第一篇:3的倍數(shù)特征教學(xué)反思
《3的倍數(shù)特征》教學(xué)反思
《3的倍數(shù)特征》是小學(xué)數(shù)學(xué)五年級(jí)教學(xué)內(nèi)容,它是在學(xué)生初步認(rèn)識(shí)了因數(shù)和倍數(shù)以及2、5倍數(shù)特征的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,是求最大公因數(shù)和最小公倍數(shù)的重要基礎(chǔ),也是學(xué)習(xí)約分和通過的必要前提。3的倍數(shù)的特征迥然區(qū)別于2、5倍數(shù)的特征,3的倍數(shù)的特征的發(fā)現(xiàn)過程與2、5倍數(shù)的特征的發(fā)現(xiàn)過程有著顯著的差異。那么在學(xué)習(xí)“
2、5倍數(shù)的特征”之后繼續(xù)學(xué)習(xí)“3的倍數(shù)的特征”,如何處理前面的學(xué)習(xí)經(jīng)驗(yàn)與后續(xù)學(xué)習(xí)的關(guān)系?如何結(jié)合學(xué)習(xí)的內(nèi)容,合理設(shè)計(jì)探究的臺(tái)階?這些既構(gòu)成了教學(xué)的難點(diǎn),同時(shí)也是教學(xué)中可以挖掘的資源,處理好這些問題,將會(huì)使學(xué)生經(jīng)歷更有效的探究活動(dòng),從而積累更為寶貴的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),積淀基本的數(shù)學(xué)思想,進(jìn)而彰顯這一內(nèi)容的教學(xué)價(jià)值。本節(jié)課有以下特點(diǎn): 一、一環(huán)多效,目標(biāo)明確
(一)在知識(shí)鏈接部分,利用表格先讓學(xué)生判斷哪些數(shù)是2的倍數(shù),哪些數(shù) 是5的倍數(shù),既復(fù)習(xí)了舊知,又充分調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性。在隨后的鞏固練習(xí)中又利用此表中數(shù),讓學(xué)生判斷哪些數(shù)還是3的倍數(shù),不但讓學(xué)生鞏固了新知,而且為今后繼續(xù)研究的2、5、3倍數(shù)之間的聯(lián)系埋下伏筆。
(二)隨后的換位提問,由學(xué)生出數(shù),老師判斷這部分承載著兩個(gè)作用。
1、激發(fā)起學(xué)生的求知欲望
2、通過學(xué)生驗(yàn)證老師判斷是否正確,明確判斷一個(gè)數(shù)是否是3的倍數(shù)的驗(yàn)證方法,為后面的多次驗(yàn)證打下基礎(chǔ)。
(二)引出課題后,我們先讓孩子嘗試做導(dǎo)學(xué)案上的36□,□中填幾就是3 的倍數(shù),很多孩子因?yàn)樗季S定勢(shì)會(huì)想到填0、3、6、9,通過驗(yàn)證發(fā)現(xiàn)答案是正確的,由此很多孩子會(huì)認(rèn)為3的倍數(shù)的特征是個(gè)位上是0、3、6、9的數(shù)就是3的倍數(shù)。但肯定也有孩子發(fā)現(xiàn)這句話的片面性,從而判斷這個(gè)猜想不成立。到此,我們并沒有引導(dǎo)孩子們?nèi)パ芯?的倍數(shù)的特征究竟是什么,而是尊重孩子們的這種猜測(cè),引導(dǎo)孩子結(jié)合之前的方框填數(shù)思考,在什么情況下這句話成立,使孩子們能從不同角度去看3的倍數(shù)的特征,也為后面判斷一個(gè)數(shù)是否是3的倍數(shù)的方法的靈活性做好鋪墊。
二、適時(shí)引領(lǐng),突破重點(diǎn)
從建立猜想到自我否定猜想,是一個(gè)真實(shí)而自然的過程。在經(jīng)歷了這一過程之后,學(xué)生陷入探究困境的體驗(yàn)無疑將會(huì)更為深刻。此時(shí),教師基于學(xué)生的強(qiáng)烈心里需求提出新的研究思路,恰當(dāng)?shù)伢w現(xiàn)了教師在探究過程中的引領(lǐng)作用。
本節(jié)課的難點(diǎn)是學(xué)生自主發(fā)現(xiàn)3的倍數(shù)的特征,我們教研組在研討時(shí),最初借鑒的是出示57 75 45 54 249 942一組數(shù),想引導(dǎo)學(xué)生發(fā)現(xiàn)3的倍數(shù)特征不但與個(gè)位數(shù)字無關(guān),與每個(gè)數(shù)字所在的數(shù)位也沒有關(guān)系,從而使學(xué)生發(fā)現(xiàn)與各個(gè)數(shù)位上的數(shù)的和有關(guān)。但實(shí)際實(shí)踐中,我們發(fā)現(xiàn),學(xué)生很難發(fā)現(xiàn)與每個(gè)數(shù)字各個(gè)數(shù)位上的數(shù)的和有關(guān)。于是,我們?cè)俅窝杏?,修改設(shè)計(jì),發(fā)現(xiàn)學(xué)生根據(jù)每組兩個(gè)數(shù)很難發(fā)現(xiàn)這組數(shù)的和都是3的倍數(shù),是不是和一樣的多出幾個(gè)數(shù),并且先出簡(jiǎn)單的學(xué)生易發(fā)現(xiàn)的,是3的倍數(shù)的和不是3的倍數(shù)的都出兩組,便于學(xué)生對(duì)特征的發(fā)現(xiàn)。由此我們改成了現(xiàn)在的四組數(shù)。①12 201 111②66 804 2316③25 1114 1231④19 4006 2044用此方法,再次實(shí)踐,學(xué)生很容易發(fā)現(xiàn)了3的倍數(shù)特征與一個(gè)數(shù)各個(gè)數(shù)位上的數(shù)的和有關(guān)。
三、設(shè)計(jì)簡(jiǎn)約,注重實(shí)效
通過不完全歸納得到某一結(jié)論的可靠性,取決于所研究的對(duì)象的代表性,研究的對(duì)象的覆蓋面越廣,代表性越強(qiáng),結(jié)論的可靠性就越高。通過列舉其他的數(shù)驗(yàn)證,使學(xué)生深切體驗(yàn)了不完全歸納法的這一要義,同時(shí)也培養(yǎng)了學(xué)生縝密思考問題的意識(shí)和習(xí)慣。
學(xué)生在驗(yàn)證是否一個(gè)數(shù)各個(gè)數(shù)位上的數(shù)的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)時(shí),我們本來的設(shè)計(jì)是以填空的形式來引導(dǎo)學(xué)生進(jìn)行舉例驗(yàn)證,但實(shí)踐中發(fā)現(xiàn)這種方法由于字太多,學(xué)生理解起來好像很費(fèi)力,于是又改成了提示性的問題,改后字少了學(xué)生卻反而更糊涂了。再次研討,我們決定采用表格的形式,簡(jiǎn)潔明了,實(shí)踐發(fā)現(xiàn),這種形式便于學(xué)生的理解,效果較上面兩種方法都好。
第二篇:倍數(shù)的特征教學(xué)反思
倍數(shù)的特征教學(xué)反思
倍數(shù)的特征教學(xué)反思1
本課時(shí)是在學(xué)生學(xué)習(xí)了因數(shù)、倍數(shù)的基礎(chǔ)上,進(jìn)一步來探索2、5的倍數(shù)的特征,并體會(huì)運(yùn)用特征解題的優(yōu)越性,明白優(yōu)化知識(shí)的便捷性。
1、聯(lián)系生活,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
在教學(xué)中,教師努力拉近數(shù)學(xué)與生活的聯(lián)系。首先利用六一兒童節(jié)學(xué)生表演三種集體舞這一教學(xué)資源,創(chuàng)設(shè)了問題情境,在學(xué)生提出問題之后,又讓學(xué)生利用百數(shù)表這一學(xué)具自主探究2、5倍數(shù)的特征,把數(shù)學(xué)和生活有機(jī)聯(lián)系起來,使學(xué)生體會(huì)到數(shù)學(xué)在現(xiàn)實(shí)生活中的作用和價(jià)值,初步學(xué)會(huì)用數(shù)學(xué)的眼光去觀察事物、思考問題,解決問題。
2、、鼓勵(lì)學(xué)生獨(dú)立思考,經(jīng)歷猜測(cè)驗(yàn)證的過程。
數(shù)學(xué)學(xué)習(xí)過程中充滿了觀察、實(shí)驗(yàn)、推斷等探索性與挑戰(zhàn)性活動(dòng)。由于5的倍數(shù)的特征比較容易發(fā)現(xiàn),我便把它調(diào)到2的倍數(shù)的特征前面來進(jìn)行教學(xué)。首先讓學(xué)生獨(dú)立寫出100以內(nèi)5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)個(gè)位上是0或5的數(shù)是5的倍數(shù)。而這只是猜測(cè),結(jié)論還需要進(jìn)一步的驗(yàn)證。我們不能滿足于學(xué)生能夠得到結(jié)論就夠了,而應(yīng)該抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,引導(dǎo)學(xué)生認(rèn)識(shí)到這個(gè)結(jié)論僅僅適用于1100這個(gè)小范圍。是不是在所有不等于0的自然數(shù)中都適用呢?還需要研究。在老師的引導(dǎo)下,學(xué)生開始認(rèn)識(shí)到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個(gè)位上的數(shù)字是5或0。在這一過程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的.猜想,然后逐漸擴(kuò)范圍大,最后得出科學(xué)的結(jié)論。這樣,當(dāng)下節(jié)課研究3的倍數(shù)的特征時(shí),學(xué)生就會(huì)大膽猜想,并有方法來驗(yàn)證自己的猜想了。
3、精心選題,發(fā)揮習(xí)題的探索性和趣味性。
習(xí)題的設(shè)計(jì)力爭(zhēng)在突出重點(diǎn),突破難點(diǎn),遵循學(xué)生認(rèn)知規(guī)律的基礎(chǔ)上,體現(xiàn)趣味性、基礎(chǔ)性、層次性、靈活性、生活性。本節(jié)課教師設(shè)計(jì)了5道練習(xí)題。在鞏固練習(xí)部分,第(1)、(2)題是基本題;第(3)(4)題目的是讓學(xué)生根據(jù)2、5倍數(shù)的特征靈活解決問題。第(5)題是讓學(xué)生感知數(shù)學(xué)與生活的密切聯(lián)系。
倍數(shù)的特征教學(xué)反思2
《3 的倍數(shù)和特征》一課是在學(xué)生自主探究2、5的倍數(shù)的特征的基礎(chǔ)上進(jìn)一步學(xué)習(xí),我從學(xué)生的已有基礎(chǔ)出發(fā),把復(fù)習(xí)和導(dǎo)入有機(jī)結(jié)合起來,通過2、5的倍數(shù)特征的復(fù)習(xí),設(shè)置了“陷阱”,引導(dǎo)學(xué)生進(jìn)行猜想3的倍數(shù)的特征可能是什么,從而引發(fā)認(rèn)知沖突,激發(fā)學(xué)生的求知欲望,經(jīng)歷新知的產(chǎn)生過程。
一、引發(fā)猜想,產(chǎn)生沖突。
前一課時(shí),學(xué)生在發(fā)現(xiàn)2、5的倍數(shù)特征時(shí),都是從個(gè)位上研究起的,所以在復(fù)習(xí)舊知時(shí),我也特意強(qiáng)調(diào)了這一點(diǎn)。接下來我引導(dǎo)學(xué)生猜想3 的倍數(shù)特征是什么時(shí),不少學(xué)生知識(shí)遷移,提出:個(gè)位上是3、6、9的數(shù)應(yīng)該是3 的倍數(shù);3 的倍數(shù)都是奇數(shù)。提出猜想,當(dāng)然需要驗(yàn)證,很快就有學(xué)生在觀察百數(shù)表后提出問題:個(gè)位上是3、6、9的數(shù)只是有些是3的位數(shù),有些不是3的倍數(shù);有些偶數(shù)也是3的`倍數(shù),而有些奇數(shù)卻不是3 的倍數(shù)。學(xué)生的第一猜想被自己否決了。既然沒有這么明顯的特征,那么在百數(shù)表里找出3的倍數(shù),不少學(xué)生就開始了繁雜的計(jì)算,這個(gè)環(huán)節(jié)我給了他們時(shí)間慢慢去算,用意在于體會(huì)這種計(jì)算的不方便,從而去想有沒有更好的方法去判斷一個(gè)數(shù)是否是3 的倍數(shù)。
二、自主探究,建構(gòu)特征
找3 的倍數(shù)的特征是本節(jié)課的難點(diǎn),我處理這個(gè)難點(diǎn)時(shí)力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動(dòng)的組織者、指導(dǎo)者、參與者。整節(jié)課中,始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索并掌握找一個(gè)3的倍數(shù)的特征的方法,引導(dǎo)學(xué)生在充分的動(dòng)口、動(dòng)手、動(dòng)腦中自主獲取知識(shí)。
在完成100以內(nèi)的數(shù)表中找出所有3 的倍數(shù)后,我引導(dǎo)學(xué)生觀察發(fā)現(xiàn)3的倍數(shù)的個(gè)位可以是0~9中任何一個(gè)數(shù)字,要判斷一個(gè)數(shù)是不是3的倍數(shù)不能和判斷2、5的倍數(shù)一樣只看個(gè)位,打破了學(xué)生的認(rèn)知平衡,然后我提出到底什么樣的數(shù)才是3的倍數(shù)這一問題。這個(gè)問題的解決需要借助計(jì)數(shù)器,于是我給學(xué)生準(zhǔn)備了簡(jiǎn)易計(jì)數(shù)器,讓學(xué)生多次撥數(shù)后,觀察算珠的個(gè)數(shù)有什么共同的特點(diǎn)。反應(yīng)比較快的學(xué)生就有了發(fā)現(xiàn):所用的算珠個(gè)數(shù)都是3 的倍數(shù)。在學(xué)生提出這個(gè)猜想后,全班學(xué)生再一次進(jìn)行驗(yàn)證第二個(gè)猜想,這個(gè)驗(yàn)證也是在突破難點(diǎn),學(xué)生在驗(yàn)證中掌握難點(diǎn)。同時(shí),我也讓學(xué)生對(duì)比了之前所用的方法,體驗(yàn)這個(gè)新方法的快捷與簡(jiǎn)便,讓學(xué)生的印象更深刻。這個(gè)教學(xué)環(huán)節(jié)在教師的引導(dǎo)下克服困難,解決了力所能及的問題,達(dá)到了新的平衡,開發(fā)了學(xué)生的創(chuàng)新潛能。
在教學(xué)過程中讓學(xué)生自主探索,雖然用了很多時(shí)間,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生的收獲會(huì)更多。
三、鞏固內(nèi)化,拓展提高。
在上述教學(xué)過程中,雖然每個(gè)同學(xué)只操作了一兩次,但是通過學(xué)生之間的合作交流,在教師的引導(dǎo)下,學(xué)生經(jīng)歷了一個(gè)典型的通過不完全 歸納的方法得出規(guī)律的過程。學(xué)生在這一過程中的體驗(yàn),無論是方法層面,還是思想層面均將對(duì)后繼的學(xué)習(xí)產(chǎn)生深刻的影響。
在初步感知3 的倍數(shù)的特征后,我提出了問題:一個(gè)數(shù),在計(jì)數(shù)器上撥出它,所用數(shù)珠的顆數(shù)是3的倍數(shù),它就是3的倍數(shù),對(duì)嗎?你是否認(rèn)為我們研究出的結(jié)論對(duì)所有的數(shù)都適用呢?這兩個(gè)問題的提出,意義在于通過“更大的數(shù)”和“任意找”兩方面,使學(xué)生深切體驗(yàn)了不完全歸納法的這一要義,同時(shí)也培養(yǎng)了學(xué)生縝密思考問題的意識(shí)和習(xí)慣。
倍數(shù)的特征教學(xué)反思3
這堂課主要目標(biāo)是引導(dǎo)孩子經(jīng)歷探索“2的倍數(shù)的特征”的過程,培養(yǎng)學(xué)生抽象、總結(jié)及概括能力,初步體會(huì)“不完全推理”的一般方法。在課前獨(dú)立研究前,我首先布置了這樣的兩個(gè)問題:思考“我們?cè)鯓尤フ?的倍數(shù)的特征” 、“我們采取什么方法去找2的倍數(shù)的特征?”然后再讓學(xué)生按書上的要求在百數(shù)圖中獨(dú)立的找出100以內(nèi)2和5的所有倍數(shù)。這樣孩子很自然的想到“找?guī)讉€(gè)2的倍數(shù)來看看”,孩子就能夠理解我們?yōu)槭裁匆诎贁?shù)圖上找2的倍數(shù),找到這些數(shù)之后,也會(huì)自發(fā)地去思考這些數(shù)有什么共同特征,而不會(huì)像牽線的木偶任我們擺布。在預(yù)習(xí)作業(yè)中我還布置了另兩個(gè)問題:自學(xué)書本,弄清偶數(shù)和奇數(shù)的含義;思考能同時(shí)是2和5的倍數(shù)的數(shù)的特征。
