第一篇:怎樣教學(xué)初中階段二次函數(shù)應(yīng)用問(wèn)題
怎樣教學(xué)初中階段二次函數(shù)應(yīng)用問(wèn)題
二次函數(shù)問(wèn)題在整個(gè)初中階段既是重點(diǎn)又是難點(diǎn),其應(yīng)用題綜合性比較強(qiáng),知識(shí)涉及面廣,對(duì)學(xué)生能力的要求更高,因此成為教學(xué)中的重點(diǎn),也成為學(xué)習(xí)的一大難點(diǎn)。在升學(xué)考試中占有相當(dāng)大的分值,往往又以中檔題或高檔題的形式出現(xiàn),成為中考的壓軸題。作為教師在組織教學(xué)的過(guò)程中,應(yīng)注意選擇合適的教學(xué)方法分散其難點(diǎn)。若采用分類(lèi)教學(xué),學(xué)生易于掌握,針對(duì)不同的題型進(jìn)行訓(xùn)練,短期內(nèi)確實(shí)有利于提高學(xué)生的學(xué)習(xí)成績(jī)。但從長(zhǎng)遠(yuǎn)看,這樣做容易使學(xué)生形成思維定勢(shì),不利于思維能力和創(chuàng)新能力的培養(yǎng)。教師可以針對(duì)不同的學(xué)生分梯度設(shè)置不同的題型,放手讓學(xué)生自主探索,自己去感悟,疑難問(wèn)題通過(guò)小組合作學(xué)習(xí)來(lái)解決,同時(shí)教師做適當(dāng)?shù)狞c(diǎn)撥,這樣可以激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,讓不同的學(xué)生都得到發(fā)展。
我認(rèn)為初中階段應(yīng)從以下幾個(gè)方面來(lái)處理好二次函數(shù)的應(yīng)用問(wèn)題:
一、注重與代數(shù)式知識(shí)的類(lèi)比教學(xué),觸及函數(shù)知識(shí)。
現(xiàn)在人教版教材把函數(shù)提前到初二進(jìn)行教學(xué),我認(rèn)為這是很好的整合。初二的學(xué)生對(duì)基本概念還是比較難理解,但能夠要求學(xué)生有意識(shí)的去理解函數(shù)這一概念,逐步接觸函數(shù)的知識(shí)和建模思想,認(rèn)識(shí)到數(shù)學(xué)問(wèn)題來(lái)源于生活應(yīng)用于生活,建模后又高于生活。不管是列代數(shù)式還是代 1 數(shù)式的求值,只要變換一個(gè)字母或量的數(shù)值,代數(shù)式的值就隨之變化,這本身就可以培養(yǎng)學(xué)生的函數(shù)意識(shí)。
二、注意在方程教學(xué)中有意識(shí)滲透函數(shù)思想。
方程與函數(shù)之間具有很深的聯(lián)系。在學(xué)習(xí)方程時(shí)要有意識(shí)的打破只關(guān)注等量關(guān)系而忽略分析數(shù)量關(guān)系的弊端,這是對(duì)函數(shù)建模提供的最好的契機(jī)。教師在組織教學(xué)中,特別是應(yīng)用題教學(xué),不能只讓學(xué)生尋找等量關(guān)系,而不注重學(xué)生分析量與量、數(shù)與數(shù)之間的內(nèi)在聯(lián)系能力的培養(yǎng),從而更加大了學(xué)生學(xué)習(xí)函數(shù)的難度。不管是一元方程還是二元方程應(yīng)用題教學(xué)中,應(yīng)該訓(xùn)練學(xué)生分析問(wèn)題中的量與量關(guān)系的能力,讓學(xué)生樹(shù)立只要有量就應(yīng)該也可以用字母去表示它,不要怕量多字母多,量表示好了再通過(guò)數(shù)量關(guān)系逐步縮少字母即可。這樣就為后續(xù)函數(shù)的學(xué)習(xí)做好了鋪墊。
三、通過(guò)數(shù)形結(jié)合方法體驗(yàn)函數(shù)建模思想。
不管是長(zhǎng)度、角度還是面積的有關(guān)計(jì)算,都應(yīng)該通過(guò)適當(dāng)變換數(shù)據(jù)來(lái)樹(shù)立函數(shù)思想。圖形具有豐富性與直觀性,圖形變化具有條件性,因此說(shuō)圖形教學(xué)相比純粹數(shù)量計(jì)算教學(xué)更能夠體現(xiàn)函數(shù)思想。
