欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      高中數(shù)學(xué)知識點小結(jié)

      時間:2019-05-13 16:27:47下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《高中數(shù)學(xué)知識點小結(jié)》,但愿對你工作學(xué)習(xí)有幫助,當然你在寫寫幫文庫還可以找到更多《高中數(shù)學(xué)知識點小結(jié)》。

      第一篇:高中數(shù)學(xué)知識點小結(jié)

      集合的交、并、補,集合的包含即子集關(guān)系;

      函數(shù)的單調(diào)性,奇偶性,基本函數(shù)模型(一次函數(shù),二次函數(shù),反比例函數(shù),指數(shù)函數(shù),對數(shù)函數(shù)),分數(shù)指數(shù)冪的定義及運算法則,對數(shù)的定義及運算性質(zhì)與運算法則;

      直線與平面的平行與垂直,平面與平面的平行與垂直;

      直線方程,平面內(nèi)兩條直線的平行與垂直,平面內(nèi)兩點間的距離,點到直線的距離,兩條平行直線間的距離,兩條直線的交點,圓的標準方程和一般方程,直線與圓的位置關(guān)系,兩圓的位置關(guān)系,空間坐標系; 算法流程圖;

      統(tǒng)計的分布估計與特征值估計; 概率模型與對立事件; 三角函數(shù)的定義,同角三角函數(shù)基本關(guān)系式,誘導(dǎo)公式,三角函數(shù)的圖象與性質(zhì);平面向量的定義,平面向量加(減)法的三角形法則、平行四邊形法則,平面向量數(shù)乘的意義及平面向量基本定義,平面向量的坐標表示,平面向量的數(shù)量積,平面向量的應(yīng)用;

      兩角和與差的三角函數(shù),二倍角公式; 正弦、余弦定理及其應(yīng)用;

      等差(比)數(shù)列的通項公式與前n項和公式及其應(yīng)用; 二次不等式、二次函數(shù)與一元二次方程三個二次之間的關(guān)系,基本不等式及其應(yīng)用,線性規(guī)劃; 命題的逆、否及逆否,充分條件、必要條件、充要條件與既不充分也不必要條件,含有一個量詞的否定;

      圓錐曲線的定義、標準方程及幾何性質(zhì)(共性:焦點、準線、離心率,個性:橢圓和為值、雙曲線差為定值、拋物線比為定值1,雙曲線的漸近線、拋物線的焦準距);

      導(dǎo)數(shù)的幾何意義,求導(dǎo)法則及常見函數(shù)求導(dǎo)的公式(尤其關(guān)注y=e^x與y=lnx),導(dǎo)數(shù)在函數(shù)中的應(yīng)用,導(dǎo)數(shù)在實際問題中的應(yīng)用; 合情推理(歸納推理、類比);

      復(fù)數(shù)的基本概念,復(fù)數(shù)的四則運算,得數(shù)的幾何意義。

      第二篇:高中數(shù)學(xué)知識點

      高中數(shù)學(xué)知識點 必修1集合函數(shù)概念與基本初等函數(shù)Ⅰ必修2立體幾何初步平面解析幾何初步必修3算法初步統(tǒng)計概率

      必修4

      基本初等函數(shù)Ⅱ(三角函數(shù))平面向量三角恒等變形必修5

      解三角形數(shù)列不等式

      選修

      常用邏輯用語圓錐曲線與方程空間向量與立體幾何導(dǎo)數(shù)及其應(yīng)用推理與證明數(shù)系的擴充與復(fù)數(shù)的引入計數(shù)原理概率與統(tǒng)計幾何證明選講坐標系與參數(shù)方程不等式選講

      第三篇:高中數(shù)學(xué)知識點

      高中數(shù)學(xué)重點知識與結(jié)論分類解析

      一、集合與簡易邏輯 1.集合的元素具有確定性、無序性和互異性. 2.對集合,時,必須注意到“極端”情況: 或 ;求集合的子集時是否注意到 是任何集合的子集、是任何非空集合的真子集. 3.對于含有 個元素的有限集合,其子集、真子集、非空子集、非空真子集的個數(shù)依次為4.“交的補等于補的并,即 ”;“并的補等于補的交,即 ”. 5.判斷命題的真假關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”. 6.“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”. 7.四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”. 原命題等價于逆否命題,但原命題與逆命題、否命題都不等價.反證法分為三步:假設(shè)、推矛、得果. 注意:命題的否定是“命題的非命題,也就是‘條件不變,僅否定結(jié)論’所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結(jié)論作為結(jié)論的所得命題” . 8.充要條件