但在課堂教學(xué)中還是出現(xiàn)了讓人啼笑皆非的事,課始,我問學(xué)生,你知道這節(jié)課我們將會(huì)研究什么問題嗎?令我意想不到的是在兩個(gè)班中學(xué)生的回答如出一轍——“研究偶數(shù)和奇數(shù)”,有同學(xué)在位置上竊笑,我沒有立即否定,接著問,那你知道什么叫偶數(shù)和奇數(shù)嗎?(我的本意是在讓學(xué)生作出正確回答后再順勢(shì)而導(dǎo),偶數(shù)和奇數(shù)都是與哪個(gè)數(shù)有關(guān),哪我們這節(jié)課只是研究2的.倍數(shù)的特征嗎?讓他自己發(fā)現(xiàn)回答的不全面)可沒想到的是又來了一個(gè)出人意料的回答:2 的倍數(shù)是偶數(shù),5的倍數(shù)是奇數(shù)。既然學(xué)生的預(yù)習(xí)效果如此不理想,我決定臨時(shí)改變教學(xué)策略,跳出“學(xué)程導(dǎo)航”的模式,重新用老方法讓學(xué)生在課上再一次經(jīng)歷探索的過程。但是從課堂的練習(xí)看,問題還是比較嚴(yán)重。
于是我就有些困惑,究竟是我的教學(xué)安排出現(xiàn)了問題,還是在預(yù)習(xí)作業(yè)的布置中語言的交代上不夠清楚呢?我們雖然主張“先學(xué)后教”,讓學(xué)生課前自主探究,提倡整體預(yù)習(xí)。但我還是認(rèn)為,小學(xué)生的數(shù)學(xué)思維還處在形象思維向抽象邏輯思維轉(zhuǎn)變的階段,還是需要在一定的情景中在老師的引領(lǐng)下合作探究,而一味盲目地讓孩子獨(dú)立研究,而老師又不在旁邊加以及時(shí)的指導(dǎo)和糾正,而在認(rèn)知形成的初始階段,一旦在認(rèn)識(shí)上有偏差產(chǎn)生錯(cuò)誤的結(jié)論,再想反它糾正過來往往是很困難的,因?yàn)榈谝挥∠蠛苤匾,F(xiàn)在強(qiáng)調(diào)課前預(yù)習(xí)我并不反對(duì),畢竟學(xué)習(xí)目標(biāo)的指向性更明確了,長(zhǎng)期的培養(yǎng),學(xué)生的學(xué)習(xí)方法肯定會(huì)得到提高,但對(duì)數(shù)學(xué)思想方法的培養(yǎng)上有些弱化,另外,缺少了在具體的情景下學(xué)習(xí),總覺得知識(shí)的習(xí)得過于直接,學(xué)生容易遺忘。因此,數(shù)學(xué)預(yù)習(xí)應(yīng)因?qū)W習(xí)內(nèi)容而宜,因年級(jí)而宜。
倍數(shù)的特征教學(xué)反思4
《3的倍數(shù)特征》進(jìn)行了兩次教學(xué)授課,第一次是新授,第二次是錄課重復(fù)授課。下面就本節(jié)課前后兩次上課進(jìn)行如下反思:第一次上課,采用游戲的方式引入,提前給學(xué)生編號(hào),根據(jù)編號(hào)做游戲。由于每個(gè)學(xué)生的編號(hào)不一樣,所以在做游戲的時(shí)候,每個(gè)學(xué)生集中注意力,傾聽游戲要求,激發(fā)了學(xué)生的學(xué)習(xí)興趣。設(shè)置游戲的目的是復(fù)習(xí)2或5倍數(shù)的特征,同時(shí),對(duì)3的倍數(shù)特征的學(xué)習(xí)產(chǎn)生求知欲。接下來是采用提出猜想,舉出個(gè)例否定猜想來過渡。讓學(xué)生充分地認(rèn)識(shí)到依據(jù)2或5的倍數(shù)特征的思想已經(jīng)行不通了,從而開始新的探索。在探索過程中借助“百數(shù)表”,讓學(xué)生獨(dú)立地圈出3的倍數(shù),圈完后互相交流3的倍數(shù)的個(gè)位有什么特點(diǎn),再次否定了之前的思維定式。由于個(gè)位上沒有特點(diǎn),所以引導(dǎo)學(xué)生從其他的角度觀察,學(xué)生能想到橫著觀察、豎著觀察,但對(duì)于斜著觀察不能很好的發(fā)現(xiàn),所以本節(jié)課中我關(guān)注到學(xué)生的思考困境,引導(dǎo)學(xué)生從斜著觀察的角度思考探索。當(dāng)學(xué)生斜著觀察時(shí)能發(fā)現(xiàn)個(gè)位上的數(shù)字依次減1,十位上的數(shù)字依次加1,適時(shí)提出“什么是沒有變的?”問題一提出,學(xué)生恍然大悟,發(fā)現(xiàn):個(gè)位和十位上的數(shù)的和沒有變!順其自然的知道了3的倍數(shù)具有這樣規(guī)律。經(jīng)過研究每一斜行發(fā)現(xiàn):個(gè)位和十位上的數(shù)的和不變,都是3的倍數(shù)。知道了這個(gè)規(guī)律后,下面開始延伸這個(gè)規(guī)律。一方面:驗(yàn)證百數(shù)表內(nèi)其他不是3的倍數(shù)是否具有這個(gè)規(guī)律?另一方面:比100大的數(shù),三位數(shù)、四位數(shù)、五位數(shù)等是否具有這個(gè)規(guī)律?通過兩方面的驗(yàn)證,再次強(qiáng)調(diào)了這個(gè)規(guī)律是普遍存在的,而這時(shí)3的倍數(shù)特征已經(jīng)歸結(jié)為:一個(gè)數(shù)各位上的數(shù)的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。知道了3的倍數(shù)特征之后通過練習(xí)鞏固加強(qiáng),練習(xí)的設(shè)計(jì)是三道題,這三道題設(shè)計(jì)為不同的層次,第一題是基礎(chǔ)題,第二題是拔高題,第三題是解決問題。通過做題發(fā)現(xiàn)學(xué)生本節(jié)課掌握得不錯(cuò)。最后,對(duì)本節(jié)課的知識(shí)進(jìn)行了延伸,通過出示課本第13頁(yè)“你知道嗎?”,讓學(xué)生明白為什么2或5的倍數(shù)特征只看個(gè)位就可以了,而3的倍數(shù)特征需要看所有數(shù)位。從而達(dá)到學(xué)知識(shí)不但要知其然還要知其所以然。整個(gè)教學(xué)過程中,學(xué)生能在猜想、操作、驗(yàn)證、交流、歸納的數(shù)學(xué)活動(dòng)中獲得豐富的數(shù)學(xué)經(jīng)驗(yàn),同時(shí)這也有利于學(xué)生創(chuàng)造力的培養(yǎng)。通過本節(jié)課的教學(xué)以及學(xué)生的掌握情況,最終檢測(cè)本節(jié)課的目標(biāo)較好的達(dá)成。但反思這節(jié)課的不足,我覺得在每個(gè)環(huán)節(jié)上的過渡應(yīng)該更加的自然。另外,在小組討論的時(shí)候應(yīng)多關(guān)注學(xué)生的.交流,對(duì)學(xué)生進(jìn)行適時(shí)地指導(dǎo)?;诘谝还?jié)課的優(yōu)點(diǎn)和不足,進(jìn)行了第二次的授課即錄課。由于學(xué)生們已經(jīng)學(xué)習(xí)了過本節(jié)課,所以對(duì)于學(xué)生們來說已經(jīng)是舊知識(shí)。要把舊知識(shí)重新來講,如果照搬之前的授課方式已經(jīng)遠(yuǎn)遠(yuǎn)不夠了。如何更改,這給我提出來一個(gè)新的問題。為此,這節(jié)課我做了適當(dāng)?shù)恼{(diào)整。本節(jié)課我更多關(guān)注的是數(shù)學(xué)方法和思維方式的培養(yǎng)。其中體現(xiàn)在:
1、學(xué)生在舉例驗(yàn)證猜想的時(shí)候,讓學(xué)生體會(huì)反例的作用,如果有一個(gè)反例的存在,就說明猜想的結(jié)論是錯(cuò)誤的。
2、在探索3的倍數(shù)特征時(shí),對(duì)于100以內(nèi)3的倍數(shù),應(yīng)如何著手驗(yàn)證,怎么選取數(shù)來驗(yàn)證,這一環(huán)節(jié)讓學(xué)生體會(huì):在研究規(guī)律的時(shí)候,優(yōu)先選擇數(shù)比較多的這一組,讓學(xué)生明白如果有規(guī)律更容易探索和發(fā)現(xiàn)。
3、在拓展規(guī)律的時(shí)候,采用舉了大量的數(shù)據(jù),證明了規(guī)律的普遍存在,讓學(xué)生體會(huì)規(guī)律的適用范圍。
4、在做練習(xí)的時(shí)候,第2小題,關(guān)注學(xué)生思考問題是否全面,關(guān)注學(xué)生的思考過程。
5、練習(xí)的第3小題,一道解決問題的題目,通過讓學(xué)生讀題、審題、分析題之后,再思考。這一道題學(xué)生展示了多種的做題方法,體現(xiàn)了方法的多樣性,同時(shí)也說明學(xué)生的思維是活躍的。本節(jié)課中的不足,練習(xí)中第3題學(xué)生的做法沒有完全的在黑板上板書,另外,本節(jié)課中學(xué)生會(huì)超前說出所有問題的答案,使得教師略顯失措,我覺得這是因?yàn)槲覀鋵W(xué)生還不夠。在今后的教學(xué)中,我會(huì)改進(jìn)自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學(xué)水平,設(shè)計(jì)出學(xué)生更能接受和喜歡的課。
倍數(shù)的特征教學(xué)反思5
“能被3整除數(shù)的數(shù)”一課,能體現(xiàn)新的教育理念、教育思想。仔細(xì)分析,有以下幾個(gè)特點(diǎn):
1、確立了基本技能目標(biāo)和發(fā)展性目標(biāo)并重的教學(xué)目標(biāo)。
本節(jié)課不僅重視學(xué)生掌握能被3整除數(shù)的特征,并能運(yùn)用特征進(jìn)行正確判斷,同時(shí)十分重視學(xué)生學(xué)習(xí)過程的體驗(yàn)和方法的滲透,讓學(xué)生通過“猜測(cè)——驗(yàn)證——提出新的假設(shè)——驗(yàn)證”的探索過程來發(fā)現(xiàn)知識(shí),獲得結(jié)論,并感悟方法。
2、理性處理教材,使教學(xué)內(nèi)容生活化。
教科書只是提供了學(xué)生學(xué)習(xí)活動(dòng)的基本線索。教學(xué)中,教師要充分發(fā)揮主觀能動(dòng)性,創(chuàng)造性的使用教科書,本節(jié)課重新設(shè)計(jì)例題,通過用“0——9”十個(gè)數(shù)字組成能被整除的`三位數(shù)讓學(xué)生探索特征,這樣處理使教學(xué)內(nèi)容有較強(qiáng)的靈活性,促進(jìn)了學(xué)生思維的發(fā)展。教學(xué)內(nèi)容生活化不僅能激發(fā)學(xué)生興趣,產(chǎn)生親切感,而且使學(xué)生認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)藏著豐富的數(shù)學(xué)問題。開課時(shí)收集的數(shù)據(jù)一方面激發(fā)了學(xué)生學(xué)習(xí)的興趣,同時(shí)也縮短了教師和學(xué)生的距離,課后“你再長(zhǎng)幾歲,這個(gè)歲數(shù)就能被3整除”這一開放題富有情趣,給學(xué)生留下了深刻的印象。
3、著力改變學(xué)生的學(xué)習(xí)方式。
學(xué)習(xí)方式的轉(zhuǎn)變是本節(jié)課的主要特色。本節(jié)課始終以自主探索、合作交流為主要的學(xué)習(xí)方式,讓學(xué)生通過自主選教學(xué)內(nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論等合作探究活動(dòng),獲得教學(xué)知識(shí)、感悟方法。如在課的第二階段,設(shè)計(jì)三個(gè)層次的教學(xué)活動(dòng),讓學(xué)生充分探索、討論、交流,使學(xué)生真正成為學(xué)習(xí)的主人。第一層通過學(xué)生猜測(cè)、舉例、選數(shù)字組數(shù),使學(xué)生產(chǎn)生兩次認(rèn)知沖突;第二層通過交換三位數(shù)數(shù)字的位置,仍然沒能發(fā)現(xiàn)特征,產(chǎn)生第三次認(rèn)知沖突;第三層次通過計(jì)算各位上的數(shù)的“和、差、積、商”使結(jié)論逐漸顯露。這一過程不僅培養(yǎng)了學(xué)生探究精神,磨練了意志,同時(shí)也使學(xué)生品嘗了成功的喜悅。
4、合理定位教師角色,營(yíng)造民主、和諧的學(xué)習(xí)氛圍。
課堂教學(xué)中只有擺正了師生關(guān)系,才可能使學(xué)生得到發(fā)展。本節(jié)課學(xué)生始終是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者??梢詮囊韵聝煞矫婵闯觯阂皇菑膸熒顒?dòng)的時(shí)間分配上,二是從分層探究、有針對(duì)性的適當(dāng)引導(dǎo)上。這節(jié)課從開始到結(jié)束,氣氛始終處在民主、和諧之中,生活化的學(xué)習(xí)材料、平等的師生關(guān)系和開放的探究方式,
倍數(shù)的特征教學(xué)反思6
教學(xué)內(nèi)容 :新課標(biāo)人教版五年級(jí)下冊(cè)17—18頁(yè)的內(nèi)容。 教學(xué)目標(biāo):
知識(shí)目標(biāo):讓學(xué)生經(jīng)歷2和5的倍數(shù)的特征的探索過程,理解并掌握
2和5的倍數(shù)的特征,會(huì)運(yùn)用這些特征判斷一個(gè)數(shù)是不是2和5的倍數(shù);知道偶數(shù)和奇數(shù)的意義,會(huì)判斷一個(gè)自然數(shù)是偶數(shù)還是奇數(shù)。
能
力目標(biāo):在學(xué)習(xí)活動(dòng)中培養(yǎng)學(xué)生的觀察、分析、比較、概括能力和
合情推理能力。
情感目標(biāo):增強(qiáng)學(xué)生的探索意識(shí),進(jìn)一步感受數(shù)學(xué)的奇妙。 教學(xué)重點(diǎn) 掌握2和5倍的數(shù)的特征及奇數(shù)、偶數(shù)的概念。
教學(xué)難點(diǎn) 靈活運(yùn)用2和5的倍數(shù)的特征及奇數(shù)、偶數(shù)的概念進(jìn)行綜合判斷。
教學(xué)準(zhǔn)備
教師為學(xué)生每人準(zhǔn)備一張順序數(shù)字卡片。
學(xué)生每人準(zhǔn)備一張十行十列的百數(shù)表。 二、教學(xué)設(shè)計(jì)
(一)情景創(chuàng)設(shè),導(dǎo)入新課
師:同學(xué)們,你們喜歡玩數(shù)學(xué)游戲嗎?我們今天玩一個(gè)數(shù)學(xué)游戲。同學(xué)們可以隨便說出一個(gè)數(shù),老師馬上就能判斷出這個(gè)數(shù)是不是2或5的倍數(shù)。如果同學(xué)們有疑問,還可以用計(jì)算器進(jìn)行驗(yàn)證。 (學(xué)生分別報(bào)數(shù):32、485、674、260??)
師:32是2的倍數(shù),但不是5的倍數(shù)。485是5的倍數(shù)但不是2的倍數(shù)。674是2的倍數(shù)但不是5的倍數(shù)。260既是2的倍數(shù)也是5的倍數(shù)。你們用計(jì)算器驗(yàn)證的結(jié)果和老師判斷的一樣嗎?
生1:一樣。
生2:老師你是怎樣迅速判斷出來的呢?
師:你們想知道其中的奧秘嗎?
生:(齊答)想。
師:今天我們一起來研究“2,5的倍數(shù)的特征”(板書課題:2,5的倍數(shù)的特征)。
(二)問題探究,解決問題
(媒體出示課本第4頁(yè)的百數(shù)表,學(xué)生拿出學(xué)具中的百數(shù)表。)
1、提出問題
師:同學(xué)們,你們能在百數(shù)表中找出5的倍數(shù)嗎?利用自己喜歡的表示方式在5的倍數(shù)上做上記號(hào)(可以用—、√、○、△等符號(hào))。
2、自主探索,合作交流,發(fā)現(xiàn)規(guī)律
(學(xué)生開始找5的倍數(shù)并做記錄。)
師:誰能說一說你找出了哪些5的倍數(shù)?
生:5、10、15、20、25、30、35、40??
(根據(jù)學(xué)生回答,教師板書)
師:(引導(dǎo)學(xué)生觀察、思考)你發(fā)現(xiàn)5的倍數(shù)有什么特征? 生1:這些數(shù)都相隔5。
生2:這些數(shù)個(gè)位上有的是0,有的是5。
師:(引導(dǎo)學(xué)生歸納5的倍數(shù)的特征)你們說的都不錯(cuò),個(gè)位上是0或5的數(shù)都是5的倍數(shù)。
(根據(jù)學(xué)生回答板書。)
師:(引導(dǎo)學(xué)生驗(yàn)證舉例)剛才我們觀察的是100以內(nèi)的數(shù),也就是說觀察的是一位數(shù)或兩位數(shù)。那么是不是任何一個(gè)自然數(shù),只要是5的倍數(shù),個(gè)位上一定是0或5呢?請(qǐng)同學(xué)們?nèi)我鈱懸粋€(gè)個(gè)位上是0或5的多位數(shù),大家判斷一下。
(學(xué)生先在小組內(nèi)交流,然后全班交流)
組1:我們列舉的數(shù)有:500、4500、605、125這四個(gè)數(shù),通過計(jì)算,發(fā)現(xiàn)都是5的倍數(shù)。
組2:我們驗(yàn)證了5個(gè)數(shù),得出結(jié)論:只要個(gè)位上是0或5的數(shù)一定是5的倍數(shù)。
??
師:大家是用什么方法發(fā)現(xiàn)5的倍數(shù)特征的?
生答
小結(jié)學(xué)習(xí)方法:列數(shù)字——?dú)w納特征——驗(yàn)證特征
下面同學(xué)們就用這種方法去尋找2的倍數(shù)特征。
3、自主探索2的倍數(shù)的特征
(學(xué)生動(dòng)手做。)
師:誰來說一說2的倍數(shù)有哪些?
生:2、4、6、8、10、12、14、16、18、20??
(根據(jù)學(xué)生回答,教師板書。)
師:觀察上面的數(shù),你發(fā)現(xiàn)了什么規(guī)律?
