第一篇:等式與簡易方程教學設計
等式與簡易方程
學習內(nèi)容分析:1.會用方程表示簡單情境中的等量關系
2.理解等式的性質(zhì),會用等式的性質(zhì)解簡易方程 學習者分析:
課程標準:在這部分內(nèi)容的回顧中,教材強調(diào)運用方程解決實際問題,鼓勵學生解簡單的方程。
知識與技能: 使學生理解方程、解方程和方程的解的含義,掌握簡易方程的解法,以及用方程的解法,以及用方程解答應用題的步驟和方法。
過程與方法:1.結(jié)合具體情境,體會方程的意義,在具體運算和解決簡單實際問題過程中,建立方程思想,理清等式與方程的關系。
2.從學生實際生活經(jīng)驗出發(fā),在用中學,在做中學。
情感態(tài)度與價值觀:1.培養(yǎng)學生梳理概括能力和運用方程解決實際問題的能力。
2.感受數(shù)學與現(xiàn)實生活的聯(lián)系,培養(yǎng)學生根據(jù)具體情況,靈活選擇算法的意識和能力。
教學重點及解決措施:會列方程表示數(shù)量間的等量關系和養(yǎng)成檢驗的習慣。
教學難點和解決措施:熟練掌握運用方程解決實際問題,并能選擇合理、靈活的計算方法解簡易方程。
教學設計思路:采用直觀教學法、演示教學法、觀察法等教學方法,為學生創(chuàng)設一個寬松的數(shù)學學習環(huán)境,使他們能夠積極主動地,充滿自信的學習數(shù)學。
簡易方程
實際應用
直觀教學
幻燈片
直觀、形象
復習導入
用字母表示數(shù)
1.用含有字母的式子表示: ⑴訂閱《中國少年報》五年級訂了320份,比四年級多訂了X份,四年級訂了()份。
⑵比X的5倍少1.2的數(shù)是()。復習舊知,為學習本節(jié)內(nèi)容做知識準備。
二、回顧與交流
1.什么叫做式子、等式、方程?舉例說明。
像2+3,a-3,6a,a÷8,3+2=5,2x-8=10用來表示幾個數(shù)之間的關系,叫做式子。
像3+2=5,2x-8=10……這樣表示左右兩邊相等的式子,叫做等式。像x=2,3a+2=5,2x-8=10……這樣含有未知數(shù)(x等字母)的等式,叫做方程
2.式子、等式、方程三者之間的關系:方程式等式的一部分,等式又是式子的一部分。換句話說,式子包含等式,等式包含方程。3.方程的解和解方程
方程的解:使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。
解方程:求方程解的過程叫做解方程。
方程的解是個結(jié)果,如x=7。解方程是一個過程。4.解方程的方法
等式性質(zhì):方程兩邊同時加上、減去、乘以或除以(0除外)一個相同的數(shù),等式仍然成立。
利用等式的基本性質(zhì),可以用于解方程,也可以根據(jù)四則運算中各部分的關系解方程。另外,解比例方程時就要用到比例的基本性質(zhì),外項之積等于內(nèi)項之積。
5、列方程解簡單應用題
步驟:(1)弄清題意,確定未知數(shù),并用x表示。
(2)找出問題中數(shù)量相等的數(shù)量關系。
(3)列方程,解方程。
(4)檢驗,寫出答案
總結(jié):1.本節(jié)知識點(可以先總結(jié)后測試)2.作業(yè)
引導學生進行知識回顧
回顧、整理、歸納總結(jié)知識點
梳理思路,歸納總結(jié)知識點,同時培養(yǎng)學生歸納總結(jié)的能力。通過課后作業(yè)鞏固本節(jié)課知識,并預習下一節(jié)內(nèi)容。
第二篇:等式與方程教學設計
等式與方程教學設計
教學目標:
1、加深理解用字母表示數(shù)的意義和作用,會用字母表示數(shù)和常見的數(shù)量關系;
2、會根據(jù)字母所取得值,求含有字母的式子的值;
3、加深理解方程的意義,會解簡易方程。概念搜索:
1、什么是方程,請舉一個例子。
2、方程和等式有什么聯(lián)系和區(qū)別?
