第一篇:《數(shù)學(xué)廣角——鴿巢問(wèn)題》教學(xué)設(shè)計(jì)
《數(shù)學(xué)廣角—鴿巢問(wèn)題》第1課時(shí)教學(xué)設(shè)計(jì)
【教學(xué)目標(biāo)】
1、知識(shí)與技能:了解“鴿巢問(wèn)題”的特點(diǎn),理解“鴿巢原理”的含義。使學(xué)生學(xué)會(huì)用此原理解決簡(jiǎn)單的實(shí)際問(wèn)題。
2、過(guò)程與方法:經(jīng)歷探究“鴿巢原理”的學(xué)習(xí)過(guò)程,體驗(yàn)觀察、猜測(cè)、實(shí)驗(yàn)、推理等活動(dòng)的學(xué)習(xí)方法,滲透數(shù)形結(jié)合的思想。
3、情感、態(tài)度和價(jià)值觀:通過(guò)用“鴿巢問(wèn)題”解決簡(jiǎn)單的實(shí)際問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生感受數(shù)學(xué)的魅力?!窘虒W(xué)重難點(diǎn)】
重點(diǎn):引導(dǎo)學(xué)生把具體問(wèn)題轉(zhuǎn)化成“鴿巢問(wèn)題”。難點(diǎn):找出“鴿巢問(wèn)題”解決的竅門進(jìn)行反復(fù)推理?!窘虒W(xué)過(guò)程】
一、情境導(dǎo)入
教師:同學(xué)們,你們?cè)谝恍┕矆?chǎng)所或旅游景點(diǎn)見(jiàn)過(guò)電腦算命嗎?“電腦算命”看起來(lái)很深?yuàn)W,只要你報(bào)出自己的出生年月日和性別,一按鍵,屏幕上就會(huì)出現(xiàn)所謂性格、命運(yùn)的句子。通過(guò)今天的學(xué)習(xí),我們掌握了“鴿巢問(wèn)題”之后,你就不難證明這種“電腦算命”是非??尚突奶频模遣豢上嘈诺墓戆褢蛄?。(板書課題:鴿巢問(wèn)題)教師:通過(guò)學(xué)習(xí),你想解決哪些問(wèn)題?
根據(jù)學(xué)生回答,教師把學(xué)生提出的問(wèn)題歸結(jié)為:“鴿巢問(wèn)題”是怎樣的?這里的“鴿巢”是指什么?運(yùn)用“鴿巢問(wèn)題”能解決哪些問(wèn)題?怎樣運(yùn)用“鴿巢問(wèn)題”解決問(wèn)題?
二、探究新知:
1.教學(xué)例1.(課件出示例題1情境圖)
思考問(wèn)題:把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有1個(gè)筆筒里至少有2支鉛筆。為什么呢?“總有”和“至少”是什么意思? 學(xué)生通過(guò)操作發(fā)現(xiàn)規(guī)律→理解關(guān)鍵詞的含義→探究證明→認(rèn)識(shí)“鴿巢問(wèn)題”的學(xué)習(xí)過(guò)程來(lái)解決問(wèn)題。
(1)操作發(fā)現(xiàn)規(guī)律:通過(guò)把4支鉛筆放進(jìn)3個(gè)筆筒中,可以發(fā)現(xiàn):不管怎么放,總有1個(gè)筆筒里至少有2支鉛筆。
(2)理解關(guān)鍵詞的含義:“總有”和“至少”是指把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,一定有1個(gè)筆筒里的鉛筆數(shù)大于或等于2支。
(3)探究證明。
方法一:用“枚舉法”證明。方法二:用“分解法”證明。把4分解成3個(gè)數(shù)。
由圖可知,把4分解成3個(gè)數(shù),與枚舉法相似,也有4中情況,每一種情況分得的3個(gè)數(shù)中,至少有1個(gè)數(shù)是不小于2的數(shù)。
方法三:用“假設(shè)法”證明。
通過(guò)以上幾種方法證明都可以發(fā)現(xiàn):把4只鉛筆放進(jìn)3個(gè)筆筒中,無(wú)論怎么放,總有1個(gè)筆筒里至少放進(jìn)2只鉛筆。
(4)認(rèn)識(shí)“鴿巢問(wèn)題”
?像上面的問(wèn)題就是“鴿巢問(wèn)題”,也叫“抽屜問(wèn)題”。在這里,4支鉛筆是要分放的物體,就相當(dāng)于4只“鴿子”,“3個(gè)筆筒”就相當(dāng)于3個(gè)“鴿巢”或“抽屜”,把此問(wèn)題用“鴿巢問(wèn)題”的語(yǔ)言描述就是把4只鴿子放進(jìn)3個(gè)籠子,總有1個(gè)籠子里至少有2只鴿子。
這里的“總有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鴿子最多的那個(gè)“籠子”里鴿子“最少”的個(gè)數(shù)。
小結(jié):只要放的鉛筆數(shù)比筆筒的數(shù)量多,就總有1個(gè)筆筒里至少放進(jìn)2支鉛筆。
?如果放的鉛筆數(shù)比筆筒的數(shù)量多2,那么總有1個(gè)筆筒至少放2支鉛筆;如果放的鉛筆比筆筒的數(shù)量多3,那么總有1個(gè)筆筒里至少放2只鉛筆??