      第四篇:高中數(shù)學(xué)必修4 三角函數(shù)知識點小結(jié)

      一、見“給角求值”問題,運用“新興”誘導(dǎo)公式

      一步到位轉(zhuǎn)換到區(qū)間(-90o,90o)的公式.1.sin(kπ+α)=(-1)ksinα(k∈Z);2.cos(kπ+α)=(-1)kcosα(k∈Z);

      3.tan(kπ+α)=(-1)ktanα(k∈Z);4.cot(kπ+α)=(-1)kcotα(k∈Z).二、見“sinα±cosα”問題,運用三角“八卦圖”

      1.sinα+cosα>0(或<0)óα的終邊在直線y+x=0的上方(或下方);

      2.sinα-cosα>0(或<0)óα的終邊在直線y-x=0的上方(或下方);

      3.|sinα|>|cosα|óα的終邊在Ⅱ、Ⅲ的區(qū)域內(nèi);

      4.|sinα|<|cosα|óα的終邊在Ⅰ、Ⅳ區(qū)域內(nèi).三、見“知1求5”問題,造Rt△,用勾股定理,熟記常用勾股數(shù)(3,4,5),(5,12,13),(7,24,25),仍然注意“符號看象限”。

      四、見“切割”問題,轉(zhuǎn)換成“弦”的問題。

      五、“見齊思弦”=>“化弦為一”:已知tanα,求sinα與cosα的齊次式,有些整式情形還可以視其分母為1,轉(zhuǎn)化為sin2α+cos2α.六、見“正弦值或角的平方差”形式,啟用“平方差”公式:

      1.sin(α+β)sin(α-β)= sin2α-sin2β;2.cos(α+β)cos(α-β)= cos2α-sin2β.七、見“sinα±cosα與sinαcosα”問題,起用平方法則:

      (sinα±cosα)2=1±2sinαcosα=1±sin2α,故

      1.若sinα+cosα=t,(且t2≤2),則2sinαcosα=t2-1=sin2α;

      2.若sinα-cosα=t,(且t2≤2),則2sinαcosα=1-t2=sin2α.八、見“tanα+tanβ與tanαtanβ”問題,啟用變形公式:

      tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???

      九、見三角函數(shù)“對稱”問題,啟用圖象特征代數(shù)關(guān)系:(A≠0)

      1.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關(guān)于過最值點且平行于y軸的直線分別成軸對稱;

      2.函數(shù)y=Asin(wx+φ)和函數(shù)y=Acos(wx+φ)的圖象,關(guān)于其中間零點分別成中心對稱;

      3.同樣,利用圖象也可以得到函數(shù)y=Atan(wx+φ)和函數(shù)y=Acot(wx+φ)的對稱性質(zhì)。

      十、見“求最值、值域”問題,啟用有界性,或者輔助角公式:

      1.|sinx|≤1,|cosx|≤1;2.(asinx+bcosx)2=(a2+b2)sin2(x+φ)≤(a2+b2);

      3.asinx+bcosx=c有解的充要條件是a2+b2≥c2.十一、見“高次”,用降冪,見“復(fù)角”,用轉(zhuǎn)化.1.cos2x=1-2sin2x=2cos2x-1.2.2x=(x+y)+(x-y);2y=(x+y)-(x-y);x-w=(x+y)-(y+w)等.

      第五篇:高中數(shù)學(xué)知識點總結(jié)

      高中數(shù)學(xué)難度更大,難度在于它的深度和廣度,但如果能理清思路,抓住重點,多實踐,變渣滓為暴君并非不可能。高中數(shù)學(xué)知識點總結(jié)有哪些你知道嗎?一起來看看高中數(shù)學(xué)知識點總結(jié),歡迎查閱!