生1:我發(fā)現(xiàn)個(gè)位上是2的數(shù)是2的倍數(shù)。
生2:我發(fā)現(xiàn)個(gè)位上是4、6、8的數(shù)是2的倍數(shù)。
生3:我發(fā)現(xiàn)個(gè)位上是0的數(shù)是2的倍數(shù)。
(板書:個(gè)位上是0、2、4、6、8的數(shù)都是2的倍數(shù))
師:(引導(dǎo)驗(yàn)證結(jié)論)請(qǐng)小組內(nèi)的同學(xué)任意寫幾個(gè)個(gè)位上是0、2、4、6、8的數(shù)驗(yàn)證一下。
師:剛才我們研究了2的倍數(shù)的特征。是2的倍數(shù)的數(shù)叫偶數(shù),偶數(shù)也叫雙數(shù)。 不是2的`倍數(shù)的數(shù)叫奇數(shù),奇數(shù)也叫單數(shù)。 師:誰來舉例說一下生活中的偶數(shù)和奇數(shù)。
生1:我今年12歲,12是偶數(shù)。
生2:我17日出生的,17是奇數(shù)。
生3:我們班有50人,50是偶數(shù)。
生4:數(shù)學(xué)課本107頁(yè),107是奇數(shù)。
生5:珠穆朗瑪峰8848米,8848是偶數(shù)。
師:那么0是偶數(shù)嗎?說出你的理由。
生:0不是奇數(shù),0是偶數(shù)。
師:你能說明一下你的理由嗎?
生:因?yàn)閭€(gè)位上是0的數(shù)是2的倍數(shù),是2的倍數(shù)的數(shù)叫做偶數(shù),所以0是偶數(shù),也是最小的偶數(shù)。
師:同學(xué)們說的非常棒,0是偶數(shù)。
4、深入探究
(教師出示下面的兩組數(shù)。112、25、248、60、72、90.) 師:仔細(xì)觀察上面的兩組數(shù),你發(fā)現(xiàn)了什么?
生1:60、90既是2的倍數(shù)又是5的倍數(shù)
師:什么樣的數(shù)既是5的倍數(shù),也是2的倍數(shù)?
生:個(gè)位上是0的數(shù)既是2的倍數(shù)又是5的倍數(shù)。
(三)應(yīng)用拓展
1、觀察、交流、合作。(學(xué)生的號(hào)碼從1——50)
(1)請(qǐng)?zhí)柎a是2的倍數(shù)的同學(xué)站起來。
(2)請(qǐng)?zhí)柎a是5的倍數(shù)的同學(xué)站起來。
(3)請(qǐng)?zhí)柎a既是5的倍數(shù)又是2的倍數(shù)的同學(xué)站起來。
(4)請(qǐng)?zhí)柎a是偶數(shù)的同學(xué)站起來。
(5)請(qǐng)?zhí)柎a是奇數(shù)的同學(xué)站起來。
師:通過剛才的活動(dòng)你發(fā)現(xiàn)了什么?說出你的號(hào)碼,與同學(xué)們交流。。
生1:我24號(hào),是偶數(shù),也是2的倍數(shù),站起來2次。
生2:我11號(hào),是奇數(shù),站起來1次。
生3:我20號(hào),是偶數(shù),也是2的倍數(shù),同時(shí)既是5的倍數(shù)又是2的倍數(shù),所以我站起來3次。
師:請(qǐng)站起來3次的同學(xué)說出你的號(hào)碼。
10、20、30、40.
師:同學(xué)們觀察一下這些數(shù)的特點(diǎn),說說你發(fā)現(xiàn)了什么? 生1:它們既是2的倍數(shù),也是5的倍數(shù),個(gè)位上都是0。
倍數(shù)的特征教學(xué)反思7
本節(jié)課探究3的倍數(shù)的特征之前,我還是先讓學(xué)生寫出50以內(nèi)3的倍數(shù),然后讓學(xué)生觀察這些數(shù)有何特征,大部分同學(xué)找不著規(guī)律,個(gè)別同學(xué)可能是受上節(jié)課的影響,說出了:個(gè)位上是0、1、2、3、4、5、6、7、8、9的數(shù)就是3的倍數(shù),但馬上就被其他同學(xué)推翻了。
然后我就出示計(jì)數(shù)器,依次撥出3的倍數(shù),讓學(xué)生觀察一共用了幾顆珠子,讓學(xué)生體會(huì)到有幾顆珠子就是各個(gè)數(shù)位上數(shù)的和,發(fā)現(xiàn)珠子的顆數(shù)正好是3的`倍數(shù),也就是各個(gè)數(shù)位上數(shù)的和是3的倍數(shù),那么這個(gè)數(shù)就是3的倍數(shù)。說實(shí)話,學(xué)生對(duì)于這一規(guī)律,不是很容易接受,在后來的練習(xí)中,才慢慢體會(huì)到。
“想想做做”的五道題設(shè)計(jì)得比較好,體現(xiàn)了分層,特別是最后一道,學(xué)生通過交流討論后,得出了先選數(shù)后組數(shù)的思路,練習(xí)的效果比較好。
倍數(shù)的特征教學(xué)反思8
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“個(gè)位上的數(shù)字之和”去研究。上課開始先讓學(xué)生通過練習(xí)回顧舊知:2的倍數(shù)與5的倍數(shù)的特征。然后讓學(xué)生猜想:3的倍數(shù)又有什么特征呢?這樣能較好調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。由于受2的倍數(shù)與5的倍數(shù)特征的影響,有些學(xué)生很自然猜測(cè)到“個(gè)位上是0,3,6,9的數(shù)是3的倍數(shù)”、“各位上的數(shù)字加起來是3,6,9的數(shù)是3的倍數(shù)”等等,學(xué)生能想到這幾點(diǎn)是非常不錯(cuò)的。
學(xué)生進(jìn)行猜想后,我并沒有判斷學(xué)生的猜想是否正確,而是出現(xiàn)了百數(shù)表,讓學(xué)生在百數(shù)表中圈出所有的3的倍數(shù),讓學(xué)生從表中發(fā)現(xiàn)3 的倍數(shù)的特征,把自己發(fā)現(xiàn)的在小組間交流。此時(shí),我還是沒有判斷學(xué)生的發(fā)現(xiàn)是否正確,而是讓學(xué)生打開課本自學(xué),從課本中找3的倍數(shù)的特征,當(dāng)遇到問題解決不了時(shí),我們可以向課本求助。然后問學(xué)生“各位上的數(shù)字的和是3的倍數(shù)是什么意思?請(qǐng)結(jié)合舉例說說?!苯酉聛韺?shù)擴(kuò)到百以上,通過各種方式舉正反例通過計(jì)算來驗(yàn)證從而得出3的倍數(shù)的特征。最后比較驗(yàn)證之前的猜想與發(fā)現(xiàn)。當(dāng)我們向課本找到結(jié)論時(shí),我們也要質(zhì)疑,通過舉例來驗(yàn)證。鼓勵(lì)學(xué)生對(duì)知識(shí)要敢于質(zhì)疑,敢于通過各種方式去驗(yàn)證,培養(yǎng)學(xué)生良好的數(shù)學(xué)思維。
在教學(xué)中,我能有效獲取課堂生成資源,同時(shí)也注重方法的指導(dǎo)。比如:同桌舉例驗(yàn)證時(shí),涉及到了“123456”是否是3的倍數(shù),先給予學(xué)生思考的時(shí)間,讓后問:還有更加簡(jiǎn)便的方法嗎?老師有效引導(dǎo),讓學(xué)生去發(fā)現(xiàn)“去3法”能給我們的判斷帶來很大的方便。還有在方框里填數(shù)等。有較好的教學(xué)機(jī)智與課堂駕馭能力,如:在百數(shù)表圈3的'倍數(shù)時(shí),我的課件中有個(gè)數(shù)“99”忘記沒有圈好,學(xué)生發(fā)現(xiàn)了這問題。在這里,我是表?yè)P(yáng)了發(fā)現(xiàn)此問題的學(xué)生,老師故意說:我是特意沒有圈的,看我們的學(xué)生觀察是否仔細(xì),考慮問題是否全面……,把原本的錯(cuò)誤變成良好的教學(xué)資源。練習(xí)的設(shè)計(jì)業(yè)很有層次與梯度,聯(lián)系生活實(shí)際。
本節(jié)課也有很多不足的地方:百數(shù)表中的數(shù)據(jù)太多,部分學(xué)生的發(fā)現(xiàn)是亂七八糟的;在舉例驗(yàn)證的過程中,學(xué)生的計(jì)算還不夠,學(xué)生親自從算中去體會(huì)更好;總結(jié)不太及時(shí),從及時(shí)總結(jié)中提煉、提升會(huì)更好。
倍數(shù)的特征教學(xué)反思9
今天我教學(xué)了3的倍數(shù)的特征,我首先復(fù)習(xí)2、5的倍數(shù)的特征,然后我出示了幾個(gè)不同的四位數(shù),問生:誰能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當(dāng),學(xué)生也很有興趣。下面,我先讓學(xué)生寫出50以內(nèi)3的倍數(shù),再觀察:3的倍數(shù)有什么特點(diǎn)?學(xué)生一時(shí)很難發(fā)現(xiàn),仍從個(gè)位上的.數(shù)去觀察,但馬上被其他同學(xué)否定,當(dāng)時(shí)我心里有點(diǎn)擔(dān)心怎么看不來呢?,我啟發(fā)學(xué)生再看看個(gè)位和十位上的數(shù),通過交流后,在部分學(xué)生馬上發(fā)現(xiàn)把每個(gè)數(shù)的數(shù)字加起來的和除以3都是正好除的,我讓學(xué)生用這個(gè)發(fā)現(xiàn)對(duì)書上第76頁(yè)的表格100以內(nèi)的數(shù)進(jìn)行驗(yàn)證一下,學(xué)生驗(yàn)證后我又讓學(xué)生從100以外的數(shù)來驗(yàn)證。從而得出了3的倍數(shù)的特征。再通過用1、2、6可以寫成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學(xué)生進(jìn)一步明白3的倍數(shù)跟數(shù)字的位置沒有關(guān)系,只跟各位上數(shù)的和有關(guān)系。這樣學(xué)生在完成想想做做第5題時(shí)學(xué)生思考時(shí)就不會(huì)漏寫了。最后,通過后面的練習(xí),我覺得在教學(xué)某些知識(shí)時(shí),最好老師不要輕易下結(jié)論,只有讓他們自己在反復(fù)實(shí)踐中自己得出結(jié)論,才能牢固地掌握知識(shí)。
倍數(shù)的特征教學(xué)反思10
這節(jié)課新授知識(shí)較為簡(jiǎn)單,很適合讓學(xué)生預(yù)習(xí)。所以課前我印制了百數(shù)表讓學(xué)生圈出5的倍數(shù)和2的倍數(shù),并設(shè)計(jì)了兩個(gè)問題:1、觀察5的倍數(shù),想想這些數(shù)有什么特征?2、觀察2的倍數(shù),又有什么特征呢?一上課就小組交流這兩個(gè)問題,同學(xué)們興致高漲,足以看出預(yù)習(xí)效果是很好的。通過這樣的教學(xué),節(jié)省了很多時(shí)間,課堂作業(yè)可以當(dāng)堂完成。從作業(yè)情況來看,大部分同學(xué)做得還不錯(cuò)。一小部分同學(xué)運(yùn)用知識(shí)的能力欠佳,比如:寫出5個(gè)奇數(shù)是這樣寫的:5、15、25、35、45.雖然這樣寫不能算錯(cuò),但是這些學(xué)生可能對(duì)5的倍數(shù)與奇數(shù)的概念有些混淆。
在0、1、5、8,四張卡片中選出兩張數(shù)字卡片,按要求組成兩位數(shù)。
1、組成的數(shù)是偶數(shù)的有( )
2、組成的數(shù)是5的倍數(shù)的有( )
3、組成的數(shù)既是2的`倍數(shù)、又是5的倍數(shù)的有( )。
這道題部分同學(xué)答案不全,想想還是正常的,其實(shí)這道題對(duì)于中等以下的學(xué)生來說確實(shí)有難度的。
倍數(shù)的特征教學(xué)反思11
課堂總會(huì)有生成,不管一節(jié)課的教學(xué)步驟設(shè)計(jì)的有多嚴(yán)密、多緊湊,課堂教學(xué)中總會(huì)有新的問題產(chǎn)生,反思本節(jié)課的教學(xué)有成功也有不足:
1、導(dǎo)入部分
不足之處:
應(yīng)該說導(dǎo)入部分形式單一,顯得過于死板,如果通過一個(gè)小游戲,讓學(xué)生考考老師,用教師的準(zhǔn)確判斷激發(fā)學(xué)生學(xué)習(xí)本課內(nèi)容的興趣,由此引出課題,從而調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,把探索的問題拋給學(xué)生,激起學(xué)生探索的欲望,進(jìn)而引導(dǎo)學(xué)生說出更大的數(shù)字,此時(shí)教師仍然能準(zhǔn)確判斷,于是讓學(xué)生更為佩服老師,想進(jìn)行探究的欲望會(huì)更濃,接下來的探究過程便水到渠成,課堂氣氛也會(huì)因此而高漲。
2、重點(diǎn)教學(xué)環(huán)節(jié)的設(shè)計(jì)
成功之處:
探索5的倍數(shù)的特征,先引導(dǎo)學(xué)生找出2的倍數(shù),并指導(dǎo)找的方法,然后發(fā)現(xiàn)、總結(jié)2的倍數(shù)的特征。這樣學(xué)生有了一個(gè)探索方法,引導(dǎo)學(xué)生總結(jié)探究方法后,我便放手讓學(xué)生自己去探索5的'倍數(shù)的特征了,在合作交流中學(xué)生體會(huì)到了學(xué)習(xí)數(shù)學(xué)的快樂,同時(shí)也給了學(xué)生一個(gè)自主探索的空間,一個(gè)交流互動(dòng)的平臺(tái),也使他們獲得了學(xué)習(xí)數(shù)學(xué)的成功體驗(yàn)。
不足之處:
課堂生成教師要及時(shí)準(zhǔn)確地把握,并注意語言的藝術(shù)性,教師必須進(jìn)入狀態(tài),與學(xué)生融為一體。
3、教具學(xué)具的使用方面
成功之處:
我利用百數(shù)表,把1-100的數(shù)字中5的倍數(shù),2的倍數(shù)通過讓學(xué)生用不同的符號(hào)標(biāo)出,給學(xué)生的感觀一個(gè)有力的沖擊。2、5的倍數(shù)的特征變得更直觀,更明顯,學(xué)生的印象會(huì)更深刻。
不足之處:
點(diǎn)找的很準(zhǔn)確,應(yīng)用合理。但現(xiàn)在想想,如果把這個(gè)百數(shù)表制成課件,用多媒體演示出來,而且讓2和5的倍數(shù)用顏色標(biāo)出,并在變色閃爍的過程中有聲音的提示效果或許會(huì)更好些。
教學(xué)后的思考:
(1)是否需要驗(yàn)證發(fā)現(xiàn)的規(guī)律(2、5的倍數(shù)的特征),在哪個(gè)環(huán)節(jié)驗(yàn)證效果好。
(2)如何強(qiáng)化學(xué)生的知識(shí),使重點(diǎn)更為突出,學(xué)生有眼前一亮的感覺。
(3)備學(xué)生很重要
在探究的過程中,課堂氣氛沒有預(yù)想的那么好,在練習(xí)中學(xué)生才開始活躍起來。也許在對(duì)數(shù)學(xué)活動(dòng)的探索中,學(xué)生不夠自信,只是試著說。教師需要做些什么,得以改變學(xué)生的狀態(tài)。
倍數(shù)的特征教學(xué)反思12
心理學(xué)原理表明,新異的刺激可以引起學(xué)生的注意和興趣。在教學(xué)中,根據(jù)不同的教材和要求,采取不同的教學(xué)方法,能夠引起學(xué)生學(xué)習(xí)的興趣,有利于創(chuàng)設(shè)良好的課堂氣氛。
教學(xué)3的倍數(shù)特征這一課時(shí),教師組織學(xué)生進(jìn)行下列鞏固練習(xí):
下列數(shù)中3的倍數(shù)有:
1435451003328767488
學(xué)生利用3的倍數(shù)的特征一下子就回答了上面的.問題,得到了老師的肯定。這時(shí)我接著說:“我們來一場(chǎng)老師、學(xué)生打擂臺(tái)怎么樣?看誰說的3的倍數(shù)的數(shù)最多,我們看誰能考倒老師。”這時(shí)同學(xué)們興趣盎然,紛紛出題來考老師。
生:42
師:111
生:78
師:57
生:81
師:20xx
生:6891
…………
這時(shí)師故意出錯(cuò):369041
學(xué)生馬上發(fā)現(xiàn)了這個(gè)數(shù)不是3的倍數(shù),師問:“你能不能改一改其中的某個(gè)數(shù)字使它成為3的倍數(shù)?!?/p>
生:“可以將1改為2?!?/p>
生:“可以將4改為5。”
生:“可以將1改為5?!?/p>
生:“可以將1改為8。”
生:“可以將4改為2”
生:“可以將4改為8”
學(xué)生回答完后,我及時(shí)提問:“你們?yōu)槭裁床桓钠渲械?、6、9和0呢?”學(xué)生通過思考回答:“因?yàn)?、6、3、9每一個(gè)數(shù)都是3的倍數(shù),所以只要改4和1這兩個(gè)數(shù)就行了。”這時(shí)我及時(shí)指出:“判斷一個(gè)數(shù)是不是3的倍數(shù)可以用篩選法來判斷,在各數(shù)位的數(shù)字中先篩去3的倍數(shù)或和為3的倍數(shù)的數(shù)字,若余下的數(shù)字之和是3的倍數(shù),原數(shù)就是3的倍數(shù),否則就不是。”這時(shí)我逐漸地出示下列這組數(shù)要求學(xué)生馬上判斷是否3的倍數(shù)。
56
561
5617
56178
561784
5617849
…………
這個(gè)鞏固練習(xí),有效地調(diào)動(dòng)了學(xué)生的積極性,不斷激起學(xué)生認(rèn)知的內(nèi)驅(qū)力,使學(xué)生在探索的過程中,主動(dòng)學(xué)習(xí)、主動(dòng)探索,帶來了內(nèi)心的滿足感。
倍數(shù)的特征教學(xué)反思13
【初次實(shí)踐】
課始,讓學(xué)生任意報(bào)數(shù),師生比賽誰先判斷出這個(gè)數(shù)是不是3的倍數(shù),正當(dāng)我沉浸在游戲的情境之中,幾個(gè)“不識(shí)時(shí)務(wù)者”打亂了課前的預(yù)想?!袄蠋?,我知道其中的秘密,只要把各個(gè)數(shù)位上的數(shù)加起來,看看是不是3的倍數(shù)就行了!”“對(duì)!在數(shù)學(xué)書上就有這句話。”……又有幾個(gè)學(xué)生偷偷地打開了數(shù)學(xué)書?!霸趺崔k?”謎底都被學(xué)生揭開了。面對(duì)這一生成,我沒有死守教案,而是果斷地調(diào)整了預(yù)設(shè),變“探索”為“驗(yàn)證”,將結(jié)論板書在黑板上,讓學(xué)生理解這句話的意思,然后組織學(xué)生將百數(shù)表中3的倍數(shù)圈出來,驗(yàn)證是不是具有這樣的特征,最后進(jìn)行一系列鞏固練習(xí)……
[反思]
課堂上經(jīng)常會(huì)出現(xiàn)類似上述案例中的“超前行為”,即有些學(xué)生提前把要探究的新知識(shí)和盤托出。我們的習(xí)慣做法就是變“探索”為“驗(yàn)證”,當(dāng)然有些知識(shí)的教學(xué)采用這種方式是有效的,然而本課中“驗(yàn)證”的過程真能取代“探究發(fā)現(xiàn)”的過程嗎??jī)H僅舉幾個(gè)例子試一試,驗(yàn)證方法單一,思維含量低,學(xué)生充其量只能算是執(zhí)行操作命令的“計(jì)算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進(jìn)行這樣的教學(xué),還容易使學(xué)生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學(xué)習(xí)風(fēng)氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學(xué)生已有的知識(shí)經(jīng)驗(yàn),而且在已經(jīng)揭開“謎底”的情況下,再試圖引導(dǎo)學(xué)生進(jìn)行猜想、實(shí)驗(yàn)、發(fā)現(xiàn),體驗(yàn)遭受挫折后取得成功的那種激動(dòng),也只能是一種奢望。那么又該如何激發(fā)學(xué)生探究的熱情,促使學(xué)生進(jìn)行深入探究呢?