3、你知道等式有哪些性質(zhì)?請舉例說說。
專項訓練1:用字母表示數(shù)
一、填空
1、小紅今年m歲,陳老師的歲數(shù)比她的3倍少8歲,陳老師的歲數(shù)是()歲。如果m=12,陳老師是()歲。
2、修一條a千米的路,如果每天修2千米,修了b天后,還剩()千米。
3、三個連續(xù)的自然數(shù),最大的一個是a,那么最小的一個是()。
4、一種賀卡的單價是a元,小英買5張這樣的賀卡,用去()元;小明買n張這樣的賀卡,付出10元,應找回()元。
5、每千瓦電費x元,共用去y元,求共用電量列式為()。
二、選擇
1、小濤看一本書,第一天看了全書的20%,全書共X頁,還剩()頁。A、20%X
B、X-20%
C、X-20%X
2、小剛今年a歲,小紅今年(a+5)歲,再過X年,小紅比小剛()歲。A、5
B、X
C、X+5
3、在5+2X>
10、X+X-
18、X=3中,有()個方程。A、3
B、2
C、4
4、X是奇數(shù),Y是偶數(shù),下面式子是奇數(shù)的是()。A、3X+Y
B、2X+Y
C、2(X+Y)
專項訓練2:解方程
1、用你喜歡的方法解方程。
30X=15
16+4X=40
X+0.5X=6
2、求下列未知數(shù)的值。
50%X-30=52
3X+1/2=5/3
X-4/9X=10/21
式與方程(3):列方程解應用題
一、思考:你認為怎樣的應用題需要用方程解決。
二、交流:解方程的五步:
三、知識應用:
(一)填空。
1、()米的2倍是4/5米,4/5米的2倍是()米。
2、一個數(shù)的1.5倍是30,這個數(shù)的30%是()。3、4.5千克比()千克的2倍少1.5千克。
4、()升比8升多1/8.(二)、解決問題。
1、六年級參加數(shù)學興趣小組的共45人,女生人數(shù)是男生的3/2,參加興趣小組的男女生各有多少人?
2、金橋鎮(zhèn)今年植樹3600棵,比去年多植樹20%。去年植樹多少棵
第三篇:等式和方程教學設計
方程 認識等式和方程
本單元的教育目標是:
1、通過具體情境,了解等式和方程的意義,會用方程表示簡單情境中的等量關系。
2、理解等式的性質(zhì),會用等式的性質(zhì)解簡單的方程(如3x+2=5,2x-x=3),會列方程解決一些簡單的應用問題。
3、在解方程的過程中,能進行有條理的思考,能對每一步計算和結(jié)論的合理性作出有說服力的說明。
4、具有回顧與分析解決問題過程的意識,能表達解決問題的過程,能檢驗方程的解是否正確。
5、感受用方程解決問題的價值,認識到許多實際問題可以借助解方程的方法來解決,獲得自主解決問題的成功體驗,增強學習數(shù)學的自信心。
(一)認識等式和方程
教學要求:
1、結(jié)合天平示意圖,在觀察、用式子表示數(shù)量關系、歸納、類比等活動中,經(jīng)歷認識等式和方程的過程。
2、了解等式和方程的意義,能判斷哪些是等式、哪些是方程,能根據(jù)具體的情境列出方程。
3、主動參與學習活動,獲得積極的學習體驗,激發(fā)學習新知識的興趣。
教學重點:等式和方程的意義,能判斷哪些是等式、哪些是方程
教學難點:等式和方程的意義 教學用具:簡易天平、砝碼等
教學過程:
一、看圖寫算式
1.師生逐個觀察天平示意圖,用式子表示天平兩邊的數(shù)量關系。
2.讓學生觀察寫出的6個式子,說一說這些式子可以怎樣分類。師生共同歸納
二、等式和方程
1.教師結(jié)合算式介紹等式。
2.讓學生觀察等式,說一說這些等式有什么相同點和不同點。
3.介紹方程的概念。
4.鼓勵學生用自己的話說一說什么樣的式子是方程。
三、方程與等式之間有什么關系呢?