      高中數(shù)學(xué)知識點匯總

      1.必修課程由5個模塊組成:

      必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對數(shù)函數(shù))

      必修2:立體幾何初步、平面解析幾何初步。

      必修3:算法初步、統(tǒng)計、概率。

      必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

      必修5:解三角形、數(shù)列、不等式。

      以上所有的知識點是所有高中生必須掌握的,而且要懂得運用。

      選修課程分為4個系列:

      系列1:2個模塊

      選修1-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何。

      選修1-2:統(tǒng)計案例、推理與證明、數(shù)系的擴充與復(fù)數(shù)、框圖

      系列2:3個模塊

      選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何

      選修2-2:導(dǎo)數(shù)及其應(yīng)用、推理與證明、數(shù)系的擴充與復(fù)數(shù)

      選修2-3:計數(shù)原理、隨機變量及其分布列、統(tǒng)計案例

      選修4-1:幾何證明選講

      選修4-4:坐標系與參數(shù)方程

      選修4-5:不等式選講

      2.重難點及其考點:

      重點:函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

      難點:函數(shù),圓錐曲線

      高考相關(guān)考點:

      1.集合與邏輯:集合的邏輯與運算(一般出現(xiàn)在高考卷的第一道選擇題)、簡易邏輯、充要條件

      2.函數(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應(yīng)用

      3.數(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求通項、求和

      4.三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和差倍半公式、求值、化簡、證明、三角函數(shù)的圖像及其性質(zhì)、應(yīng)用

      5.平面向量:初等運算、坐標運算、數(shù)量積及其應(yīng)用

      6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經(jīng)常出現(xiàn)在大題的選做題里)、不等式的應(yīng)用

      7.直線與圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

      8.圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用

      9.直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

      10.排列、組合和概率:排列、組合應(yīng)用題、二項式定理及其應(yīng)用

      11.概率與統(tǒng)計:概率、分布列、期望、方差、抽樣、正態(tài)分布

      12.導(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

      13.復(fù)數(shù):復(fù)數(shù)的概念與運算

      高中數(shù)學(xué)學(xué)習(xí)要注意的方法

      1.用心感受數(shù)學(xué),欣賞數(shù)學(xué),掌握數(shù)學(xué)思想。有位數(shù)學(xué)家曾說過:數(shù)學(xué)是用最小的空間集中了的理想。

      2.要重視數(shù)學(xué)概念的理解。高一數(shù)學(xué)與初中數(shù)學(xué)的區(qū)別是概念多并且較抽象,學(xué)起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學(xué)習(xí)概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價的表達方式。例如,為什么函數(shù)y=f(x)與y=f-1(x)的圖象關(guān)于直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什么當f(x-1)=f(1-x)時,函數(shù)y=f(x)的圖象關(guān)于y軸對稱,而y=f(x-1)與y=f(1-x)的圖象卻關(guān)于直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關(guān)系的區(qū)別,兩者很容易混淆。

      3.對數(shù)學(xué)學(xué)習(xí)應(yīng)抱著二個詞――“嚴謹,創(chuàng)新”,所謂嚴謹,就是在平時訓(xùn)練的時候,不能一絲馬虎,是對就是對,錯了就一定要承認,要找原因,要改正,萬不可以抱著“好像是對的”的心態(tài),蒙混過關(guān)。至于創(chuàng)新呢,要求就高一點了,要求在你會解決此問題的情況下,你還會不會用另一種更簡單,更有效的方法,這就需要扎實的基本功。平時,我們看到一些人,做題時從不用常規(guī)方法,總愛自己創(chuàng)造一些方法以“偏方”解題,雖然有時候也能讓他撞上一些好的方法,但我認為是不可取的。因為你首先必須學(xué)會用常規(guī)的方法,在此基礎(chǔ)上你才能創(chuàng)新,你的創(chuàng)新才有意義,而那些總是片面“追求”新方法的人,他們的思維有如空中樓閣,必然是曇花一現(xiàn)。當然我們要有創(chuàng)新意識,但是,創(chuàng)新是有條件的,必須有扎實的基礎(chǔ),因此我想勸一下那些基礎(chǔ)不牢,而平時總愛用“偏方”的同學(xué)們,該是清醒一下的時候了,千萬不要繼續(xù)鉆那可憐的牛角尖啊!