【再次實(shí)踐】
(與第一次教學(xué)情況基本相同,有些學(xué)生能夠正確地判斷一個(gè)數(shù)是不是3的倍數(shù),這時(shí)一些學(xué)生卻依然感到困惑,我設(shè)法將這一困惑激發(fā)出來。)
師:同學(xué)們真能干,這么快就知道了3的倍數(shù)的特征,上節(jié)課我們學(xué)習(xí)了2、5的倍數(shù)的特征只和什么有關(guān)?
生:只和一個(gè)數(shù)的個(gè)位有關(guān)。
師:與今天學(xué)習(xí)的知識(shí)比較一下,你有什么疑問嗎?
生1:為什么判斷一個(gè)數(shù)是不是3的倍數(shù)只看個(gè)位不行?
生2:為什么判斷一個(gè)數(shù)是不是2、5的倍數(shù)只看個(gè)位,而判斷是不是3的倍數(shù)要看各位上數(shù)的和?
……
師:同學(xué)們思考問題確實(shí)比較深入,提出了非常有研究?jī)r(jià)值的問題。那我們先來研究一下2、5的倍數(shù)為什么只和它的個(gè)位有關(guān)。
(學(xué)生嘗試探索,教師適時(shí)引導(dǎo)學(xué)生從簡(jiǎn)單數(shù)開始研究,借助小棒或其他方法進(jìn)行解釋。)
生1:我在擺小棒時(shí)發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個(gè)位擺幾就可以了。
生2:其實(shí)不用擺小棒也可以,我們組發(fā)現(xiàn)每個(gè)數(shù)都可以拆成一個(gè)整十?dāng)?shù)加個(gè)位數(shù),整十?dāng)?shù)當(dāng)然都是2、5的倍數(shù),所以這個(gè)數(shù)的個(gè)位是幾就決定了它是否是2、5的倍數(shù)。
師:同學(xué)們想到用“拆數(shù)”的方法來研究,是個(gè)好辦法。
生3:是否是3的倍數(shù)只看個(gè)位就不行了。比如13,雖然個(gè)位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個(gè)位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個(gè)位上的數(shù)合起來是不是3的倍數(shù)就行了。
生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。
生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時(shí)就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。
生(部分):對(duì)。
生4:其實(shí)40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?
生6:也就是說整十?dāng)?shù)都可以拆成十位上的數(shù)字和一個(gè)3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個(gè)位上的和是不是3的倍數(shù)就可以了。
師:同學(xué)們確實(shí)很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?
學(xué)生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過千位、百位上余下的數(shù)要依次加到下一位上進(jìn)行研究。3的倍數(shù)的特征在學(xué)生頭腦中越來越清晰。
師:同學(xué)們通過自己的探索,你們不僅發(fā)現(xiàn)了3的倍數(shù)的特征,還弄清了為什么有這樣的特征。現(xiàn)在你還有哪些新的探索想法呢?
生1:我想知道4的倍數(shù)有什么特征?
生2:我知道,應(yīng)該只要看末兩位就行了,因?yàn)檎佟⒄?shù)一定都是4的倍數(shù)。
師:你能把學(xué)到的方法及時(shí)應(yīng)用,非常棒!
生3:7或9的倍數(shù)有什么特征呢?
……
師:同學(xué)們又提出了一些新的、非常有價(jià)值的問題,課后可以繼續(xù)進(jìn)行探索。
[反思]
1. 找準(zhǔn)知識(shí)間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)的特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過來。而實(shí)際上,3的'倍數(shù)的特征,卻要把各個(gè)位上的數(shù)加起來研究。于是新舊知識(shí)之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個(gè)位?”“為什么3的倍數(shù)要把各個(gè)位上的數(shù)加起來研究?”……學(xué)生急于想了解這些為什么,便會(huì)自覺地進(jìn)入到自主探究的狀態(tài)之中。知識(shí)不是孤立的,新舊知識(shí)有時(shí)會(huì)存在矛盾沖突,教師如能找準(zhǔn)知識(shí)間的沖突并巧妙激發(fā)出來,就能激起學(xué)生探究的愿望。這樣不僅有利于學(xué)生對(duì)新知的掌握,有效地將新知納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。
2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對(duì)比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對(duì)于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時(shí)空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識(shí)的對(duì)比,將困惑激發(fā)出來,通過學(xué)生間相互啟發(fā)、相互質(zhì)疑,對(duì)問題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價(jià)值的發(fā)現(xiàn),探究能力也得到切實(shí)提高。學(xué)生在學(xué)習(xí)中難免會(huì)產(chǎn)生困惑,這種困惑有時(shí)是學(xué)生希望理解更全面、更深刻的表現(xiàn)。面對(duì)這些有價(jià)值的思考,我們要有敏銳的洞察力,采取恰當(dāng)?shù)姆椒▽⑵浼せ?,促使探究活?dòng)走向深入,讓學(xué)生獲得更大的發(fā)展。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對(duì)這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。
3. 溝通知識(shí)間的聯(lián)系,讓學(xué)生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過“拆數(shù)”進(jìn)行觀察),特征的本質(zhì)也是相同的。這種研究方法和特征本質(zhì)的及時(shí)溝通,激發(fā)了學(xué)生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學(xué)生不斷探究,將學(xué)習(xí)由課內(nèi)延伸到課外,并在探究過程中建構(gòu)起對(duì)數(shù)的倍數(shù)特征的整體認(rèn)識(shí),感悟數(shù)學(xué)其實(shí)就是以一馭萬,以簡(jiǎn)馭繁。課堂不是句號(hào),學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)絕不能僅僅局限于學(xué)生對(duì)于一堂課知識(shí)的掌握,而應(yīng)著眼于學(xué)生對(duì)于解決問題方法的感悟,獲得可持續(xù)發(fā)展的動(dòng)力。
倍數(shù)的特征教學(xué)反思14
《3的倍數(shù)的特征》看似一節(jié)知識(shí)簡(jiǎn)單的課,但從教學(xué)實(shí)際來看,是我想得過于簡(jiǎn)單了,教師注重的不應(yīng)該僅僅是對(duì)知識(shí)的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展。
新的課程理念要求我們?cè)诮虒W(xué)中盡可能地為學(xué)生提供一個(gè)自主、合作、探究機(jī)會(huì),其宗旨也就在于培養(yǎng)學(xué)生在實(shí)際的學(xué)習(xí)活動(dòng)中,善于發(fā)現(xiàn)問題和提出問題的能力,靈活運(yùn)用知識(shí)去解決問題的能力,在研究和解決問題的過程中學(xué)會(huì)合作。3的倍數(shù)的特征,有規(guī)律可循,容易上成機(jī)械刻板、枯燥無味的課,學(xué)生雖能死套規(guī)律判斷,但學(xué)生的能力沒能培養(yǎng),智力得不到開發(fā)。本課的設(shè)計(jì)采用了啟發(fā)與發(fā)現(xiàn)相結(jié)合的教學(xué)方法,激勵(lì)學(xué)生大膽猜想,動(dòng)手實(shí)踐,去發(fā)現(xiàn)規(guī)律,形成技能,升華至應(yīng)用于生活。
本課主要使學(xué)生在原有認(rèn)知的基礎(chǔ)上產(chǎn)生認(rèn)知沖突,進(jìn)而產(chǎn)生新的探索欲望,突出了對(duì)學(xué)生“提出問題—探索問題—解決問題”的能力培養(yǎng),學(xué)生能在猜想、操作、驗(yàn)證、交流、反思、歸納的數(shù)學(xué)活動(dòng)中,獲得較為豐富的數(shù)學(xué)經(jīng)驗(yàn),也有助于創(chuàng)造性的`培養(yǎng)。當(dāng)然,培養(yǎng)學(xué)生的創(chuàng)造個(gè)性,僅僅停留在教學(xué)活動(dòng)的情境上是不夠的,教師首先要具有創(chuàng)造精神,注重設(shè)計(jì)寬松和諧民主的教學(xué)氛圍,尊重學(xué)生,抓住一切可以利用的機(jī)會(huì),激發(fā)學(xué)生的創(chuàng)新欲望,學(xué)生的創(chuàng)造意識(shí)才能得以培養(yǎng),個(gè)性才能充分發(fā)展。本課重點(diǎn)是要理解3的倍數(shù)特征,能夠準(zhǔn)確判斷一個(gè)數(shù)是不是3的倍數(shù)。我采用的是復(fù)習(xí)導(dǎo)入,先和學(xué)生們一起回憶了一下
2、5的倍數(shù)特征,然后出示本課的教學(xué)目標(biāo)。新授環(huán)節(jié)先讓學(xué)生猜測(cè)一下3的倍數(shù)會(huì)有哪些特征呢?接著采用數(shù)形結(jié)合的方法,學(xué)生動(dòng)手操作,在1~100的數(shù)字卡里找一找3的倍數(shù),然后用自己喜歡的符號(hào)圈起來,然后觀察小組討論匯報(bào)。發(fā)現(xiàn)3的倍數(shù)特征不像
2、5的倍數(shù)特征一樣,看一個(gè)數(shù)的末尾了,引導(dǎo)學(xué)生是不是要看這個(gè)數(shù)其它的數(shù)位上的數(shù)呢?學(xué)生發(fā)現(xiàn)也不是很難。教材中有提示,學(xué)生回家預(yù)習(xí)后也會(huì)清楚敘述出3的倍數(shù)特征是一個(gè)數(shù)各個(gè)數(shù)位上數(shù)字相加的和。找準(zhǔn)知識(shí)之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結(jié)果在一個(gè)班實(shí)踐后認(rèn)為效果并不是很理想,由于數(shù)太多,讓學(xué)生觀察3的倍數(shù)的這些數(shù)時(shí),并從中找出相同的地方,結(jié)果,很多同學(xué)找了與本節(jié)課毫無關(guān)系的東西,浪費(fèi)了很多時(shí)間。在評(píng)課的時(shí)候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計(jì)了一個(gè)表格,讓學(xué)生用除法計(jì)算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個(gè)位分別從0到9都有,讓學(xué)生知道3的倍數(shù)的特征跟數(shù)的個(gè)位沒有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨(dú)展示出來,讓學(xué)生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。
這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過打手勢(shì)的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對(duì)解決問題方法的感悟,這樣才可獲得最佳的效果。
倍數(shù)的特征教學(xué)反思15
站在跳板上學(xué)習(xí)數(shù)學(xué)——3的倍數(shù)的特征教學(xué)反思
《3的倍數(shù)的特征》看似一節(jié)知識(shí)簡(jiǎn)單的課,但從教學(xué)實(shí)際來看,是我想得過于簡(jiǎn)單了,教師注重的不應(yīng)該僅僅是對(duì)知識(shí)的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展 。
“3的倍數(shù)的特征”屬于數(shù)論的范疇,離學(xué)生的生活較遠(yuǎn),有一定的難度。而2、5的倍數(shù)的特征是學(xué)生學(xué)習(xí)這一課的基礎(chǔ)。所以,在教學(xué)“3的倍數(shù)的特征”時(shí),我首先以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會(huì)將“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問題情境,猜測(cè)、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。但針對(duì)這樣的環(huán)節(jié),也有老師提出反對(duì)意見,他們認(rèn)為教師在教學(xué)中不僅要注重知識(shí)的正遷移,還要防止負(fù)遷移的產(chǎn)生,要能正確地預(yù)見學(xué)生學(xué)習(xí)中可能出現(xiàn)的錯(cuò)誤,采取適當(dāng)措施,防患于未然,達(dá)到所謂“防微杜漸”的目的;他們滿足于學(xué)生的一路凱歌,陶醉于學(xué)生的盡善盡美,視學(xué)生的差錯(cuò)為洪水猛獸。但是課堂就是學(xué)生出錯(cuò)的地方,出錯(cuò)是學(xué)生的權(quán)利,學(xué)生的錯(cuò)誤是勞動(dòng)的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯(cuò)誤,有個(gè)教育專家說得好:“課堂上的錯(cuò)誤是教學(xué)的巨大財(cái)富”。正式因?yàn)槿绱?,我們的新課堂也呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯(cuò)的生成,學(xué)生總會(huì)出現(xiàn)各種各樣的`錯(cuò)誤,我們的課堂教學(xué)不應(yīng)該有意識(shí)地去避免學(xué)生犯錯(cuò)誤。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個(gè)出錯(cuò)的機(jī)會(huì)和權(quán)利。
其次,看一個(gè)數(shù)是不是2、5的倍數(shù),只需看這個(gè)數(shù)的個(gè)位。個(gè)位是0、2、4、6、8的數(shù)就是2的倍數(shù),個(gè)位是0、5的數(shù)就是5的倍數(shù)。而3的倍數(shù)特征則不然,一個(gè)數(shù)是不是3的倍數(shù),不能只看個(gè)位,而要看它所有所有數(shù)位上的數(shù)的和是不是3的倍數(shù)。在教學(xué)中,我和大多數(shù)的教師一樣,更多的是關(guān)注兩者的不同,注重讓學(xué)生對(duì)兩種特征進(jìn)行區(qū)分,因此,教學(xué)中往往刻意對(duì)比強(qiáng)化,凸顯這種差異。但這樣的處理很明顯在數(shù)論的角度上割裂了兩者的共同點(diǎn)。實(shí)際上教師在引導(dǎo)學(xué)生發(fā)現(xiàn)3的倍數(shù)的獨(dú)特特征的同時(shí),也應(yīng)該注意引導(dǎo)學(xué)生歸納2、3、5倍數(shù)特征的共同點(diǎn)。別小看這寥寥數(shù)言的引導(dǎo),實(shí)質(zhì)它蘊(yùn)藏著深意。因?yàn)閺臄?shù)論角度講一個(gè)數(shù)能否被2、3、5乃至被其它數(shù)整除,其研究的理論基礎(chǔ)是一樣的:即如果各個(gè)數(shù)位上的數(shù)被某數(shù)除,所得的余數(shù)的和能夠被某數(shù)整除,那么這個(gè)數(shù)也一定能被某數(shù)整除。當(dāng)然,小學(xué)生由于知識(shí)和思維特點(diǎn)的限制,還不可能從數(shù)論的高度去建構(gòu)與理解。但是,這并不意味著教師不可以作相應(yīng)的滲透。事實(shí)上,正是由于有了教師看似無心實(shí)則有意的點(diǎn)撥:“其實(shí)3的倍數(shù)特征與2、5的倍數(shù)特征其實(shí)有一點(diǎn)還是很像的,不知同學(xué)們注意到?jīng)]有?”學(xué)生才可能從2、3、5倍數(shù)特征孤立、割裂、甚至是相互對(duì)立的表象中跳離出來,朦朧地感受到這三者之間的聯(lián)系:2、3、5倍數(shù)特征可以看作是一樣的,都是看它是不是誰的倍數(shù),只不過判斷一個(gè)數(shù)是不是2、5的倍數(shù),只需看這個(gè)數(shù)的個(gè)位是不是2、5的倍數(shù),而判斷一個(gè)數(shù)是不是3的倍數(shù)就要看它所有數(shù)位的和是不是3的倍數(shù)。
第三篇:《3的倍數(shù)的特征》教學(xué)反思
《3的倍數(shù)的特征》教學(xué)反思
本節(jié)課設(shè)計(jì)讓學(xué)生先復(fù)習(xí)2,5的倍數(shù)特征,然后讓學(xué)生先猜測(cè)一下3的倍數(shù)會(huì)有哪些特征,一部分學(xué)生很自然會(huì)猜測(cè)3的倍數(shù)也是看個(gè)位是否是3,6,9,這個(gè)時(shí)候就舉出13這個(gè)反例推翻學(xué)生的猜測(cè),讓學(xué)生產(chǎn)生認(rèn)知沖突,進(jìn)而對(duì)3的倍數(shù)的學(xué)習(xí)有濃厚的學(xué)習(xí)積極性。之后讓學(xué)生在百數(shù)表中圈出100以內(nèi)3的所有倍數(shù),最后讓學(xué)生分小組討論3的倍數(shù)特征。
在教學(xué)之前,我一直很忐忑學(xué)生能不能在討論中發(fā)現(xiàn)3的倍數(shù)的特征。教學(xué)中按照預(yù)先設(shè)計(jì)的進(jìn)行,當(dāng)進(jìn)行到小組討論環(huán)節(jié)時(shí),我走進(jìn)小組聽學(xué)生的交流,令我驚異的是,有一大部分小組能夠發(fā)現(xiàn)3的倍數(shù)的特征。交流結(jié)束后,找學(xué)生來跟大家分享時(shí),孩子們說的頭頭是道,比我預(yù)想的好的多得多,我想孩子自己發(fā)現(xiàn)并且分享后達(dá)到的效果一定比我灌輸給他們的效果好的多的多。
通過本節(jié)課的經(jīng)歷,我有一些感悟。在以后的教學(xué)中,很多內(nèi)容可以放手讓學(xué)生自己去探討去研究,學(xué)生會(huì)給我意想不到的驚喜,相信學(xué)生。本節(jié)存在著很多不足:在組織學(xué)生小組活動(dòng)時(shí),沒有在活動(dòng)前明晰好規(guī)則,以至于活動(dòng)的秩序不是很好,浪費(fèi)了挺多的時(shí)間,最后的練習(xí)都沒有進(jìn)行完成,以后的備課要更加精細(xì),把活動(dòng)細(xì)則都寫清楚。路漫漫其修遠(yuǎn)兮,吾將上下而求索。