根據(jù)學生的發(fā)言,教師加以引導,使學生明確:等式包括方程,等式的范圍比方程的范圍大;一切方程都是等式,但等式不一定是方程。
讓學生獨立思考,再回答。說一說是怎樣判斷的。
四、試一試
先讓學生獨立思考,再回答。說一說是怎樣判斷的五、練一練
第1題,先讓學生看懂圖,再嘗試列方程。
第2題,讓學生先讀懂圖,再試著列出方程。
第3題,由學生獨立完成,交流時,說一說是怎樣想的。
六、這節(jié)課我們學習了什么?
板書設計
含有未知數(shù)的等式叫做方程。
教學反思:
本節(jié)課的教學重點是讓學生掌握什么是等式什么是方程,以及等式與方程之間的關系。我在教學中也準確把握了這一點,依次教學了這三個知識點。這三個知識點看上去也很簡單,如果做練習應該不會出什么錯,可是課后練習我發(fā)現(xiàn)這類的問題學生的正確率并不是我想象的百分之百。
課后,我反思在教學概念知識時,不僅要教學概念本質(zhì)內(nèi)容,還要抓住概念現(xiàn)象對學生進行訓練,這樣,更容易和輕松的做好練習。
第四篇:認識等式和方程教學設計
認識等式和方程教學設計
教學目標
1.理解并掌握等式和方程的意義,體會方程與等式間的關系。會列方程表示事物之間簡單的數(shù)量關系。
2.在觀察、分析、比較、抽象、概括和操作交流中,經(jīng)歷將現(xiàn)實問題抽象成等式與方程的過程,積累將現(xiàn)實問題數(shù)學化的活動經(jīng)驗。
3.有機結(jié)合地方教育資源、我國在方程史上的貢獻等內(nèi)容滲透健康生活方式,愛家鄉(xiāng)、愛祖國的數(shù)學文化等積極情感,增強民族認同感。教學重點
經(jīng)歷從現(xiàn)實問題情境中抽象出方程的過程,理解方程的本質(zhì)。教學難點
會用方程表示事物之間簡單的數(shù)量關系。教學過程
課前談話:同學們,你們玩過蹺蹺板嗎?在玩的過程中會出現(xiàn)哪些情況? 上課:
一、認識等式
1.談話:同學們,在實際生活當中,有很多現(xiàn)象和蹺蹺板是一樣的。今天老師給大家?guī)砹艘晃慌笥?,它叫(天平)?/p>
(1)天平處于平衡狀態(tài),表示天平左右兩邊物體的質(zhì)量相等。(2)在天平的左邊放上20和30的兩個物體,讓學生說出此時天平(不平衡了)。表示天平左邊比右邊重了。你能用式子表示天平左右兩邊物體的質(zhì)量關系嗎?(20+30=50)
2.揭示:像這樣左右兩邊相等的式子,我們把它叫做等式。(板書:等式)
等式有個明顯特征:=,它表示左右兩邊是相等的關系。
二、認識方程
1.用含用未知數(shù)的式子表示質(zhì)量關系(1)認識未知數(shù)
如果兩個物體中一個不知道它的質(zhì)量,現(xiàn)在又如何用式子表示左右兩邊物體的質(zhì)量關系呢?