      4.建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時間,以便加寬知識面和培養(yǎng)自己再學(xué)習(xí)能力。

      5.多聽、多作、多想、多問:此“四多”乃培養(yǎng)數(shù)學(xué)能力的要訣,“聽”就是在“學(xué)”,作是“練習(xí)”(作課本上的習(xí)題或其它問題),也就是把您所學(xué)的,應(yīng)用到解決問題上?!奥牎迸c“作”難免會碰到疑難,那就要靠“想”的功夫去打通它,假如還想不通,解不來就要“問”――問同學(xué)、問老師或參考書,務(wù)必將疑難解決為止。這就是所謂的學(xué)問:既學(xué)又問。

      6.要有毅力、要有恒心:基本上要有一個認識:數(shù)學(xué)能力乃是長期努力累積的結(jié)果,而不是一朝一夕之功所能達到的。您可能花一天或一個晚上的功夫把某課文背得滾瓜爛熟,第二天考背誦時對答如流而獲高分,也有可能花了一兩個禮拜的時間拼命學(xué)數(shù)學(xué),但到頭來數(shù)學(xué)可能還考不好,這時候您可不能氣餒,也不必為花掉的時間惋惜。

      高中數(shù)學(xué)復(fù)習(xí)的五大要點分析

      一、端正態(tài)度,切忌浮躁,忌急于求成在第一輪復(fù)習(xí)的過程中,心浮氣躁是一個非常普遍的現(xiàn)象。主要表現(xiàn)為平時復(fù)習(xí)覺得沒有問題,題目也能做,但是到了考試時就是拿不了高分!這主要是因為:

      (1)對復(fù)習(xí)的知識點缺乏系統(tǒng)的理解,解題時缺乏思維層次結(jié)構(gòu)。第一輪復(fù)習(xí)著重對基礎(chǔ)知識點的挖掘,數(shù)學(xué)老師一定都會反復(fù)強調(diào)基礎(chǔ)的重要性。如果不重視對知識點的系統(tǒng)化分析,不能構(gòu)成一個整體的知識網(wǎng)絡(luò)構(gòu)架,自然在解題時就不能擁有整體的構(gòu)思,也不能深入理解高考典型例題的思維方法。

      (2)復(fù)習(xí)的時候心不靜。心不靜就會導(dǎo)致思維不清晰,而思維不清晰就會促使復(fù)習(xí)沒有效率。建議大家在開始一個學(xué)科的復(fù)習(xí)之前,先靜下心來認真想一想接下來需要復(fù)習(xí)哪一塊兒,需要做多少事情,然后認真去做,同時需要很高的注意力,只有這樣才會有很好的效果。

      (3)在第一輪復(fù)習(xí)階段,學(xué)習(xí)的重心應(yīng)該轉(zhuǎn)移到基礎(chǔ)復(fù)習(xí)上來。

      因此,建議廣大同學(xué)在一輪復(fù)習(xí)的時候千萬不要急于求成,一定要靜下心來,認真的揣摩每個知識點,弄清每一個原理。只有這樣,一輪復(fù)習(xí)才能顯出成效。

      二、注重教材、注重基礎(chǔ),忌盲目做題

      要把書本中的常規(guī)題型做好,所謂做好就是要用最少的時間把題目做對。部分同學(xué)在第一輪復(fù)習(xí)時對基礎(chǔ)題不予以足夠的重視,認為題目看上去會做就可以不加訓(xùn)練,結(jié)果常在一些“不該錯的地方錯了”,最終把原因簡單的歸結(jié)為粗心,從而忽視了對基本概念的掌握,對基本結(jié)論和公式的記憶及基本計算的訓(xùn)練和常規(guī)方法的積累,造成了實際成績與心理感覺的偏差。

      可見,數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識點的聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是第一輪復(fù)習(xí)的重中之重。不妨以既是重點也是難點的函數(shù)部分為例,就必須掌握函數(shù)的概念,建立函數(shù)關(guān)系式,掌握定義域、值域與最值、奇偶性、單調(diào)性、周期性、對稱性等性質(zhì),學(xué)會利用圖像即數(shù)形結(jié)合。

