欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      知識點高中數(shù)學必修一[5篇材料]

      時間:2021-01-22 14:40:20下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關的《知識點高中數(shù)學必修一》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《知識點高中數(shù)學必修一》。

      第一篇:知識點高中數(shù)學必修一

      《高中數(shù)學必修1》是2007年人民教育出版社出版的圖書,作者是人民教育出版社課題材料研究所、中學數(shù)學課程教材研究開發(fā)中心。下面小編給大家分享一些知識點高中數(shù)學必修一,希望能夠幫助大家,歡迎閱讀!

      知識高中數(shù)學必修一1

      一、集合有關概念

      1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

      2、集合的中元素的三個特性:

      1.元素的確定性;

      2.元素的互異性;

      3.元素的無序性

      說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

      (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

      (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

      (4)集合元素的三個特性使集合本身具有了確定性和整體性。

      3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}

      1.用拉丁字母表示集合:A={我校的籃球隊員}B={12345}

      2.集合的表示方法:列舉法與描述法。

      注意?。撼S脭?shù)集及其記法:

      非負整數(shù)集(即自然數(shù)集)記作:N

      正整數(shù)集N-或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

      關于“屬于”的概念

      集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A

      列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

      描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

      ①語言描述法:例:{不是直角三角形的三角形}

      ②數(shù)學式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

      4、集合的分類:

      1.有限集含有有限個元素的集合2.無限集含有無限個元素的集合3.空集不含任何元素的集合例:{x|x2=-5}

      二、集合間的基本關系

      1.“包含”關系子集

      注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

      反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA

      2.“相等”關系(5≥5,且5≤5,則5=5)

      實例:設A={x|x2-1=0}B={-11}“元素相同”

      結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

      ①任何一個集合是它本身的子集。A?A

      ②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)

      ③如果A?BB?C那么A?C

      ④如果A?B同時B?A那么A=B

      3.不含任何元素的集合叫做空集,記為Φ

      規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

      三、集合的運算

      1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集與并集的性質(zhì):A∩A=AA∩φ=φA∩B=B∩A,A∪A=A

      A∪φ=AA∪B=B∪A.4、全集與補集

      (1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

      記作:CSA即CSA={x?x?S且x?A}

      (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

      (3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

      知識高中數(shù)學必修一2

      二次函數(shù)

      I.定義與定義表達式

      一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

      (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

      則稱y為x的二次函數(shù)。

      二次函數(shù)表達式的右邊通常為二次三項式。

      II.二次函數(shù)的三種表達式

      一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

      頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

      交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

      注:在3種形式的互相轉化中,有如下關系:

      h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

      III.二次函數(shù)的圖像

      在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

      IV.拋物線的性質(zhì)

      1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

      特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

      2.拋物線有一個頂點P,坐標為

      P(-b/2a,(4ac-b^2)/4a)

      當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

      3.二次項系數(shù)a決定拋物線的開口方向和大小。

      當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

      |a|越大,則拋物線的開口越小。

      高一數(shù)學必修1函數(shù)的知識點篇四:一次函數(shù)

      一、定義與定義式:

      自變量x和因變量y有如下關系:

      y=kx+b

      則此時稱y是x的一次函數(shù)。

      特別地,當b=0時,y是x的正比例函數(shù)。

      即:y=kx(k為常數(shù),k≠0)

      二、一次函數(shù)的性質(zhì):

      1.y的變化值與對應的x的變化值成正比例,比值為k即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

      2.當x=0時,b為函數(shù)在y軸上的截距。

      三、一次函數(shù)的圖像及性質(zhì):

      1.作法與圖形:通過如下3個步驟

      (1)列表;

      (2)描點;

      (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

      2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

      3.k,b與函數(shù)圖像所在象限:

      當k>0時,直線必通過一、三象限,y隨x的增大而增大;

      當k<0時,直線必通過二、四象限,y隨x的增大而減小。

      當b>0時,直線必通過一、二象限;

      當b=0時,直線通過原點

      當b<0時,直線必通過三、四象限。

      特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

      這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

      知識高中數(shù)學必修一3

      反比例函數(shù)

      形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

      自變量x的取值范圍是不等于0的一切實數(shù)。

      反比例函數(shù)圖像性質(zhì):