函數(shù)思想的建立,應(yīng)用題解題方式的定型絕不是一蹴而就的,它需要慢慢的滲透與慢慢體驗(yàn)的過(guò)程。從這個(gè)意義上說(shuō),二次函數(shù)應(yīng)用題的教學(xué)不需要分類(lèi)。二次函數(shù)的學(xué)習(xí)是把以前學(xué)習(xí)的內(nèi)容進(jìn)行適當(dāng)加深或 2 以嶄新的視角重新審視,因此二次函數(shù)應(yīng)用題的解決,需要師生在教與學(xué)中有意識(shí)的樹(shù)立函數(shù)思想。正是二次函數(shù)的這種綜合性,要求教師在組織教學(xué)中把這一難點(diǎn)消化在平日教學(xué)中,而不是簡(jiǎn)單的把二次函數(shù)應(yīng)用題進(jìn)行分類(lèi)來(lái)加重學(xué)生的負(fù)擔(dān)。
本文作者:四川省鄰水縣九龍鎮(zhèn)石鼓中心學(xué)校教師 聯(lián)系電話:08263546001 聯(lián)系地址:四川省鄰水縣九龍鎮(zhèn)石鼓中心學(xué)校 郵編:638510 郵箱:liaobangquan@126.com
吳小梅
第二篇:二次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)
二次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)
一、教學(xué)分析
(一)教學(xué)內(nèi)容分析
二次函數(shù)y?ax2?bx?c的圖像和性質(zhì)是人教版九年級(jí)數(shù)學(xué)下冊(cè)的內(nèi)容,是在學(xué)生學(xué)習(xí)了二次函數(shù)的基本概念及y?ax2?bx?c的圖像和性質(zhì)之后引入的新內(nèi)容。本節(jié)課的教學(xué)內(nèi)容既是對(duì)y?ax2?bx?c的圖像和性質(zhì)的引申,也是后面研究其它模塊知識(shí)的基礎(chǔ)。所以,學(xué)習(xí)本節(jié)內(nèi)容我們既要對(duì)前段的內(nèi)容進(jìn)行升華,又要對(duì)后段內(nèi)容進(jìn)行啟發(fā)。
(二)教學(xué)對(duì)象分析
九年級(jí)的學(xué)生在前面的學(xué)習(xí)過(guò)程中已經(jīng)接觸過(guò)一次函數(shù)和反比例函數(shù)的內(nèi)容,從學(xué)習(xí)情況看,他們對(duì)函數(shù)的理解和掌握情況并不理想。通過(guò)課下的了解,學(xué)生們對(duì)二次函數(shù)有一定的畏難情緒,對(duì)學(xué)習(xí)非常的不利,掌握?qǐng)D像和性質(zhì)是本節(jié)應(yīng)用的基礎(chǔ)。所以我們?cè)诮虒W(xué)過(guò)程中,要想方設(shè)法的調(diào)動(dòng)學(xué)生的積極性,幫助他們突破難點(diǎn)。
二、教學(xué)目標(biāo)設(shè)計(jì)
(一)知識(shí)與技能: 通過(guò)本節(jié)學(xué)習(xí),鞏固二次函數(shù)y?ax2?bx?c,(a?0)的圖象與性質(zhì),理解頂點(diǎn)與最值的關(guān)系,會(huì)用頂點(diǎn)的性質(zhì)求解最值問(wèn)題。
(二)過(guò)程與方法:
能夠分析實(shí)際問(wèn)題中變量之間的二次函數(shù)關(guān)系,并運(yùn)用二次函數(shù)的知識(shí)求出實(shí)際問(wèn)題的最大(小)值發(fā)展學(xué)生解決問(wèn)題的能力,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問(wèn)題。
(三)情感、態(tài)度與價(jià)值觀:
1、在進(jìn)行探索活動(dòng)過(guò)程中發(fā)展學(xué)生的探究意識(shí),逐步養(yǎng)成合作交流的習(xí)慣。
2、培養(yǎng)學(xué)生學(xué)以致用的習(xí)慣,體會(huì)體會(huì)數(shù)學(xué)在生活中廣泛的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、增強(qiáng)自信心。
三、教學(xué)方法設(shè)計(jì)