第四篇:3的倍數(shù)特征教學(xué)反思
3的倍數(shù)特征教學(xué)反思15篇
3的倍數(shù)特征教學(xué)反思1
“能被3整除數(shù)的數(shù)”一課,能體現(xiàn)新的教育理念、教育思想。仔細(xì)分析,有以下幾個(gè)特點(diǎn):
1、確立了基本技能目標(biāo)和發(fā)展性目標(biāo)并重的教學(xué)目標(biāo)。
本節(jié)課不僅重視學(xué)生掌握能被3整除數(shù)的特征,并能運(yùn)用特征進(jìn)行正確判斷,同時(shí)十分重視學(xué)生學(xué)習(xí)過程的體驗(yàn)和方法的滲透,讓學(xué)生通過“猜測(cè)——驗(yàn)證——提出新的假設(shè)——驗(yàn)證”的探索過程來發(fā)現(xiàn)知識(shí),獲得結(jié)論,并感悟方法。
2、理性處理教材,使教學(xué)內(nèi)容生活化。
教科書只是提供了學(xué)生學(xué)習(xí)活動(dòng)的基本線索。教學(xué)中,教師要充分發(fā)揮主觀能動(dòng)性,創(chuàng)造性的使用教科書,本節(jié)課重新設(shè)計(jì)例題,通過用“0——9”十個(gè)數(shù)字組成能被整除的三位數(shù)讓學(xué)生探索特征,這樣處理使教學(xué)內(nèi)容有較強(qiáng)的靈活性,促進(jìn)了學(xué)生思維的發(fā)展。教學(xué)內(nèi)容生活化不僅能激發(fā)學(xué)生興趣,產(chǎn)生親切感,而且使學(xué)生認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)藏著豐富的數(shù)學(xué)問題。開課時(shí)收集的數(shù)據(jù)一方面激發(fā)了學(xué)生學(xué)習(xí)的興趣,同時(shí)也縮短了教師和學(xué)生的距離,課后“你再長(zhǎng)幾歲,這個(gè)歲數(shù)就能被3整除”這一開放題富有情趣,給學(xué)生留下了深刻的印象。
3、著力改變學(xué)生的學(xué)習(xí)方式。
學(xué)習(xí)方式的轉(zhuǎn)變是本節(jié)課的主要特色。本節(jié)課始終以自主探索、合作交流為主要的學(xué)習(xí)方式,讓學(xué)生通過自主選教學(xué)內(nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論等合作探究活動(dòng),獲得教學(xué)知識(shí)、感悟方法。如在課的第二階段,設(shè)計(jì)三個(gè)層次的教學(xué)活動(dòng),讓學(xué)生充分探索、討論、交流,使學(xué)生真正成為學(xué)習(xí)的主人。第一層通過學(xué)生猜測(cè)、舉例、選數(shù)字組數(shù),使學(xué)生產(chǎn)生兩次認(rèn)知沖突;第二層通過交換三位數(shù)數(shù)字的位置,仍然沒能發(fā)現(xiàn)特征,產(chǎn)生第三次認(rèn)知沖突;第三層次通過計(jì)算各位上的數(shù)的“和、差、積、商”使結(jié)論逐漸顯露。這一過程不僅培養(yǎng)了學(xué)生探究精神,磨練了意志,同時(shí)也使學(xué)生品嘗了成功的喜悅。
4、合理定位教師角色,營(yíng)造民主、和諧的學(xué)習(xí)氛圍。
課堂教學(xué)中只有擺正了師生關(guān)系,才可能使學(xué)生得到發(fā)展。本節(jié)課學(xué)生始終是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者??梢詮囊韵聝煞矫婵闯觯阂皇菑膸熒顒?dòng)的時(shí)間分配上,二是從分層探究、有針對(duì)性的適當(dāng)引導(dǎo)上。這節(jié)課從開始到結(jié)束,氣氛始終處在民主、和諧之中,生活化的學(xué)習(xí)材料、平等的師生關(guān)系和開放的探究方式,
3的倍數(shù)特征教學(xué)反思2
通過這節(jié)課的教學(xué),使我認(rèn)識(shí)到數(shù)學(xué)課堂教學(xué)活動(dòng)是一個(gè)活潑的、主動(dòng)的、豐富多彩的活動(dòng)空間。教學(xué)后感覺自己這節(jié)課的成功之處有:一是成功的課堂引入。好的開始等于成功了一半。本節(jié)課我是這樣引入的:同學(xué)們,我們前段時(shí)間學(xué)習(xí)了倍數(shù),誰能說幾個(gè)2的倍數(shù)?(只要是對(duì),學(xué)生們隨便說)誰能說幾個(gè)5的倍數(shù)呢?
我們知道,一個(gè)數(shù)的倍數(shù)有無數(shù)個(gè),如果隨機(jī)給你一個(gè)數(shù),有沒有更好的方法來判斷是不是2、5的倍數(shù)呢?有,如果這節(jié)課認(rèn)真聽,你肯定能掌握其中的奧秘。由此引出課題,這樣不但大大地調(diào)動(dòng)了學(xué)生學(xué)習(xí)積極性,而且順其自然地把探索的問題拋給了學(xué)生,激起了學(xué)生探索的欲望。二是緊密地聯(lián)系學(xué)生的生活。本節(jié)課我充分利用了與學(xué)生生活密切聯(lián)系的學(xué)號(hào),使學(xué)生明白數(shù)學(xué)來源于生活,生活即是數(shù)學(xué)。我安排了“請(qǐng)學(xué)號(hào)是2的倍數(shù)的同學(xué)舉起左手”、“請(qǐng)學(xué)號(hào)是5的倍數(shù)的同學(xué)舉起右手”的練習(xí),以及判斷自己的學(xué)號(hào)“是不是2或5的倍數(shù)”的練習(xí),這些練習(xí)內(nèi)容使枯燥的數(shù)字練習(xí)變得生動(dòng)了。這即鞏固了學(xué)生對(duì)奇數(shù)和偶數(shù)意義的理解。又讓學(xué)生對(duì)規(guī)律的運(yùn)用更加靈活了,學(xué)生非常喜歡這樣的形式。真正也讓學(xué)生體會(huì)到了“數(shù)學(xué)源于生活,生活即數(shù)學(xué)”。
不足之處是:在如何有效地組織學(xué)生開展探索規(guī)律時(shí),我認(rèn)為猜想可以鍛煉孩子們的創(chuàng)新思維,但猜想必須具有一定的基礎(chǔ),需要因勢(shì)利導(dǎo)。在開展探索規(guī)律時(shí),我先組織讓學(xué)生猜想秘訣是什么?由于學(xué)生缺乏猜想的依據(jù),因此,他們的思維不夠活躍,甚至有的學(xué)生在“亂猜”。這說明學(xué)生缺乏猜想的方向和思維的空間,也是教師在組織教學(xué)時(shí)需要考慮的問題。
3的倍數(shù)特征教學(xué)反思3
《2、5、3倍數(shù)的特征練習(xí)課》是一堂練習(xí)課,本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了2,5,3倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。為以后學(xué)習(xí)分?jǐn)?shù),特別是約分、通分,需要以因數(shù)倍數(shù)的知識(shí)的概念為基礎(chǔ),到進(jìn)一步掌握公因數(shù)、最大公因數(shù)和公倍數(shù)、最小公倍數(shù)的概念,需要用到質(zhì)數(shù)、合數(shù)的概念,而最基礎(chǔ)的就是掌握2,5,3的倍數(shù)的特征。從開始學(xué)習(xí)2,5的倍數(shù)特征僅僅體現(xiàn)在個(gè)位數(shù)上,到學(xué)習(xí)3的倍數(shù)特征時(shí)從只看個(gè)位轉(zhuǎn)向考察各位上的數(shù)相加的和,學(xué)生已經(jīng)有了思路上的轉(zhuǎn)變,思維的轉(zhuǎn)折,觀察角度的改變,以此讓學(xué)生自主探索4的倍數(shù)特征,但由于與2,5,3的倍數(shù)特征又有些許不同,對(duì)學(xué)生依然有一定難度。
如果只是單一的做習(xí)題,勢(shì)必有學(xué)生會(huì)感到枯燥無味,這樣子學(xué)生的學(xué)習(xí)效果難以保障,對(duì)教師的功底與教學(xué)策略有很大的挑戰(zhàn)。因此課堂伊始,我直接開門見山式的先對(duì)前面學(xué)習(xí)的知識(shí)進(jìn)行復(fù)習(xí)梳理,接著利用學(xué)生感興趣也是正在使用著的工具——“手機(jī)”的鎖屏密碼為線索,通過提示讓學(xué)生解密碼的方式激發(fā)學(xué)生的學(xué)習(xí)興趣,然后以破解后的密碼1080,導(dǎo)出本節(jié)課我們要重點(diǎn)探究的4的倍數(shù)特征。讓學(xué)生帶著趣味,自主的去探索。由于有了前面探索2,5,3倍數(shù)特征的基礎(chǔ)在,所以在探索4的倍數(shù)特征時(shí)放手讓學(xué)生通過操作,觀察,思考從而有所發(fā)現(xiàn),體驗(yàn)探索的樂趣。接著通過計(jì)數(shù)器,讓學(xué)生明白判斷4的倍數(shù)特征背后的原理。最后在練習(xí)鞏固中,逐漸熟練應(yīng)用所學(xué)知識(shí),感知數(shù)學(xué)知識(shí)和我們的生活緊密聯(lián)系。如何讓練習(xí)課不僅僅只是做練習(xí),讓學(xué)生能在練習(xí)中獲得對(duì)知識(shí)的理解以及思維上實(shí)質(zhì)的提升,仍然值得我在好好的去思考探索。
3的倍數(shù)特征教學(xué)反思4
在教學(xué)“3的倍數(shù)的特征”時(shí),我首先以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望。利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會(huì)將“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望。
因此學(xué)生很快進(jìn)入問題情境,猜測(cè)、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。接著我以問題為中心組織學(xué)生展開探究活動(dòng)。為了突出學(xué)生的主體地位,我依據(jù)學(xué)生的年齡特征和認(rèn)知水平設(shè)計(jì)具有探索性的問題,引導(dǎo)學(xué)生緊緊圍繞“3的倍數(shù)有什么特征”這個(gè)問題來開展學(xué)習(xí)活動(dòng),指導(dǎo)學(xué)生圍繞問題展開探究活動(dòng),組織師生之間、生生之間的交流和討論,逐步發(fā)現(xiàn)、歸納規(guī)律,得出結(jié)論,培養(yǎng)了學(xué)生的探索意識(shí)和分析、概括、驗(yàn)證、判斷等能力。
3的倍數(shù)特征教學(xué)反思5
1.以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望。教師利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會(huì)將“2、5的倍數(shù)的特征”遷移到解決“3的倍數(shù)特征”的問題,產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望。本案例中,學(xué)生很快進(jìn)入問題情境,猜測(cè)、否定、反思、觀察、討論,大部分學(xué)生漸漸進(jìn)入了探究者的角色。
2.以問題為中心組織學(xué)生展開探究活動(dòng)。在上面案例中,教師注意突出學(xué)生的主體地位,教師依據(jù)學(xué)生年齡特征和認(rèn)知水平設(shè)計(jì)具有探索性的問題,引導(dǎo)學(xué)生緊緊圍繞“3的倍數(shù)有什么特征”這個(gè)問題來開展學(xué)習(xí)活動(dòng),指導(dǎo)學(xué)生圍繞問題展開探究活動(dòng),并不斷組織師生之間、生生之間的交流和討論,逐步發(fā)現(xiàn)、歸納規(guī)律、得出結(jié)論,培養(yǎng)了學(xué)生的探索意識(shí)和分析、概括、驗(yàn)證、判斷等能力。
3的倍數(shù)特征教學(xué)反思6
《3的倍數(shù)的特征》的教學(xué)是在第一次教學(xué)之后,學(xué)校組織縣級(jí)教學(xué)能手選撥賽時(shí)候第二次上,可以說是“一課兩上”。我在第二次備課時(shí)完全從另一個(gè)角度來處理教材,收獲頗豐。下面我就本節(jié)課前后兩次上課反思如下:
第一次上課我是讓學(xué)生圈出100以內(nèi)3的倍數(shù),去觀察3的倍數(shù)的特征,由此總結(jié)出3的倍數(shù)的特征,然后實(shí)際應(yīng)用,鞏固練習(xí)。效果一般。而第二次上課時(shí)我是這樣做的:使學(xué)生在原有認(rèn)知的基礎(chǔ)上產(chǎn)生認(rèn)知沖突,在學(xué)習(xí)2、5倍數(shù)特征的基礎(chǔ)上,讓學(xué)生猜測(cè)是不是3的倍數(shù)的特征也要去看數(shù)的個(gè)位呢,進(jìn)而產(chǎn)生新的探索欲望,讓后在百數(shù)表中圈出3的倍數(shù)的特征,接著借助學(xué)生熟悉的計(jì)數(shù)器進(jìn)行兩個(gè)實(shí)驗(yàn),實(shí)驗(yàn)一:驗(yàn)證3的倍數(shù)的特診,實(shí)驗(yàn)二:驗(yàn)證不是3的倍數(shù)的的數(shù)的特征。最后實(shí)踐應(yīng)用,課堂檢測(cè)。
整個(gè)教學(xué)過程突出了對(duì)學(xué)生“提出問題—探索問題—解決問題”的能力培養(yǎng),學(xué)生能在猜想、操作、驗(yàn)證、交流、反思、歸納的數(shù)學(xué)活動(dòng)中,獲得較為豐富的數(shù)學(xué)經(jīng)驗(yàn),也有助于創(chuàng)造性的培養(yǎng)。這就要求我們教師首先要具有創(chuàng)造精神,注重設(shè)計(jì)寬松和諧民主的教學(xué)氛圍,尊重學(xué)生,抓住一切可以利用的機(jī)會(huì),激發(fā)學(xué)生的創(chuàng)新欲望,學(xué)生的創(chuàng)造意識(shí)才能得以培養(yǎng),個(gè)性才能充分發(fā)展。
反思這節(jié)課的不足我覺得在每個(gè)環(huán)節(jié)的過渡上要做的更加自然、一氣呵成會(huì)更好。由于本節(jié)課按照賽教要求只有30分鐘,時(shí)間的把握做的還不夠恰到好處。總之,教無定法,學(xué)海無涯,需要我不斷的學(xué)習(xí)和實(shí)踐,不斷提高自身素質(zhì)和專業(yè)水平,大力提高教學(xué)質(zhì)量。
3的倍數(shù)特征教學(xué)反思7
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2和5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出3的倍數(shù)特征。
但上課的過程中,學(xué)生并沒有按照我想的思路去進(jìn)行,一個(gè)學(xué)生在我沒有預(yù)想的前提下說出了3的倍數(shù)的特征,所以我準(zhǔn)備讓四人小組去合作交流發(fā)現(xiàn)3的倍數(shù)的特征也沒有進(jìn)行。只是讓學(xué)生兩人去再說一說剛才那個(gè)學(xué)生的發(fā)現(xiàn),加以理解,鞏固。
這節(jié)課結(jié)束后,我感覺以下方面做得不好:
1、備課不充分。自己在備課時(shí)沒有好好的去備學(xué)生,沒有做好多方面的預(yù)設(shè);
2、在觀察百數(shù)表到后面總結(jié)3的倍數(shù)特征時(shí),都應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學(xué)生能說出的盡量讓學(xué)生說,多放手,相信學(xué)生。
3的倍數(shù)特征教學(xué)反思8
3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究。上課開始先讓學(xué)生回顧舊知:2的倍數(shù)和5的倍數(shù)有什么特征?學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順利地設(shè)下了陷阱:“同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測(cè)是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測(cè)3的倍數(shù)有什么特征,能較好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測(cè)“個(gè)位上的數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點(diǎn)應(yīng)該說是了不起的。本課到這里都很順利,因?yàn)橥耆谖业念A(yù)設(shè)之中。
下面進(jìn)入驗(yàn)證環(huán)節(jié),先讓學(xué)生判斷自己的學(xué)號(hào)是不是3的倍數(shù),再在這些學(xué)號(hào)中挑出個(gè)位上是0,3,6,9的數(shù),通過交流,學(xué)生發(fā)現(xiàn)這些數(shù)不一定是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢?于是進(jìn)入到動(dòng)手操作環(huán)節(jié)。在此基礎(chǔ)上,抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。
“試一試”是數(shù)學(xué)的第三步,如果一個(gè)數(shù)不是3的倍數(shù),那么這個(gè)數(shù)各位數(shù)的和不是3的倍數(shù),利用反例進(jìn)一步證實(shí)3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性。隨后設(shè)計(jì)了一系列習(xí)題,使學(xué)生得到鞏固提高。
3的倍數(shù)特征教學(xué)反思9
《3的倍數(shù)的特征》是人教版義務(wù)教材新課程第八冊(cè)的教學(xué)內(nèi)容,對(duì)這節(jié)課的教學(xué)設(shè)計(jì),有從2、5的倍數(shù)的特征中引入的、有讓學(xué)生通過擺火柴棒研究的,其中不乏好點(diǎn)子好設(shè)計(jì)。但是,大部分老師都要拋出一個(gè)問題讓學(xué)生思考:“火柴棒的總根數(shù)跟3的倍數(shù)有什么聯(lián)系?”或者干脆問“3的倍數(shù)和數(shù)位上的數(shù)字的和有什么關(guān)系?”總覺得教師對(duì)學(xué)生的引導(dǎo)過于直接,對(duì)于五年級(jí)的學(xué)生,經(jīng)過這樣的提問,一般都能找到3的倍數(shù)的特征,也能用語言來表述。我認(rèn)為,我們的關(guān)鍵不但要讓學(xué)生找到3的倍數(shù)的特征,更應(yīng)該引導(dǎo)學(xué)生怎樣去發(fā)現(xiàn)數(shù)位上的數(shù)字的和與3的倍數(shù)之間的關(guān)系。我考慮,能不能在本節(jié)課中運(yùn)用分類,讓學(xué)生自主探究呢?以下是兩個(gè)教學(xué)片段:
教學(xué)片段一:
讓學(xué)生用30秒時(shí)間,寫3的倍數(shù),大部分學(xué)生都從小到大寫了25個(gè)左右
老師板演了10個(gè):105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任務(wù)。
師:請(qǐng)你給自己寫的3的倍數(shù)分類,看看能不能找到規(guī)律。限時(shí)2分鐘。
(結(jié)束)學(xué)生回答。
生1:3、6、9;12、15、18、21、24……按位數(shù)分類。(有3人和他一樣分)師:按位數(shù)分類,那么3位數(shù)里哪些是3的倍數(shù)呢:103、208是3的倍數(shù)
嗎?(學(xué)生答不出)
生2:3、6、9、12、15、18、21、24、27、30;
33、36、39、42、45、48、51、54、57、60
63、66……
(有32人和他一樣)
師:你分類的標(biāo)準(zhǔn)是什么?