指出:真不簡單!同學們能想到用字母來表示這個物體的質(zhì)量。這些字母表示的數(shù)咱們事先不知道,這樣的數(shù)我們把它叫做未知數(shù)。(板書:未知數(shù))
感悟:人類能夠?qū)⑽粗獢?shù)用一定的字母表示,并且讓未知數(shù)平等地參與運算經(jīng)歷了漫長的過程。
【課件演示,播放錄音】
現(xiàn)在,我們可以用20+X=50來表示兩邊的數(shù)量關系。(紙條 ① 20+X=50)(2)如果指針偏向左邊,說明什么?現(xiàn)在你能用式子表示兩邊的數(shù)量關系嗎?(紙條② 20 +X>50)這個式子表示兩邊不相等。<
(3)出示指針偏向右邊,那這又如何表示呢?這個式子也表示兩邊不相等。(4)現(xiàn)在在天平兩邊有這情況,請你用式子表示它們左右兩邊的數(shù)量關系。(學生在作業(yè)紙上完成。)
匯報:(依次貼出:③50×2=100 ④50+2χ> 180 ⑤ 80<2χ
⑥ 3χ=180 ⑦100+20<100+50 ⑧100+χ=3×50)【設計意圖:用字母和符號表示數(shù)及其運算或關系是代數(shù)的基本特征。以天平情境為導線,把情境中的數(shù)量關系用數(shù)學語言表達,逐步符號化,引入用含有未知數(shù)的式子表達等式和不等式,為建構(gòu)方程概念提供基礎,并初步體會符號化思想發(fā)展的歷程及用含有未知數(shù)的式子描述數(shù)量關系的方程思想。】 2.分類、比較,揭示方程的意義
⑴討論分類依據(jù) 現(xiàn)在黑板上8個式子
(① 20+X=50 ② 20 +X>50 ③50×2=100 ④50+2χ> 180 ⑤ 80<2χ ⑥ 3χ=180 ⑦100+20<100+50 ⑧100+χ=3×50)
你能將這些式子分分類嗎?先自己想一想分類的標準,再和同桌討論一下。在作業(yè)紙上寫一寫。
⑵動手操作
說一說你的分類標準,再到黑板上來分一分。(你是怎樣分的?)(3)認識等式和不等式
剛才我們同學把這些式子按照等于、大于、小于號進行分類,前面我們已經(jīng)知道像這樣用等號連接的式子,它們左右兩邊相等,這樣的式子叫等式。
那右邊的式子叫什么呢?(不等式)你能將這些等式再來分一分嗎?(4)揭示概念
揭示:像⑥ 3χ=180 ⑧100+2χ=3×50這樣含有未知數(shù)的等式叫做方程。提問:黑板上另外幾個式子是方程嗎?為什么?判斷一個式子是不是方程的關鍵詞是什么?讀出關鍵詞。
三、判斷深化理解
(1)自己寫幾道方程;(作業(yè)紙)(2)判斷是不是方程;(3)辨析:
討論:等式和方程有什么關系呢?(蘋果和梨是水果,但水果不一定是蘋果和梨)
【設計意圖:學生從生活情境中抽象出數(shù)學表達是橫向數(shù)學化,在數(shù)學世界里需要通過縱向數(shù)學化認識概念的本質(zhì)特征。描述現(xiàn)實世界中數(shù)量關系的式子有多種,讓學生從常見的關系式中通過觀察、比較、分類、抽象、概括逐步分化出方程的概念,明確概念的內(nèi)涵與外延,自主建構(gòu)起對概念本質(zhì)特征的認識?!?/p>
(4)小明的作業(yè)紙臟了,想像一下(5)找出方程(作業(yè)紙)
(6)描述生活中的方程:生活中也隱藏著方程,不信來瞧一瞧:
如果我們對生活中常見的一些現(xiàn)象多作一些數(shù)學的思考,你會發(fā)現(xiàn),很多問題都可以轉(zhuǎn)化成方程的思維形式,正如笛卡爾所說:(投影)
可能我們同學現(xiàn)在對于這些思想還不太理解,但老師相信,隨著你們對數(shù)學越來越深入地學習,你會越來越深刻地理解這些話。
四、小結(jié):有什么收獲?還有什么疑問?
第五篇:《簡易方程》教學設計
《簡易方程》教學設計
教學內(nèi)容: 蘇教版教材第九冊P90例
1、“練一練”以及練習十二第1~2題和補充練習。
教學目標:1、2、3、使學生理解掌握方程ax±bx=c的解法。培養(yǎng)學生運用方程解決實際問題的能力。培養(yǎng)學生的判斷、分析能力和良好的學習習慣。
教學重點:
使學生熟練掌握ax±bx=c的解法和養(yǎng)成檢驗的習慣。
教學過程:
一、復習與導入:
1、你們班有多少人?想知道老師所教班級的學生人數(shù)嗎?
用X表示我們班人數(shù),比你們班多18人,你能列出一個什么等式?
2、3、像這樣含有未知數(shù)的等式叫做方程。(揭示課題。)下面的式子哪些是方程?