小結(jié):只要放的鉛筆數(shù)比筆筒的數(shù)量多,就總有1個(gè)筆筒里至少放2支鉛筆。(5)歸納總結(jié):
鴿巢原理
(一):如果把m個(gè)物體任意放進(jìn)n個(gè)抽屜里(m>n,且n是非零自然數(shù)),那么一定有一個(gè)抽屜里至少放進(jìn)了放進(jìn)了2個(gè)物體。
2、教學(xué)例2(課件出示例題2情境圖)
思考問(wèn)題:
(一)把7本書放進(jìn)3個(gè)抽屜,不管怎么放,總有1個(gè)抽屜里至少有3本書。為什么呢?
(二)如果有8本書會(huì)怎樣呢?10本書呢?
學(xué)生通過(guò)“探究證明→得出結(jié)論”的學(xué)習(xí)過(guò)程來(lái)解決問(wèn)題
(一)。(1)探究證明。
方法一:用數(shù)的分解法證明。
把7分解成3個(gè)數(shù)的和。把7本書放進(jìn)3個(gè)抽屜里,共有如下8種情況:
由圖可知,每種情況分得的3個(gè)數(shù)中,至少有1個(gè)數(shù)不小于3,也就是每種分法中最多那個(gè)數(shù)最小是3,即總有1個(gè)抽屜至少放進(jìn)3本書。
方法二:用假設(shè)法證明。
把7本書平均分成3份,7÷3=2(本)......1(本),若每個(gè)抽屜放2本,則還剩1本。如果把剩下的這1本書放進(jìn)任意1個(gè)抽屜中,那么這個(gè)抽屜里就有3本書。
(2)得出結(jié)論。
通過(guò)以上兩種方法都可以發(fā)現(xiàn):7本書放進(jìn)3個(gè)抽屜中,不管怎么放,總有1個(gè)抽屜里至少放進(jìn)3本書。
學(xué)生通過(guò)“假設(shè)分析法→歸納總結(jié)”的學(xué)習(xí)過(guò)程來(lái)解決問(wèn)題
(二)。(1)用假設(shè)法分析。
?8÷3=2(本)......2(本),剩下2本,分別放進(jìn)其中2個(gè)抽屜中,使其中2個(gè)抽屜都變成3本,因此把8本書放進(jìn)3個(gè)抽屜中,不管怎么放,總有1個(gè)抽屜里至少放進(jìn)3本書。
?10÷3=3(本)......1(本),把10本書放進(jìn)3個(gè)抽屜中,不管怎么放,總有1個(gè)抽屜里至少放進(jìn)4本書。
(2)歸納總結(jié): 綜合上面兩種情況,要把a(bǔ)本書放進(jìn)3個(gè)抽屜里,如果a÷3=b(本)......1(本)或a÷3=b(本)......2(本),那么一定有1個(gè)抽屜里至少放進(jìn)(b+1)本書。
鴿巢原理
(二):我們把多余kn個(gè)的物體任意分別放進(jìn)n個(gè)空抽屜(k是正整數(shù),n是非0的自然數(shù)),那么一定有一個(gè)抽屜中至少放進(jìn)了(k+1)個(gè)物體。
三、鞏固練習(xí)
1、完成教材第70頁(yè)的“做一做”第1題。學(xué)生獨(dú)立思考解答問(wèn)題,集體交流、糾正。
2、完成教材第71頁(yè)練習(xí)十三的1-2題。學(xué)生獨(dú)立思考解答問(wèn)題,集體交流、糾正。
四、課堂總結(jié)
今天這節(jié)課你有什么收獲?能說(shuō)給大家聽(tīng)聽(tīng)嗎?
第二篇:數(shù)學(xué)廣角鴿巢問(wèn)題教案
黃嶺子鎮(zhèn)中心校趙春宇 《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)
數(shù)學(xué)廣角——鴿巢問(wèn)題
黃嶺子中心校趙春宇
教學(xué)目標(biāo)
1.經(jīng)歷“抽屜原理”(鴿巢原理)的探究過(guò)程,初步了解“抽屜原理”,理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。
2.通過(guò)操作發(fā)展學(xué)生的歸納推理的能力,形成比較抽象的數(shù)學(xué)思維。
3.會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題,感受數(shù)學(xué)的魅力。重點(diǎn)難點(diǎn)
重點(diǎn):經(jīng)歷“抽屜原理”(鴿巢原理)的探究過(guò)程,初步了解“抽屜原理”。
難點(diǎn):理解“鴿巢問(wèn)題”,并對(duì)一些簡(jiǎn)單實(shí)際問(wèn)題加以“模型化”。教學(xué)過(guò)程 第一學(xué)時(shí) 教學(xué)活動(dòng)
活動(dòng)1【導(dǎo)入】游戲?qū)?/p>
上課前,我們先來(lái)熱身一下,做一個(gè)預(yù)測(cè)的游戲。
請(qǐng)各位同學(xué)在本子上任意寫出三個(gè)自己喜愛(ài)的老師的名字,之后老師進(jìn)行預(yù)測(cè),如果預(yù)測(cè)準(zhǔn)的話給老師五秒鐘的掌聲。其實(shí)在這個(gè)預(yù)測(cè)的游戲中還蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來(lái)研究.活動(dòng)2【講授】自主探究,初步感知
1、研究4枝筆放進(jìn)3個(gè)筆筒。
(1)要把4枝筆放進(jìn)3個(gè)筆筒 ,有幾種放法?請(qǐng)同學(xué)們小組內(nèi)擺一擺。
(2)反饋:四種放法(課件出示)(3)判斷:4枝筆放進(jìn)3個(gè)筆筒,不管怎么放,總有一個(gè)杯子里至少放進(jìn)2支筆。這句話說(shuō)的對(duì)嗎?為什么?(4)“總有”什么意思?(一定有)(5)“至少”有2枝什么意思?(不少于2枝)(6)師:4枝筆放進(jìn)3個(gè)筆筒,不管怎么放,總有一個(gè)杯子里至少放進(jìn)幾支筆?你是怎么知道的?(先找到每種擺法中筆數(shù)最多的杯子,然后再找到這些最多的杯子中最少的筆數(shù))(7)師:實(shí)際就是多中找少
師:我們剛剛把所有擺放的方法都一一羅列出來(lái),從而找到總有一個(gè)杯子里至少放進(jìn)2支筆,這種方法叫枚舉法。這種方法好不好?(評(píng)價(jià):隨著數(shù)據(jù)的擴(kuò)大,擺放的方法一定會(huì)更多,甚至不能一一羅列)那么我們能不能找到一種更為直接的方法,也能得到這個(gè)結(jié)論呢?請(qǐng)同學(xué)們?cè)谛〗M內(nèi)討論討論,怎么擺?