由于本節(jié)課是應(yīng)用問(wèn)題,重在通過(guò)學(xué)習(xí)總結(jié)解決問(wèn)題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開(kāi)展教學(xué)活動(dòng),解決問(wèn)題以學(xué)生動(dòng)手動(dòng)腦探究為主,必要時(shí)加以小組合作討論,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性和主動(dòng)性,突出學(xué)生的主體地位,達(dá)到“不但使學(xué)生學(xué)會(huì),而且使學(xué)生會(huì)學(xué)”的目的。為了提高課堂效率,展示學(xué)生的學(xué)習(xí)效果,適當(dāng)?shù)剌o以電腦多媒體技術(shù)。
四、教學(xué)過(guò)程設(shè)計(jì)
(一)導(dǎo)學(xué)提綱
設(shè)計(jì)思路:最值問(wèn)題又是生活中利用二次函數(shù)知識(shí)解決最常見(jiàn)、最有實(shí)際應(yīng)用價(jià)值的問(wèn)題之一,它生活背景豐富,學(xué)生比較感興趣,對(duì)九年級(jí)學(xué)生來(lái)說(shuō),在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對(duì)函數(shù)的思想已有初步認(rèn)識(shí),對(duì)分析問(wèn)題的方法已會(huì)初步模仿,能識(shí)別圖象的增減性和最值,但在變量超過(guò)兩個(gè)的實(shí)際問(wèn)題中,還不能熟練地應(yīng)用知識(shí)解決問(wèn)題,而面積問(wèn)題學(xué)生易于理解和接受,故而在這兒作此調(diào)整,為求解最大利潤(rùn)等問(wèn)題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識(shí)構(gòu)建數(shù)學(xué)模型,解決實(shí)際問(wèn)題的能力,這也符合新課標(biāo)中知識(shí)與技能呈螺旋式上升的規(guī)律。目的在于讓學(xué)生通過(guò)掌握求面積最大這一類(lèi)題,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問(wèn)題,此部分內(nèi)容既是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅(jiān)實(shí)的理論和思想方法基礎(chǔ)。
(二)前情回顧:
1、復(fù)習(xí)二次函數(shù)y?ax2?bx?c,(a?0)的圖象、頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸和最值。
2、拋物線在什么位置取最值?(三)適當(dāng)點(diǎn)撥,自主探究 1.在創(chuàng)設(shè)情境中發(fā)現(xiàn)問(wèn)題
[做一做]:請(qǐng)你畫(huà)一個(gè)周長(zhǎng)為40厘米的矩形,算算它的面積是多少,再和同學(xué)比比,發(fā)現(xiàn)了什么,誰(shuí)的面積最大,2、在解決問(wèn)題中找出方法
[想一想]:某工廠為了存放材料,需要圍一個(gè)周長(zhǎng)40米的矩形場(chǎng)地,問(wèn)矩形的長(zhǎng)和寬各取多少米,才能使存放場(chǎng)地的面積最大,(問(wèn)題設(shè)計(jì)思路:把前面矩形的周長(zhǎng)40厘米改為40米,變成一個(gè)實(shí)際問(wèn)題,目的在于讓學(xué)生體會(huì)其應(yīng)用價(jià)值——我們要學(xué)有用的數(shù)學(xué)知識(shí)。學(xué)生在前面探究問(wèn)題時(shí),已經(jīng)發(fā)現(xiàn)了面積不唯一,并急于找出最大的,而且要有理論依據(jù),這樣首先要建立函數(shù)模型,合作探究中在選取變量時(shí)學(xué)生可能會(huì)有困難,這時(shí)教師要引導(dǎo)學(xué)生關(guān)注哪兩個(gè)變量,就把其中的一個(gè)主要變量設(shè)為x,另一個(gè)設(shè)為y,其它變量用含x的代數(shù)式表示,找等量關(guān)系,建立函數(shù)模型,實(shí)際問(wèn)題還要考慮定義域,畫(huà)圖象觀察最值點(diǎn),這樣一步步突破難點(diǎn),從而讓學(xué)生在不斷探究中悟出利用函數(shù)知識(shí)解決問(wèn)題的一套思路和方法,而不是為了做題而做題,為以后的學(xué)習(xí)奠定思想方法基礎(chǔ)。)