生2:個(gè)位是0——9的都?xì)w為一類,共兩類。
生3:共十類。個(gè)位是0的一類,個(gè)位是1的一類,個(gè)位是2的一類,到個(gè)位是9的一類。
師:懂了。3、33、63是一類;6、36、66是一類,共十類。那21253是不是3的倍數(shù),能迅速判斷嗎?(生無語)
師:看來,分類的方法很多。但是,哪一種分類才能幫助我們發(fā)現(xiàn)3的倍數(shù)的特征,是有價(jià)值的呢?(學(xué)生陷入沉思)
以上學(xué)生的分類方法,都有不同的標(biāo)準(zhǔn),從單一分類的角度來看,沒有問題。但是對(duì)于尋求3的倍數(shù)的特征,卻沒有意義。大部分學(xué)生是從2、5的倍數(shù)的'特征中受到啟示,這是學(xué)生的經(jīng)驗(yàn),卻是一種負(fù)遷移。課前,我也想到了,那么是不是就一定要先提醒學(xué)生,不要走彎路呢?我認(rèn)為,負(fù)遷移也是一種寶貴的經(jīng)驗(yàn),經(jīng)歷過挫折,對(duì)知識(shí)的理解就會(huì)更加深刻,無需刻意回避。
教學(xué)片段二:
師:繼續(xù)觀察這些數(shù),還有其它分類方法嗎?限時(shí)5分鐘。(陸續(xù)有學(xué)生舉手,5分鐘后,共有15位學(xué)生舉手,巡視一遍。)
師:誰來介紹自己新的分類方法?
生1:3、21、30;
6、15、24、33、42;
9、18、36、45、63;
12、39、48、57;
……
師:你的分類標(biāo)準(zhǔn)是什么?
生1:第一類,每個(gè)數(shù)數(shù)位上的數(shù)字的和是3;第二類,每個(gè)數(shù)數(shù)位上的數(shù)字的和是6;第三類,每個(gè)數(shù)數(shù)位上的數(shù)字的和是9;第四類,每個(gè)數(shù)數(shù)位上的數(shù)字的和是12;以此類推。
師:誰來幫他“以此類推”?
生2:每個(gè)數(shù)數(shù)位上的數(shù)字的和是15,也是3的倍數(shù);每個(gè)數(shù)數(shù)位上的數(shù)字的和是18,也是3的倍數(shù)。
生3:每個(gè)數(shù)數(shù)位上的數(shù)字的和是21,也是3的倍數(shù);每個(gè)數(shù)數(shù)位上的數(shù)字的和是24,也是3的倍數(shù)。
師:你能用一句話來表達(dá)嗎?
生4:每個(gè)數(shù)位上的數(shù)字的和是3、6、9、12、15、18等,這個(gè)數(shù)就是3的倍數(shù)。
生5:每個(gè)數(shù)位上的數(shù)字的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。
師:很厲害。但是,我們需要驗(yàn)證。判斷老師剛才寫的3的倍數(shù)(前5個(gè))105、111、156、273、300。
生4:1加0加5等于6,6是3的倍數(shù),105也是3的倍數(shù)。
生5:1加1加1等于3,3是3的倍數(shù),111也是3的倍數(shù)。
……
(一個(gè)學(xué)生根據(jù)規(guī)律回答,其他學(xué)生用豎式驗(yàn)證。)
生6:3的倍數(shù)的特征是找到了,但這樣的分類太亂。我一共分3類:
第一類:每個(gè)數(shù)數(shù)位上的數(shù)字的和是3:3、12、21、30;
第二類:每個(gè)數(shù)數(shù)位上的數(shù)字的和是6:6、15、24、42、51;
第三類:每個(gè)數(shù)數(shù)位上的數(shù)字的和是9:9、18、27、36、45……,
這樣的數(shù)是3的倍數(shù)。
師:那老師的這些數(shù):339、504、918、1527、2442屬于哪一類呢?
生6:339,3加3加9等于15,然后1加5等于6,分到第二類;918,9加1加8等于18,然后1加8等于9,分到第三類;1527分到第二類;2442分到第一類。所有3的倍數(shù)沒有超出這三類的。
師:厲害!(讓其他學(xué)生說了兩個(gè)四位數(shù),用他的方法來判斷是不是3的倍數(shù),大概有三十個(gè)左右的學(xué)生能用這樣的方法分析。老師又舉了一個(gè)反例。)
師:誰能用幾句話來概括?
生6:一個(gè)數(shù),每個(gè)數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個(gè)數(shù)就是3的倍數(shù)。
師:真佩服你們!
第二天,有學(xué)生告訴我他發(fā)現(xiàn)了一種更快判斷3的倍數(shù)的方法,不用把數(shù)位上的數(shù)都加起來,比如538,3是3的倍數(shù)就不要管它了,只要5加8加一下,13不是3的倍數(shù),538就不是3的倍數(shù)。我又說了一個(gè)五位數(shù)20xx,學(xué)生分析,6是3的倍數(shù),不去管它,2加7是9,9是3的倍數(shù),整個(gè)數(shù)就是3的倍數(shù)。
學(xué)生的探究能力如此之強(qiáng),是我沒想到的,學(xué)生快速判斷3的倍數(shù)的方法,實(shí)際上已經(jīng)綜合了很多的知識(shí),盡管不能很明確地用語言來表達(dá),但是,方法是完全正確的,其實(shí)這又是一個(gè)學(xué)生新的探究的開始。
從本節(jié)課中,我有幾點(diǎn)小小的感悟:
一、教師不要害怕學(xué)生探究的失敗。學(xué)生第一次探究的失敗,完全是正常的,這是他們運(yùn)用已有的經(jīng)驗(yàn),進(jìn)行探究后的結(jié)果。盡管這種經(jīng)驗(yàn)的遷移是負(fù)作用的,但是從失敗到成功的過程,記憶是深刻的。負(fù)遷移在教學(xué)中比比皆是,我們不但不能回避,而且要好好利用,要讓學(xué)生積累對(duì)數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),同時(shí)能將“經(jīng)驗(yàn)材料組織化”。
二、教師要給學(xué)生創(chuàng)造探究的機(jī)會(huì)。學(xué)生的探究能力其實(shí)是老師意想不到的。最后一位學(xué)生對(duì)3的倍數(shù)的概括(一個(gè)數(shù),每個(gè)數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個(gè)數(shù)就是3的倍數(shù)。),盡管實(shí)際的意義不是很大,但是它更具有橫向的關(guān)聯(lián),2的倍數(shù)特征是:個(gè)位是0、2、4、6、8的數(shù)是2的倍數(shù);5的倍數(shù)的特征是個(gè)位是0或5的數(shù)是5的倍數(shù)。或許,這種類比聯(lián)想更容易讓學(xué)生理解新的知識(shí),更何況是學(xué)生自己探究出來的。其實(shí)很多教學(xué)內(nèi)容我們都可以讓學(xué)生進(jìn)行探究,關(guān)鍵是教師如何給學(xué)生提供一個(gè)探究的載體,一種探究的環(huán)境。
三、教師對(duì)學(xué)過的知識(shí)要經(jīng)常地進(jìn)行整合。新教材的特點(diǎn)是有些知識(shí)點(diǎn)分得比較散,所以教師要經(jīng)常把學(xué)生學(xué)過的知識(shí),在新知中不知不覺地再應(yīng)用,再鞏固。溫故而知新,在復(fù)習(xí)與鞏固中,學(xué)生會(huì)對(duì)舊知有更高的認(rèn)識(shí),更深的理解,也容易排除學(xué)生對(duì)新知的畏難思想。同時(shí)要經(jīng)常地對(duì)各種知識(shí)進(jìn)行串聯(lián),編織學(xué)生知識(shí)的網(wǎng)絡(luò),使學(xué)生認(rèn)識(shí)到各種知識(shí)之間是相互關(guān)聯(lián)相互作用的,以利于學(xué)生解決一些實(shí)際問題或綜合性問題。
四、教師要經(jīng)常在教學(xué)中滲透一些數(shù)學(xué)思想。分類是一種數(shù)學(xué)思想,同時(shí)也是一種數(shù)學(xué)思維的工具。人教版小學(xué)數(shù)學(xué)第一冊(cè)學(xué)生就接觸了分類《整理房間》,第七冊(cè)《角的分類》、第八冊(cè)《三角形的分類》,讓學(xué)生對(duì)分類有了更多的理解。其實(shí)在生活中,無處不在的分類:超市貨物的擺放、自己書本的整理、性別之間、班級(jí)之間等等。對(duì)于分類的標(biāo)準(zhǔn),分類的原則,學(xué)生在不知不覺中有了感悟。借助分類,有40%的學(xué)生找到了3的倍數(shù)的特征,學(xué)生完全是在觀察、嘗試、驗(yàn)證的基礎(chǔ)上探究的,是自主的行為研究。在小學(xué)數(shù)學(xué)中,滲透了很多數(shù)學(xué)思想,如集合、對(duì)應(yīng)、假設(shè)、比較、類比、轉(zhuǎn)化、分類、統(tǒng)計(jì)思想等,在教學(xué)中合理地運(yùn)用這些數(shù)學(xué)思想,對(duì)學(xué)生學(xué)習(xí)數(shù)學(xué)的影響是深遠(yuǎn)的,也會(huì)讓我們的數(shù)學(xué)探究活動(dòng)更有意義,更有價(jià)值。
3的倍數(shù)特征教學(xué)反思10
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出了3的倍數(shù)特征。
我從學(xué)生的已有認(rèn)知出發(fā),引導(dǎo)學(xué)生先進(jìn)行合理的猜想,進(jìn)而引發(fā)學(xué)生從不同的角度驗(yàn)證自己的猜想,通過驗(yàn)證,學(xué)生自我否定了自己的猜想。此時(shí)學(xué)生處于“不憤不啟”的最佳的學(xué)習(xí)狀態(tài),他們迫切想知道3的倍數(shù)的特征究竟是什么?這樣來調(diào)動(dòng)學(xué)生學(xué)習(xí)的欲望,增強(qiáng)學(xué)生主動(dòng)探究意識(shí),有利于后面的探究學(xué)習(xí)。他們還認(rèn)為在我們實(shí)際生活中,當(dāng)你解決一個(gè)新問題時(shí),一般沒有人告訴你解決這個(gè)問題會(huì)碰到什么困難。你只有碰到問題后,在解決問題的過程中方才清楚還需要哪些知識(shí),然后,你要在原來的知識(shí)庫(kù)中去提取并靈活地應(yīng)用原有的知識(shí)。
新課堂呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯(cuò)的生成,學(xué)生總會(huì)出現(xiàn)各種各樣的錯(cuò)誤,我們的課堂教學(xué)不應(yīng)該有意識(shí)地去避免學(xué)生犯錯(cuò)誤。因?yàn)檎n堂是學(xué)生出錯(cuò)的地方,出錯(cuò)是學(xué)生的權(quán)利,學(xué)生的錯(cuò)誤是勞動(dòng)的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯(cuò)誤,有個(gè)教育專家說得好:“課堂上的錯(cuò)誤是教學(xué)的巨大財(cái)富”。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個(gè)出錯(cuò)的機(jī)會(huì)和權(quán)利。
3的倍數(shù)特征教學(xué)反思11
2、5的倍數(shù)特征有共同之處,既都要關(guān)注個(gè)位上的數(shù)字。我在教學(xué)2的倍數(shù)特征時(shí)下功夫較多,由找倍數(shù)——觀察特征——驗(yàn)證發(fā)現(xiàn)——得出結(jié)論,每一環(huán)節(jié)都使學(xué)生明確活動(dòng)目的,找到學(xué)習(xí)方法。再到5的倍數(shù)特征時(shí),何不由扶到放,充分發(fā)揮學(xué)生的自主能力性呢?因此,我完全放手,給學(xué)生以充分的時(shí)間和空間,讓他們?cè)谟^察、探索中體驗(yàn)成功的喜悅。
在教學(xué)既是2又是5的倍數(shù)的特征時(shí),我沒有讓學(xué)生通過做課本上的習(xí)題總結(jié)結(jié)論,而是通過讓學(xué)生說自己的學(xué)號(hào),誰是2的倍數(shù),誰是5的倍數(shù),然后自然的追問一句:“為什么有的同學(xué)舉了兩次手?”全體學(xué)生幡然醒悟,原來這幾個(gè)同學(xué)的學(xué)號(hào)既是2,又是5的倍數(shù),很自然的找到了既是2又是5的倍數(shù)的特征,我感覺這一個(gè)環(huán)節(jié)的設(shè)計(jì)非常自然,貼近學(xué)生實(shí)際。這是我認(rèn)為比較成功的地方。
3的倍數(shù)特征教學(xué)反思12
2、5、3的倍數(shù)特征是分為兩節(jié)課完成的,上完后,給我最大的感受,學(xué)生對(duì)2、5的倍數(shù)的特征不難理解,對(duì)偶數(shù)和奇數(shù)的概念也容易掌握,2、5的倍數(shù)的特征這節(jié)課,概念比較多,學(xué)生很容易混淆。怎樣才能把抽象的概念轉(zhuǎn)化為形象直觀的知識(shí)讓學(xué)生們接受呢?
一、互動(dòng)、質(zhì)疑,激發(fā)學(xué)生的探究興趣。
好的開始等于成功了一半。課伊始,我便說:“老師不用計(jì)算,就能很快判斷一個(gè)數(shù)是不是2或5的倍數(shù),你們相信嗎?”學(xué)生自然不相信,爭(zhēng)先恐后地來考老師,結(jié)果不得而知。幾輪過后,看到他們還是不服氣的樣子,我故作神秘說:“其實(shí),是老師知道一個(gè)秘訣。你們想知道是什么嗎?”由此引出課題。這樣大大的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,激發(fā)了其探究的欲望。
二、鼓勵(lì)學(xué)生獨(dú)立思考,經(jīng)歷猜測(cè)驗(yàn)證的過程。
數(shù)學(xué)學(xué)習(xí)過程中充滿了觀察、實(shí)驗(yàn)、推斷等探索性與挑戰(zhàn)性活動(dòng)。由于5的倍數(shù)的特征比較容易發(fā)現(xiàn),我便把它調(diào)到2的倍數(shù)的特征前面來進(jìn)行教學(xué)。首先讓學(xué)生獨(dú)立寫出100以內(nèi)5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)“個(gè)位上是0或5的數(shù)是5的倍數(shù)?!倍@只是猜測(cè),結(jié)論還需要進(jìn)一步的驗(yàn)證。我們不能滿足于學(xué)生能夠得到結(jié)論就夠了,而應(yīng)該抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,引導(dǎo)學(xué)生認(rèn)識(shí)到這個(gè)結(jié)論僅僅適用于1—100這個(gè)小范圍。是不是在所有不等于0的自然數(shù)中都適用呢?還需要研究。在老師的引導(dǎo)下,學(xué)生開始認(rèn)識(shí)到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個(gè)位上的數(shù)字是5或0。在這一過程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)范圍大,最后得出科學(xué)的結(jié)論。這樣,當(dāng)下節(jié)課研究3的倍數(shù)的特征時(shí),學(xué)生就會(huì)大膽猜想,并有方法來驗(yàn)證自己的猜想了。
三、小組合作,發(fā)揮團(tuán)體的作用
動(dòng)手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。與5的倍數(shù)特征相比較,2的倍數(shù)特征稍顯困難,所以我組織學(xué)生利用小組合作的方式,根據(jù)探究5的倍數(shù)的特征的思路,小組合作探究2的倍數(shù)的特征。經(jīng)過這樣的合作討論,大多數(shù)小組能夠得到正確或接近正確的答案。突出了學(xué)生的主體地位,讓他們?cè)诔浞值奶剿骰顒?dòng)中充分發(fā)現(xiàn)規(guī)律、舉例驗(yàn)證、總結(jié)歸納。
2、5、3的倍數(shù)的特征教學(xué)反思四:
課上完了,整體來說感覺良好。學(xué)生的主體作用在這節(jié)課中得到了充分的發(fā)揮,積極的思維、熱烈的氣氛等均給人以很大的感染,仔細(xì)分析,我認(rèn)為這節(jié)課課的成功得益于以下幾方面:
1.2.3.5倍數(shù)的特征,它們?cè)谥R(shí)體系中是一個(gè)整體,而在特征和判斷方法上有各自不同,這使得學(xué)生的學(xué)習(xí)過程始終處在“產(chǎn)生沖突解決沖突”的過程中,為學(xué)生的積極探索提供了較大的空間,也為每個(gè)學(xué)生在不同水平上參與學(xué)習(xí)提供了可能。例如,在探索能被3整除的數(shù)的特征時(shí),有的學(xué)生提出“個(gè)位上是3的倍數(shù)”有的學(xué)生提出“某一位上的數(shù)是3的倍數(shù)”;而水平較高的學(xué)生提出:“各個(gè)數(shù)位上的數(shù)字之和是3的倍數(shù)”。在這樣一個(gè)探索過程中學(xué)生的主動(dòng)性和創(chuàng)造性得到了發(fā)揮。這是我認(rèn)為比較成功的地方。
3的倍數(shù)特征教學(xué)反思13
【初次實(shí)踐】
課始,讓學(xué)生任意報(bào)數(shù),師生比賽誰先判斷出這個(gè)數(shù)是不是3的倍數(shù),正當(dāng)我沉浸在游戲的情境之中,幾個(gè)“不識(shí)時(shí)務(wù)者”打亂了課前的預(yù)想。“老師,我知道其中的秘密,只要把各個(gè)數(shù)位上的數(shù)加起來,看看是不是3的倍數(shù)就行了!”“對(duì)!在數(shù)學(xué)書上就有這句話?!薄钟袔讉€(gè)學(xué)生偷偷地打開了數(shù)學(xué)書?!霸趺崔k?”謎底都被學(xué)生揭開了。面對(duì)這一生成,我沒有死守教案,而是果斷地調(diào)整了預(yù)設(shè),變“探索”為“驗(yàn)證”,將結(jié)論板書在黑板上,讓學(xué)生理解這句話的意思,然后組織學(xué)生將百數(shù)表中3的倍數(shù)圈出來,驗(yàn)證是不是具有這樣的特征,最后進(jìn)行一系列鞏固練習(xí)……
[反思]
課堂上經(jīng)常會(huì)出現(xiàn)類似上述案例中的“超前行為”,即有些學(xué)生提前把要探究的新知識(shí)和盤托出。我們的習(xí)慣做法就是變“探索”為“驗(yàn)證”,當(dāng)然有些知識(shí)的教學(xué)采用這種方式是有效的,然而本課中“驗(yàn)證”的過程真能取代“探究發(fā)現(xiàn)”的過程嗎??jī)H僅舉幾個(gè)例子試一試,驗(yàn)證方法單一,思維含量低,學(xué)生充其量只能算是執(zhí)行操作命令的“計(jì)算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進(jìn)行這樣的教學(xué),還容易使學(xué)生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學(xué)習(xí)風(fēng)氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學(xué)生已有的知識(shí)經(jīng)驗(yàn),而且在已經(jīng)揭開“謎底”的情況下,再試圖引導(dǎo)學(xué)生進(jìn)行猜想、實(shí)驗(yàn)、發(fā)現(xiàn),體驗(yàn)遭受挫折后取得成功的那種激動(dòng),也只能是一種奢望。那么又該如何激發(fā)學(xué)生探究的熱情,促使學(xué)生進(jìn)行深入探究呢?