(每個(gè)杯子都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個(gè)杯子,總會(huì)有一個(gè)杯子至少有2枝筆)(你的方法果然簡(jiǎn)單)(8)這種方法我們可以稱之為假設(shè)法,假設(shè)先在每個(gè)杯子里放1枝鉛筆,這種放法其實(shí)也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個(gè)杯子,那么這個(gè)杯子就有2枝鉛筆了)(9)誰(shuí)能用算式來(lái)表示這位同學(xué)的想法?(4÷3=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?
2、類推:把5枝筆放進(jìn)4個(gè)筆筒,會(huì)有什么結(jié)果,為什么? 把6枝筆放進(jìn)5個(gè)筆筒呢?為什么? 把7枝筆放進(jìn)6個(gè)筆筒呢?為什么? 把1000枝筆放進(jìn)999個(gè)杯子呢? 把(n+1)枝筆放進(jìn)n個(gè)杯子呢?
3、從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比杯子的數(shù)量多1,總有一個(gè)杯子里至少放進(jìn)2枝鉛筆。)
4、小結(jié):從以上的學(xué)習(xí)中,你有什么發(fā)現(xiàn)? 師:這樣的數(shù)學(xué)問(wèn)題就叫做“鴿巢問(wèn)題”或“抽屜原理”(板書課題)。一起看大屏幕(介紹鴿巢問(wèn)題的相關(guān)知識(shí))指名讀。師:像剛才的問(wèn)題中,并沒(méi)有鴿巢、抽屜,其實(shí)鴿巢或抽屜就是一個(gè)模型。把誰(shuí)看作“抽屜”?把誰(shuí)看作“物體”? 生:筆筒相當(dāng)于抽屜,鉛筆相當(dāng)于物體。(板書)師:用公式怎樣表示這個(gè)原理(物體數(shù)÷抽屜數(shù)=商…..余數(shù)
至少數(shù)=商+1)活動(dòng)4【練習(xí)】運(yùn)用模型,解決問(wèn)題
1、預(yù)測(cè)游戲是抽屜原理嗎?解釋為什么總有至少兩個(gè)人的性別一樣。
師:抽屜原理的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題
2:從大街上隨意找13個(gè)人,至少有兩人屬相相同。3:從全校老師中任意找13人,至少有兩人在同一個(gè)月過(guò)生日。
活動(dòng)5【活動(dòng)】課堂小結(jié) 總結(jié)這節(jié)課,你有什么收獲?
第三篇:《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)
【教學(xué)內(nèi)容】(人教版)數(shù)學(xué)六年級(jí)下冊(cè)第68頁(yè)例1。
【教學(xué)目標(biāo)】
知識(shí)與技能:初步了解抽屜原理,會(huì)用抽屜原理解決簡(jiǎn)單的實(shí)際問(wèn)題。
過(guò)程與方法:經(jīng)歷抽屜原理的探究過(guò)程,通過(guò)擺一擺、分一分等實(shí)踐
操作,發(fā)現(xiàn)、歸納、總結(jié)原理。
情感態(tài)度價(jià)值觀:通過(guò)“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
【教學(xué)重點(diǎn)】
經(jīng)歷“抽屜原理”的探究過(guò)程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問(wèn)題。
【教學(xué)難點(diǎn)】
通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
【教學(xué)準(zhǔn)備】:多媒體課件、鉛筆、筆筒等。
【教學(xué)過(guò)程】
一、創(chuàng)設(shè)情境,導(dǎo)入新知
老師組織學(xué)生做“搶凳子的游戲”。請(qǐng)4位同學(xué)上來(lái),擺開(kāi)3張凳子。
老師宣布游戲規(guī)則:4位同學(xué)站在凳子前一定距離,等老師說(shuō)完開(kāi)始后,四位同學(xué)每個(gè)人都必須坐在凳子上。
教師背對(duì)著游戲的學(xué)生。
師:都坐下了嗎?老師不用看,也知道肯定有一張凳子上至少坐著2位同學(xué)。老師說(shuō)得對(duì)嗎?
