一個(gè)方向無限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。③將線段的兩端無限延長(zhǎng)就形成了直線。直線沒有端點(diǎn)。④經(jīng)過兩點(diǎn)有且只有一條直線。
比較長(zhǎng)短:①兩點(diǎn)之間的所有連線中,線段最短。②兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:①角由兩條具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角。③從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點(diǎn)叫做垂足。③平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫法,后面會(huì)講)一定要把線段穿出2點(diǎn)。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等; 判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上 角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等 判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上 正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì) 判定:
1、對(duì)角線相等的菱形
2、鄰邊相等的矩形
二、基本定理
1、過兩點(diǎn)有且只有一條直線
2、兩點(diǎn)之間線段最短
3、同角或等角的補(bǔ)角相等
4、同角或等角的余角相等
5、過一點(diǎn)有且只有一條直線和已知直線垂直
6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7、平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯(cuò)角相等,兩直線平行
11、同旁內(nèi)角互補(bǔ),兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯(cuò)角相等
14、兩直線平行,同旁內(nèi)角互補(bǔ)
15、定理 三角形兩邊的和大于第三邊
16、推論 三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180°
18、推論1 直角三角形的兩個(gè)銳角互余
19、推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20、推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等
23、角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的 兩個(gè)三角形全等
24、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等
25、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
27、定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30、等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)
31、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34、等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35、推論1 三個(gè)角都相等的三角形是等邊三角形
36、推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40、逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43、定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44、定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理 四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
51、推論 任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等
53、平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分
56、平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形 60、矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61、矩形性質(zhì)定理2 矩形的對(duì)角線相等
62、矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63、矩形判定定理2 對(duì)角線相等的平行四邊形是矩形 64、菱形性質(zhì)定理1 菱形的四條邊都相等
65、菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2 67、菱形判定定理1 四邊都相等的四邊形是菱形 68、菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形 69、正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71、定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72、定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分
73、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74、等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75、等腰梯形的兩條對(duì)角線相等
76、等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯 形是等腰梯形 77、對(duì)角線相等的梯形是等腰梯形 78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80、推論2
經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊 81、三角形中位線定理
三角形的中位線平行于第三邊,并且等于它的一半 82、梯形中位線定理
梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2
S=L×h 83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc
如果 ad=bc ,那么a:b=c:d 84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d 85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么(a+c+…+m)/(b+d+…+n)=a/b 86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87、推論
平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
88、定理
如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90、定理
平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似 91、相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93、判定定理2 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)94、判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95、定理
如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
96、性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
97、性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比 98、性質(zhì)定理3 相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線 107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧 111、推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 112、推論2 圓的兩條平行弦所夾的弧相等 113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116、定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117、推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
118、推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
119、推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120、定理
圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
121、①直線L和⊙O相交
d<r ②直線L和⊙O相切
d=r ③直線L和⊙O相離
d>r 122、切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑 124、推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn) 125、推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
126、切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對(duì)邊的和相等
128、弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角
129、推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130、相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等 131、推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
132、切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
133、推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條 割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等 134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135、①兩圓外離
d>R+r
②兩圓外切
d=R+r③兩圓相交
R-r<d<R+r(R>r)④兩圓內(nèi)切
d=R-r(R>r)⑤兩圓內(nèi)含
d<R-r(R>r)136、定理 相交兩圓的連心線垂直平分兩圓的公共弦 137、定理 把圓分成n(n≥3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理
任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n 140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pnrn/2
p表示正n邊形的周長(zhǎng) 142、正三角形面積√3a/4
a表示邊長(zhǎng)
143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144、弧長(zhǎng)計(jì)算公式:L=n兀R/180 145、扇形面積公式:S扇形=n兀R^2/360=LR/2 146、內(nèi)公切線長(zhǎng)= d-(R-r)外公切線長(zhǎng)= d-(R+r)
第五篇:初中數(shù)學(xué)知識(shí)點(diǎn)小結(jié)
初中數(shù)學(xué)口訣
有理數(shù)的加法運(yùn)算:
同號(hào)相加一邊倒;
異號(hào)相加“大”減“小”,符號(hào)跟著大的跑【“大”減“小”是指絕對(duì)值的大小】。
絕對(duì)值相等“零”正好。
合并同類項(xiàng):
合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去括號(hào)、添括號(hào)法則:
去括號(hào)和添括號(hào),關(guān)鍵看符號(hào),括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào);括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。
一元一次方程:
已知未知要分離,分離方法就是移,加減移項(xiàng)要變號(hào),乘除移了要顛倒。
恒等變換:
兩個(gè)數(shù)字來相減,互換位置最常見,正負(fù)只看其指數(shù),奇數(shù)變號(hào)偶不變。(a?b)2n?1=(b?a)2n?1;(a?b)2n?(b?a)2n
平方差公式:
平方差公式有兩項(xiàng),符號(hào)相反莫要忘;首加尾乘首減尾,莫與完全平方相混淆。
完全平方公式:
完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng);首平方、尾平方,首尾二倍放中央;首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。
因式分解:
一提(公因式)、二套(公式)、三分組。細(xì)看幾項(xiàng)不離譜:
兩項(xiàng)只用平方差;三項(xiàng)十字相乘法、方法熟練不馬虎;
四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來分組,否則二二去分組;五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組;
以上若都行不通,拆項(xiàng)、添項(xiàng)合理用。
“代入”口決:
挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分?jǐn)?shù)或負(fù)數(shù),給它帶上
??中???大)小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級(jí)向下變括?。ㄐ?