3、在鞏固與應(yīng)用中提高技能
例1:小明的家門(mén)前有一塊空地,空地外有一面長(zhǎng)10米的圍墻,為了美化生活環(huán)境,小明的爸爸準(zhǔn)備靠墻修建一個(gè)矩形花圃,他買(mǎi)回了32米長(zhǎng)的不銹鋼管準(zhǔn)備作為花圃的圍欄(如圖所示),花圃的寬AD究竟應(yīng)為多少米才能使花圃的面積最大,(設(shè)計(jì)思路:例1的設(shè)計(jì)也是尋找了學(xué)生熟悉的家門(mén)口的生活背景,從知識(shí)的角度來(lái)看,求矩形面積也較容易,我在此設(shè)計(jì)了一個(gè)條件墻長(zhǎng)10米來(lái)限制定義域,目的在于告訴學(xué)生一個(gè)道理,數(shù)學(xué)不能脫離生活實(shí)際,估計(jì)大部分學(xué)生在求解時(shí)還會(huì)在頂點(diǎn)處找最值,導(dǎo)致錯(cuò)解,此時(shí)教師再提醒學(xué)生通過(guò)畫(huà)函數(shù)的圖象輔助觀察、理解最值的實(shí)際意義,體會(huì)頂點(diǎn)與端點(diǎn)的不同作用,加深對(duì)知識(shí)的理解,做到數(shù)與形的完美結(jié)合,通過(guò)此題的有意訓(xùn)練,學(xué)生必然會(huì)對(duì)定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴(yán)密性,又為今后能靈活地運(yùn)用知識(shí)解決問(wèn)題奠定了堅(jiān)實(shí)的基礎(chǔ)。)
解:設(shè)垂直于墻的邊AD=x米,則AB=(32-2x)米,設(shè)矩形面積為y米,得到: y?x(32?2x),錯(cuò)解,由頂點(diǎn)公式得: x=8米時(shí),y最大=128米
而實(shí)際上定義域?yàn)閇11,16],由圖象或增減性可知x=11米時(shí),y最大=110米。(設(shè)計(jì)思路:例1的設(shè)計(jì)也是尋找了學(xué)生熟悉的家門(mén)口的生活背景,從知識(shí)的角度來(lái)看,求矩形面積也較容易,我在此設(shè)計(jì)了一個(gè)條件墻長(zhǎng)10米來(lái)限制定義域,目的在于告訴學(xué)生一個(gè)道理,數(shù)學(xué)不能脫離生活實(shí)際,估計(jì)大部分學(xué)生在求解時(shí)還會(huì)在頂點(diǎn)處找最值,導(dǎo)致錯(cuò)解,此時(shí)教師再提醒學(xué)生通過(guò)畫(huà)函數(shù)的圖象輔助觀察、理解最值的實(shí)際意義,體會(huì)頂點(diǎn)與端點(diǎn)的不同作用,加深對(duì)知識(shí)的理解,做到數(shù)與形的完美結(jié)合,通過(guò)此題的有意訓(xùn)練,學(xué)生必然會(huì)對(duì)定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴(yán)密性,又為今后能靈活地運(yùn)用知識(shí)解決問(wèn)題奠定了堅(jiān)實(shí)的基礎(chǔ)。)(四)總結(jié)交流:(1)同學(xué)們經(jīng)歷剛才的探究過(guò)程,想想解決此類(lèi)問(wèn)題的思路是什么,.(2)在探究發(fā)現(xiàn)這些判定方法的過(guò)程中運(yùn)用了什么樣的數(shù)學(xué)方法?(五)我來(lái)試一試: 如圖在Rt?ABC中,點(diǎn)P在斜邊AB上移動(dòng),PM?BC,PN?AC,M,N分別為垂足,已知AC=1,AB=2,求:(1)何時(shí)矩形PMCN的面積最大,把最大面積是多少?(2)當(dāng)AM平分?CAB時(shí),求矩形PMCN的面積.作業(yè):課本隨堂練習(xí)、習(xí)題1,2,3
(六)板書(shū)設(shè)計(jì)
二次函數(shù)的應(yīng)用——面積最大問(wèn)題
五、課后反思