      三、抓薄弱環(huán)節(jié),做好復(fù)習(xí)的針對性,忌無計劃

      每個同學(xué)在數(shù)學(xué)學(xué)習(xí)上遇到的問題有共同點,更有不同點。在復(fù)習(xí)課上,老師只能針對性去解決共同點,而同學(xué)們自己的個別問題則需要通過自己的思考,與同學(xué)們的討論,并向老師提問來解決問題,我們提倡同學(xué)多問老師,要敢于問。每個同學(xué)必須了解自己掌握了什么,還有哪些問題沒有解決,要明確只有把漏洞一一補上才能提高。復(fù)習(xí)的過程,實質(zhì)就是解決問題的過程,問題解決了,復(fù)習(xí)的效果就實現(xiàn)了。同時,也請同學(xué)們注意:在你問問題之前先經(jīng)過自己思考,不要把不經(jīng)過思考的問題就直接去問,因為這并不能起到更大作用。

      高三的復(fù)習(xí)一定是有計劃、有目標的,所以千萬不要盲目做題。第一輪復(fù)習(xí)非常具有針對性,對于所有知識點的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡單做題是達不到一輪復(fù)習(xí)應(yīng)該具有的效果。而且盲目做題沒有針對性,更不會有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對知識點運用方法的總結(jié)。

      四、在平時做題中要養(yǎng)成良好的解題習(xí)慣,忌不思

      1.樹立信心,養(yǎng)成良好的運算習(xí)慣。部分同學(xué)平時學(xué)習(xí)過程中自信心不足,做作業(yè)時免不了互相對答案,也不認真找出錯誤原因并加以改正。“會而不對”是高三數(shù)學(xué)學(xué)習(xí)的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這就是一種非常不好的習(xí)慣,必須在第一輪復(fù)習(xí)中逐步克服,否則,后患無窮??山Y(jié)合平時解題中存在的具體問題,逐題找出原因,看其是行為習(xí)慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄,也就是錯題本,每位同學(xué)必備的,以便以后查詢。

      2.做好解題后的開拓引申,培養(yǎng)一題多解和舉一反三的能力。解題能力的培養(yǎng)可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對解題方法的開拓引申,即一道數(shù)學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。

      考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對題目做開拓引申,引申出新題和新解法,有利于培養(yǎng)同學(xué)們的發(fā)散思維,激發(fā)創(chuàng)造精神,提高解題能力:

      (1)把題目條件開拓引申。

      ①把特殊條件一般化;②把一般條件特殊化;③把特殊條件和一般條件交替變化。

      (2)把題目結(jié)論開拓引申。

      (3)把題型開拓引申,同一個題目,給出不同的提法,可以變成不同的題型。俗稱為“一題多變”但其解法仍類似,按其解法而言,這些題又可稱為“多題一解”或“一法多用”。

      3.提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡捷;二是對常規(guī)解法的掌握是否達到高度的熟練程度。

      五、學(xué)會總結(jié)、歸納,訓(xùn)練到位,忌題量不足

      我在暑期上課的時候發(fā)現(xiàn),很多同學(xué)都是一看到題目就開始做題,這也是一輪復(fù)習(xí)應(yīng)該避免的地方。做題如果不注重思路的分析,知識點的運用,效果可想而知。因此建議同學(xué)們在做題前要把老師上課時復(fù)習(xí)的知識再回顧一下,梳理知識體系,回顧各個知識點,對所學(xué)的知識結(jié)構(gòu)要有一個完整清楚的認識,認真分析題目考查的知識,思想,以及方法,還要學(xué)會總結(jié)歸納不留下任何知識的盲點,在一輪復(fù)習(xí)中要注意對各個知識點的細化。這個過程不需要很長的時間,而且到了后續(xù)階段會越來越熟練。因此,養(yǎng)成良好的做題習(xí)慣,有助于訓(xùn)練自己的解題思維,提高自己的解題能力。