單項(xiàng)式運(yùn)算:
加、減、乘、除、乘(開)方,三級(jí)運(yùn)算分得清,系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。
一元一次不等式解題的一般步驟:
去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)、合并好,再把系數(shù)來除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向莫忘掉。
一元一次不等式組的解集:
大大取較大;小小取較??;小大、大小取中間;大小,小大無處找。
一元二次不等式、一元一次絕對(duì)值不等式的解集:
大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
分式混合運(yùn)算法則:
分式四則混合算,莫忘順序乘、除、加、減;乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解需在先,分子分母相約分,然后再行運(yùn)算;加減分母需相同,異母運(yùn)算是關(guān)鍵;找出最簡(jiǎn)公分母,通分計(jì)算不算難;變號(hào)必須有兩處,結(jié)果要求化最簡(jiǎn)。
分式方程的解法步驟:
同乘最簡(jiǎn)公分母,化成整式寫清楚;求得解后須驗(yàn)根,原(根)留、增(根)舍別含糊。
最簡(jiǎn)根式的條件:
最簡(jiǎn)根式三條件。1是:號(hào)內(nèi)不把分母含;2是:冪指(數(shù))根指(數(shù))要互質(zhì);3是冪指比根指小一點(diǎn)。
特殊點(diǎn)坐標(biāo)特征:
坐標(biāo)平面點(diǎn)(x,y),前是橫來后是縱;(?,?)、(?,?)、(?,?)、(?,?)四個(gè)象限分前后;x軸上y為0,y軸上x為0。
象限角的平分線:
象限角的平分線,坐標(biāo)表示有特點(diǎn),一、三象限橫縱等;
二、四象限橫縱反。
平行某軸的直線:
平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行x軸,縱坐標(biāo)相等橫不同;直線平行于y軸,橫坐標(biāo)相等縱不同。
對(duì)稱點(diǎn)坐標(biāo):
對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,x軸對(duì)稱y相反;y軸對(duì)稱x相反;原點(diǎn)對(duì)稱最好記,橫縱坐標(biāo)均變號(hào)。
自變量的取值范圍:
分式分母不為零;偶次根下負(fù)不行;零次冪底數(shù)不為零;整式、奇次根全能行。
函數(shù)圖像的移動(dòng)規(guī)律:
若一次函數(shù)解析式寫成y?k(x?0)?b、二次函數(shù)的解析式寫成y?a(x?h)2?k的形式,則可以用以下口訣“左右平移在括號(hào),上下平移在末梢;左加右減須牢記,上加下減要記好”。
一次函數(shù)口訣:
一次函數(shù)是直線,圖像經(jīng)過三象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見;k為正來右上斜,x增減y增減;k為負(fù)來右下延,變化規(guī)律正好反;k的絕對(duì)值越大,圖象離“橫”就越遠(yuǎn)。
二次函數(shù)口訣:
二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;開口、頂點(diǎn)和交點(diǎn),它們確定圖象顯;開口、大小由a斷;c與y軸來相見;b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見,y軸作為參考線,左加右減中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最
重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值現(xiàn);若求對(duì)稱軸位置,符號(hào)反;一般式、頂點(diǎn)式、交點(diǎn)式,不同表達(dá)能轉(zhuǎn)換。
反比例函數(shù)口訣:
反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正數(shù)時(shí),圖象在一、三;k為負(fù)數(shù)時(shí),圖象在二、四; 圖象在一、三,函數(shù)減,兩個(gè)分支分別減。圖象在二、四,函數(shù)變化正好反;兩個(gè)分支分別看,雙曲線越長(zhǎng)越近軸,但是永遠(yuǎn)不相連。
巧記三角函數(shù)口訣:
初中所學(xué)三角函數(shù)有正弦、余弦、正切、余切。它們實(shí)際上是直角三角形邊的比值。正弦等于對(duì)(邊)比斜(邊); 余弦等于鄰(邊)比斜(邊);正切等于對(duì)(邊)比鄰(邊);余切等于鄰(邊)比對(duì)(邊)。
三角函數(shù)的增減性:
正增余減。
【注】:正是指正弦和正切;余是指余弦和余切。
特殊三角函數(shù)值記憶:
牢記30、45、60的函數(shù)值。正余弦值的分母都是2;正余切的分母都是3,分子對(duì)應(yīng)口訣“1、2、3;3、2、1;、3、27;27、3、3”既可。???