師:老師為什么說(shuō)得這么肯定呢?其實(shí)這里面蘊(yùn)含一個(gè)深?yuàn)W的道理,今天我們就來(lái)探究這個(gè)問(wèn)題——鴿巢問(wèn)題(板書課題)。
二、自主操作,探究新知
1、觀察猜測(cè)
多媒體出示例1:把4支筆放進(jìn)3個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少放進(jìn)2支筆。這句話對(duì)嗎?為什么?
2、“總有”是什么意思?“至少”又是什么意思?
3、自主思考
(1)獨(dú)立思考:怎樣解釋這一現(xiàn)象?
(2)小組合作,拿鉛筆和筆筒實(shí)際擺一擺、放一放,看一共有幾種情況?
4、交流討論
學(xué)生匯報(bào)是用什么辦法來(lái)解釋這一現(xiàn)象的。
學(xué)情預(yù)設(shè):
第一種:用實(shí)物擺一擺,把所有的擺放結(jié)果都羅列出來(lái)。學(xué)生展示把4支鉛筆放進(jìn)3個(gè)筆筒里的幾種不同擺放情況。課件再演示四種擺法。
請(qǐng)學(xué)生觀察不同的放法,能發(fā)現(xiàn)什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):每一種擺放情況,都一定有一個(gè)筆筒里至少有2支鉛筆。也就是說(shuō)不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。
第二種:假設(shè)法。
教師請(qǐng)只擺了一種或沒(méi)有擺放就能解釋的同學(xué)說(shuō)說(shuō)自己的想法。師:其他學(xué)生是否明白他的想法呢?
引導(dǎo)學(xué)生在交流中明確:可以假設(shè)先在每個(gè)筆筒里放1支鉛筆,3個(gè)筆筒里就放了3支鉛筆。還剩下1支,放入任意一個(gè)筆筒里,那么這個(gè)筆筒中就有2支鉛筆了。也就是先平均分,每個(gè)筆筒里放1支,余下1支,不管放在哪個(gè)筆筒里,一定會(huì)出現(xiàn)總有一個(gè)筆筒里至少有2支鉛筆。
請(qǐng)學(xué)生繼續(xù)思考:
如果把5支鉛筆放進(jìn)4個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少放進(jìn)2支筆。這句話對(duì)嗎?為什么?
請(qǐng)學(xué)生繼續(xù)思考:
把7支鉛筆放進(jìn)6個(gè)筆筒里呢??把10支鉛筆放進(jìn)9個(gè)筆筒里呢??把100支鉛筆放進(jìn)99個(gè)筆筒里呢??你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):只要放的鉛筆數(shù)比文具盒的數(shù)量多1,不論怎么放,總有一個(gè)筆筒里至少放進(jìn)2支鉛筆。
5、其實(shí)這一發(fā)現(xiàn)早在150多年前有一位數(shù)學(xué)家就提出來(lái)了。課件出示“你知道嗎”。
“?抽屜原理”又稱“鴿巢原理”,最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來(lái)的,所以又稱“狄里克雷原理”,這一原理在解決實(shí)際問(wèn)題中有著廣泛的應(yīng)用?!俺閷显怼钡膽?yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問(wèn)題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問(wèn)題。
三、靈活應(yīng)用,解決問(wèn)題
1.第70頁(yè)“做一做”。
(1)課件出示:5只鴿子飛回3個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?
(2)學(xué)生獨(dú)立思考,自主探究。
(3)交流,說(shuō)理。
2.課件出示:8只鴿子飛回5個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)鴿舍里。為什么?
3.解釋課前所做的搶凳子游戲。
4.師拿出撲克牌,問(wèn):對(duì)于撲克牌,你有哪些了解?
生匯報(bào)。
從撲克牌中取出兩張王牌,找5名學(xué)生,在剩下的52張中任意抽出5張,讓其他同學(xué)猜抽牌的結(jié)果,并說(shuō)明理由。
抽牌后,交流。
四、全課總結(jié)
這節(jié)課你懂得了什么原理?
五、板書設(shè)計(jì)
抽屜原理(鴿巢問(wèn)題)
只要待分物體比抽屜數(shù)多__
總有
一個(gè)抽屜里
至少
放進(jìn)2個(gè)物體
枚舉法
(4,0,0)
(3,1,0)
(2,2,0)
(2,1,1)
假設(shè)法
(1,1,1)
(2,1,1)
第四篇:鴿巢問(wèn)題教學(xué)設(shè)計(jì)
鴿巢問(wèn)題教學(xué)設(shè)計(jì)
在教學(xué)工作者開(kāi)展教學(xué)活動(dòng)前,很有必要精心設(shè)計(jì)一份教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)一般包括教學(xué)目標(biāo)、教學(xué)重難點(diǎn)、教學(xué)方法、教學(xué)步驟與時(shí)間分配等環(huán)節(jié)。如何把教學(xué)設(shè)計(jì)做到重點(diǎn)突出呢?以下是小編整理的鴿巢問(wèn)題教學(xué)設(shè)計(jì),歡迎閱讀,希望大家能夠喜歡。
鴿巢問(wèn)題教學(xué)設(shè)計(jì)1教學(xué)目標(biāo):
1、引導(dǎo)學(xué)生經(jīng)歷鴿巢原理的探究過(guò)程,初步了解鴿巢原理,會(huì)運(yùn)用鴿巢原理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
2、通過(guò)操作、觀察、比較、列舉、假設(shè)、推理等活動(dòng)發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
3、使學(xué)生經(jīng)歷將具體問(wèn)題“數(shù)學(xué)化”的過(guò)程,初步形成模型思想。
教學(xué)重點(diǎn):經(jīng)歷鴿巢原理的探究過(guò)程,初步了解鴿巢原理。
教學(xué)難點(diǎn):理解鴿巢原理,并對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以模型化。
教學(xué)過(guò)程:
1、師:同學(xué)們,你們玩過(guò)撲克牌嗎?這里有一副牌,拿掉大小王后還剩52張,5位同學(xué)隨意抽一張牌,猜一猜:至少有幾張牌的花色是一樣的?(指名回答)
2、師:大家猜對(duì)了嗎?其實(shí)這里面藏著一個(gè)非常有趣的數(shù)學(xué)問(wèn)題,叫做“鴿巢問(wèn)題”。今天我們就一起來(lái)研究它。
師:研究一個(gè)數(shù)學(xué)問(wèn)題,我們通常從簡(jiǎn)單一點(diǎn)的情況開(kāi)始入手研究。請(qǐng)看大屏幕。(生齊讀題目)
1、教學(xué)例1:把4支鉛筆放進(jìn)3個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有2支鉛筆。
(1)理解“總有”、“至少”的含義。(PPT)總有:一定有 至少:最少
師:這個(gè)結(jié)論正確嗎?我們要?jiǎng)邮謥?lái)驗(yàn)證一下。
(2)同學(xué)們的課桌上都有一張作業(yè)紙,請(qǐng)同桌兩人合作探究:把4支鉛筆放進(jìn)3個(gè)筆筒里,有幾種不同的擺法?