      反比例函數(shù)的圖像為雙曲線。

      由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關于原點對稱。

      另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

      上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。

      當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

      當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

      反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

      知識點:

      1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

      2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

      知識高中數(shù)學必修一4

      空間幾何體表面積體積公式:

      1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

      2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,3、a-邊長,S=6a2,V=a34、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱錐S-h-高V=Sh/37、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/38、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/69、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

      11、r-底半徑h-高V=πr^2h/312、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/315、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/616、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/417、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

      知識高中數(shù)學必修一5

      (1)直線的傾斜角

      定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

      (2)直線的斜率

      ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

      ②過兩點的直線的斜率公式:

      注意下面四點:

      (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

      (2)k與P1、P2的順序無關;

      (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

      (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

      (3)直線方程

      ①點斜式:直線斜率k,且過點

      注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

      ②斜截式:,直線斜率為k,直線在y軸上的截距為b

      ③兩點式:()直線兩點,④截矩式:其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。

      ⑤一般式:(A,B不全為0)

      ⑤一般式:(A,B不全為0)

      注意:○1各式的適用范圍

      ○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

      (4)直線系方程:即具有某一共同性質(zhì)的直線

      知識點高中數(shù)學必修一

      第二篇:高中數(shù)學必修一 2

      高中數(shù)學必修一《函數(shù)的單調(diào)性》的教與學研究

      1、此節(jié)課的教學流程是從學生的實際生活和所學知識出發(fā),引導學生通過自主探究、合作討論等方式,探究函數(shù)的單調(diào)性的概念。在此基礎上通過具體的函數(shù)圖像結合函數(shù)的單調(diào)性的定義,解決簡單函數(shù)單調(diào)性的問題,在教學中不斷滲透數(shù)形結合的思想方法,培養(yǎng)學生觀察、歸納、抽象類比的能力和語言表達的能力,通過對函數(shù)單調(diào)性的證明,提高數(shù)學的論證推理能力。

      2、函數(shù)的單調(diào)性的概念是本節(jié)課教學的重點,教學難點是函數(shù)單調(diào)性概念的知識形成及利用函數(shù)圖形、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性。為實現(xiàn)教學目標,突出重點和難點的突破,教學中采用在概念的探索階段,讓學生經(jīng)歷從直觀到抽象,特殊到一般,感性到理性的認識,完成對函數(shù)單調(diào)性定義的認識;在應用階段通過對證明的分析,幫助學生掌握并證明函數(shù)單調(diào)性的方法和步驟,滲透算法思想。

      3、本節(jié)課由于是函數(shù)單調(diào)性第一課時,教學中采用啟發(fā)、引導,學生自主探究學習的教學方法。通過創(chuàng)設情境引導學生探究,師生交流,最終形成概念、方法,過程中借助于多媒體的幾何畫板來輔助教學,提高學生對所學習概念的理解和認識。

      4、在學法上,讓學生從問題中質(zhì)疑、嘗試、歸納總結、運用,培養(yǎng)學生發(fā)現(xiàn)問題,研究問題、解決問題的能力。讓學生利用圖形直觀啟迪思維并通過正反例的構造,來完成從感性到理性認識的一個飛躍。學生舉出反例后的興奮,增強了學生學習數(shù)學的自信心和興趣,同時更加促進學生學習數(shù)學的主動性。在小結的環(huán)節(jié)中,從探究過程,證明方法與步驟,數(shù)學思想方法幾個方面,學生親自來總結。通過他們的主動參與,使學生深刻體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對函數(shù)單調(diào)性認識的再深化。

      5、通過對本節(jié)課的教學設計,使我認識到數(shù)學教學中,能鉆研教學大綱,深入挖掘教材,結合學生的實際,設計貼合教學實際的教學設計,必將達到事半功倍的效果。通過對本節(jié)課的教學,可以預見學生仍然對函數(shù)的單調(diào)性的證明與判斷仍是一個難點,對于單調(diào)性的證明過程中,究竟要變形到什么樣的程度,學生很難把握。另外學生主動參與學習數(shù)學的積極性也有待于進一步提高。

      教學反思:

      在本節(jié)課的教學中,通過大量的典型圖形的分析,使學生在直觀感知和自然描述的階段能夠很自然地接受“任意性”和“兩個值”。在整個設計過程中,對于典型例題的選取及變數(shù)訓練中,對單調(diào)性的概念進行了分層次的理解和應用。也就是說針對學生的不同情況設定例題、習題等。

      當然學生在學習過程中容易出現(xiàn)的問題就是單調(diào)性的證明過程中,究竟要變形到什么樣的程度,以及在寫單調(diào)區(qū)間的時候用逗號還是用并,符合并集為什么是錯誤的等等。

      第三篇:高中數(shù)學必修五知識點總結

      高中數(shù)學必修5知識點

      第二章:數(shù)列

      1、數(shù)列:按照一定順序排列著的一列數(shù).

      2、數(shù)列的項:數(shù)列中的每一個數(shù).

      3、有窮數(shù)列:項數(shù)有限的數(shù)列.

      4、無窮數(shù)列:項數(shù)無限的數(shù)列.

      5、遞增數(shù)列:從第2項起,每一項都不小于它的前一項的數(shù)列.

      6、遞減數(shù)列:從第2項起,每一項都不大于它的前一項的數(shù)列.

      7、常數(shù)列:各項相等的數(shù)列.

      8、擺動數(shù)列:從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列.

      9、數(shù)列的通項公式:表示數(shù)列?an?的第n項與序號n之間的關系的公式.

      10、數(shù)列的遞推公式:表示任一項an與它的前一項an?1(或前幾項)間的關系的公式.

      11、如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),則這個數(shù)列稱為等差數(shù)列,這個常數(shù)稱為等差數(shù)列的公差.

      12、由三個數(shù)a,?,b組成的等差數(shù)列可以看成最簡單的等差數(shù)列,則?稱為a與b的等差中項.若b?a?c,則稱b為a與c的等差中項. 213、若等差數(shù)列?an?的首項是a1,公差是d,則an?a1??n?1?d.通項公式的變形:①an?am??n?m?d;②a1?an??n?1?d;③d?an?a1;④n?1n?an?a1a?am?1;⑤d?n. dn?m14、若?an?是等差數(shù)列,且m?n?p?q(m、n、p、q??*),則am?an?ap?aq;若?an?是等差數(shù)列,且2n?p?q(n、p、q??*),則2an?ap?aq;下角標成等差數(shù)列的項仍是等差數(shù)列;連續(xù)m項和構成的數(shù)列成等差數(shù)列。

      15、等差數(shù)列的前n項和的公式:①Sn?

      n?a1?an?n?n?1?d. ;②Sn?na1?22

      第四篇:高中數(shù)學必修4 三角函數(shù)知識點小結

      一、見“給角求值”問題,運用“新興”誘導公式

      一步到位轉換到區(qū)間(-90o,90o)的公式.1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);

      3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).二、見“sinα±cosα”問題,運用三角“八卦圖”

      1.sinα+cosα>0(或<0)óα的終邊在直線y+x=0的上方(或下方);

      2.sinα-cosα>0(或<0)óα的終邊在直線y-x=0的上方(或下方);

      3.|sinα|>|cosα|óα的終邊在Ⅱ、Ⅲ的區(qū)域內(nèi);

      4.|sinα|<|cosα|óα的終邊在Ⅰ、Ⅳ區(qū)域內(nèi).三、見“知1求5”問題,造Rt△,用勾股定理,熟記常用勾股數(shù)(3,4,5),(5,12,13),(7,24,25),仍然注意“符號看象限”。

      四、見“切割”問題,轉換成“弦”的問題。

      五、“見齊思弦”=>“化弦為一”:已知tanα,求sinα與cosα的齊次式,有些整式情形還可以視其分母為1,轉化為sin2α+cos2α.六、見“正弦值或角的平方差”形式,啟用“平方差”公式:

      1.sin(α+β)sin(α-β)= sin2α-sin2β;2.cos(α+β)cos(α-β)= cos2α-sin2β.七、見“sinα±cosα與sinαcosα”問題,起用平方法則:

      (sinα±cosα)2=1±2sinαcosα=1±sin2α,故

      1.若sinα+cosα=t,(且t2≤2),則2sinαcosα=t2-1=sin2α;

      2.若sinα-cosα=t,(且t2≤2),則2sinαcosα=1-t2=sin2α.八、見“tanα+tanβ與tanαtanβ”問題,啟用變形公式:

      tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???