二次函數(shù)的應(yīng)用本身是學(xué)習(xí)二次函數(shù)的圖象與性質(zhì)后,檢驗(yàn)學(xué)生應(yīng)用所學(xué)知識(shí)解決實(shí)際問(wèn)題能力的一個(gè)綜合考查。新課標(biāo)中要求學(xué)生能通過(guò)對(duì)實(shí)際問(wèn)題的情境的分析確定二次函數(shù)的表達(dá)式,體會(huì)其意義,能根據(jù)圖象的性質(zhì)解決簡(jiǎn)單的實(shí)際問(wèn)題。本節(jié)課充分運(yùn)用導(dǎo)學(xué)提綱,教師提前通過(guò)一系列問(wèn)題串的設(shè)置,引導(dǎo)學(xué)生課前預(yù)習(xí),在課堂上通過(guò)對(duì)一系列問(wèn)題串的解決與交流,讓學(xué)生通過(guò)掌握求面積最大這一類(lèi)題,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問(wèn)題。
就整節(jié)課看,學(xué)生的積極性得以充分調(diào)動(dòng),特別是學(xué)困生,在獨(dú)立思考和小組合作中改變以往的配角地位,也能積極參與到課堂學(xué)習(xí)活動(dòng)中,今后繼續(xù)發(fā)揚(yáng)從學(xué)生出發(fā),從學(xué)生的需要出發(fā),把問(wèn)題梯度降低,設(shè)計(jì)讓學(xué)生在能力范圍內(nèi)掌握新知識(shí),有了足夠的熱身運(yùn)動(dòng)之后再去拓展延伸。
第三篇:二次函數(shù)利潤(rùn)應(yīng)用教學(xué)設(shè)計(jì)
二次函數(shù)與實(shí)際問(wèn)題
利潤(rùn)的最大化問(wèn)題——教學(xué)設(shè)計(jì)
教學(xué)目標(biāo):
1、探究實(shí)際問(wèn)題與二次函數(shù)的關(guān)系
2、讓學(xué)生掌握用二次函數(shù)最值的性質(zhì)解決最大值問(wèn)題的方法
3、讓學(xué)生充分感受實(shí)際情景與數(shù)學(xué)知識(shí)合理轉(zhuǎn)化的過(guò)程,體會(huì)如何遇到問(wèn)題—提出問(wèn)題—解決問(wèn)題的思考脈絡(luò)。教學(xué)重點(diǎn):
探究利用二次函數(shù)的最大值性質(zhì)解決實(shí)際問(wèn)題的方法 教學(xué)難點(diǎn):
如何將實(shí)際問(wèn)題轉(zhuǎn)化為二次函數(shù)的數(shù)學(xué)問(wèn)題,并利用函數(shù)性質(zhì)進(jìn)行決策 教學(xué)過(guò)程 : 情境設(shè)置:水果店售某種水果,平均每天售出20千克,每千克售價(jià)60元,進(jìn)價(jià)20元。經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)價(jià)不變的情況下,若每千克這種水果在原售價(jià)的基礎(chǔ)上每漲價(jià)1元,日銷(xiāo)售量減少1千克;若每降價(jià)1元,日銷(xiāo)售量將增加2千克。現(xiàn)商店為增加利潤(rùn),擴(kuò)大銷(xiāo)售,盡量減少庫(kù)存,決定采取適當(dāng)措施。
(1)如果水果店日銷(xiāo)水果要盈利1200元,那么每千克這種水果應(yīng)漲價(jià)或降價(jià)多少元?
解:設(shè)每千克這種水果降價(jià)x元。
(60-20-x)(20+2x)=1200
解得x=10或x =20 水果店擴(kuò)大銷(xiāo)售,盡量減少庫(kù)存 x=10不合題意,舍 x=20 答:每千克這種水果應(yīng)降價(jià)20元。
(2)如果水果店日銷(xiāo)水果要盈利最多,應(yīng)如何調(diào)價(jià)?最多獲利多少元?
設(shè)計(jì):?jiǎn)栴}1是利用一元二次方程解決問(wèn)題,引導(dǎo)學(xué)生先根據(jù)題意判斷出應(yīng)只選擇降價(jià),只是一種可能。通過(guò)分析“降價(jià)”讓學(xué)生自主完成,教師點(diǎn)評(píng),強(qiáng)調(diào)驗(yàn)根。因?qū)W生已經(jīng)學(xué)習(xí)過(guò)一元二次方程,困難不會(huì)太大。
問(wèn)題2,引導(dǎo)學(xué)生由一元二次方程過(guò)度到二次函數(shù),并想到利用二次函數(shù)最值的性質(zhì)去解決問(wèn)題。給學(xué)生空間時(shí)間去思考。老師問(wèn)兩個(gè)問(wèn)題;1 怎樣設(shè)?2什么方法去解決?