探究之前,老師有幾個(gè)要求。(一生讀要求)
(3)匯報(bào)展示方法,證明結(jié)論。(展示兩張作品,其中一張是重復(fù)擺的。)
第一張作品:誰(shuí)看懂他是怎么擺的?(一生匯報(bào),發(fā)現(xiàn)重復(fù)的擺法)
第二張作品:他是怎么擺的?這4種擺法有沒(méi)有重復(fù)的?還有其他的擺法嗎?板書:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)。
師:我們要證明的是總有一個(gè)筆筒里至少有2支鉛筆,這4種擺法都滿足要求嗎?(指名匯報(bào):第一種擺法中哪個(gè)筆筒滿足要求?只要發(fā)現(xiàn)有一個(gè)筆筒里至少有2支鉛筆就行了。)總結(jié):把4支鉛筆放進(jìn)3個(gè)筆筒中一共只有四種情況,在每一種情況中,都一定有一個(gè)筆筒中至少有2支鉛筆??磥?lái)這個(gè)結(jié)論是正確的。
師:像這樣把所有情況一一列舉出來(lái)的方法,數(shù)學(xué)上叫做“枚舉法”。(板書)
(4)通過(guò)比較,引出“假設(shè)法”
同桌討論:剛才我們把4種情況都列舉出來(lái)進(jìn)行驗(yàn)證,能不能找到一種更簡(jiǎn)單直接的方法,只擺一種情況就能證明這個(gè)結(jié)論是正確的`?
引導(dǎo)學(xué)生說(shuō)出:假設(shè)先在每個(gè)筆筒里放1支,還剩下1支,這時(shí)無(wú)論放到哪個(gè)筆筒,那個(gè)筆筒里就有2支鉛筆了。(PPT演示)
(5)初步建模—平均分
師:先在每個(gè)筆筒里放1支,這種分法實(shí)際上是怎么分的?
生:平均分(師板書)
師:為什么要去平均分呢?平均分有什么好處?
生:平均分可以保證每個(gè)筆筒里的筆數(shù)量一樣,盡可能的少。這樣多出來(lái)的1支不管放進(jìn)哪個(gè)筆筒里,總有一個(gè)筆筒里至少有2支鉛筆。(如果不平均分,隨便放,比如把4支鉛筆都放到一個(gè)筆筒里,這樣就不能保證一下子找到最少的情況了)
師:這種先平均分的方法叫做“假設(shè)法”。怎么用算式表示這種方法呢?
板書:4÷3=1……1 1+1=2
(5)概括鴿巢問(wèn)題的一般規(guī)律
師:現(xiàn)在我們把題目改一改,結(jié)果會(huì)怎樣呢?
PPT出示:把5支筆放進(jìn)4個(gè)筆筒里,不管怎么放,總有一個(gè)筆筒里至少有幾支筆?……(引導(dǎo)學(xué)生說(shuō)清楚理由)
師:為什么大家都選擇用假設(shè)法來(lái)分析?(假設(shè)法更直接、簡(jiǎn)單)
通過(guò)這些問(wèn)題,你有什么發(fā)現(xiàn)?
交流總結(jié):只要筆的數(shù)量比筆筒數(shù)量多1,總有一個(gè)筆筒里至少放進(jìn)2支筆。
過(guò)渡語(yǔ):師:如果多出來(lái)的數(shù)量不是1,結(jié)果會(huì)怎樣呢?
2、出示:5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠里至少飛進(jìn)了幾只鴿子呢?
(1)同桌討論交流、指名匯報(bào)。
先讓一生說(shuō)出5÷3=1……2 1+2=3 的結(jié)果,再問(wèn):有不同的意見(jiàn)嗎?
再讓一生說(shuō)出5÷3=1……2 1+1=2
師:你們同意哪種想法?
(2)師:余下的2只怎樣飛才更符合“至少”的要求呢?為什么要再次平均分?