      九、見三角函數(shù)“對稱”問題,啟用圖象特征代數(shù)關系:(A≠0)

      1.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關于過最值點且平行于y軸的直線分別成軸對稱;

      2.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關于其中間零點分別成中心對稱;

      3.同樣,利用圖象也可以得到函數(shù)y=Atan(wx+φ)和函數(shù)y=Acot(wx+φ)的對稱性質(zhì)。

      十、見“求最值、值域”問題,啟用有界性,或者輔助角公式:

      1.|sinx|≤1,|cosx|≤1;2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);

      3.asinx+bcosx=c有解的充要條件是a2+b2≥c2.十一、見“高次”,用降冪,見“復角”,用轉化.1.cos2x=1-2sin2x=2cos2x-1.2.2x=(x+y)+(x-y);2y=(x+y)-(x-y);x-w=(x+y)-(y+w)等.

      第五篇:高中數(shù)學必修知識點

      書籍是最有耐心、最能忍耐和最令人愉快的伙伴。在任何艱難困苦的時刻,它都不會拋棄你。下面小編給大家分享一些高中數(shù)學必修知識點,希望能夠幫助大家,歡迎閱讀!

      高中數(shù)學必修知識點1

      必修1

      【第一章】集合和函數(shù)的基本概念這一章的易錯點,都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就會丟分。次一級的知識點就是集合的韋恩圖、會畫圖,掌握了這些,集合的“并、補、交、非”也就解決了。

      還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,最好的方法是寫在筆記本上,每天至少看上一遍。

      【第二章】基本初等函數(shù)——指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運算性質(zhì)及圖像函數(shù)的幾大要素和相關考點基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點等等。關于這三大函數(shù)的運算公式,多記多用,多做一點練習,基本就沒問題。

      函數(shù)圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點等等。對于冪函數(shù)還要搞清楚當指數(shù)冪大于一和小于一時圖像的不同及函數(shù)值的大小關系,這也是??键c。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。

      【第三章】函數(shù)的應用這一章主要考是函數(shù)與方程的結合,其實就是函數(shù)的零點,也就是函數(shù)圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關于證明零點的方法,直接計算加得必有零點,連續(xù)函數(shù)在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函數(shù)的零點的Δ判別法,這個需要你看懂定義,多畫多做題

      高中數(shù)學必修知識點2

      必修2

      【第一章】空間幾何三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。

      在做題時結合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺體的表面積和體積,把公式記牢問題就不大。

      【第二章】點、直線、平面之間的位置關系這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規(guī)范性問題。

      關于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時能用圖形語言、文字語言、數(shù)學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在于二面角這個概念,大多同學即使知道有這個概念,也無法理解怎么在二面里面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什么捷徑可走。

      【第三章】直線與方程這一章主要講斜率與直線的位置關系,只要搞清楚直線平行、垂直的斜率表示問題就錯不了。需要注意的是當直線垂直時斜率不存在的情況是考試中的常考點。另外直線方程的幾種形式所涉及到的一般公式,會用就行,要求不高。點與點的距離、點與直線的距離、直線與直線的距離,只要直接套用公式就行,沒什么難點。

      【第四章】圓與方程能熟練的把一般式方程轉化為標準方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方后定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。

      高中數(shù)學必修知識點3

      必修3

      總的來說這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計算。程序框圖與三種算法語句的結合,及框圖的算法表示,不要用常規(guī)的語言來理解,否則你會在這樣的題型中栽跟頭。秦九韶算法是重點,要牢記算法的公式。統(tǒng)計就是對一堆數(shù)據(jù)的處理,考試也是以計算為主,會從條形圖中計算出中位數(shù)等數(shù)字特征,對于回歸問題,只要記住公式,也就是個計算問題。概率,主要就只幾何概型、古典概型。幾何概型只要會找表示所求事件的長度面積等,古典概型只要能表示出全部事件就可以。