【再次實(shí)踐】
(與第一次教學(xué)情況基本相同,有些學(xué)生能夠正確地判斷一個(gè)數(shù)是不是3的倍數(shù),這時(shí)一些學(xué)生卻依然感到困惑,我設(shè)法將這一困惑激發(fā)出來。)
師:同學(xué)們真能干,這么快就知道了3的倍數(shù)的特征,上節(jié)課我們學(xué)習(xí)了2、5的倍數(shù)的特征只和什么有關(guān)?
生:只和一個(gè)數(shù)的個(gè)位有關(guān)。
師:與今天學(xué)習(xí)的知識(shí)比較一下,你有什么疑問嗎?
生1:為什么判斷一個(gè)數(shù)是不是3的倍數(shù)只看個(gè)位不行?
生2:為什么判斷一個(gè)數(shù)是不是2、5的倍數(shù)只看個(gè)位,而判斷是不是3的倍數(shù)要看各位上數(shù)的和?
……
師:同學(xué)們思考問題確實(shí)比較深入,提出了非常有研究?jī)r(jià)值的問題。那我們先來研究一下2、5的倍數(shù)為什么只和它的個(gè)位有關(guān)。
(學(xué)生嘗試探索,教師適時(shí)引導(dǎo)學(xué)生從簡(jiǎn)單數(shù)開始研究,借助小棒或其他方法進(jìn)行解釋。)
生1:我在擺小棒時(shí)發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個(gè)位擺幾就可以了。
生2:其實(shí)不用擺小棒也可以,我們組發(fā)現(xiàn)每個(gè)數(shù)都可以拆成一個(gè)整十?dāng)?shù)加個(gè)位數(shù),整十?dāng)?shù)當(dāng)然都是2、5的倍數(shù),所以這個(gè)數(shù)的個(gè)位是幾就決定了它是否是2、5的倍數(shù)。
師:同學(xué)們想到用“拆數(shù)”的方法來研究,是個(gè)好辦法。
生3:是否是3的倍數(shù)只看個(gè)位就不行了。比如13,雖然個(gè)位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個(gè)位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個(gè)位上的數(shù)合起來是不是3的倍數(shù)就行了。
生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。
生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時(shí)就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。
生(部分):對(duì)。
生4:其實(shí)40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?
生6:也就是說整十?dāng)?shù)都可以拆成十位上的數(shù)字和一個(gè)3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個(gè)位上的和是不是3的倍數(shù)就可以了。
師:同學(xué)們確實(shí)很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?
學(xué)生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過千位、百位上余下的數(shù)要依次加到下一位上進(jìn)行研究。3的倍數(shù)的特征在學(xué)生頭腦中越來越清晰。
師:同學(xué)們通過自己的探索,你們不僅發(fā)現(xiàn)了3的倍數(shù)的特征,還弄清了為什么有這樣的特征?,F(xiàn)在你還有哪些新的探索想法呢?
生1:我想知道4的倍數(shù)有什么特征?
生2:我知道,應(yīng)該只要看末兩位就行了,因?yàn)檎佟⒄?shù)一定都是4的倍數(shù)。
師:你能把學(xué)到的方法及時(shí)應(yīng)用,非常棒!
生3:7或9的倍數(shù)有什么特征呢?
……
師:同學(xué)們又提出了一些新的、非常有價(jià)值的問題,課后可以繼續(xù)進(jìn)行探索。
[反思]
1. 找準(zhǔn)知識(shí)間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)的特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過來。而實(shí)際上,3的倍數(shù)的特征,卻要把各個(gè)位上的數(shù)加起來研究。于是新舊知識(shí)之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個(gè)位?”“為什么3的倍數(shù)要把各個(gè)位上的數(shù)加起來研究?”……學(xué)生急于想了解這些為什么,便會(huì)自覺地進(jìn)入到自主探究的狀態(tài)之中。知識(shí)不是孤立的,新舊知識(shí)有時(shí)會(huì)存在矛盾沖突,教師如能找準(zhǔn)知識(shí)間的沖突并巧妙激發(fā)出來,就能激起學(xué)生探究的愿望。這樣不僅有利于學(xué)生對(duì)新知的掌握,有效地將新知納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識(shí)和能力。
2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對(duì)比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對(duì)于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時(shí)空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識(shí)的對(duì)比,將困惑激發(fā)出來,通過學(xué)生間相互啟發(fā)、相互質(zhì)疑,對(duì)問題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價(jià)值的發(fā)現(xiàn),探究能力也得到切實(shí)提高。學(xué)生在學(xué)習(xí)中難免會(huì)產(chǎn)生困惑,這種困惑有時(shí)是學(xué)生希望理解更全面、更深刻的表現(xiàn)。面對(duì)這些有價(jià)值的思考,我們要有敏銳的洞察力,采取恰當(dāng)?shù)姆椒▽⑵浼せ?,促使探究活?dòng)走向深入,讓學(xué)生獲得更大的發(fā)展。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對(duì)這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。
3. 溝通知識(shí)間的聯(lián)系,讓學(xué)生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過“拆數(shù)”進(jìn)行觀察),特征的本質(zhì)也是相同的。這種研究方法和特征本質(zhì)的及時(shí)溝通,激發(fā)了學(xué)生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學(xué)生不斷探究,將學(xué)習(xí)由課內(nèi)延伸到課外,并在探究過程中建構(gòu)起對(duì)數(shù)的倍數(shù)特征的整體認(rèn)識(shí),感悟數(shù)學(xué)其實(shí)就是以一馭萬,以簡(jiǎn)馭繁。課堂不是句號(hào),學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)絕不能僅僅局限于學(xué)生對(duì)于一堂課知識(shí)的掌握,而應(yīng)著眼于學(xué)生對(duì)于解決問題方法的感悟,獲得可持續(xù)發(fā)展的動(dòng)力。
3的倍數(shù)特征教學(xué)反思14
在執(zhí)教《2、5、3的倍數(shù)的特征》后,我針對(duì)本節(jié)課的教學(xué)情況進(jìn)行反思。
一、跨年級(jí)學(xué)習(xí)新數(shù)學(xué)知識(shí),知識(shí)銜接不上,不符合學(xué)生的認(rèn)知規(guī)律。
雖然2、5、3的倍數(shù)的特征看起來很簡(jiǎn)單,探究的過程可能沒有什么困難之處,但要內(nèi)容讓學(xué)生學(xué)懂,首先存在知識(shí)銜接問題,整除、倍數(shù)、因數(shù)這些概念學(xué)生都從未接觸過,因此,我在課開始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來,這些概念比較抽象,學(xué)生一時(shí)難以掌握。
二、為了體現(xiàn)“容量大”,教學(xué)延堂。
備課時(shí)也參考了不少資料,大多數(shù)教學(xué)設(shè)計(jì)都是將這一內(nèi)容分成兩節(jié)課來學(xué)習(xí),一節(jié)學(xué)《2、5的倍數(shù)的特征》,一節(jié)學(xué)《3的倍數(shù)的特征》,我確定用一節(jié)課教學(xué)《2、5、3的倍數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計(jì)內(nèi)容多,相應(yīng)的學(xué)生自學(xué)、展示、鞏固練習(xí)的時(shí)間和機(jī)會(huì)就壓縮的比較少了。而3的倍數(shù)的特征與2、5的又完全不同,學(xué)生接受起來可能會(huì)有一定的難度,最好單獨(dú)作為一課時(shí)學(xué)習(xí)。最后的環(huán)節(jié)達(dá)標(biāo)測(cè)試拖堂了。
三、學(xué)生合作學(xué)習(xí)的效果較好,但展示未體現(xiàn)立體式。
高效課堂要充分發(fā)揮學(xué)生的主體作用,要體現(xiàn)學(xué)生會(huì)學(xué),學(xué)會(huì),在本節(jié)課上,學(xué)生合作學(xué)習(xí)的熱情高,通過展示,發(fā)現(xiàn)學(xué)生學(xué)懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學(xué)生講的、板書的相互干擾,于是,我臨時(shí)安排按先后順序進(jìn)行,沒體現(xiàn)出高效課堂的“立體式”這一特點(diǎn)。
3的倍數(shù)特征教學(xué)反思15
3的倍數(shù)是在學(xué)習(xí)了2、5的倍數(shù)特征的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,我讓孩子們提前進(jìn)行了預(yù)習(xí),通過授課發(fā)現(xiàn)孩子們的預(yù)習(xí)沒有達(dá)到預(yù)想的效果。學(xué)生在匯報(bào)時(shí)能夠圈出3的倍數(shù),而且非常準(zhǔn)確,在匯報(bào)3的倍數(shù)的方法時(shí),他們大多數(shù)是借助結(jié)論得出來的,沒有體現(xiàn)出他們研究的過程。因此,我在課上進(jìn)行了及時(shí)的指導(dǎo),把孩子們需要匯報(bào)的過程進(jìn)行了詳細(xì)的說明。孩子們很快理解了我的意思,立刻進(jìn)行了新的分工。第一位同學(xué)匯報(bào)了他們找到的3的倍數(shù),并介紹的找3的倍數(shù)的方法即,用這個(gè)數(shù)除以3,看商是不是整數(shù)而且沒有余數(shù)。接下來匯報(bào)百數(shù)表中前十個(gè)3的倍數(shù),讓大家觀察個(gè)位上的數(shù)字,通過觀察發(fā)現(xiàn)3的倍數(shù)個(gè)位上是0-9的任意一個(gè)數(shù),不能像2、5的倍數(shù)特征只看個(gè)位的特殊數(shù)就行了。因此只看個(gè)位不能確定是不是3的倍數(shù)。
由于孩子們有了提前的預(yù)習(xí),孩子們心目中已經(jīng)有了結(jié)論。因此在這個(gè)時(shí)候孩子們思考的深度不夠,沒有理解教材的意圖。教師把教材的意圖有意識(shí)地進(jìn)行了滲透,讓學(xué)生駐足片刻,把握課堂的結(jié)構(gòu)。
第三個(gè)環(huán)節(jié),孩子們發(fā)現(xiàn)斜著看每個(gè)數(shù)的各位逐漸加一,十位逐漸減一,因此個(gè)位上的數(shù)字和十位上的數(shù)字之和不變,而且都是3的倍數(shù)。讓孩子試著總結(jié)結(jié)論:兩位數(shù)個(gè)位上和十位上的數(shù)字之和是3的倍數(shù),那么這個(gè)數(shù)也是3的倍數(shù)。
第四個(gè)環(huán)節(jié),其實(shí)并不是把3的倍數(shù)特征總結(jié)出來了就完成任務(wù)了。這個(gè)結(jié)論只是通過觀察百數(shù)表得出的關(guān)于兩位數(shù)的結(jié)論,兩位數(shù)滿足這個(gè)特征,是不是所有的數(shù)都適用呢?于是讓孩子試著寫一個(gè)三位數(shù)、四位數(shù)而且是3的倍數(shù),然后用這個(gè)結(jié)論進(jìn)行驗(yàn)證,看是否符合。孩子們先試著寫幾個(gè)3的倍數(shù),老師羅列到黑板上,然后分別用用各個(gè)數(shù)位之和相加的方法和除以3是否有余數(shù)的方法進(jìn)行驗(yàn)證。驗(yàn)證的結(jié)果是肯定的,因此得出的結(jié)論適合所有的數(shù)。
到這里孩子們對(duì)于3的倍數(shù)特征已經(jīng)理解的很透徹了,做起練習(xí)來也顯得得心應(yīng)手。孩子體驗(yàn)了結(jié)論得出的過程,每一個(gè)環(huán)節(jié)的設(shè)計(jì)都有他的意圖,在每個(gè)環(huán)節(jié)孩子都有思考,有思維的碰撞,這才是教材的意圖,才是真正的數(shù)學(xué)課。
第五篇:《3的倍數(shù)的特征》教學(xué)反思
《3的倍數(shù)的特征》教學(xué)反思范文1
《3的倍數(shù)的特征》本節(jié)課的教學(xué)活動(dòng),注重學(xué)生實(shí)踐操作,展開探究活動(dòng),組織學(xué)生進(jìn)行交流和探討,注重培養(yǎng)學(xué)生發(fā)現(xiàn)問題,解決問題的能力,讓學(xué)生經(jīng)歷科學(xué)探索的過程,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的正確性。我是從教學(xué)環(huán)節(jié)維度進(jìn)行觀課的,本節(jié)課有五個(gè)環(huán)節(jié)包括:一、復(fù)習(xí)舊知,直接導(dǎo)入。二、自主探究,合作驗(yàn)證。三、總結(jié)提升,共同驗(yàn)證。四、運(yùn)用結(jié)論,鞏固訓(xùn)練。五、全課小結(jié),課后延伸。每個(gè)環(huán)節(jié)環(huán)環(huán)相扣,設(shè)計(jì)合理。下面就說一下自己的想法。
一、以舊帶新,引入新課。
趙老師先復(fù)習(xí)了2.5的倍數(shù)的特征,為這節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。趙老師以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問題情境,猜測(cè)、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。
二、親身經(jīng)歷,探索規(guī)律。
本節(jié)課教師努力嘗試構(gòu)建數(shù)學(xué)生態(tài)課堂,讓學(xué)生繼續(xù)利用小棒擺一擺,進(jìn)而發(fā)現(xiàn)不止是3根、6根小棒能擺出3的倍數(shù),9根也能“只要小棒的根數(shù)是3的倍數(shù),擺出來的數(shù)就是3的倍數(shù)?!苯處煂ⅰ皠?dòng)手?jǐn)[小棒”升級(jí)為“腦中撥計(jì)數(shù)器”,將“直觀性思維”升華為“理性思維”,通過小組交流、集體驗(yàn)證,學(xué)生的`探索發(fā)現(xiàn)離“3的倍數(shù)的特征”只有咫尺之遙。整節(jié)課讓學(xué)生經(jīng)歷“動(dòng)手操作——觀察發(fā)現(xiàn)——舉例驗(yàn)證——?dú)w納總結(jié)”的探究過程,實(shí)現(xiàn)課程、師生、知識(shí)等多層次的互動(dòng)。
三、精心選題,鞏固新知。
習(xí)題的設(shè)計(jì)力爭(zhēng)在突出重點(diǎn),突破難點(diǎn),遵循學(xué)生認(rèn)知規(guī)律的基礎(chǔ)上,體現(xiàn)基礎(chǔ)性、層次性、靈活性、生活性、趣味性。本節(jié)課教師設(shè)計(jì)了3道練習(xí)題。在鞏固練習(xí)部分,第(1)、(2)題是基本題;
第(3)題,教師努力拉近數(shù)學(xué)與生活的聯(lián)系。把數(shù)學(xué)和生活有機(jī)聯(lián)系起來,使學(xué)生體會(huì)到數(shù)學(xué)在現(xiàn)實(shí)生活中作用和價(jià)值,初步學(xué)會(huì)用數(shù)學(xué)的眼光去觀察事物、思考問題,樹立學(xué)好數(shù)學(xué)、用好數(shù)學(xué)的志趣。
四、回顧梳理,舉一反。
在學(xué)生學(xué)習(xí)的過程中注意“學(xué)習(xí)方法”的指導(dǎo),讓學(xué)生感受到掌握方法才能舉一反三,真正做到觸類旁通。最后一個(gè)環(huán)節(jié)設(shè)計(jì)了讓學(xué)生靜靜的回顧這節(jié)課的學(xué)習(xí)歷程“動(dòng)手操作——觀察發(fā)現(xiàn)——舉例驗(yàn)證——?dú)w納總結(jié)”,使其在數(shù)學(xué)思想上做進(jìn)一步的提升。
《3的倍數(shù)的特征》教學(xué)反思范文2
《3的倍數(shù)的特征》的教學(xué)是在第一次教學(xué)之后,學(xué)校組織縣級(jí)教學(xué)能手選撥賽時(shí)候第二次上,可以說是“一課兩上”。我在第二次備課時(shí)完全從另一個(gè)角度來處理教材,收獲頗豐。下面我就本節(jié)課前后兩次上課反思如下:
第一次上課我是讓學(xué)生圈出100以內(nèi)3的倍數(shù),去觀察3的倍數(shù)的特征,由此總結(jié)出3的倍數(shù)的特征,然后實(shí)際應(yīng)用,鞏固練習(xí)。效果一般。而第二次上課時(shí)我是這樣做的:使學(xué)生在原有認(rèn)知的基礎(chǔ)上產(chǎn)生認(rèn)知沖突,在學(xué)習(xí)2.5倍數(shù)特征的基礎(chǔ)上,讓學(xué)生猜測(cè)是不是3的倍數(shù)的特征也要去看數(shù)的個(gè)位呢,進(jìn)而產(chǎn)生新的探索欲望,讓后在百數(shù)表中圈出3的'倍數(shù)的特征,接著借助學(xué)生熟悉的計(jì)數(shù)器進(jìn)行兩個(gè)實(shí)驗(yàn),實(shí)驗(yàn)一:驗(yàn)證3的倍數(shù)的特診,實(shí)驗(yàn)二:驗(yàn)證不是3的倍數(shù)的的數(shù)的特征。最后實(shí)踐應(yīng)用,課堂檢測(cè)。