解:設(shè)每千克這種水果降價(jià)x元。y=(60-20-x)(20+2x)=-2 x2+60x+800(0< x≤40)a=-2<0 y有最大值
當(dāng)x= 15時(shí),y最大 此時(shí),y=1250
答:每千克應(yīng)降價(jià)15元,使獲利最多,最多可獲利1250元。得到答案后,學(xué)生自做幫學(xué)生梳理過(guò)程,并畫(huà)圖象,更深刻體會(huì)。易忽略自變?nèi)≈捣秶?/p>
小結(jié):解決利潤(rùn)最大化問(wèn)題的基本方法和步驟: 方法:二次函數(shù)思想
步驟
1、設(shè)自變量
2、建立函數(shù)解析式
3、確定自變量取值范圍
4、頂點(diǎn)公式求出最值(在自變量取值范圍內(nèi))
變式:若將題中“擴(kuò)大銷(xiāo)售,盡量減少庫(kù)存”去掉,水果店應(yīng)如何調(diào)價(jià)?
解:分兩種情況討論:
(1)設(shè)每千克這種水果降價(jià)x元。y=(60-20-x)(20+2x)=-2 x2+60x+800(0< x≤40)a=-2<0 y有最大值
當(dāng)x =15時(shí),y最大 此時(shí),y=1250 答:每千克應(yīng)降價(jià)15元,使獲利最多,最多可獲利1250元。
(2)設(shè)每千克這種水果應(yīng)漲價(jià)x元 y=(60-20+x)(20-x)=-x2-20x+800(0< x≤20)a=-1<0 y有最大值 x =-10-10<0
當(dāng)x>-10 時(shí),y隨x增大而減小
當(dāng)x=0時(shí),y取最大值
此時(shí)y=800 由上述討論可知:應(yīng)每千克降價(jià)15元,獲利最多,最多可獲利為1250元。
讓學(xué)生想到是二種可能,漲價(jià)和降價(jià),得分類(lèi)討論思想,函數(shù)思想,數(shù)形結(jié)合思想。強(qiáng)調(diào)在自變量取值范圍內(nèi)取最值,如頂點(diǎn)不在這個(gè)范圍,根據(jù)函數(shù)圖象的增減性來(lái)判斷,而且實(shí)際問(wèn)題的圖象不是整個(gè)的拋物線,而是局部,這取決于自變量取值范圍。學(xué)生自己整哩書(shū)寫(xiě),教師指導(dǎo)。練習(xí)與作業(yè)
某商品的進(jìn)價(jià)為每件30元,現(xiàn)在的售價(jià)為每件40元,每星期可賣(mài)出150件。市場(chǎng)調(diào)查反映:如果每件的售價(jià)每漲1元(售價(jià)每件不能高于45元),那么每星期少賣(mài)10件。設(shè)每件漲價(jià)x元(x為非負(fù)整數(shù)),每星期的銷(xiāo)售為y件。
(1)求y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)如何定價(jià)才能使每星期的利潤(rùn)最大且每星期的銷(xiāo)量較大?每星期的最大利潤(rùn)是多少?
第四篇:二次函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)專(zhuān)題
課題 :第26章 二次函數(shù) 專(zhuān)項(xiàng)訓(xùn)練 拋物線的變換
教學(xué)背景:
二次函數(shù)是九年級(jí)下冊(cè)數(shù)學(xué)中的重要教學(xué)內(nèi)容,它從具體問(wèn)題入手,通過(guò)實(shí)例鞏固學(xué)生所學(xué)的知識(shí)。讓學(xué)生通過(guò)平移旋轉(zhuǎn)的特征,充分感受求解析式的重要性。
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):學(xué)生能夠利用平移旋轉(zhuǎn)的特征;能夠二次函數(shù)的關(guān)系式,從而熟練運(yùn)用數(shù)形結(jié)合的方法解決問(wèn)題。
2、技能目標(biāo):培養(yǎng)學(xué)生根據(jù)平移旋轉(zhuǎn)的實(shí)際情況求二次函數(shù)關(guān)系式進(jìn)行而解決問(wèn)題的能力,引導(dǎo)學(xué)生把平移旋轉(zhuǎn)實(shí)際化,即建立數(shù)學(xué)模型解決實(shí)際問(wèn)題。