      實踐出真知,充足的題量是把理論轉(zhuǎn)化為能力的一種保障,在足夠的題目的練習(xí)下不僅可以更扎實的掌握知識點,還可以更深入的了解知識點,避免出現(xiàn)“會而不對、對而不全”的現(xiàn)象。由于高考依然是以做題為主,所以解題能力是高考分數(shù)的一個直接反映,尤其是數(shù)學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復(fù)的訓(xùn)練、認真細致的推敲才會有較大的提升。有句話說的好,“量變導(dǎo)致質(zhì)變”,因此,同學(xué)們在每章復(fù)習(xí)的時候,一定要做足夠的題,才能夠充分的理解這一章的內(nèi)容,才能夠做到對這一章知識點的熟練運用。

      但是,大量訓(xùn)練絕對不是題海戰(zhàn)術(shù)。因為針對每章節(jié)做題都有目標,同時做題訓(xùn)練都需要不斷的總結(jié),既要橫向總結(jié),也要縱向深入。只要在每章節(jié)做題做到一定程度的時候都能感覺到這一章的知識點有哪些,典型題型有哪些,方法和技巧有哪些,換句話說,如果隨機抽取一些近幾年關(guān)于這一章的高考題都會做,那我認為就可以了。


      高中數(shù)學(xué)知識點總結(jié)

      下載高中數(shù)學(xué)知識點小結(jié)word格式文檔
      下載高中數(shù)學(xué)知識點小結(jié).doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔相關(guān)法律責任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        高中數(shù)學(xué)知識點--立體幾何

        【高中數(shù)學(xué)知識點】立體幾何學(xué)習(xí)的幾點建議.txt 一 逐漸提高邏輯論證能力 立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證......

        高中數(shù)學(xué)函數(shù)知識點大全

        一般的,在一個變化過程中,假設(shè)有兩個變量x、y,如果對于任意一個x都有唯一確定的一個y和它對應(yīng),那么就稱y是x的函數(shù),其中x是自變量,y是因變量,x的取值范圍叫做這個函數(shù)的定義域,相應(yīng)y......

        高中數(shù)學(xué)知識點總結(jié)

        高中數(shù)學(xué)知識點總結(jié) 1. 對于集合,一定要抓住集合的代表元素,及元素的"確定性、互異性、無序性"。 中元素各表示什么? A表示函數(shù)y=lgx的定義域,B表示的是值域,而C表示的卻是函數(shù)......

        高中數(shù)學(xué)知識點總結(jié)范文大全

        第一部分集合與常用邏輯用語 1.理解集合中元素的意義是解決集合問題的關(guān)鍵:元素是函數(shù)關(guān)系中自變量的?。?值?還是因變量的取值?還是曲線上的點?? ; 2.數(shù)形結(jié)合是解集合問題的常用方......

        高中數(shù)學(xué)選修4-5完整知識點

        高中數(shù)學(xué)選修4--5知識點 ①(對稱性)b?a②(傳遞性)a?b,b?c?a?c③(可加性)a?b?a?c?b?c(同向可加性)a?b,c?d?a?c?b?d(異向可減性)a?b,c?d?a?c?b?d④(可積性)a?b,c?0?ac?bca?b,c?0?ac?bc⑤(同向正數(shù)可乘性)a?b?0,c?d?0?ac?bd (異向正......

        高中數(shù)學(xué)知識點總結(jié)(推薦9篇)

        篇1:高中數(shù)學(xué)知識點總結(jié)高中數(shù)學(xué)知識點匯總1.必修課程由5個模塊組成:必修1:集合,函數(shù)概念與基本初等函數(shù)(指數(shù)函數(shù),冪函數(shù),對數(shù)函數(shù))必修2:立體幾何初步、平面解析幾何初步。必修3:......

        高中數(shù)學(xué)立體幾何初步知識點

        高中數(shù)學(xué)立體幾何初步知識點 高中幾何是高中的一個難點。大家只要記住下面這幾點相信你成績一定會突飛猛進的!立體幾何初步:①柱、錐、臺、球及其簡單組合體等內(nèi)容是立體幾何......

        最全高中數(shù)學(xué)知識點總結(jié)

        高中新課標理科數(shù)學(xué) (必修+選修) 所有知識點總結(jié) 第 1 頁 共 117 頁 引言 1.課程內(nèi)容: 必修課程由5個模塊組成: 必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù)) 必修2:立體......