整個(gè)教學(xué)過程突出了對(duì)學(xué)生“提出問題—探索問題—解決問題”的能力培養(yǎng),學(xué)生能在猜想、操作、驗(yàn)證、交流、反思、歸納的數(shù)學(xué)活動(dòng)中,獲得較為豐富的數(shù)學(xué)經(jīng)驗(yàn),也有助于創(chuàng)造性的培養(yǎng)。這就要求我們教師首先要具有創(chuàng)造精神,注重設(shè)計(jì)寬松和諧民主的教學(xué)氛圍,尊重學(xué)生,抓住一切可以利用的機(jī)會(huì),激發(fā)學(xué)生的創(chuàng)新欲望,學(xué)生的創(chuàng)造意識(shí)才能得以培養(yǎng),個(gè)性才能充分發(fā)展。
反思這節(jié)課的不足我覺得在每個(gè)環(huán)節(jié)的過渡上要做的更加自然、一氣呵成會(huì)更好。由于本節(jié)課按照賽教要求只有30分鐘,時(shí)間的把握做的還不夠恰到好處。總之,教無定法,學(xué)海無涯,需要我不斷的學(xué)習(xí)和實(shí)踐,不斷提高自身素質(zhì)和專業(yè)水平,大力提高教學(xué)質(zhì)量。
《3的倍數(shù)的特征》教學(xué)反思范文3
“能被3整除數(shù)的數(shù)”一課,能體現(xiàn)新的教育理念、教育思想。仔細(xì)分析,有以下幾個(gè)特點(diǎn):
1、確立了基本技能目標(biāo)和發(fā)展性目標(biāo)并重的教學(xué)目標(biāo)。
本節(jié)課不僅重視學(xué)生掌握能被3整除數(shù)的特征,并能運(yùn)用特征進(jìn)行正確判斷,同時(shí)十分重視學(xué)生學(xué)習(xí)過程的體驗(yàn)和方法的滲透,讓學(xué)生通過“猜測(cè)——驗(yàn)證——提出新的假設(shè)——驗(yàn)證”的探索過程來發(fā)現(xiàn)知識(shí),獲得結(jié)論,并感悟方法。
2、理性處理教材,使教學(xué)內(nèi)容生活化。
教科書只是提供了學(xué)生學(xué)習(xí)活動(dòng)的基本線索。教學(xué)中,教師要充分發(fā)揮主觀能動(dòng)性,創(chuàng)造性的使用教科書,本節(jié)課重新設(shè)計(jì)例題,通過用“0——9”十個(gè)數(shù)字組成能被整除的三位數(shù)讓學(xué)生探索特征,這樣處理使教學(xué)內(nèi)容有較強(qiáng)的靈活性,促進(jìn)了學(xué)生思維的發(fā)展。教學(xué)內(nèi)容生活化不僅能激發(fā)學(xué)生興趣,產(chǎn)生親切感,而且使學(xué)生認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)藏著豐富的數(shù)學(xué)問題。開課時(shí)收集的數(shù)據(jù)一方面激發(fā)了學(xué)生學(xué)習(xí)的興趣,同時(shí)也縮短了教師和學(xué)生的距離,課后“你再長(zhǎng)幾歲,這個(gè)歲數(shù)就能被3整除”這一開放題富有情趣,給學(xué)生留下了深刻的印象。
3、著力改變學(xué)生的學(xué)習(xí)方式。
學(xué)習(xí)方式的轉(zhuǎn)變是本節(jié)課的主要特色。本節(jié)課始終以自主探索、合作交流為主要的`學(xué)習(xí)方式,讓學(xué)生通過自主選教學(xué)內(nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論等合作探究活動(dòng),獲得教學(xué)知識(shí)、感悟方法。如在課的第二階段,設(shè)計(jì)三個(gè)層次的教學(xué)活動(dòng),讓學(xué)生充分探索、討論、交流,使學(xué)生真正成為學(xué)習(xí)的主人。第一層通過學(xué)生猜測(cè)、舉例、選數(shù)字組數(shù),使學(xué)生產(chǎn)生兩次認(rèn)知沖突;第二層通過交換三位數(shù)數(shù)字的位置,仍然沒能發(fā)現(xiàn)特征,產(chǎn)生第三次認(rèn)知沖突;第三層次通過計(jì)算各位上的數(shù)的“和、差、積、商”使結(jié)論逐漸顯露。這一過程不僅培養(yǎng)了學(xué)生探究精神,磨練了意志,同時(shí)也使學(xué)生品嘗了成功的喜悅。
4、合理定位教師角色,營(yíng)造民主、和諧的學(xué)習(xí)氛圍。
課堂教學(xué)中只有擺正了師生關(guān)系,才可能使學(xué)生得到發(fā)展。本節(jié)課學(xué)生始終是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者。可以從以下兩方面看出:一是從師生活動(dòng)的時(shí)間分配上,二是從分層探究、有針對(duì)性的適當(dāng)引導(dǎo)上。這節(jié)課從開始到結(jié)束,氣氛始終處在民主、和諧之中,生活化的學(xué)習(xí)材料、平等的師生關(guān)系和開放的探究方式,《3的倍數(shù)的特征》教學(xué)反思篇5
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2和5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?和5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出3的倍數(shù)特征。
但上課的過程中,學(xué)生并沒有按照我想的思路去進(jìn)行,一個(gè)學(xué)生在我沒有預(yù)想的前提下說出了3的倍數(shù)的特征,所以我準(zhǔn)備讓四人小組去合作交流發(fā)現(xiàn)3的倍數(shù)的特征也沒有進(jìn)行。只是讓學(xué)生兩人去再說一說剛才那個(gè)學(xué)生的發(fā)現(xiàn),加以理解,鞏固。
這節(jié)課結(jié)束后,我感覺以下方面做得不好。
1、備課不充分。自己在備課時(shí)沒有好好的去備學(xué)生,沒有做好多方面的預(yù)設(shè);
2、在觀察百數(shù)表到后面總結(jié)3的倍數(shù)特征時(shí),都應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學(xué)生能說出的盡量讓學(xué)生說,多放手,相信學(xué)生。
《3的倍數(shù)的特征》教學(xué)反思范文4
3的倍數(shù)是在學(xué)習(xí)了2、5的倍數(shù)特征的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,我讓孩子們提前進(jìn)行了預(yù)習(xí),通過授課發(fā)現(xiàn)孩子們的預(yù)習(xí)沒有達(dá)到預(yù)想的效果。學(xué)生在匯報(bào)時(shí)能夠圈出3的倍數(shù),而且非常準(zhǔn)確,在匯報(bào)3的倍數(shù)的方法時(shí),他們大多數(shù)是借助結(jié)論得出來的,沒有體現(xiàn)出他們研究的過程。因此,我在課上進(jìn)行了及時(shí)的指導(dǎo),把孩子們需要匯報(bào)的過程進(jìn)行了詳細(xì)的說明。孩子們很快理解了我的意思,立刻進(jìn)行了新的分工。第一位同學(xué)匯報(bào)了他們找到的3的倍數(shù),并介紹的找3的倍數(shù)的方法即,用這個(gè)數(shù)除以3,看商是不是整數(shù)而且沒有余數(shù)。接下來匯報(bào)百數(shù)表中前十個(gè)3的倍數(shù),讓大家觀察個(gè)位上的數(shù)字,通過觀察發(fā)現(xiàn)3的倍數(shù)個(gè)位上是0-9的任意一個(gè)數(shù),不能像2、5的倍數(shù)特征只看個(gè)位的特殊數(shù)就行了。因此只看個(gè)位不能確定是不是3的倍數(shù)。
由于孩子們有了提前的預(yù)習(xí),孩子們心目中已經(jīng)有了結(jié)論。因此在這個(gè)時(shí)候孩子們思考的深度不夠,沒有理解教材的意圖。教師把教材的意圖有意識(shí)地進(jìn)行了滲透,讓學(xué)生駐足片刻,把握課堂的結(jié)構(gòu)。
第三個(gè)環(huán)節(jié),孩子們發(fā)現(xiàn)斜著看每個(gè)數(shù)的各位逐漸加一,十位逐漸減一,因此個(gè)位上的數(shù)字和十位上的數(shù)字之和不變,而且都是3的倍數(shù)。讓孩子試著總結(jié)結(jié)論:兩位數(shù)個(gè)位上和十位上的數(shù)字之和是3的倍數(shù),那么這個(gè)數(shù)也是3的倍數(shù)。
第四個(gè)環(huán)節(jié),其實(shí)并不是把3的倍數(shù)特征總結(jié)出來了就完成任務(wù)了。這個(gè)結(jié)論只是通過觀察百數(shù)表得出的關(guān)于兩位數(shù)的結(jié)論,兩位數(shù)滿足這個(gè)特征,是不是所有的數(shù)都適用呢?于是讓孩子試著寫一個(gè)三位數(shù)、四位數(shù)而且是3的倍數(shù),然后用這個(gè)結(jié)論進(jìn)行驗(yàn)證,看是否符合。孩子們先試著寫幾個(gè)3的倍數(shù),老師羅列到黑板上,然后分別用用各個(gè)數(shù)位之和相加的方法和除以3是否有余數(shù)的.方法進(jìn)行驗(yàn)證。驗(yàn)證的結(jié)果是肯定的,因此得出的結(jié)論適合所有的數(shù)。
到這里孩子們對(duì)于3的倍數(shù)特征已經(jīng)理解的很透徹了,做起練習(xí)來也顯得得心應(yīng)手。孩子體驗(yàn)了結(jié)論得出的過程,每一個(gè)環(huán)節(jié)的設(shè)計(jì)都有他的意圖,在每個(gè)環(huán)節(jié)孩子都有思考,有思維的碰撞,這才是教材的意圖,才是真正的數(shù)學(xué)課。
《3的倍數(shù)的特征》教學(xué)反思范文5
《3的倍數(shù)的特征》是五年級(jí)下冊(cè)數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個(gè)知識(shí)點(diǎn),是在學(xué)生已經(jīng)認(rèn)識(shí)倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2.5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。
因而在《3的倍數(shù)的特征》的開始,我先復(fù)習(xí)了2.5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會(huì)將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中,得出:個(gè)位上是3.6.9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個(gè)位上是0—9的任何一個(gè)數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個(gè)數(shù)的個(gè)位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突產(chǎn)生疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把3的倍數(shù)的`各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來,經(jīng)過進(jìn)一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的猜想:一個(gè)數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。
為了驗(yàn)證這一猜想,我補(bǔ)充了一些其他的數(shù),如49×3=147,166×3=498等,使學(xué)生進(jìn)一步確認(rèn)這一結(jié)論的正確性。還可以任意寫一個(gè)數(shù),利用這一結(jié)論來驗(yàn)證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過這樣的方式也使學(xué)生認(rèn)識(shí)到:找出某個(gè)規(guī)律后,還要找出一些正面的、反面的例子進(jìn)行檢驗(yàn),看是不是普遍適用。
為了使學(xué)生更好地掌握3的倍數(shù)的特征,進(jìn)行課堂練習(xí)時(shí),我還把一些數(shù)各個(gè)數(shù)位上的數(shù)經(jīng)過不同的排列,再讓學(xué)生判斷,以加深對(duì)“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時(shí),學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的倍數(shù)。
利用2.5.3的倍數(shù)的特征來判斷一個(gè)數(shù)是不是2.5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達(dá)到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進(jìn)行較多的練習(xí)進(jìn)行鞏固。
這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過自主選擇研究?jī)?nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論,相互質(zhì)疑等合作探究活動(dòng),獲得了數(shù)學(xué)知識(shí)。學(xué)生的學(xué)習(xí)能動(dòng)性和潛在能力得到了激發(fā)。在自主探索的過程中,學(xué)生體驗(yàn)到了學(xué)習(xí)成功的愉悅,同時(shí)也促進(jìn)了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時(shí),應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。
《3的倍數(shù)的特征》教學(xué)反思范文6
本節(jié)課探究3的倍數(shù)的特征之前,我還是先讓學(xué)生寫出50以內(nèi)3的倍數(shù),然后讓學(xué)生觀察這些數(shù)有何特征,大部分同學(xué)找不著規(guī)律,個(gè)別同學(xué)可能是受上節(jié)課的影響,說出了:個(gè)位上是0.1.2.3.4.5.6.7.8.9的數(shù)就是3的倍數(shù),但馬上就被其他同學(xué)推翻了。
然后我就出示計(jì)數(shù)器,依次撥出3的'倍數(shù),讓學(xué)生觀察一共用了幾顆珠子,讓學(xué)生體會(huì)到有幾顆珠子就是各個(gè)數(shù)位上數(shù)的和,發(fā)現(xiàn)珠子的顆數(shù)正好是3的倍數(shù),也就是各個(gè)數(shù)位上數(shù)的和是3的倍數(shù),那么這個(gè)數(shù)就是3的倍數(shù)。說實(shí)話,學(xué)生對(duì)于這一規(guī)律,不是很容易接受,在后來的練習(xí)中,才慢慢體會(huì)到。
“想想做做”的五道題設(shè)計(jì)得比較好,體現(xiàn)了分層,特別是最后一道,學(xué)生通過交流討論后,得出了先選數(shù)后組數(shù)的思路,練習(xí)的效果比較好。
《3的倍數(shù)的特征》教學(xué)反思范文7
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?.5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出了3的倍數(shù)特征。
一、猜想:讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個(gè)數(shù)個(gè)位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測(cè)到:“個(gè)位上是0,3,6,9的數(shù)一定是3的倍數(shù)”。
二、驗(yàn)證::先讓學(xué)生在百數(shù)圖中找找看,顯然像13.16.19等等的數(shù)不是3的倍數(shù),學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的.特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個(gè)位上,那3的倍數(shù)究竟與什么有關(guān)系呢。
三、探究:在此基礎(chǔ)上,讓學(xué)生在百數(shù)圖中找出3的倍數(shù)的數(shù),如果把這些3的倍數(shù)的個(gè)位數(shù)字和十位數(shù)字進(jìn)行調(diào)換,它還是3的倍數(shù)嗎?(讓學(xué)生動(dòng)手驗(yàn)證)
12→2115→5118→8124→4227→72
我們發(fā)現(xiàn)調(diào)換位置后還是3的倍數(shù),那3的倍數(shù)有什么奧妙呢?
如果把3的倍數(shù)的各位上的數(shù)相加,它們的和是3的倍數(shù)。
四、驗(yàn)證:下面各數(shù),哪些數(shù)是3的倍數(shù)呢?
小結(jié):從上面可知,一個(gè)數(shù)各位上的數(shù)字之和如果是3的倍數(shù),那么這個(gè)數(shù)就是3的倍數(shù)。這樣結(jié)論的得出水到渠成。
《3的倍數(shù)的特征》教學(xué)反思范文8
3的倍數(shù)的特征的教學(xué)與2.5倍數(shù)的特征難度上有不同,因?yàn)?.5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出(根據(jù)個(gè)位數(shù)的特點(diǎn)就可以判斷出來),但是3的倍數(shù)的特征卻不能從表面去判斷,因而我特設(shè)以下環(huán)節(jié)突破重難點(diǎn)預(yù)習(xí)題。
1、給出一些數(shù)讓學(xué)生先判斷哪些數(shù)是3的倍數(shù)。并讓學(xué)生說一說你是怎么判斷的?
2、從以上的3的倍數(shù)進(jìn)行思考:
(1)、3的倍數(shù)與它個(gè)位上的數(shù)有關(guān)系嗎?
(2)、3的倍數(shù)的各位上的數(shù)的和都是3的倍數(shù)嗎?
新課時(shí)讓學(xué)生從上面的練習(xí)中去發(fā)現(xiàn)了什么,從而歸納3的.倍數(shù)的特征:一個(gè)數(shù)的各個(gè)數(shù)位上的數(shù)字和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)
然后再讓每個(gè)同學(xué)任意寫一個(gè)3的倍數(shù),再看看這個(gè)數(shù)的各個(gè)數(shù)位上的數(shù)的和是不是3的倍數(shù)。要求學(xué)生說出方法和思路。
經(jīng)過以上這些活動(dòng)后學(xué)生都能對(duì)一個(gè)數(shù)是不是3的倍數(shù)進(jìn)行簡(jiǎn)單的判斷。特別是學(xué)生對(duì)3的倍數(shù)特征的判斷大多數(shù)的學(xué)生能先求出各個(gè)數(shù)位的數(shù)字之和是不是3的倍數(shù),然后再進(jìn)行判斷,效果很好。