(3)明確:再次平均分,才能保證“至少”的情況。
3、教學(xué)例2
(1)師:我們剛才研究的把筆放入筆筒、鴿子飛進(jìn)鴿籠這樣的問(wèn)題就叫做“鴿巢問(wèn)題”,也叫“抽屜問(wèn)題”。它最早是由德國(guó)數(shù)學(xué)家狄利克雷發(fā)現(xiàn)并提出的,當(dāng)他發(fā)現(xiàn)這個(gè)問(wèn)題之后決定繼續(xù)深入研究下去。出示例2。
(2)獨(dú)立思考后指名匯報(bào)。
師板書:7÷3=2……1 2+1=3
(3)如果有8本書會(huì)怎樣?10本書呢?
指名回答,師相機(jī)板書:8÷3=2……2 2+1=3
師:剩下的2本怎么放才更符合“至少”的要求?
為什么不能用商+2?
10÷3=3……1 3+1=4
(4)觀察發(fā)現(xiàn)、總結(jié)規(guī)律
同桌討論交流:學(xué)到這里,老師想請(qǐng)大家觀察這些算式并思考一個(gè)問(wèn)題,把書放進(jìn)抽屜里,總有一個(gè)抽屜里至少放進(jìn)了幾本書?我們是用什么方法去找到這個(gè)結(jié)果的?(假設(shè)法,也就是平均分的方法)用書的數(shù)量去除以抽屜的數(shù)量,會(huì)得到一個(gè)商和一個(gè)余數(shù),最后的結(jié)果都是怎么計(jì)算得到的?為什么不能用商加余數(shù)?
歸納總結(jié):總有一個(gè)抽屜里至少可以放“商+1”本書。(板書: 商+1)
師:利用鴿巢問(wèn)題中這個(gè)原理可以解釋生活中很多有趣的問(wèn)題。
1、做一做第1、2題。
2、用抽屜原理解釋“撲克表演”。
說(shuō)清楚把4種花色看作抽屜,5張牌看作要放進(jìn)的書。
一、教學(xué)內(nèi)容:
教科書第68頁(yè)例1。
二、教學(xué)目標(biāo):
(一)知識(shí)與技能:通過(guò)數(shù)學(xué)活動(dòng)讓學(xué)生了解鴿巢原理,學(xué)會(huì)簡(jiǎn)單的鴿巢原理分析方法。
(二)過(guò)程與方法:結(jié)合具體的實(shí)際問(wèn)題,通過(guò)實(shí)驗(yàn)、觀察、分析、歸納等數(shù)學(xué)活動(dòng),讓學(xué)生通過(guò)獨(dú)立思考與合作交流等活動(dòng)提高解決實(shí)際問(wèn)題的能力。
(三)情感態(tài)度和價(jià)值觀:在主動(dòng)參與數(shù)學(xué)活動(dòng)的過(guò)程中,讓學(xué)生切實(shí)體會(huì)到探索的樂(lè)趣,讓學(xué)生切實(shí)體會(huì)到數(shù)學(xué)與生活的緊密結(jié)合。
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):經(jīng)歷鴿巢問(wèn)題的探究過(guò)程,初步了解鴿巢原理,會(huì)用鴿巢原理解決簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)難點(diǎn):通過(guò)操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
四、教學(xué)準(zhǔn)備:多媒體課件。
五、教學(xué)過(guò)程
(一)候課閱讀分享:
同學(xué)們,大家好,課前老師讓大家收集了有關(guān)“鴿巢問(wèn)題”的閱讀資料,現(xiàn)在就某某同學(xué)的閱讀在這候課的幾分鐘內(nèi)與
(二)激情導(dǎo)課
好,咱們班人數(shù)已到齊,從今天開(kāi)始,我們學(xué)習(xí)第五單元鴿巢問(wèn)題,這節(jié)課通過(guò)數(shù)學(xué)活動(dòng)我們
(三)民主導(dǎo)學(xué)
1、請(qǐng)同學(xué)們先來(lái)看例1。把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有1個(gè)筆筒里至少有2只鉛筆。
請(qǐng)你再把題讀一次,這是為什么呢?
要想解決這個(gè)問(wèn)題,我們首先要理解,總有一個(gè)筆筒里至少有2支鉛筆這句話。我們?cè)偎伎歼@一句話中,總有和至少是什么意思?
對(duì)總有就是一定的意思。至少就是最少的意思至少有兩支鉛筆,就是說(shuō)最少有兩支鉛筆。或者是說(shuō),鉛筆的支數(shù)要大于或等于兩支。
那你能現(xiàn)在說(shuō)說(shuō),總有一個(gè)筆筒里至少有兩支鉛筆這句話的意思了嗎?對(duì),這句話就是說(shuō),一定有一個(gè)筆筒里最少有兩支鉛筆,或者是說(shuō)一定有一個(gè)筆筒里的鉛筆數(shù)是大于或等于兩支的。你說(shuō)對(duì)了嗎?
課前老師已經(jīng)讓大家完成前置性作業(yè),就“4支鉛筆放進(jìn)3個(gè)筆筒中有幾種擺法呢?”這兒老師收集到了各組組長(zhǎng)
方法一:用“枚舉法”證明。也可用“分解法”證明把4分解成3個(gè)數(shù)。我們發(fā)現(xiàn)有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四種不同的方法。
剛才的兩種方法無(wú)論是擺還是寫都是把方法枚舉出來(lái),在數(shù)學(xué)中我們叫它“枚舉法”。
那大家能不能找到一種更為直接的方法只擺一種情況也能得到這個(gè)情況呢?