3、情感目標(biāo):經(jīng)歷“問(wèn)題情境——自主探究——交流與討論——猜想結(jié)論——得出結(jié)論”的數(shù)學(xué)思維、活動(dòng)過(guò)程,體驗(yàn)成功的喜悅,感受數(shù)學(xué)與實(shí)際生活的緊密聯(lián)系,增加學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):利用平移旋轉(zhuǎn)的特征感受二次函數(shù)關(guān)系式的變換規(guī)律 教學(xué)難點(diǎn):利用平移旋轉(zhuǎn)求二次函數(shù)關(guān)系式 教學(xué)用具:多媒體 教學(xué)過(guò)程:
一、引入練習(xí):
1.點(diǎn)的坐標(biāo)關(guān)于X軸對(duì)稱(chēng)坐標(biāo)的特點(diǎn),Y軸對(duì)稱(chēng)坐標(biāo)的特點(diǎn),原點(diǎn)對(duì)稱(chēng)坐標(biāo)特點(diǎn)。
二、專(zhuān)項(xiàng)訓(xùn)練一
拋物線的平移
類(lèi)型之一 拋物線與平移 1.下列二次函數(shù)的圖象,不能通過(guò)函數(shù)y=3x2的圖象平移得到的是(D)A.y=3x2+2 B.y=3(x-1)2 C.y=3(x-1)2+2 D.y=2x2 2.(2015·臨沂)要將拋物線y=x2+2x+3平移后得到拋物線y=x2,下列平移方法正確的是(C)A.先向左平移1個(gè)單位,再向上平移2個(gè)單位 B.先向左平移1個(gè)單位,再向下平移2個(gè)單位 C.先向右平移1個(gè)單位,再向下平移2個(gè)單位 D.先向右平移1個(gè)單位,再向上平移2個(gè)單位
3.如圖,把拋物線y=x2沿直線y=x平移2個(gè)單位后,其頂點(diǎn)在直線上的A處,則平移后拋物線的解析式是(C)A.y=(x+1)2-1 B.y=(x+1)2+1 C.y=(x-1)2+1 D.y=(x-1)2-1
14.如圖在平面直角坐標(biāo)系中,拋物線y=x2經(jīng)過(guò)平移得21到拋物線y=x2-2x,其對(duì)稱(chēng)軸與兩段拋物線弧所圍成的陰2影部分的面積為(B)A.2 B.4 C.8 D.16
15.在平面直角坐標(biāo)系中,把拋物線y=-x2+1向上平2移3個(gè)單位,再向左平移1個(gè)單位,則所得拋物線的解析式1是__y=-(x+1)2+4__. 26.已知二次函數(shù)y=3x2的圖象不動(dòng),把x軸向上平移2個(gè)單位長(zhǎng)度,那么在新的坐標(biāo)系下此拋物線的解析式是__y=3x2-2__. 7.在平面直角坐標(biāo)系中,平移拋物線y=-x2+2x-8,使它經(jīng)過(guò)原點(diǎn),寫(xiě)出平移后拋物線的一個(gè)解析式:__y=-x2+2x(答案不唯一)__.
8.(2015·岳陽(yáng))如圖,已知拋物線y=ax2+bx+c與x軸交于A,B兩點(diǎn),頂點(diǎn)C的給縱坐標(biāo)為-2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論正確的是__③④__.(填序號(hào))①b>0;②a-b+c<0;③陰影部分的面積為4;④若c=-1,則b2=4a.19.如圖,點(diǎn)A(-1,0)為二次函數(shù)y=x2+bx-2的圖象2與x軸的一個(gè)交點(diǎn).(1)求該二次函數(shù)的解析式,并說(shuō)明當(dāng)x>0時(shí),y值隨x值變化而變化的情況;(2)將該二次函數(shù)圖象沿x軸向右平移1個(gè)單位,請(qǐng)直接寫(xiě)出平移后的圖象與x軸的交點(diǎn)坐標(biāo).
類(lèi)型之二 拋物線與軸對(duì)稱(chēng) 10.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對(duì)稱(chēng)軸為x=1.下列結(jié)論中錯(cuò)誤的是(D)A.a(chǎn)bc<0 B.2a+b=0 C.b2-4ac>0 D.a(chǎn)-b+c>0
11.如圖所示,在一張紙上作出函數(shù)y=x2-2x+3的圖象,沿x軸把這張紙對(duì)折,描出與拋物線y=x2-2x+3關(guān)于x軸對(duì)稱(chēng)的拋物線,則描出的這條拋物線的解析式為_(kāi)_y=-x2+2x-3__.