平行四邊形的判定:
要證平行四邊形,兩個(gè)條件才能行,一證對(duì)邊都相等,或證對(duì)邊都平行;一組對(duì)邊也可以,必須相等且平行; 對(duì)角線,是個(gè)寶,互相平分“不可少”; 對(duì)角相等也有用,“兩組對(duì)角”才能定。
梯形問題的輔助線:
移動(dòng)梯形對(duì)角線,兩腰之和成一線;平行移動(dòng)一條腰,兩腰同在“△”現(xiàn); 延長(zhǎng)兩腰交一點(diǎn),“△”中平行現(xiàn)(線);作出梯形兩高線,矩形顯示在眼前;已知腰上一中點(diǎn),莫忘作出中位線。
添加輔助線歌:
輔助線,怎么添?找出規(guī)律是關(guān)鍵。題中若有角(平)分線,可向兩邊作垂線; 線段垂直平分線,引向兩端把線連; 三角形邊兩中點(diǎn),連接則成中位線; 三角形中有中線,延長(zhǎng)中線翻一番。
圓的證明口訣:
圓的證明不算難,常把半徑直徑連;
有弦可作弦心距,它定垂直平分弦;
直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊; 還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細(xì)找關(guān)系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦; 圓有內(nèi)接四邊形,對(duì)角互補(bǔ)記心間,外角等于內(nèi)對(duì)角,四邊形定內(nèi)接圓; 直角相對(duì)或共弦,試試加個(gè)輔助圓;
若是證題打轉(zhuǎn)轉(zhuǎn),四點(diǎn)共圓可解難;
要想證明圓切線,垂直半徑過外端,直線與圓有共點(diǎn),證垂直來半徑連,直線與圓未給點(diǎn),需證半徑作垂線;
四邊形有內(nèi)切圓,對(duì)邊和等是條件;
如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。圓中比例線段:
遇等積,改等比;橫找豎找定相似;不相似,別生氣,等線等比來代替;遇等比,改等積,引用射影和圓冪,平行線,轉(zhuǎn)比例,兩端各自找聯(lián)系。正多邊形訣竅歌:
份相等分割圓,n值必須大于三,依次連接各分點(diǎn),內(nèi)接正n邊形在眼前.經(jīng)過分點(diǎn)做切線,切線相交n個(gè)點(diǎn)。n個(gè)交點(diǎn)做頂點(diǎn),外切正n邊形便出現(xiàn)。正n邊形很美觀,它有內(nèi)接、外切圓;內(nèi)接、外切都唯一,兩圓還是同心圓;它的圖形軸對(duì)稱,n條對(duì)稱軸都過圓心點(diǎn),如果n值為偶數(shù),中心對(duì)稱很方便。正n邊形做計(jì)算,邊心距、半徑是關(guān)鍵,內(nèi)切、外接圓半徑,邊心距、半徑分別換。分成直角三角形,依此計(jì)算很簡(jiǎn)單.
函數(shù)學(xué)習(xí)口決:
正比例函數(shù)是直線,圖象一定過圓點(diǎn);k的正負(fù)是關(guān)鍵,決定直線過象限;
(1)負(fù)k經(jīng)過二四限,x增大y在減,上下平移k不變,由此得到一次線,向上加b向下減。圖象經(jīng)過三個(gè)限。(2)正k經(jīng)過一三限,x增大y也增,上下平移k不變,由此得到一次線,向上加b向下減。圖象經(jīng)過三個(gè)限。
兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵。
反比例函數(shù)雙曲線,待定只需一個(gè)點(diǎn),正k落在一三限,x增大y在減,圖象上面任意點(diǎn),矩形面積都不變;對(duì)稱軸是角分線x、y順序可交換。
二次函數(shù)拋物線,待定需要三個(gè)點(diǎn);a的正負(fù)判開口;c的大小y軸看,△的符號(hào)最簡(jiǎn)便;x軸上交點(diǎn)a與b,同號(hào)軸在y(軸)左邊;拋物線平移a不變,頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,配方法作用最關(guān)鍵。