3X=75 50÷2=25 2X+4X<246 1.8+2X=30 先獨立思考,再一起讀出方程。選一道方程獨立解答,集體訂正,強調(diào)格式,并指名口頭檢驗。
二、新授與嘗試:
1、“2X+4X<246”為什么不是方程? 你能將它改成方程嗎?
板:2X+4X=246(1)(2)獨立試做,指名板演。
集體訂正,說說6X是怎么得來的?
由2X+4X變成6X這其中運用了什么運算定律? 板書:(3+5)X=56(3)這個方程的解是不是X=41呢?還需要什么?(檢驗)
怎樣檢驗?(先指名兩人說說檢驗過程,師板書,齊說。)
2、“試一試”: 解方程,并寫出檢驗過程。1.9X-0.4X=60(1)獨立完成,最快完成的同學板演。(2)同桌檢查。
(3)說說解方程過程中哪些步驟比較重要?(養(yǎng)成檢驗的習慣。)
三、1、鞏固與拓展:
解方程。(任選一題寫出檢驗過程)(★★)
12X-5X=112 5X-2.2X=72 獨立完成,指名板演,請小老師批改。
2、看圖列方程,并求出方程的解。(★★★)
說明:方程中的未知數(shù)除了可以用X表示,也可以用其他字母表示。
3、選擇題。(★★★★)
(1)方程4X-X=24的解是()
①X=6 ②X=8 ③X=0(2)X=1.8是方程()的解。
①1.6×3-X=3 ②0.2X+0.1X=6 ③10X-X=16.2 做完這題,你有什么感想?(認真審題的習慣。)
(3)()X+3X=11的解是X=2。
① 5 ② 10 ③ 2.5
四、總結(jié)與質(zhì)疑:
1、通過這節(jié)課的學習你有什么收獲?
2、你還有什么問題?
五、游戲與練習:
1、小游戲“把年齡藏在方程里”:
老師把自己的年齡藏在了方程里,看誰最先找到。
1.1X-0.9X=2.6 1.5X-1.4 X=48 0.17X+0.03X=4.8
2、獨立練習:
(1)每人想一道方程,使這個方程的解就是自己的年齡。(2)每人再想幾道今天所學的方程,把自己父母的年齡或?qū)ψ约罕容^有意義的數(shù)字藏在方程里。
六、課堂作業(yè):
練習二十第1題(第一行),第2題。
教學后記:
這節(jié)課的教學內(nèi)容比較簡單,學生對本節(jié)課知識和技能的掌握沒有什么難點,所以在教學時設想主要突出以下幾點:
1、注重學生充分的練習量。
因為內(nèi)容簡單,所以從復習開始基本上是學生一直在練習的過程,新授也是讓學生先嘗試練習,然后是鞏固練習、綜合練習,最后安排了獨立練習,整節(jié)課的安排非常緊湊,練習量較大,學生通過這樣的練習基本上達到了熟練解答此類型方程的目的。
2、注重練習的層次性和趣味性。
為了讓簡單的內(nèi)容不簡單,本節(jié)課的設計尤其注重了練習形式和層次的變化。除了基本的解方程練習,還安排了看圖列方程、選擇題、把自己的年齡和父母、好友的年齡藏在方程里以及到方程里找老師年齡的練習,在選擇題中層次性體現(xiàn)的更加清楚,由根據(jù)方程選解到根據(jù)解來找方程再到把方程的X看作已知數(shù)來求另一個未知數(shù),這樣一步步深入拓展,讓學生對方程的意義、解方程的方法有了較深刻的認識,學生整節(jié)課的練習輕松且充滿興趣。
3、注重培養(yǎng)學生良好的學習習慣。
培養(yǎng)學生良好的學習習慣是本節(jié)課的一個重要目標。在教學檢驗格式教育學生要養(yǎng)成認真書寫的習慣,在整節(jié)課中始終抓住各種契機強調(diào)要養(yǎng)成真正檢驗的習慣,以及在選擇題第2題設計了“一題多選”目的是為了滲透認真審題的習慣。學生在學習中潛移默化地受到教育,對于其學習習慣的培養(yǎng)有著重要的促進作