方法二:用“假設(shè)法”證明。
對(duì),我們可以這樣想,如果在每個(gè)筆筒中放1支,先放3支,剩下的1支就要放進(jìn)其中的一個(gè)筆筒。這時(shí)無(wú)論放在哪個(gè)筆筒,那個(gè)筆筒中就有2支,所以總有一個(gè)筆筒中至少放進(jìn)2支鉛筆。(平均分)
方法三:列式計(jì)算
你能用算式表示這個(gè)方法嗎?
學(xué)生列出式子并說(shuō)一說(shuō)算式中商與余數(shù)各表示什么意思?
2、把5支鉛筆放進(jìn)4個(gè)筆筒,總有一個(gè)筆筒里至少有2支鉛筆。
這道題大家可以用幾種方法解答呢?
3種,枚舉法、假設(shè)法、列式計(jì)算。
3、100支鉛筆,放進(jìn)99個(gè)筆筒,總有一個(gè)筆筒至少要放進(jìn)多少支鉛筆呢?
還能有枚舉法嗎?對(duì),不能,枚舉法雖然比較直觀,但數(shù)據(jù)大的時(shí)候用起來(lái)比較麻煩??梢杂眉僭O(shè)法和列式計(jì)算。
4、表格中通過(guò)
你發(fā)現(xiàn)了什么規(guī)律?
當(dāng)要分的物體數(shù)比鴿巢數(shù)(抽屜數(shù))多1時(shí),至少數(shù)等于2“商+1”。
5、簡(jiǎn)單了解鴿巢問(wèn)題的由來(lái)。
經(jīng)過(guò)剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過(guò)程,我把我們的這一發(fā)現(xiàn),稱為筆筒問(wèn)題。但其實(shí)最早發(fā)現(xiàn)這個(gè)規(guī)律的不是我們,而是德國(guó)的一個(gè)數(shù)學(xué)家“狄里克雷”。
(四)檢測(cè)導(dǎo)結(jié)
好,我們做幾道題檢測(cè)一下你們的學(xué)習(xí)效果。
1、隨意找13位老師,他們中至少有2個(gè)人的屬相相同。為什么?
2、一副牌,取出大小王,還剩52張,你們5人每人隨意抽一張,我知道至少有2張牌是同花色的。相信嗎?
3、5只鴿子飛進(jìn)了3個(gè)鴿籠,總有一個(gè)鴿籠至少飛進(jìn)了2只鴿子。為什么?
4、育新小學(xué)全校共有2192名學(xué)生,其中一年級(jí)新生有367名同學(xué)是
(五)全課
(六)布置作業(yè)
作業(yè):兩導(dǎo)兩練第70頁(yè)、71頁(yè)實(shí)踐應(yīng)用1、4題。
第五篇:《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)
《鴿巢問(wèn)題》教學(xué)設(shè)計(jì)
【教學(xué)內(nèi)容】
人教版課標(biāo)教材小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)第五單元數(shù)學(xué)廣角第70-71頁(yè)。【教學(xué)目標(biāo)】
1.通過(guò)操作、觀察、比較、分析、推理、抽象概括,引導(dǎo)學(xué)生經(jīng)歷抽屜原理的探究過(guò)程,初步了解抽屜原理,會(huì)用抽屜原理解釋生活中的簡(jiǎn)單問(wèn)題。
2.在探究的過(guò)程中,滲透模型思想,培養(yǎng)學(xué)生的推理和抽象思維能力。3.使學(xué)生感受數(shù)學(xué)的魅力,培養(yǎng)學(xué)習(xí)的興趣?!窘虒W(xué)重點(diǎn)】
經(jīng)歷抽屜原理的探究過(guò)程,初步了解抽屜原理,會(huì)用抽屜原理解釋生活中的簡(jiǎn)單問(wèn)題。【教學(xué)難點(diǎn)】
理解抽屜原理,并對(duì)一些簡(jiǎn)單的實(shí)際問(wèn)題加以模型化?!窘虒W(xué)過(guò)程】
一、開(kāi)門見(jiàn)山,引入課題。承接課前談話內(nèi)容,直接揭示課題。
二、經(jīng)歷過(guò)程,構(gòu)建模型。
(一)研究“4個(gè)小球任意放進(jìn)3個(gè)抽屜”存在的現(xiàn)象。
1.出示結(jié)論:4個(gè)小球放進(jìn)3個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里面至少放2個(gè)小球。
讓學(xué)生說(shuō)說(shuō)對(duì)這句話的理解。2.驗(yàn)證結(jié)論的正確性。
讓學(xué)生用長(zhǎng)方形代替抽屜,用圓代替小球畫一畫,看有幾種不同的放法。
3.全班交流。
學(xué)生匯報(bào)后,教師引導(dǎo)觀察每種放法,通過(guò)橫向、縱向比較,找到每種放法中放得最多的抽屜,然后從最多數(shù)里找最少數(shù),發(fā)現(xiàn)不管哪種放法,都能從里面找到這樣的一個(gè)抽屜,里面至少有2個(gè)小球。從而理解并證明了“不管怎么放,總有一個(gè)抽屜里至少放2個(gè)小球”這個(gè)結(jié)論是正確的。
(二)研究“5個(gè)小球任意放進(jìn)4個(gè)抽屜”存在的現(xiàn)象,找到求至少數(shù)的簡(jiǎn)便方法。
1.猜測(cè):根據(jù)剛才的研究經(jīng)驗(yàn)猜一猜:把5個(gè)小球放進(jìn)4個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜至少放幾個(gè)小球? 2.驗(yàn)證。
學(xué)生以小組為單位共同研究:先畫出不同的放法。然后觀察分析每種放法,1 看看哪種猜測(cè)是正確的。3.全班交流。小組匯報(bào)研究結(jié)果。
教師追問(wèn):通過(guò)驗(yàn)證,我們發(fā)現(xiàn)5個(gè)小球放進(jìn)4個(gè)抽屜里,不管怎么放,總 有一個(gè)抽屜至少放2個(gè)小球。那“總有一個(gè)抽屜至少放3個(gè)小球”為什么不對(duì)?