      高中數(shù)學必修知識點4

      必修4

      【第一章】三角函數(shù)考試必在這一塊出題,且題量不小!誘導公式和基本三角函數(shù)圖像的一些性質(zhì),沒有太大難度,只要會畫圖就行。難度都在三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相上,及根據(jù)最值計算A、B的值和周期,及恒等變化時的圖像及性質(zhì)變化,這部分的知識點內(nèi)容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。

      【第二章】平面向量向量的運算性質(zhì)及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要“同起點的向量”這一條就OK了。向量共線和垂直的數(shù)學表達,是計算當中經(jīng)常用到的公式。向量的共線定理、基本定理、數(shù)量積公式。分點坐標公式是重點內(nèi)容,也是難點內(nèi)容,要花心思記憶。

      【第三章】三角恒等變換這一章公式特別多,像差倍半角公式這類內(nèi)容常會出現(xiàn),所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點,就是三角恒等變換是有一定規(guī)律的,記憶的時候可以集合三角函數(shù)去記。

      高中數(shù)學必修知識點5

      必修5

      【第一章】解三角形掌握正弦、余弦公式及其變式、推論、三角面積公式即可?!镜诙隆繑?shù)列等差、等比數(shù)列的通項公式、前n項及一些性質(zhì)常出現(xiàn)于填空、解答題中,這部分內(nèi)容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細??荚囶}中,通項公式、前n項和的內(nèi)容出現(xiàn)頻次較多,這類題看到后要帶有目的的去推導就沒問題了。

      【第三章】不等式這一章一般用線性規(guī)劃的形式來考察學生,這種題通常是和實際問題聯(lián)系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖,然后再根據(jù)實際問題的限制要求來求最值。

      下載知識點高中數(shù)學必修一[5篇材料]word格式文檔
      下載知識點高中數(shù)學必修一[5篇材料].doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發(fā)現(xiàn)有涉嫌版權的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權內(nèi)容。

      相關范文推薦

        高中政治必修一知識點

        1、 商品的含義?商品的基本屬性? 商品是用于交換的勞動產(chǎn)品。商品的基本屬性是使用價值(商品能滿足人們某種需要的屬性)和價值(凝結在商品中的無差別的人類勞動)。 2、 貨幣的含義......

        必修一知識點總結

        必修一重點詞組句子歸納總結 1 Unit1 Friendship 重點詞組: be good to 對….友好 add up 合計 another time 改時間 get sth done 使…被做calm down 鎮(zhèn)定下來 have got to......

        信息技術必修一知識點

        第1章 知識要點 1. 什么是信息 信息是客觀事物存在的第三種基本形態(tài),也是區(qū)別于物質(zhì)與能量的第三類資源。信息可以用來消除客觀事物的不確定性,從而幫助人們解決問題、科......

        高中數(shù)學知識點

        高中數(shù)學知識點 必修1集合函數(shù)概念與基本初等函數(shù)Ⅰ必修2立體幾何初步平面解析幾何初步必修3算法初步統(tǒng)計概率 必修4 基本初等函數(shù)Ⅱ(三角函數(shù))平面向量三角恒等變形必修5 解......

        高中數(shù)學知識點

        高中數(shù)學重點知識與結論分類解析 一、集合與簡易邏輯 1.集合的元素具有確定性、無序性和互異性. 2.對集合 , 時,必須注意到“極端”情況: 或 ;求集合的子集時是否注意到 是任何集合......

        高中數(shù)學人教版必修1知識點總結梳理

        一 集合 1、集合的含義:集合為一些確定的、不同的對象的全體。2、集合的中元素的三個特性:確定性、互異性、無序性。3、集合的表示: (1)用大寫字母表示集合:A,B?(2)集合的表示方......

        高中數(shù)學必修一教學設計(大全)

        篇一:高一數(shù)學必修一教案課題: 1.1 集合 教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎,一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎上。另一......

        高一化學必修一知識點總結

        必修1全冊基本內(nèi)容梳理 從實驗學化學一、化學實驗安全 1、(1)做有毒氣體的實驗時,應在通風廚中進行,并注意對尾氣進行適當處理(吸收或點燃等)。進行易燃易爆氣體的實驗時應注意驗......