類(lèi)型之三 拋物線與旋轉(zhuǎn) 12.將二次函數(shù)y=x2-2x+1的圖象繞它的頂點(diǎn)A旋轉(zhuǎn)180°,則旋轉(zhuǎn)后的拋物線的函數(shù)解析式為(C)A.y=-x2+2x+1 B.y=-x2-2x+1 C.y=-x2+2x-1 D.y=x2+2x+1 13.在平面直角坐標(biāo)系中,將拋物線y=x2+2x+3繞著它與y軸的交點(diǎn)旋轉(zhuǎn)180°,所得拋物線的解析式是(B)A.y=-(x+1)2+2 B.y=-(x-1)2+4 C.y=-(x-1)2+2 D.y=-(x+1)2+4 14.把二次函數(shù)y=(x-1)2+2的圖象繞原點(diǎn)旋轉(zhuǎn)180°后得到的圖象的解析式為_(kāi)_y=-(x+1)2-2__.
15.在平面直角坐標(biāo)系中,將拋物線y1=x2-4x+1向左平移3個(gè)單位長(zhǎng)度,再向上平移4個(gè)單位長(zhǎng)度,得到拋物線y2,然后將拋物線y2繞其頂點(diǎn)順時(shí)針旋轉(zhuǎn)180°,得到拋物線y3.(1)求拋物線y2,y3的解析式;(2)求y3<0時(shí),x的取值范圍;(3)判斷以拋物線y3的頂點(diǎn)以及其與x軸的交點(diǎn)為頂點(diǎn)的三角形的形狀,并求它的面積.
第五篇:《二次函數(shù)的應(yīng)用》教學(xué)反思
《二次函數(shù)的應(yīng)用》教學(xué)反思
《二次函數(shù)的應(yīng)用教學(xué)反思》教學(xué)反思
二次函數(shù)的應(yīng)用是在學(xué)習(xí)二次函數(shù)的圖像與性質(zhì)后,檢驗(yàn)學(xué)生應(yīng)用所學(xué)知識(shí)解決實(shí)際問(wèn)題能力的一個(gè)綜合考查,它是本章的難點(diǎn)。新的課程標(biāo)準(zhǔn)要求學(xué)生能通過(guò)對(duì)實(shí)際問(wèn)題的情境的分析確定二次函數(shù)的表達(dá)式,體會(huì)其意義,能根據(jù)圖像的性質(zhì)解決簡(jiǎn)單的實(shí)際問(wèn)題,而最大值問(wèn)題是生活中利用二次函數(shù)知識(shí)解決最常見(jiàn)、最有實(shí)際應(yīng)用價(jià)值的問(wèn)題,它生活背景豐富,學(xué)生比較感興趣。本節(jié)課通過(guò)學(xué)習(xí)求水流的最高點(diǎn)問(wèn)題,引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型,利用數(shù)學(xué)建模的思想去解決和函數(shù)有關(guān)的應(yīng)用問(wèn)題。此部分內(nèi)容是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅(jiān)實(shí)的基礎(chǔ)。
由于本節(jié)課是二次函數(shù)的應(yīng)用問(wèn)題,重在通過(guò)學(xué)習(xí)總結(jié)解決問(wèn)題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開(kāi)展教學(xué)活動(dòng),以學(xué)生動(dòng)手動(dòng)腦探究為主,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性和主動(dòng)性,突出學(xué)生的主體地位,達(dá)到“不但使學(xué)生學(xué)會(huì),而且使學(xué)生會(huì)學(xué)”的目的。
不足之處:《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:教師不僅是學(xué)生的引導(dǎo)者,也是學(xué)生的合作者。教學(xué)中,要讓學(xué)生通過(guò)自主討論、交流,來(lái)探究學(xué)習(xí)中碰到的問(wèn)題、難題,教師從中點(diǎn)撥、引導(dǎo),并和學(xué)生一起學(xué)習(xí)探討。在本節(jié)課的教學(xué)中,教師引導(dǎo)學(xué)生較多,沒(méi)有完全放開(kāi)讓學(xué)生自主探究學(xué)習(xí),獲得新知;學(xué)生在數(shù)學(xué)學(xué)習(xí)中還是有較強(qiáng)的依賴(lài)性,教師要有意培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。
教師要想在開(kāi)放的課堂上具有靈活駕馭的能力,就需要在備課時(shí)盡量考慮周到,既要備教材,又要備學(xué)生,更需要教師具有豐富的科學(xué)文化知識(shí),這樣才能使我們的學(xué)生在輕松活躍的課堂上找到學(xué)習(xí)的樂(lè)趣與興趣。