學(xué)生通過(guò)觀察各種放法來(lái)說(shuō)明原因。教師小結(jié)研究過(guò)程及研究方法(列舉法)。4.尋找求至少數(shù)的簡(jiǎn)便方法。
教師提出:100個(gè)小球放進(jìn)30個(gè)抽屜,如果再用列舉法,你覺(jué)得怎么樣? 使學(xué)生感受到列舉法的局限性。
引導(dǎo)學(xué)生觀察4個(gè)小球放3個(gè)抽屜、5個(gè)小球放4個(gè)抽屜的所有放法。提出問(wèn)題:有沒(méi)有更簡(jiǎn)便的方法,不用把所有的放法都列舉出來(lái),就能很快的找到至少數(shù)?哪種放法最能說(shuō)明不管怎么放,總有一個(gè)抽屜里至少有2個(gè)小球?這種放法同其他放法相比有什么特點(diǎn)?是怎么放的?(平均分)
結(jié)合學(xué)生回答,課件演示:把4個(gè)小球放進(jìn)3個(gè)抽屜里,假設(shè)每個(gè)抽屜平均放一個(gè),還余下一個(gè),這一個(gè)任意放進(jìn)一個(gè)抽屜里,不管怎么放,總有一個(gè)抽屜里至少放2個(gè)小球。
引導(dǎo)學(xué)生嘗試用算式表示上面平均分的過(guò)程。
師生共同回顧以上研究過(guò)程(課件逐步出示以下內(nèi)容),使學(xué)生感受到抽屜原理逐步抽象、簡(jiǎn)約的過(guò)程。
(三)概括規(guī)律,構(gòu)建模型。引導(dǎo)學(xué)生完成下面表格:
重點(diǎn)解決7個(gè)小球放進(jìn)5個(gè)抽屜里,總有一個(gè)抽屜里至少放的小球數(shù),使學(xué)生在思辨中明晰:先把小球平均分,然后把余下的小球再平均分,從而找到至少數(shù),這是解決此類問(wèn)題的關(guān)鍵。
解決完表格中的問(wèn)題后,繼續(xù)引導(dǎo)學(xué)生進(jìn)行聯(lián)想:一直到什么時(shí)候至少數(shù)都是3?什么時(shí)候變成4?
追問(wèn):這里面是不是有什么規(guī)律?認(rèn)真觀察這些算式,想一想,至少數(shù)都是怎么求出來(lái)的?
引導(dǎo)學(xué)生總結(jié):把小球放進(jìn)抽屜,如果平均分后有剩余,那么總有一個(gè)抽屜里至少放商加1個(gè);如果正好分完,那么至少數(shù)就等于商。
學(xué)生求出100個(gè)小球,放進(jìn)30個(gè)抽屜里,總有一個(gè)抽屜里至少放的小球數(shù)。出示抽屜原理的一般形式:把物體放進(jìn)抽屜里,如果平均分后有剩余,那么總有一個(gè)抽屜里至少放商+1個(gè)物體;如果正好分完,那么至少數(shù)就等于商。
同時(shí)說(shuō)明:抽屜原理由19世紀(jì)的德國(guó)數(shù)學(xué)家狄里克雷最早提出,因此又叫做狄里克雷原理。
三、運(yùn)用模型,解釋應(yīng)用。1.鴿籠問(wèn)題。
出示鴿籠問(wèn)題,讓學(xué)生解釋,并說(shuō)說(shuō)這里的鴿子和鴿籠各相當(dāng)于什么。教師說(shuō)明:抽屜原理也被人們形象的稱為鴿籠原理。2.找身邊的抽屜原理。例如文具盒原理、口袋原理等。
教師指出:抽屜原理在生活中隨處可見(jiàn),它其實(shí)就是解決該類問(wèn)題的一種方法,一個(gè)模型。在解決問(wèn)題時(shí)關(guān)鍵是要看清什么是抽屜,什么是待分的物體。
3.解釋應(yīng)用。
讓學(xué)生用抽屜原理解釋課前交流的問(wèn)題:為什么26位同學(xué)中至少有7人在同一個(gè)季節(jié)里出生;為什么26位同學(xué)中至少有3人在同一個(gè)月出生。
引導(dǎo)思考:把什么看作抽屜,把什么看作待分的物體? 4.用抽屜原理批駁算命。5.我國(guó)古代對(duì)抽屜原理的記載。
通過(guò)史料,使學(xué)生感受到:研究問(wèn)題時(shí)不僅要善于發(fā)現(xiàn),還要善于總結(jié)。
四、課堂小結(jié),余味課外。
通過(guò)小結(jié),拓寬學(xué)生視野,感受到抽屜原理更廣泛而深刻的應(yīng)用。